Index: runtime/lib/bigint.dart |
=================================================================== |
--- runtime/lib/bigint.dart (revision 0) |
+++ runtime/lib/bigint.dart (working copy) |
@@ -0,0 +1,1206 @@ |
+// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
+// for details. All rights reserved. Use of this source code is governed by a |
+// BSD-style license that can be found in the LICENSE file. |
+ |
+// Copyright 2009 The Go Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style |
+// license that can be found in the LICENSE file. |
+ |
+/* |
+ * Copyright (c) 2003-2005 Tom Wu |
+ * Copyright (c) 2012 Adam Singer (adam@solvr.io) |
+ * All Rights Reserved. |
+ * |
+ * Permission is hereby granted, free of charge, to any person obtaining |
+ * a copy of this software and associated documentation files (the |
+ * "Software"), to deal in the Software without restriction, including |
+ * without limitation the rights to use, copy, modify, merge, publish, |
+ * distribute, sublicense, and/or sell copies of the Software, and to |
+ * permit persons to whom the Software is furnished to do so, subject to |
+ * the following conditions: |
+ * |
+ * The above copyright notice and this permission notice shall be |
+ * included in all copies or substantial portions of the Software. |
+ * |
+ * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, |
+ * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY |
+ * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. |
+ * |
+ * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, |
+ * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER |
+ * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF |
+ * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT |
+ * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
+ * |
+ * In addition, the following condition applies: |
+ * |
+ * All redistributions must retain an intact copy of this copyright notice |
+ * and disclaimer. |
+ */ |
+ |
+class _Bigint extends _IntegerImplementation implements int { |
+ // Bits per digit. |
+ static const int DIGIT_BITS = 32; |
+ static const int DIGIT_BASE = 1 << DIGIT_BITS; |
+ static const int DIGIT_MASK = (1 << DIGIT_BITS) - 1; |
+ |
+ // Bits per half digit. |
+ static const int DIGIT2_BITS = DIGIT_BITS >> 1; |
+ static const int DIGIT2_BASE = 1 << DIGIT2_BITS; |
+ static const int DIGIT2_MASK = (1 << DIGIT2_BITS) - 1; |
+ |
+ // Allocate extra digits so the bigint can be reused. |
+ static const int EXTRA_DIGITS = 4; |
+ |
+ // Floating-point unit integer precision. |
+ static const int FP_BITS = 52; |
+ static const int FP_BASE = 1 << FP_BITS; |
+ static const int FP_D1 = FP_BITS - DIGIT_BITS; |
+ static const int FP_D2 = 2 * DIGIT_BITS - FP_BITS; |
+ |
+ // Min and max of non bigint values. |
+ static const int MIN_INT64 = (-1) << 63; |
+ static const int MAX_INT64 = 0x7fffffffffffffff; |
+ |
+ // Bigint constant values. |
+ // Note: Not declared as final in order to satisfy optimizer, which expects |
+ // constants to be in canonical form (Smi). |
+ static _Bigint ZERO = new _Bigint(); |
+ static _Bigint ONE = new _Bigint()._setInt(1); |
+ |
+ // Digit conversion table for parsing. |
+ static final Map<int, int> DIGIT_TABLE = _createDigitTable(); |
+ |
+ // Internal data structure. |
+ bool get _neg native "Bigint_getNeg"; |
+ void set _neg(bool neg) native "Bigint_setNeg"; |
+ int get _used native "Bigint_getUsed"; |
+ void set _used(int used) native "Bigint_setUsed"; |
+ Uint32List get _digits native "Bigint_getDigits"; |
Vyacheslav Egorov (Google)
2014/09/10 11:44:12
Any reason why is this not a real field?
This is
regis
2014/09/10 17:34:17
Class _Bigint being part of the integer class hier
Vyacheslav Egorov (Google)
2014/09/10 17:40:44
But we can force fields declared in the dart code
|
+ void set _digits(Uint32List digits) native "Bