Index: runtime/vm/bigint_operations.cc |
=================================================================== |
--- runtime/vm/bigint_operations.cc (revision 40060) |
+++ runtime/vm/bigint_operations.cc (working copy) |
@@ -1,1868 +0,0 @@ |
-// Copyright 2012 Google Inc. All Rights Reserved. |
- |
-#include "vm/bigint_operations.h" |
- |
-#include "platform/assert.h" |
-#include "platform/utils.h" |
- |
-#include "vm/double_internals.h" |
-#include "vm/exceptions.h" |
-#include "vm/object_store.h" |
-#include "vm/zone.h" |
- |
-namespace dart { |
- |
-RawBigint* BigintOperations::NewFromSmi(const Smi& smi, Heap::Space space) { |
- intptr_t value = smi.Value(); |
- if (value == 0) { |
- return Zero(); |
- } |
- |
- bool is_negative = (value < 0); |
- if (is_negative) { |
- value = -value; |
- } |
- // Assert that there are no overflows. Smis reserve a bit for themselves, but |
- // protect against future changes. |
- ASSERT(-Smi::kMinValue > 0); |
- |
- // A single digit of a Bigint might not be sufficient to store a Smi. |
- // Count number of needed Digits. |
- intptr_t digit_count = 0; |
- intptr_t count_value = value; |
- while (count_value > 0) { |
- digit_count++; |
- count_value >>= kDigitBitSize; |
- } |
- |
- // Allocate a bigint of the correct size and copy the bits. |
- const Bigint& result = Bigint::Handle(Bigint::Allocate(digit_count, space)); |
- for (intptr_t i = 0; i < digit_count; i++) { |
- result.SetChunkAt(i, static_cast<Chunk>(value & kDigitMask)); |
- value >>= kDigitBitSize; |
- } |
- result.SetSign(is_negative); |
- ASSERT(IsClamped(result)); |
- return result.raw(); |
-} |
- |
- |
-RawBigint* BigintOperations::NewFromInt64(int64_t value, Heap::Space space) { |
- bool is_negative = value < 0; |
- |
- if (is_negative) { |
- value = -value; |
- } |
- |
- const Bigint& result = Bigint::Handle(NewFromUint64(value, space)); |
- result.SetSign(is_negative); |
- |
- return result.raw(); |
-} |
- |
- |
-RawBigint* BigintOperations::NewFromUint64(uint64_t value, Heap::Space space) { |
- if (value == 0) { |
- return Zero(); |
- } |
- // A single digit of a Bigint might not be sufficient to store the value. |
- // Count number of needed Digits. |
- intptr_t digit_count = 0; |
- uint64_t count_value = value; |
- while (count_value > 0) { |
- digit_count++; |
- count_value >>= kDigitBitSize; |
- } |
- |
- // Allocate a bigint of the correct size and copy the bits. |
- const Bigint& result = Bigint::Handle(Bigint::Allocate(digit_count, space)); |
- for (intptr_t i = 0; i < digit_count; i++) { |
- result.SetChunkAt(i, static_cast<Chunk>(value & kDigitMask)); |
- value >>= kDigitBitSize; |
- } |
- result.SetSign(false); |
- ASSERT(IsClamped(result)); |
- return result.raw(); |
-} |
- |
- |
-RawBigint* BigintOperations::NewFromCString(const char* str, |
- Heap::Space space) { |
- ASSERT(str != NULL); |
- if (str[0] == '\0') { |
- return Zero(); |
- } |
- |
- // If the string starts with '-' recursively restart the whole operation |
- // without the character and then toggle the sign. |
- // This allows multiple leading '-' (which will cancel each other out), but |
- // we have added an assert, to make sure that the returned result of the |
- // recursive call is not negative. |
- // We don't catch leading '-'s for zero. Ex: "--0", or "---". |
- if (str[0] == '-') { |
- const Bigint& result = Bigint::Handle(NewFromCString(&str[1], space)); |
- result.ToggleSign(); |
- ASSERT(result.IsZero() || result.IsNegative()); |
- ASSERT(IsClamped(result)); |
- return result.raw(); |
- } |
- |
- // No overflow check needed since overflowing str_length implies that we take |
- // the branch to FromDecimalCString() which contains a check itself. |
- const intptr_t str_length = strlen(str); |
- if ((str_length > 2) && |
- (str[0] == '0') && |
- ((str[1] == 'x') || (str[1] == 'X'))) { |
- const Bigint& result = Bigint::Handle(FromHexCString(&str[2], space)); |
- ASSERT(IsClamped(result)); |
- return result.raw(); |
- } else { |
- return FromDecimalCString(str, space); |
- } |
-} |
- |
- |
-intptr_t BigintOperations::ComputeChunkLength(const char* hex_string) { |
- ASSERT(kDigitBitSize % 4 == 0); |
- const intptr_t hex_length = strlen(hex_string); |
- if (hex_length < 0) { |
- FATAL("Fatal error in BigintOperations::ComputeChunkLength: " |
- "string too long"); |
- } |
- // Round up. |
- intptr_t bigint_length = ((hex_length - 1) / kHexCharsPerDigit) + 1; |
- return bigint_length; |
-} |
- |
- |
-RawBigint* BigintOperations::FromHexCString(const char* hex_string, |
- Heap::Space space) { |
- // If the string starts with '-' recursively restart the whole operation |
- // without the character and then toggle the sign. |
- // This allows multiple leading '-' (which will cancel each other out), but |
- // we have added an assert, to make sure that the returned result of the |
- // recursive call is not negative. |
- // We don't catch leading '-'s for zero. Ex: "--0", or "---". |
- if (hex_string[0] == '-') { |
- const Bigint& value = Bigint::Handle(FromHexCString(&hex_string[1], space)); |
- value.ToggleSign(); |
- ASSERT(value.IsZero() || value.IsNegative()); |
- ASSERT(IsClamped(value)); |
- return value.raw(); |
- } |
- intptr_t bigint_length = ComputeChunkLength(hex_string); |
- const Bigint& result = Bigint::Handle(Bigint::Allocate(bigint_length, space)); |
- FromHexCString(hex_string, result); |
- return result.raw(); |
-} |
- |
- |
-RawBigint* BigintOperations::FromDecimalCString(const char* str, |
- Heap::Space space) { |
- Isolate* isolate = Isolate::Current(); |
- // Read 8 digits a time. 10^8 < 2^27. |
- const int kDigitsPerIteration = 8; |
- const Chunk kTenMultiplier = 100000000; |
- ASSERT(kDigitBitSize >= 27); |
- |
- const intptr_t str_length = strlen(str); |
- if (str_length < 0) { |
- FATAL("Fatal error in BigintOperations::FromDecimalCString: " |
- "string too long"); |
- } |
- intptr_t str_pos = 0; |
- |
- // Read first digit separately. This avoids a multiplication and addition. |
- // The first digit might also not have kDigitsPerIteration decimal digits. |
- intptr_t first_digit_decimal_digits = str_length % kDigitsPerIteration; |
- Chunk digit = 0; |
- for (intptr_t i = 0; i < first_digit_decimal_digits; i++) { |
- char c = str[str_pos++]; |
- ASSERT(('0' <= c) && (c <= '9')); |
- digit = digit * 10 + c - '0'; |
- } |
- Bigint& result = Bigint::Handle(Bigint::Allocate(1)); |
- result.SetChunkAt(0, digit); |
- Clamp(result); // Multiplication requires the inputs to be clamped. |
- |
- // Read kDigitsPerIteration at a time, and store it in 'increment'. |
- // Then multiply the temporary result by 10^kDigitsPerIteration and add |
- // 'increment' to the new result. |
- const Bigint& increment = Bigint::Handle(Bigint::Allocate(1)); |
- while (str_pos < str_length - 1) { |
- HANDLESCOPE(isolate); |
- Chunk digit = 0; |
- for (intptr_t i = 0; i < kDigitsPerIteration; i++) { |
- char c = str[str_pos++]; |
- ASSERT(('0' <= c) && (c <= '9')); |
- digit = digit * 10 + c - '0'; |
- } |
- result = MultiplyWithDigit(result, kTenMultiplier); |
- if (digit != 0) { |
- increment.SetChunkAt(0, digit); |
- result = Add(result, increment); |
- } |
- } |
- Clamp(result); |
- if ((space == Heap::kOld) && !result.IsOld()) { |
- result ^= Object::Clone(result, Heap::kOld); |
- } |
- return result.raw(); |
-} |
- |
- |
-RawBigint* BigintOperations::NewFromDouble(double d, Heap::Space space) { |
- if ((-1.0 < d) && (d < 1.0)) { |
- // Shortcut for small numbers. Also makes the right-shift below |
- // well specified. |
- Smi& zero = Smi::Handle(Smi::New(0)); |
- return NewFromSmi(zero, space); |
- } |
- DoubleInternals internals = DoubleInternals(d); |
- if (internals.IsSpecial()) { |
- const Array& exception_arguments = Array::Handle(Array::New(1)); |
- exception_arguments.SetAt( |
- 0, |
- PassiveObject::Handle(String::New("BigintOperations::NewFromDouble"))); |
- Exceptions::ThrowByType(Exceptions::kInternalError, exception_arguments); |
- } |
- uint64_t significand = internals.Significand(); |
- intptr_t exponent = internals.Exponent(); |
- intptr_t sign = internals.Sign(); |
- if (exponent <= 0) { |
- significand >>= -exponent; |
- exponent = 0; |
- } else if (exponent <= 10) { |
- // A double significand has at most 53 bits. The following shift will |
- // hence not overflow, and yield an integer of at most 63 bits. |
- significand <<= exponent; |
- exponent = 0; |
- } |
- // A significand has at most 63 bits (after the shift above). |
- // The cast to int64_t is hence safe. |
- const Bigint& result = |
- Bigint::Handle(NewFromInt64(static_cast<int64_t>(significand), space)); |
- result.SetSign(sign < 0); |
- if (exponent > 0) { |
- return ShiftLeft(result, exponent); |
- } else { |
- return result.raw(); |
- } |
-} |
- |
- |
-const char* BigintOperations::ToHexCString(intptr_t length, |
- bool is_negative, |
- void* data, |
- uword (*allocator)(intptr_t size)) { |
- NoGCScope no_gc; |
- |
- ASSERT(kDigitBitSize % 4 == 0); |
- |
- // Conservative maximum chunk length. |
- const intptr_t kMaxChunkLen = |
- (kIntptrMax - 2 /* 0x */ |
- - 1 /* trailing '\0' */ |
- - 1 /* leading '-' */) / kHexCharsPerDigit; |
- const intptr_t chunk_length = length; |
- // Conservative check assuming leading bigint-digit also takes up |
- // kHexCharsPerDigit. |
- if (chunk_length > kMaxChunkLen) { |
- FATAL("Fatal error in BigintOperations::ToHexCString: string too long"); |
- } |
- Chunk* chunk_data = reinterpret_cast<Chunk*>(data); |
- if (length == 0) { |
- const char* zero = "0x0"; |
- const intptr_t kLength = strlen(zero); |
- char* result = reinterpret_cast<char*>(allocator(kLength + 1)); |
- ASSERT(result != NULL); |
- memmove(result, zero, kLength); |
- result[kLength] = '\0'; |
- return result; |
- } |
- ASSERT(chunk_data != NULL); |
- |
- // Compute the number of hex-digits that are needed to represent the |
- // leading bigint-digit. All other digits need exactly kHexCharsPerDigit |
- // characters. |
- intptr_t leading_hex_digits = 0; |
- Chunk leading_digit = chunk_data[chunk_length - 1]; |
- while (leading_digit != 0) { |
- leading_hex_digits++; |
- leading_digit >>= 4; |
- } |
- // Sum up the space that is needed for the string-representation. |
- intptr_t required_size = 0; |
- if (is_negative) { |
- required_size++; // For the leading "-". |
- } |
- required_size += 2; // For the "0x". |
- required_size += leading_hex_digits; |
- required_size += (chunk_length - 1) * kHexCharsPerDigit; |
- required_size++; // For the trailing '\0'. |
- char* result = reinterpret_cast<char*>(allocator(required_size)); |
- // Print the number into the string. |
- // Start from the last position. |
- intptr_t pos = required_size - 1; |
- result[pos--] = '\0'; |
- for (intptr_t i = 0; i < (chunk_length - 1); i++) { |
- // Print all non-leading characters (which are printed with |
- // kHexCharsPerDigit characters. |
- Chunk digit = chunk_data[i]; |
- for (intptr_t j = 0; j < kHexCharsPerDigit; j++) { |
- result[pos--] = Utils::IntToHexDigit(static_cast<int>(digit & 0xF)); |
- digit >>= 4; |
- } |
- } |
- // Print the leading digit. |
- leading_digit = chunk_data[chunk_length - 1]; |
- while (leading_digit != 0) { |
- result[pos--] = Utils::IntToHexDigit(static_cast<int>(leading_digit & 0xF)); |
- leading_digit >>= 4; |
- } |
- result[pos--] = 'x'; |
- result[pos--] = '0'; |
- if (is_negative) { |
- result[pos--] = '-'; |
- } |
- ASSERT(pos == -1); |
- return result; |
-} |
- |
- |
-const char* BigintOperations::ToHexCString(const Bigint& bigint, |
- uword (*allocator)(intptr_t size)) { |
- NoGCScope no_gc; |
- |
- intptr_t length = bigint.Length(); |
- return ToHexCString(length, |
- bigint.IsNegative(), |
- length ? bigint.ChunkAddr(0) : NULL, |
- allocator); |
-} |
- |
- |
-const char* BigintOperations::ToDecimalCString( |
- const Bigint& bigint, uword (*allocator)(intptr_t size)) { |
- // log10(2) ~= 0.30102999566398114. |
- const intptr_t kLog2Dividend = 30103; |
- const intptr_t kLog2Divisor = 100000; |
- // We remove a small constant for rounding imprecision, the \0 character and |
- // the negative sign. |
- const intptr_t kMaxAllowedDigitLength = |
- (kIntptrMax - 10) / kLog2Dividend / kDigitBitSize * kLog2Divisor; |
- |
- const intptr_t length = bigint.Length(); |
- Isolate* isolate = Isolate::Current(); |
- if (length >= kMaxAllowedDigitLength) { |
- // Use the preallocated out of memory exception to avoid calling |
- // into dart code or allocating any code. |
- const Instance& exception = |
- Instance::Handle(isolate->object_store()->out_of_memory()); |
- Exceptions::Throw(isolate, exception); |
- UNREACHABLE(); |
- } |
- |
- // Approximate the size of the resulting string. We prefer overestimating |
- // to not allocating enough. |
- int64_t bit_length = length * kDigitBitSize; |
- ASSERT(bit_length > length || length == 0); |
- int64_t decimal_length = (bit_length * kLog2Dividend / kLog2Divisor) + 1; |
- // Add one byte for the trailing \0 character. |
- int64_t required_size = decimal_length + 1; |
- if (bigint.IsNegative()) { |
- required_size++; |
- } |
- ASSERT(required_size == static_cast<intptr_t>(required_size)); |
- // We will fill the result in the inverse order and then exchange at the end. |
- char* result = |
- reinterpret_cast<char*>(allocator(static_cast<intptr_t>(required_size))); |
- ASSERT(result != NULL); |
- intptr_t result_pos = 0; |
- |
- // We divide the input into pieces of ~27 bits which can be efficiently |
- // handled. |
- const intptr_t kChunkDivisor = 100000000; |
- const int kChunkDigits = 8; |
- ASSERT(pow(10.0, kChunkDigits) == kChunkDivisor); |
- ASSERT(static_cast<Chunk>(kChunkDivisor) < kDigitMaxValue); |
- ASSERT(Smi::IsValid(kChunkDivisor)); |
- const Chunk divisor = static_cast<Chunk>(kChunkDivisor); |
- |
- // Rest contains the remaining bigint that needs to be printed. |
- const Bigint& rest = Bigint::Handle(Copy(bigint)); |
- while (!rest.IsZero()) { |
- Chunk remainder = InplaceUnsignedDivideRemainderDigit(rest, divisor); |
- intptr_t part = static_cast<intptr_t>(remainder); |
- for (int i = 0; i < kChunkDigits; i++) { |
- result[result_pos++] = '0' + (part % 10); |
- part /= 10; |
- } |
- ASSERT(part == 0); |
- } |
- // Add a leading zero, so that we have at least one digit. |
- result[result_pos++] = '0'; |
- // Move the resulting position back until we don't have any zeroes anymore |
- // or we reach the first digit. This is done so that we can remove all |
- // redundant leading zeroes. |
- while (result_pos > 1 && result[result_pos - 1] == '0') { |
- result_pos--; |
- } |
- if (bigint.IsNegative()) { |
- result[result_pos++] = '-'; |
- } |
- // Reverse the string. |
- int i = 0; |
- int j = result_pos - 1; |
- while (i < j) { |
- char tmp = result[i]; |
- result[i] = result[j]; |
- result[j] = tmp; |
- i++; |
- j--; |
- } |
- ASSERT(result_pos >= 0); |
- result[result_pos] = '\0'; |
- return result; |
-} |
- |
- |
-bool BigintOperations::FitsIntoSmi(const Bigint& bigint) { |
- intptr_t bigint_length = bigint.Length(); |
- if (bigint_length == 0) { |
- return true; |
- } |
- if ((bigint_length == 1) && |
- (static_cast<size_t>(kDigitBitSize) < |
- (sizeof(intptr_t) * kBitsPerByte))) { |
- return true; |
- } |
- |
- uintptr_t limit; |
- if (bigint.IsNegative()) { |
- limit = static_cast<uintptr_t>(-Smi::kMinValue); |
- } else { |
- limit = static_cast<uintptr_t>(Smi::kMaxValue); |
- } |
- bool bigint_is_greater = false; |
- // Consume the least-significant digits of the bigint. |
- // If bigint_is_greater is set, then the processed sub-part of the bigint is |
- // greater than the corresponding part of the limit. |
- for (intptr_t i = 0; i < bigint_length - 1; i++) { |
- Chunk limit_digit = static_cast<Chunk>(limit & kDigitMask); |
- Chunk bigint_digit = bigint.GetChunkAt(i); |
- if (limit_digit < bigint_digit) { |
- bigint_is_greater = true; |
- } else if (limit_digit > bigint_digit) { |
- bigint_is_greater = false; |
- } // else don't change the boolean. |
- limit >>= kDigitBitSize; |
- |
- // Bail out if the bigint is definitely too big. |
- if (limit == 0) { |
- return false; |
- } |
- } |
- Chunk most_significant_digit = bigint.GetChunkAt(bigint_length - 1); |
- if (limit > most_significant_digit) { |
- return true; |
- } |
- if (limit < most_significant_digit) { |
- return false; |
- } |
- return !bigint_is_greater; |
-} |
- |
- |
-RawSmi* BigintOperations::ToSmi(const Bigint& bigint) { |
- ASSERT(FitsIntoSmi(bigint)); |
- intptr_t value = 0; |
- for (intptr_t i = bigint.Length() - 1; i >= 0; i--) { |
- value <<= kDigitBitSize; |
- value += static_cast<intptr_t>(bigint.GetChunkAt(i)); |
- } |
- if (bigint.IsNegative()) { |
- value = -value; |
- } |
- return Smi::New(value); |
-} |
- |
- |
-static double Uint64ToDouble(uint64_t x) { |
-#if _WIN64 |
- // For static_cast<double>(x) MSVC x64 generates |
- // |
- // cvtsi2sd xmm0, rax |
- // test rax, rax |
- // jns done |
- // addsd xmm0, static_cast<double>(2^64) |
- // done: |
- // |
- // while GCC -m64 generates |
- // |
- // test rax, rax |
- // js negative |
- // cvtsi2sd xmm0, rax |
- // jmp done |
- // negative: |
- // mov rdx, rax |
- // shr rdx, 1 |
- // and eax, 0x1 |
- // or rdx, rax |
- // cvtsi2sd xmm0, rdx |
- // addsd xmm0, xmm0 |
- // done: |
- // |
- // which results in a different rounding. |
- // |
- // For consistency between platforms fallback to GCC style converstion |
- // on Win64. |
- // |
- const int64_t y = static_cast<int64_t>(x); |
- if (y > 0) { |
- return static_cast<double>(y); |
- } else { |
- const double half = static_cast<double>( |
- static_cast<int64_t>(x >> 1) | (y & 1)); |
- return half + half; |
- } |
-#else |
- return static_cast<double>(x); |
-#endif |
-} |
- |
- |
-RawDouble* BigintOperations::ToDouble(const Bigint& bigint) { |
- ASSERT(IsClamped(bigint)); |
- if (bigint.IsZero()) { |
- return Double::New(0.0); |
- } |
- if (AbsFitsIntoUint64(bigint)) { |
- double absolute_value = Uint64ToDouble(AbsToUint64(bigint)); |
- double result = bigint.IsNegative() ? -absolute_value : absolute_value; |
- return Double::New(result); |
- } |
- |
- static const int kPhysicalSignificandSize = 52; |
- // The significand size has an additional hidden bit. |
- static const int kSignificandSize = kPhysicalSignificandSize + 1; |
- static const int kExponentBias = 0x3FF + kPhysicalSignificandSize; |
- static const int kMaxExponent = 0x7FF - kExponentBias; |
- static const uint64_t kOne64 = 1; |
- static const uint64_t kInfinityBits = |
- DART_2PART_UINT64_C(0x7FF00000, 00000000); |
- |
- // A double is composed of an exponent e and a significand s. Its value equals |
- // s * 2^e. The significand has 53 bits of which the first one must always be |
- // 1 (at least for then numbers we are working with here) and is therefore |
- // omitted. The physical size of the significand is thus 52 bits. |
- // The exponent has 11 bits and is biased by 0x3FF + 52. For example an |
- // exponent e = 10 is written as 0x3FF + 52 + 10 (in the 11 bits that are |
- // reserved for the exponent). |
- // When converting the given bignum to a double we have to pay attention to |
- // the rounding. In particular we have to decide which double to pick if an |
- // input lies exactly between two doubles. As usual with double operations |
- // we pick the double with an even significand in such cases. |
- // |
- // General approach of this algorithm: Get 54 bits (one more than the |
- // significand size) of the bigint. If the last bit is then 1, then (without |
- // knowledge of the remaining bits) we could have a half-way number. |
- // If the second-to-last bit is odd then we know that we have to round up: |
- // if the remaining bits are not zero then the input lies closer to the higher |
- // double. If the remaining bits are zero then we have a half-way case and |
- // we need to round up too (rounding to the even double). |
- // If the second-to-last bit is even then we need to look at the remaining |
- // bits to determine if any of them is not zero. If that's the case then the |
- // number lies closer to the next-higher double. Otherwise we round the |
- // half-way case down to even. |
- |
- intptr_t length = bigint.Length(); |
- if (((length - 1) * kDigitBitSize) > (kMaxExponent + kSignificandSize)) { |
- // Does not fit into a double. |
- double infinity = bit_cast<double>(kInfinityBits); |
- return Double::New(bigint.IsNegative() ? -infinity : infinity); |
- } |
- |
- |
- intptr_t digit_index = length - 1; |
- // In order to round correctly we need to look at half-way cases. Therefore we |
- // get kSignificandSize + 1 bits. If the last bit is 1 then we have to look |
- // at the remaining bits to know if we have to round up. |
- int needed_bits = kSignificandSize + 1; |
- ASSERT((kDigitBitSize < needed_bits) && (2 * kDigitBitSize >= needed_bits)); |
- bool discarded_bits_were_zero = true; |
- |
- Chunk firstDigit = bigint.GetChunkAt(digit_index--); |
- uint64_t twice_significand_floor = firstDigit; |
- intptr_t twice_significant_exponent = (digit_index + 1) * kDigitBitSize; |
- needed_bits -= CountBits(firstDigit); |
- |
- if (needed_bits >= kDigitBitSize) { |
- twice_significand_floor <<= kDigitBitSize; |
- twice_significand_floor |= bigint.GetChunkAt(digit_index--); |
- twice_significant_exponent -= kDigitBitSize; |
- needed_bits -= kDigitBitSize; |
- } |
- if (needed_bits > 0) { |
- ASSERT(needed_bits <= kDigitBitSize); |
- Chunk digit = bigint.GetChunkAt(digit_index--); |
- int discarded_bits_count = kDigitBitSize - needed_bits; |
- twice_significand_floor <<= needed_bits; |
- twice_significand_floor |= digit >> discarded_bits_count; |
- twice_significant_exponent -= needed_bits; |
- uint64_t discarded_bits_mask = (kOne64 << discarded_bits_count) - 1; |
- discarded_bits_were_zero = ((digit & discarded_bits_mask) == 0); |
- } |
- ASSERT((twice_significand_floor >> kSignificandSize) == 1); |
- |
- // We might need to round up the significand later. |
- uint64_t significand = twice_significand_floor >> 1; |
- intptr_t exponent = twice_significant_exponent + 1; |
- |
- if (exponent >= kMaxExponent) { |
- // Infinity. |
- // Does not fit into a double. |
- double infinity = bit_cast<double>(kInfinityBits); |
- return Double::New(bigint.IsNegative() ? -infinity : infinity); |
- } |
- |
- if ((twice_significand_floor & 1) == 1) { |
- bool round_up = false; |
- |
- if ((significand & 1) != 0 || !discarded_bits_were_zero) { |
- // Even if the remaining bits are zero we still need to round up since we |
- // want to round to even for half-way cases. |
- round_up = true; |
- } else { |
- // Could be a half-way case. See if the remaining bits are non-zero. |
- for (intptr_t i = 0; i <= digit_index; i++) { |
- if (bigint.GetChunkAt(i) != 0) { |
- round_up = true; |
- break; |
- } |
- } |
- } |
- |
- if (round_up) { |
- significand++; |
- // It might be that we just went from 53 bits to 54 bits. |
- // Example: After adding 1 to 1FFF..FF (with 53 bits set to 1) we have |
- // 2000..00 (= 2 ^ 54). When adding the exponent and significand together |
- // this will increase the exponent by 1 which is exactly what we want. |
- } |
- } |
- |
- ASSERT((significand >> (kSignificandSize - 1)) == 1 |
- || significand == kOne64 << kSignificandSize); |
- uint64_t biased_exponent = exponent + kExponentBias; |
- // The significand still has the hidden bit. We simply decrement the biased |
- // exponent by one instead of playing around with the significand. |
- biased_exponent--; |
- // Note that we must use the plus operator instead of bit-or. |
- uint64_t double_bits = |
- (biased_exponent << kPhysicalSignificandSize) + significand; |
- |
- double value = bit_cast<double>(double_bits); |
- if (bigint.IsNegative()) { |
- value = -value; |
- } |
- return Double::New(value); |
-} |
- |
- |
-bool BigintOperations::FitsIntoInt64(const Bigint& bigint) { |
- intptr_t bigint_length = bigint.Length(); |
- if (bigint_length == 0) { |
- return true; |
- } |
- if ((bigint_length < 3) && |
- (static_cast<size_t>(kDigitBitSize) < |
- (sizeof(intptr_t) * kBitsPerByte))) { |
- return true; |
- } |
- |
- uint64_t limit; |
- if (bigint.IsNegative()) { |
- limit = static_cast<uint64_t>(Mint::kMinValue); |
- } else { |
- limit = static_cast<uint64_t>(Mint::kMaxValue); |
- } |
- bool bigint_is_greater = false; |
- // Consume the least-significant digits of the bigint. |
- // If bigint_is_greater is set, then the processed sub-part of the bigint is |
- // greater than the corresponding part of the limit. |
- for (intptr_t i = 0; i < bigint_length - 1; i++) { |
- Chunk limit_digit = static_cast<Chunk>(limit & kDigitMask); |
- Chunk bigint_digit = bigint.GetChunkAt(i); |
- if (limit_digit < bigint_digit) { |
- bigint_is_greater = true; |
- } else if (limit_digit > bigint_digit) { |
- bigint_is_greater = false; |
- } // else don't change the boolean. |
- limit >>= kDigitBitSize; |
- |
- // Bail out if the bigint is definitely too big. |
- if (limit == 0) { |
- return false; |
- } |
- } |
- Chunk most_significant_digit = bigint.GetChunkAt(bigint_length - 1); |
- if (limit > most_significant_digit) { |
- return true; |
- } |
- if (limit < most_significant_digit) { |
- return false; |
- } |
- return !bigint_is_greater; |
-} |
- |
- |
-uint64_t BigintOperations::AbsToUint64(const Bigint& bigint) { |
- ASSERT(AbsFitsIntoUint64(bigint)); |
- uint64_t value = 0; |
- for (intptr_t i = bigint.Length() - 1; i >= 0; i--) { |
- value <<= kDigitBitSize; |
- value += static_cast<intptr_t>(bigint.GetChunkAt(i)); |
- } |
- return value; |
-} |
- |
- |
-int64_t BigintOperations::ToInt64(const Bigint& bigint) { |
- if (bigint.IsZero()) { |
- return 0; |
- } |
- ASSERT(FitsIntoInt64(bigint)); |
- int64_t value = AbsToUint64(bigint); |
- if (bigint.IsNegative()) { |
- value = -value; |
- } |
- return value; |
-} |
- |
- |
-uint32_t BigintOperations::TruncateToUint32(const Bigint& bigint) { |
- uint32_t value = 0; |
- for (intptr_t i = bigint.Length() - 1; i >= 0; i--) { |
- value <<= kDigitBitSize; |
- value += static_cast<uint32_t>(bigint.GetChunkAt(i)); |
- } |
- return value; |
-} |
- |
- |
-bool BigintOperations::AbsFitsIntoUint64(const Bigint& bigint) { |
- if (bigint.IsZero()) { |
- return true; |
- } |
- intptr_t b_length = bigint.Length(); |
- intptr_t num_bits = CountBits(bigint.GetChunkAt(b_length - 1)); |
- num_bits += (kDigitBitSize * (b_length - 1)); |
- if (num_bits > 64) return false; |
- return true; |
-} |
- |
- |
-bool BigintOperations::FitsIntoUint64(const Bigint& bigint) { |
- if (bigint.IsNegative()) return false; |
- return AbsFitsIntoUint64(bigint); |
-} |
- |
- |
-uint64_t BigintOperations::ToUint64(const Bigint& bigint) { |
- ASSERT(FitsIntoUint64(bigint)); |
- return AbsToUint64(bigint); |
-} |
- |
- |
-RawBigint* BigintOperations::Multiply(const Bigint& a, const Bigint& b) { |
- ASSERT(IsClamped(a)); |
- ASSERT(IsClamped(b)); |
- |
- intptr_t a_length = a.Length(); |
- intptr_t b_length = b.Length(); |
- intptr_t result_length = a_length + b_length; |
- const Bigint& result = Bigint::Handle(Bigint::Allocate(result_length)); |
- |
- if (a.IsNegative() != b.IsNegative()) { |
- result.ToggleSign(); |
- } |
- |
- // Comba multiplication: compute each column separately. |
- // Example: r = a2a1a0 * b2b1b0. |
- // r = 1 * a0b0 + |
- // 10 * (a1b0 + a0b1) + |
- // 100 * (a2b0 + a1b1 + a0b2) + |
- // 1000 * (a2b1 + a1b2) + |
- // 10000 * a2b2 |
- // |
- // Each column will be accumulated in an integer of type DoubleChunk. We must |
- // guarantee that the column-sum will not overflow. We achieve this by |
- // 'blocking' the sum into overflow-free sums followed by propagating the |
- // overflow. |
- // |
- // Each bigint digit fits in kDigitBitSize bits. |
- // Each product fits in 2*kDigitBitSize bits. |
- // The accumulator is 8 * sizeof(DoubleChunk) == 2*kDigitBitSize + kCarryBits. |
- // |
- // Each time we add a product to the accumulator it could carry one bit into |
- // the carry bits, supporting kBlockSize = 2^kCarryBits - 1 addition |
- // operations before the DoubleChunk overflows. |
- // |
- // At the end of the column sum and after each batch of kBlockSize additions |
- // the high kCarryBits+kDigitBitSize of accumulator are flushed to |
- // accumulator_overflow. |
- // |
- // Diagramatically, using one char per 4 bits: |
- // |
- // 0aaaaaaa * 0bbbbbbb -> 00pppppppppppppp product of 2 digits |
- // | |
- // + ...added to |
- // v |
- // ccSSSSSSSsssssss accumulator |
- // ...flushed to |
- // 000000000sssssss accumulator |
- // vvvvvvvvvVVVVVVV accumulator_overflow |
- // |
- // 'sssssss' becomes the column sum an overflow is carried to next column: |
- // |
- // 000000000VVVVVVV accumulator |
- // 0000000vvvvvvvvv accumulator_overflow |
- // |
- // accumulator_overflow supports 2^(kDigitBitSize + kCarryBits) additions of |
- // products. |
- // |
- // Since the bottom (kDigitBitSize + kCarryBits) bits of accumulator_overflow |
- // are initialized from the previous column, that uses up the capacity to |
- // absorb 2^kCarryBits additions. The accumulator_overflow can overflow if |
- // the column has more than 2^(kDigitBitSize + kCarryBits) - 2^kCarryBits |
- // elements With current configuration that is 2^36-2^8 elements. That is too |
- // high to happen in practice. Comba multiplication is O(N^2) so overflow |
- // won't happen during a human lifespan. |
- |
- const intptr_t kCarryBits = 8 * sizeof(DoubleChunk) - 2 * kDigitBitSize; |
- const intptr_t kBlockSize = (1 << kCarryBits) - 1; |
- |
- DoubleChunk accumulator = 0; // Accumulates the result of one column. |
- DoubleChunk accumulator_overflow = 0; |
- for (intptr_t i = 0; i < result_length; i++) { |
- // Example: r = a2a1a0 * b2b1b0. |
- // For i == 0, compute a0b0. |
- // i == 1, a1b0 + a0b1 + overflow from i == 0. |
- // i == 2, a2b0 + a1b1 + a0b2 + overflow from i == 1. |
- // ... |
- // The indices into a and b are such that their sum equals i. |
- intptr_t a_index = Utils::Minimum(a_length - 1, i); |
- intptr_t b_index = i - a_index; |
- ASSERT(a_index + b_index == i); |
- |
- // Instead of testing for a_index >= 0 && b_index < b_length we compute the |
- // number of iterations first. |
- intptr_t iterations = Utils::Minimum(b_length - b_index, a_index + 1); |
- |
- // For large products we need extra bit for the overflow. The sum is broken |
- // into blocks to avoid dealing with the overflow on each iteration. |
- for (intptr_t j_block = 0; j_block < iterations; j_block += kBlockSize) { |
- intptr_t j_end = Utils::Minimum(j_block + kBlockSize, iterations); |
- for (intptr_t j = j_block; j < j_end; j++) { |
- DoubleChunk chunk_a = a.GetChunkAt(a_index); |
- DoubleChunk chunk_b = b.GetChunkAt(b_index); |
- accumulator += chunk_a * chunk_b; |
- a_index--; |
- b_index++; |
- } |
- accumulator_overflow += (accumulator >> kDigitBitSize); |
- accumulator &= kDigitMask; |
- } |
- result.SetChunkAt(i, static_cast<Chunk>(accumulator)); |
- // Overflow becomes the initial accumulator for the next column. |
- accumulator = accumulator_overflow & kDigitMask; |
- // And the overflow from the overflow becomes the new overflow. |
- accumulator_overflow = (accumulator_overflow >> kDigitBitSize); |
- } |
- ASSERT(accumulator == 0); |
- ASSERT(accumulator_overflow == 0); |
- |
- Clamp(result); |
- return result.raw(); |
-} |
- |
- |
-RawBigint* BigintOperations::Divide(const Bigint& a, const Bigint& b) { |
- Bigint& quotient = Bigint::Handle(); |
- Bigint& remainder = Bigint::Handle(); |
- DivideRemainder(a, b, "ient, &remainder); |
- return quotient.raw(); |
-} |
- |
- |
-RawBigint* BigintOperations::Modulo(const Bigint& a, const Bigint& b) { |
- Bigint& quotient = Bigint::Handle(); |
- Bigint& remainder = Bigint::Handle(); |
- DivideRemainder(a, b, "ient, &remainder); |
- // Emulating code in Integer::ArithmeticOp (Euclidian modulo). |
- if (remainder.IsNegative()) { |
- if (b.IsNegative()) { |
- return BigintOperations::Subtract(remainder, b); |
- } else { |
- return BigintOperations::Add(remainder, b); |
- } |
- } |
- return remainder.raw(); |
-} |
- |
- |
-RawBigint* BigintOperations::Remainder(const Bigint& a, const Bigint& b) { |
- Bigint& quotient = Bigint::Handle(); |
- Bigint& remainder = Bigint::Handle(); |
- DivideRemainder(a, b, "ient, &remainder); |
- return remainder.raw(); |
-} |
- |
- |
-RawBigint* BigintOperations::ShiftLeft(const Bigint& bigint, intptr_t amount) { |
- ASSERT(IsClamped(bigint)); |
- ASSERT(amount >= 0); |
- intptr_t bigint_length = bigint.Length(); |
- if (bigint.IsZero()) { |
- return Zero(); |
- } |
- // TODO(floitsch): can we reuse the input? |
- if (amount == 0) { |
- return Copy(bigint); |
- } |
- intptr_t digit_shift = amount / kDigitBitSize; |
- intptr_t bit_shift = amount % kDigitBitSize; |
- if (bit_shift == 0) { |
- const Bigint& result = |
- Bigint::Handle(Bigint::Allocate(bigint_length + digit_shift)); |
- for (intptr_t i = 0; i < digit_shift; i++) { |
- result.SetChunkAt(i, 0); |
- } |
- for (intptr_t i = 0; i < bigint_length; i++) { |
- result.SetChunkAt(i + digit_shift, bigint.GetChunkAt(i)); |
- } |
- if (bigint.IsNegative()) { |
- result.ToggleSign(); |
- } |
- return result.raw(); |
- } else { |
- const Bigint& result = |
- Bigint::Handle(Bigint::Allocate(bigint_length + digit_shift + 1)); |
- for (intptr_t i = 0; i < digit_shift; i++) { |
- result.SetChunkAt(i, 0); |
- } |
- Chunk carry = 0; |
- for (intptr_t i = 0; i < bigint_length; i++) { |
- Chunk digit = bigint.GetChunkAt(i); |
- Chunk shifted_digit = ((digit << bit_shift) & kDigitMask) + carry; |
- result.SetChunkAt(i + digit_shift, shifted_digit); |
- carry = digit >> (kDigitBitSize - bit_shift); |
- } |
- result.SetChunkAt(bigint_length + digit_shift, carry); |
- if (bigint.IsNegative()) { |
- result.ToggleSign(); |
- } |
- Clamp(result); |
- return result.raw(); |
- } |
-} |
- |
- |
-RawBigint* BigintOperations::ShiftRight(const Bigint& bigint, intptr_t amount) { |
- ASSERT(IsClamped(bigint)); |
- ASSERT(amount >= 0); |
- intptr_t bigint_length = bigint.Length(); |
- if (bigint.IsZero()) { |
- return Zero(); |
- } |
- // TODO(floitsch): can we reuse the input? |
- if (amount == 0) { |
- return Copy(bigint); |
- } |
- intptr_t digit_shift = amount / kDigitBitSize; |
- intptr_t bit_shift = amount % kDigitBitSize; |
- if (digit_shift >= bigint_length) { |
- return bigint.IsNegative() ? MinusOne() : Zero(); |
- } |
- |
- const Bigint& result = |
- Bigint::Handle(Bigint::Allocate(bigint_length - digit_shift)); |
- if (bit_shift == 0) { |
- for (intptr_t i = 0; i < bigint_length - digit_shift; i++) { |
- result.SetChunkAt(i, bigint.GetChunkAt(i + digit_shift)); |
- } |
- } else { |
- Chunk carry = 0; |
- for (intptr_t i = bigint_length - 1; i >= digit_shift; i--) { |
- Chunk digit = bigint.GetChunkAt(i); |
- Chunk shifted_digit = (digit >> bit_shift) + carry; |
- result.SetChunkAt(i - digit_shift, shifted_digit); |
- carry = (digit << (kDigitBitSize - bit_shift)) & kDigitMask; |
- } |
- Clamp(result); |
- } |
- |
- if (bigint.IsNegative()) { |
- result.ToggleSign(); |
- // If the input is negative then the result needs to be rounded down. |
- // Example: -5 >> 2 => -2 |
- bool needs_rounding = false; |
- for (intptr_t i = 0; i < digit_shift; i++) { |
- if (bigint.GetChunkAt(i) != 0) { |
- needs_rounding = true; |
- break; |
- } |
- } |
- if (!needs_rounding && (bit_shift > 0)) { |
- Chunk digit = bigint.GetChunkAt(digit_shift); |
- needs_rounding = (digit << (kChunkBitSize - bit_shift)) != 0; |
- } |
- if (needs_rounding) { |
- Bigint& one = Bigint::Handle(One()); |
- return Subtract(result, one); |
- } |
- } |
- |
- return result.raw(); |
-} |
- |
- |
-RawBigint* BigintOperations::BitAnd(const Bigint& a, const Bigint& b) { |
- ASSERT(IsClamped(a)); |
- ASSERT(IsClamped(b)); |
- |
- if (a.IsZero() || b.IsZero()) { |
- return Zero(); |
- } |
- if (a.IsNegative() && !b.IsNegative()) { |
- return BitAnd(b, a); |
- } |
- if ((a.IsNegative() == b.IsNegative()) && (a.Length() < b.Length())) { |
- return BitAnd(b, a); |
- } |
- |
- intptr_t a_length = a.Length(); |
- intptr_t b_length = b.Length(); |
- intptr_t min_length = Utils::Minimum(a_length, b_length); |
- intptr_t max_length = Utils::Maximum(a_length, b_length); |
- if (!b.IsNegative()) { |
- ASSERT(!a.IsNegative()); |
- intptr_t result_length = min_length; |
- const Bigint& result = Bigint::Handle(Bigint::Allocate(result_length)); |
- |
- for (intptr_t i = 0; i < min_length; i++) { |
- result.SetChunkAt(i, a.GetChunkAt(i) & b.GetChunkAt(i)); |
- } |
- Clamp(result); |
- return result.raw(); |
- } |
- |
- // Bigints encode negative values by storing the absolute value and the sign |
- // separately. To do bit operations we need to simulate numbers that are |
- // implemented as two's complement. |
- // The negation of a positive number x would be encoded as follows in |
- // two's complement: n = ~(x - 1). |
- // The inverse transformation is hence (~n) + 1. |
- |
- if (!a.IsNegative()) { |
- ASSERT(b.IsNegative()); |
- // The result will be positive. |
- intptr_t result_length = a_length; |
- const Bigint& result = Bigint::Handle(Bigint::Allocate(result_length)); |
- Chunk borrow = 1; |
- for (intptr_t i = 0; i < min_length; i++) { |
- Chunk b_digit = b.GetChunkAt(i) - borrow; |
- result.SetChunkAt(i, a.GetChunkAt(i) & (~b_digit) & kDigitMask); |
- borrow = b_digit >> (kChunkBitSize - 1); |
- } |
- for (intptr_t i = min_length; i < a_length; i++) { |
- result.SetChunkAt(i, a.GetChunkAt(i) & (kDigitMaxValue - borrow)); |
- borrow = 0; |
- } |
- Clamp(result); |
- return result.raw(); |
- } |
- |
- ASSERT(a.IsNegative()); |
- ASSERT(b.IsNegative()); |
- // The result will be negative. |
- // We need to convert a and b to two's complement. Do the bit-operation there, |
- // and transform the resulting bits from two's complement back to separated |
- // magnitude and sign. |
- // a & b is therefore computed as ~((~(a - 1)) & (~(b - 1))) + 1 which is |
- // equal to ((a-1) | (b-1)) + 1. |
- intptr_t result_length = max_length + 1; |
- const Bigint& result = Bigint::Handle(Bigint::Allocate(result_length)); |
- result.ToggleSign(); |
- Chunk a_borrow = 1; |
- Chunk b_borrow = 1; |
- Chunk result_carry = 1; |
- ASSERT(a_length >= b_length); |
- for (intptr_t i = 0; i < b_length; i++) { |
- Chunk a_digit = a.GetChunkAt(i) - a_borrow; |
- Chunk b_digit = b.GetChunkAt(i) - b_borrow; |
- Chunk result_chunk = ((a_digit | b_digit) & kDigitMask) + result_carry; |
- result.SetChunkAt(i, result_chunk & kDigitMask); |
- a_borrow = a_digit >> (kChunkBitSize - 1); |
- b_borrow = b_digit >> (kChunkBitSize - 1); |
- result_carry = result_chunk >> kDigitBitSize; |
- } |
- for (intptr_t i = b_length; i < a_length; i++) { |
- Chunk a_digit = a.GetChunkAt(i) - a_borrow; |
- Chunk b_digit = -b_borrow; |
- Chunk result_chunk = ((a_digit | b_digit) & kDigitMask) + result_carry; |
- result.SetChunkAt(i, result_chunk & kDigitMask); |
- a_borrow = a_digit >> (kChunkBitSize - 1); |
- b_borrow = 0; |
- result_carry = result_chunk >> kDigitBitSize; |
- } |
- Chunk a_digit = -a_borrow; |
- Chunk b_digit = -b_borrow; |
- Chunk result_chunk = ((a_digit | b_digit) & kDigitMask) + result_carry; |
- result.SetChunkAt(a_length, result_chunk & kDigitMask); |
- Clamp(result); |
- return result.raw(); |
-} |
- |
- |
-RawBigint* BigintOperations::BitOr(const Bigint& a, const Bigint& b) { |
- ASSERT(IsClamped(a)); |
- ASSERT(IsClamped(b)); |
- |
- if (a.IsNegative() && !b.IsNegative()) { |
- return BitOr(b, a); |
- } |
- if ((a.IsNegative() == b.IsNegative()) && (a.Length() < b.Length())) { |
- return BitOr(b, a); |
- } |
- |
- intptr_t a_length = a.Length(); |
- intptr_t b_length = b.Length(); |
- intptr_t min_length = Utils::Minimum(a_length, b_length); |
- intptr_t max_length = Utils::Maximum(a_length, b_length); |
- if (!b.IsNegative()) { |
- ASSERT(!a.IsNegative()); |
- intptr_t result_length = max_length; |
- const Bigint& result = Bigint::Handle(Bigint::Allocate(result_length)); |
- |
- ASSERT(a_length >= b_length); |
- for (intptr_t i = 0; i < b_length; i++) { |
- result.SetChunkAt(i, a.GetChunkAt(i) | b.GetChunkAt(i)); |
- } |
- for (intptr_t i = b_length; i < a_length; i++) { |
- result.SetChunkAt(i, a.GetChunkAt(i)); |
- } |
- return result.raw(); |
- } |
- |
- // Bigints encode negative values by storing the absolute value and the sign |
- // separately. To do bit operations we need to simulate numbers that are |
- // implemented as two's complement. |
- // The negation of a positive number x would be encoded as follows in |
- // two's complement: n = ~(x - 1). |
- // The inverse transformation is hence (~n) + 1. |
- |
- if (!a.IsNegative()) { |
- ASSERT(b.IsNegative()); |
- if (a.IsZero()) { |
- return Copy(b); |
- } |
- // The result will be negative. |
- // We need to convert b to two's complement. Do the bit-operation there, |
- // and transform the resulting bits from two's complement back to separated |
- // magnitude and sign. |
- // a | b is therefore computed as ~((a & (~(b - 1))) + 1 which is |
- // equal to ((~a) & (b-1)) + 1. |
- intptr_t result_length = b_length; |
- const Bigint& result = Bigint::Handle(Bigint::Allocate(result_length)); |
- result.ToggleSign(); |
- Chunk borrow = 1; |
- Chunk result_carry = 1; |
- for (intptr_t i = 0; i < min_length; i++) { |
- Chunk a_digit = a.GetChunkAt(i); |
- Chunk b_digit = b.GetChunkAt(i) - borrow; |
- Chunk result_digit = ((~a_digit) & b_digit & kDigitMask) + result_carry; |
- result.SetChunkAt(i, result_digit & kDigitMask); |
- borrow = b_digit >> (kChunkBitSize - 1); |
- result_carry = result_digit >> kDigitBitSize; |
- } |
- ASSERT(result_carry == 0); |
- for (intptr_t i = min_length; i < b_length; i++) { |
- Chunk b_digit = b.GetChunkAt(i) - borrow; |
- Chunk result_digit = (b_digit & kDigitMask) + result_carry; |
- result.SetChunkAt(i, result_digit & kDigitMask); |
- borrow = b_digit >> (kChunkBitSize - 1); |
- result_carry = result_digit >> kDigitBitSize; |
- } |
- ASSERT(result_carry == 0); |
- Clamp(result); |
- return result.raw(); |
- } |
- |
- ASSERT(a.IsNegative()); |
- ASSERT(b.IsNegative()); |
- // The result will be negative. |
- // We need to convert a and b to two's complement. Do the bit-operation there, |
- // and transform the resulting bits from two's complement back to separated |
- // magnitude and sign. |
- // a & b is therefore computed as ~((~(a - 1)) | (~(b - 1))) + 1 which is |
- // equal to ((a-1) & (b-1)) + 1. |
- ASSERT(a_length >= b_length); |
- ASSERT(min_length == b_length); |
- intptr_t result_length = min_length + 1; |
- const Bigint& result = Bigint::Handle(Bigint::Allocate(result_length)); |
- result.ToggleSign(); |
- Chunk a_borrow = 1; |
- Chunk b_borrow = 1; |
- Chunk result_carry = 1; |
- for (intptr_t i = 0; i < b_length; i++) { |
- Chunk a_digit = a.GetChunkAt(i) - a_borrow; |
- Chunk b_digit = b.GetChunkAt(i) - b_borrow; |
- Chunk result_chunk = ((a_digit & b_digit) & kDigitMask) + result_carry; |
- result.SetChunkAt(i, result_chunk & kDigitMask); |
- a_borrow = a_digit >> (kChunkBitSize - 1); |
- b_borrow = b_digit >> (kChunkBitSize - 1); |
- result_carry = result_chunk >> kDigitBitSize; |
- } |
- result.SetChunkAt(b_length, result_carry); |
- Clamp(result); |
- return result.raw(); |
-} |
- |
- |
-RawBigint* BigintOperations::BitXor(const Bigint& a, const Bigint& b) { |
- ASSERT(IsClamped(a)); |
- ASSERT(IsClamped(b)); |
- |
- if (a.IsZero()) { |
- return Copy(b); |
- } |
- if (b.IsZero()) { |
- return Copy(a); |
- } |
- if (a.IsNegative() && !b.IsNegative()) { |
- return BitXor(b, a); |
- } |
- if ((a.IsNegative() == b.IsNegative()) && (a.Length() < b.Length())) { |
- return BitXor(b, a); |
- } |
- |
- intptr_t a_length = a.Length(); |
- intptr_t b_length = b.Length(); |
- intptr_t min_length = Utils::Minimum(a_length, b_length); |
- intptr_t max_length = Utils::Maximum(a_length, b_length); |
- if (!b.IsNegative()) { |
- ASSERT(!a.IsNegative()); |
- intptr_t result_length = max_length; |
- const Bigint& result = Bigint::Handle(Bigint::Allocate(result_length)); |
- |
- ASSERT(a_length >= b_length); |
- for (intptr_t i = 0; i < b_length; i++) { |
- result.SetChunkAt(i, a.GetChunkAt(i) ^ b.GetChunkAt(i)); |
- } |
- for (intptr_t i = b_length; i < a_length; i++) { |
- result.SetChunkAt(i, a.GetChunkAt(i)); |
- } |
- Clamp(result); |
- return result.raw(); |
- } |
- |
- // Bigints encode negative values by storing the absolute value and the sign |
- // separately. To do bit operations we need to simulate numbers that are |
- // implemented as two's complement. |
- // The negation of a positive number x would be encoded as follows in |
- // two's complement: n = ~(x - 1). |
- // The inverse transformation is hence (~n) + 1. |
- |
- if (!a.IsNegative()) { |
- ASSERT(b.IsNegative()); |
- // The result will be negative. |
- // We need to convert b to two's complement. Do the bit-operation there, |
- // and transform the resulting bits from two's complement back to separated |
- // magnitude and sign. |
- // a ^ b is therefore computed as ~((a ^ (~(b - 1))) + 1. |
- intptr_t result_length = max_length + 1; |
- const Bigint& result = Bigint::Handle(Bigint::Allocate(result_length)); |
- result.ToggleSign(); |
- Chunk borrow = 1; |
- Chunk result_carry = 1; |
- for (intptr_t i = 0; i < min_length; i++) { |
- Chunk a_digit = a.GetChunkAt(i); |
- Chunk b_digit = b.GetChunkAt(i) - borrow; |
- Chunk result_digit = |
- ((~(a_digit ^ ~b_digit)) & kDigitMask) + result_carry; |
- result.SetChunkAt(i, result_digit & kDigitMask); |
- borrow = b_digit >> (kChunkBitSize - 1); |
- result_carry = result_digit >> kDigitBitSize; |
- } |
- for (intptr_t i = min_length; i < a_length; i++) { |
- Chunk a_digit = a.GetChunkAt(i); |
- Chunk b_digit = -borrow; |
- Chunk result_digit = |
- ((~(a_digit ^ ~b_digit)) & kDigitMask) + result_carry; |
- result.SetChunkAt(i, result_digit & kDigitMask); |
- borrow = b_digit >> (kChunkBitSize - 1); |
- result_carry = result_digit >> kDigitBitSize; |
- } |
- for (intptr_t i = min_length; i < b_length; i++) { |
- // a_digit = 0. |
- Chunk b_digit = b.GetChunkAt(i) - borrow; |
- Chunk result_digit = (b_digit & kDigitMask) + result_carry; |
- result.SetChunkAt(i, result_digit & kDigitMask); |
- borrow = b_digit >> (kChunkBitSize - 1); |
- result_carry = result_digit >> kDigitBitSize; |
- } |
- result.SetChunkAt(max_length, result_carry); |
- Clamp(result); |
- return result.raw(); |
- } |
- |
- ASSERT(a.IsNegative()); |
- ASSERT(b.IsNegative()); |
- // The result will be positive. |
- // We need to convert a and b to two's complement, do the bit-operation there, |
- // and simply store the result. |
- // a ^ b is therefore computed as (~(a - 1)) ^ (~(b - 1)). |
- ASSERT(a_length >= b_length); |
- ASSERT(max_length == a_length); |
- intptr_t result_length = max_length; |
- const Bigint& result = Bigint::Handle(Bigint::Allocate(result_length)); |
- Chunk a_borrow = 1; |
- Chunk b_borrow = 1; |
- for (intptr_t i = 0; i < b_length; i++) { |
- Chunk a_digit = a.GetChunkAt(i) - a_borrow; |
- Chunk b_digit = b.GetChunkAt(i) - b_borrow; |
- Chunk result_chunk = (~a_digit) ^ (~b_digit); |
- result.SetChunkAt(i, result_chunk & kDigitMask); |
- a_borrow = a_digit >> (kChunkBitSize - 1); |
- b_borrow = b_digit >> (kChunkBitSize - 1); |
- } |
- ASSERT(b_borrow == 0); |
- for (intptr_t i = b_length; i < a_length; i++) { |
- Chunk a_digit = a.GetChunkAt(i) - a_borrow; |
- // (~a_digit) ^ 0xFFF..FFF == a_digit. |
- result.SetChunkAt(i, a_digit & kDigitMask); |
- a_borrow = a_digit >> (kChunkBitSize - 1); |
- } |
- ASSERT(a_borrow == 0); |
- Clamp(result); |
- return result.raw(); |
-} |
- |
- |
-RawBigint* BigintOperations::BitNot(const Bigint& bigint) { |
- if (bigint.IsZero()) { |
- return MinusOne(); |
- } |
- const Bigint& one_bigint = Bigint::Handle(One()); |
- if (bigint.IsNegative()) { |
- return UnsignedSubtract(bigint, one_bigint); |
- } else { |
- const Bigint& result = Bigint::Handle(UnsignedAdd(bigint, one_bigint)); |
- result.ToggleSign(); |
- return result.raw(); |
- } |
-} |
- |
- |
-int64_t BigintOperations::BitLength(const Bigint& bigint) { |
- ASSERT(IsClamped(bigint)); |
- intptr_t length = bigint.Length(); |
- if (length == 0) return 0; |
- intptr_t last = length - 1; |
- |
- Chunk high_chunk = bigint.GetChunkAt(last); |
- ASSERT(high_chunk != 0); |
- int64_t bit_length = |
- static_cast<int64_t>(kDigitBitSize) * last + CountBits(high_chunk); |
- |
- if (bigint.IsNegative()) { |
- // We are calculating the 2's complement bitlength but we have a sign and |
- // magnitude representation. The length is the same except when the |
- // magnitude is an exact power of two, 2^k. In 2's complement format, |
- // -(2^k) takes one fewer bit than (2^k). |
- |
- if ((high_chunk & (high_chunk - 1)) == 0) { // Single bit set? |
- for (intptr_t i = 0; i < last; i++) { |
- if (bigint.GetChunkAt(i) != 0) return bit_length; |
- } |
- bit_length -= 1; |
- } |
- } |
- return bit_length; |
-} |
- |
- |
-int BigintOperations::Compare(const Bigint& a, const Bigint& b) { |
- bool a_is_negative = a.IsNegative(); |
- bool b_is_negative = b.IsNegative(); |
- if (a_is_negative != b_is_negative) { |
- return a_is_negative ? -1 : 1; |
- } |
- |
- if (a_is_negative) { |
- return -UnsignedCompare(a, b); |
- } |
- return UnsignedCompare(a, b); |
-} |
- |
- |
-void BigintOperations::FromHexCString(const char* hex_string, |
- const Bigint& value) { |
- ASSERT(hex_string[0] != '-'); |
- intptr_t bigint_length = ComputeChunkLength(hex_string); |
- // The bigint's least significant digit (lsd) is at position 0, whereas the |
- // given string has it's lsd at the last position. |
- // The hex_i index, pointing into the string, starts therefore at the end, |
- // whereas the bigint-index (i) starts at 0. |
- const intptr_t hex_length = strlen(hex_string); |
- if (hex_length < 0) { |
- FATAL("Fatal error in BigintOperations::FromHexCString: string too long"); |
- } |
- intptr_t hex_i = hex_length - 1; |
- for (intptr_t i = 0; i < bigint_length; i++) { |
- Chunk digit = 0; |
- int shift = 0; |
- for (int j = 0; j < kHexCharsPerDigit; j++) { |
- // Reads a block of hexadecimal digits and stores it in 'digit'. |
- // Ex: "0123456" with kHexCharsPerDigit == 3, hex_i == 6, reads "456". |
- if (hex_i < 0) { |
- break; |
- } |
- ASSERT(hex_i >= 0); |
- char c = hex_string[hex_i--]; |
- ASSERT(Utils::IsHexDigit(c)); |
- digit += static_cast<Chunk>(Utils::HexDigitToInt(c)) << shift; |
- shift += 4; |
- } |
- value.SetChunkAt(i, digit); |
- } |
- ASSERT(hex_i == -1); |
- Clamp(value); |
-} |
- |
- |
-RawBigint* BigintOperations::AddSubtract(const Bigint& a, |
- const Bigint& b, |
- bool negate_b) { |
- ASSERT(IsClamped(a)); |
- ASSERT(IsClamped(b)); |
- Bigint& result = Bigint::Handle(); |
- // We perform the subtraction by simulating a negation of the b-argument. |
- bool b_is_negative = negate_b ? !b.IsNegative() : b.IsNegative(); |
- |
- // If both are of the same sign, then we can compute the unsigned addition |
- // and then simply adjust the sign (if necessary). |
- // Ex: -3 + -5 -> -(3 + 5) |
- if (a.IsNegative() == b_is_negative) { |
- result = UnsignedAdd(a, b); |
- result.SetSign(b_is_negative); |
- ASSERT(IsClamped(result)); |
- return result.raw(); |
- } |
- |
- // The signs differ. |
- // Take the number with small magnitude and subtract its absolute value from |
- // the absolute value of the other number. Then adjust the sign, if necessary. |
- // The sign is the same as for the number with the greater magnitude. |
- // Ex: -8 + 3 -> -(8 - 3) |
- // 8 + -3 -> (8 - 3) |
- // -3 + 8 -> (8 - 3) |
- // 3 + -8 -> -(8 - 3) |
- int comp = UnsignedCompare(a, b); |
- if (comp < 0) { |
- result = UnsignedSubtract(b, a); |
- result.SetSign(b_is_negative); |
- } else if (comp > 0) { |
- result = UnsignedSubtract(a, b); |
- result.SetSign(a.IsNegative()); |
- } else { |
- return Zero(); |
- } |
- ASSERT(IsClamped(result)); |
- return result.raw(); |
-} |
- |
- |
-int BigintOperations::UnsignedCompare(const Bigint& a, const Bigint& b) { |
- ASSERT(IsClamped(a)); |
- ASSERT(IsClamped(b)); |
- intptr_t a_length = a.Length(); |
- intptr_t b_length = b.Length(); |
- if (a_length < b_length) return -1; |
- if (a_length > b_length) return 1; |
- for (intptr_t i = a_length - 1; i >= 0; i--) { |
- Chunk digit_a = a.GetChunkAt(i); |
- Chunk digit_b = b.GetChunkAt(i); |
- if (digit_a < digit_b) return -1; |
- if (digit_a > digit_b) return 1; |
- // Else look at the next digit. |
- } |
- return 0; // They are equal. |
-} |
- |
- |
-int BigintOperations::UnsignedCompareNonClamped( |
- const Bigint& a, const Bigint& b) { |
- intptr_t a_length = a.Length(); |
- intptr_t b_length = b.Length(); |
- while (a_length > b_length) { |
- if (a.GetChunkAt(a_length - 1) != 0) return 1; |
- a_length--; |
- } |
- while (b_length > a_length) { |
- if (b.GetChunkAt(b_length - 1) != 0) return -1; |
- b_length--; |
- } |
- for (intptr_t i = a_length - 1; i >= 0; i--) { |
- Chunk digit_a = a.GetChunkAt(i); |
- Chunk digit_b = b.GetChunkAt(i); |
- if (digit_a < digit_b) return -1; |
- if (digit_a > digit_b) return 1; |
- // Else look at the next digit. |
- } |
- return 0; // They are equal. |
-} |
- |
- |
-RawBigint* BigintOperations::UnsignedAdd(const Bigint& a, const Bigint& b) { |
- ASSERT(IsClamped(a)); |
- ASSERT(IsClamped(b)); |
- |
- intptr_t a_length = a.Length(); |
- intptr_t b_length = b.Length(); |
- if (a_length < b_length) { |
- return UnsignedAdd(b, a); |
- } |
- |
- // We might request too much space, in which case we will adjust the length |
- // afterwards. |
- intptr_t result_length = a_length + 1; |
- const Bigint& result = Bigint::Handle(Bigint::Allocate(result_length)); |
- |
- Chunk carry = 0; |
- // b has fewer digits than a. |
- ASSERT(b_length <= a_length); |
- for (intptr_t i = 0; i < b_length; i++) { |
- Chunk sum = a.GetChunkAt(i) + b.GetChunkAt(i) + carry; |
- result.SetChunkAt(i, sum & kDigitMask); |
- carry = sum >> kDigitBitSize; |
- } |
- // Copy over the remaining digits of a, but don't forget the carry. |
- for (intptr_t i = b_length; i < a_length; i++) { |
- Chunk sum = a.GetChunkAt(i) + carry; |
- result.SetChunkAt(i, sum & kDigitMask); |
- carry = sum >> kDigitBitSize; |
- } |
- // Shrink the result if there was no overflow. Otherwise apply the carry. |
- if (carry == 0) { |
- // TODO(floitsch): We change the size of bigint-objects here. |
- result.SetLength(a_length); |
- } else { |
- result.SetChunkAt(a_length, carry); |
- } |
- ASSERT(IsClamped(result)); |
- return result.raw(); |
-} |
- |
- |
-RawBigint* BigintOperations::UnsignedSubtract(const Bigint& a, |
- const Bigint& b) { |
- ASSERT(IsClamped(a)); |
- ASSERT(IsClamped(b)); |
- ASSERT(UnsignedCompare(a, b) >= 0); |
- |
- const int kSignBitPos = Bigint::kChunkSize * kBitsPerByte - 1; |
- |
- intptr_t a_length = a.Length(); |
- intptr_t b_length = b.Length(); |
- |
- // We might request too much space, in which case we will adjust the length |
- // afterwards. |
- intptr_t result_length = a_length; |
- const Bigint& result = Bigint::Handle(Bigint::Allocate(result_length)); |
- |
- Chunk borrow = 0; |
- ASSERT(b_length <= a_length); |
- for (intptr_t i = 0; i < b_length; i++) { |
- Chunk difference = a.GetChunkAt(i) - b.GetChunkAt(i) - borrow; |
- result.SetChunkAt(i, difference & kDigitMask); |
- borrow = difference >> kSignBitPos; |
- ASSERT((borrow == 0) || (borrow == 1)); |
- } |
- // Copy over the remaining digits of a, but don't forget the borrow. |
- for (intptr_t i = b_length; i < a_length; i++) { |
- Chunk difference = a.GetChunkAt(i) - borrow; |
- result.SetChunkAt(i, difference & kDigitMask); |
- borrow = (difference >> kSignBitPos); |
- ASSERT((borrow == 0) || (borrow == 1)); |
- } |
- ASSERT(borrow == 0); |
- Clamp(result); |
- return result.raw(); |
-} |
- |
- |
-RawBigint* BigintOperations::MultiplyWithDigit( |
- const Bigint& bigint, Chunk digit) { |
- ASSERT(digit <= kDigitMaxValue); |
- if (digit == 0) return Zero(); |
- if (bigint.IsZero()) return Zero(); |
- |
- intptr_t length = bigint.Length(); |
- intptr_t result_length = length + 1; |
- const Bigint& result = Bigint::Handle(Bigint::Allocate(result_length)); |
- |
- Chunk carry = 0; |
- for (intptr_t i = 0; i < length; i++) { |
- Chunk chunk = bigint.GetChunkAt(i); |
- DoubleChunk product = (static_cast<DoubleChunk>(chunk) * digit) + carry; |
- result.SetChunkAt(i, static_cast<Chunk>(product & kDigitMask)); |
- carry = static_cast<Chunk>(product >> kDigitBitSize); |
- } |
- result.SetChunkAt(length, carry); |
- |
- result.SetSign(bigint.IsNegative()); |
- Clamp(result); |
- return result.raw(); |
-} |
- |
- |
-void BigintOperations::DivideRemainder( |
- const Bigint& a, const Bigint& b, Bigint* quotient, Bigint* remainder) { |
- // TODO(floitsch): This function is very memory-intensive since all |
- // intermediate bigint results are allocated in new memory. It would be |
- // much more efficient to reuse the space of temporary intermediate variables. |
- ASSERT(IsClamped(a)); |
- ASSERT(IsClamped(b)); |
- ASSERT(!b.IsZero()); |
- |
- int comp = UnsignedCompare(a, b); |
- if (comp < 0) { |
- (*quotient) = Zero(); |
- (*remainder) = Copy(a); // TODO(floitsch): can we reuse the input? |
- return; |
- } else if (comp == 0) { |
- (*quotient) = One(); |
- quotient->SetSign(a.IsNegative() != b.IsNegative()); |
- (*remainder) = Zero(); |
- return; |
- } |
- |
- intptr_t b_length = b.Length(); |
- |
- if (b_length == 1) { |
- const Bigint& dividend_quotient = Bigint::Handle(Copy(a)); |
- Chunk remainder_digit = |
- BigintOperations::InplaceUnsignedDivideRemainderDigit( |
- dividend_quotient, b.GetChunkAt(0)); |
- dividend_quotient.SetSign(a.IsNegative() != b.IsNegative()); |
- *quotient = dividend_quotient.raw(); |
- *remainder = Bigint::Allocate(1); |
- remainder->SetChunkAt(0, remainder_digit); |
- remainder->SetSign(a.IsNegative()); |
- Clamp(*remainder); |
- return; |
- } |
- |
- // High level description: |
- // The algorithm is basically the algorithm that is taught in school: |
- // Let a the dividend and b the divisor. We are looking for |
- // the quotient q = truncate(a / b), and |
- // the remainder r = a - q * b. |
- // School algorithm: |
- // q = 0 |
- // n = number_of_digits(a) - number_of_digits(b) |
- // for (i = n; i >= 0; i--) { |
- // Maximize k such that k*y*10^i is less than or equal to a and |
- // (k + 1)*y*10^i is greater. |
- // q = q + k * 10^i // Add new digit to result. |
- // a = a - k * b * 10^i |
- // } |
- // r = a |
- // |
- // Instead of working in base 10 we work in base kDigitBitSize. |
- |
- int normalization_shift = |
- kDigitBitSize - CountBits(b.GetChunkAt(b_length - 1)); |
- Bigint& dividend = Bigint::Handle(ShiftLeft(a, normalization_shift)); |
- const Bigint& divisor = Bigint::Handle(ShiftLeft(b, normalization_shift)); |
- dividend.SetSign(false); |
- divisor.SetSign(false); |
- |
- intptr_t dividend_length = dividend.Length(); |
- intptr_t divisor_length = b_length; |
- ASSERT(divisor_length == divisor.Length()); |
- |
- intptr_t quotient_length = dividend_length - divisor_length + 1; |
- *quotient = Bigint::Allocate(quotient_length); |
- quotient->SetSign(a.IsNegative() != b.IsNegative()); |
- |
- intptr_t quotient_pos = dividend_length - divisor_length; |
- // Find the first quotient-digit. |
- // The first digit must be computed separately from the other digits because |
- // the preconditions for the loop are not yet satisfied. |
- // For simplicity use a shifted divisor, so that the comparison and |
- // subtraction are easier. |
- int divisor_shift_amount = dividend_length - divisor_length; |
- Bigint& shifted_divisor = |
- Bigint::Handle(DigitsShiftLeft(divisor, divisor_shift_amount)); |
- Chunk first_quotient_digit = 0; |
- Isolate* isolate = Isolate::Current(); |
- while (UnsignedCompare(dividend, shifted_divisor) >= 0) { |
- HANDLESCOPE(isolate); |
- first_quotient_digit++; |
- dividend = Subtract(dividend, shifted_divisor); |
- } |
- quotient->SetChunkAt(quotient_pos--, first_quotient_digit); |
- |
- // Find the remainder of the digits. |
- |
- Chunk first_divisor_digit = divisor.GetChunkAt(divisor_length - 1); |
- // The short divisor only represents the first two digits of the divisor. |
- // If the divisor has only one digit, then the second part is zeroed out. |
- Bigint& short_divisor = Bigint::Handle(Bigint::Allocate(2)); |
- if (divisor_length > 1) { |
- short_divisor.SetChunkAt(0, divisor.GetChunkAt(divisor_length - 2)); |
- } else { |
- short_divisor.SetChunkAt(0, 0); |
- } |
- short_divisor.SetChunkAt(1, first_divisor_digit); |
- // The following bigint will be used inside the loop. It is allocated outside |
- // the loop to avoid repeated allocations. |
- Bigint& target = Bigint::Handle(Bigint::Allocate(3)); |
- // The dividend_length here must be from the initial dividend. |
- for (intptr_t i = dividend_length - 1; i >= divisor_length; i--) { |
- // Invariant: let t = i - divisor_length |
- // then dividend / (divisor << (t * kDigitBitSize)) <= kDigitMaxValue. |
- // Ex: dividend: 53451232, and divisor: 535 (with t == 5) is ok. |
- // dividend: 56822123, and divisor: 563 (with t == 5) is bad. |
- // dividend: 6822123, and divisor: 563 (with t == 5) is ok. |
- |
- HANDLESCOPE(isolate); |
- // The dividend has changed. So recompute its length. |
- dividend_length = dividend.Length(); |
- Chunk dividend_digit; |
- if (i > dividend_length) { |
- quotient->SetChunkAt(quotient_pos--, 0); |
- continue; |
- } else if (i == dividend_length) { |
- dividend_digit = 0; |
- } else { |
- ASSERT(i + 1 == dividend_length); |
- dividend_digit = dividend.GetChunkAt(i); |
- } |
- Chunk quotient_digit; |
- // Compute an estimate of the quotient_digit. The estimate will never |
- // be too small. |
- if (dividend_digit == first_divisor_digit) { |
- // Small shortcut: the else-branch would compute a value > kDigitMaxValue. |
- // However, by hypothesis, we know that the quotient_digit must fit into |
- // a digit. Avoid going through repeated iterations of the adjustment |
- // loop by directly assigning kDigitMaxValue to the quotient_digit. |
- // Ex: 51235 / 523. |
- // 51 / 5 would yield 10 (if computed in the else branch). |
- // However we know that 9 is the maximal value. |
- quotient_digit = kDigitMaxValue; |
- } else { |
- // Compute the estimate by using two digits of the dividend and one of |
- // the divisor. |
- // Ex: 32421 / 535 |
- // 32 / 5 -> 6 |
- // The estimate would hence be 6. |
- DoubleChunk two_dividend_digits = dividend_digit; |
- two_dividend_digits <<= kDigitBitSize; |
- two_dividend_digits += dividend.GetChunkAt(i - 1); |
- DoubleChunk q = two_dividend_digits / first_divisor_digit; |
- if (q > kDigitMaxValue) q = kDigitMaxValue; |
- quotient_digit = static_cast<Chunk>(q); |
- } |
- |
- // Refine estimation. |
- quotient_digit++; // The following loop will start by decrementing. |
- Bigint& estimation_product = Bigint::Handle(); |
- target.SetChunkAt(0, ((i - 2) < 0) ? 0 : dividend.GetChunkAt(i - 2)); |
- target.SetChunkAt(1, ((i - 1) < 0) ? 0 : dividend.GetChunkAt(i - 1)); |
- target.SetChunkAt(2, dividend_digit); |
- do { |
- HANDLESCOPE(isolate); |
- quotient_digit = (quotient_digit - 1) & kDigitMask; |
- estimation_product = MultiplyWithDigit(short_divisor, quotient_digit); |
- } while (UnsignedCompareNonClamped(estimation_product, target) > 0); |
- // At this point the quotient_digit is fairly accurate. |
- // At the worst it is off by one. |
- // Remove a multiple of the divisor. If the estimate is incorrect we will |
- // subtract the divisor another time. |
- // Let t = i - divisor_length. |
- // dividend -= (quotient_digit * divisor) << (t * kDigitBitSize); |
- shifted_divisor = MultiplyWithDigit(divisor, quotient_digit); |
- shifted_divisor = DigitsShiftLeft(shifted_divisor, i - divisor_length); |
- dividend = Subtract(dividend, shifted_divisor); |
- if (dividend.IsNegative()) { |
- // The estimation was still too big. |
- quotient_digit--; |
- // TODO(floitsch): allocate space for the shifted_divisor once and reuse |
- // it at every iteration. |
- shifted_divisor = DigitsShiftLeft(divisor, i - divisor_length); |
- // TODO(floitsch): reuse the space of the previous dividend. |
- dividend = Add(dividend, shifted_divisor); |
- } |
- quotient->SetChunkAt(quotient_pos--, quotient_digit); |
- } |
- ASSERT(quotient_pos == -1); |
- Clamp(*quotient); |
- *remainder = ShiftRight(dividend, normalization_shift); |
- remainder->SetSign(a.IsNegative()); |
-} |
- |
- |
-BigintOperations::Chunk BigintOperations::InplaceUnsignedDivideRemainderDigit( |
- const Bigint& dividend_quotient, Chunk divisor_digit) { |
- Chunk remainder = 0; |
- for (intptr_t i = dividend_quotient.Length() - 1; i >= 0; i--) { |
- DoubleChunk dividend_digit = |
- (static_cast<DoubleChunk>(remainder) << kDigitBitSize) + |
- dividend_quotient.GetChunkAt(i); |
- Chunk quotient_digit = static_cast<Chunk>(dividend_digit / divisor_digit); |
- remainder = static_cast<Chunk>( |
- dividend_digit - |
- static_cast<DoubleChunk>(quotient_digit) * divisor_digit); |
- dividend_quotient.SetChunkAt(i, quotient_digit); |
- } |
- Clamp(dividend_quotient); |
- return remainder; |
-} |
- |
- |
-void BigintOperations::Clamp(const Bigint& bigint) { |
- intptr_t length = bigint.Length(); |
- while (length > 0 && (bigint.GetChunkAt(length - 1) == 0)) { |
- length--; |
- } |
- // TODO(floitsch): We change the size of bigint-objects here. |
- bigint.SetLength(length); |
-} |
- |
- |
-RawBigint* BigintOperations::Copy(const Bigint& bigint) { |
- intptr_t bigint_length = bigint.Length(); |
- Bigint& copy = Bigint::Handle(Bigint::Allocate(bigint_length)); |
- for (intptr_t i = 0; i < bigint_length; i++) { |
- copy.SetChunkAt(i, bigint.GetChunkAt(i)); |
- } |
- copy.SetSign(bigint.IsNegative()); |
- return copy.raw(); |
-} |
- |
- |
-intptr_t BigintOperations::CountBits(Chunk digit) { |
- intptr_t result = 0; |
- while (digit != 0) { |
- digit >>= 1; |
- result++; |
- } |
- return result; |
-} |
- |
-} // namespace dart |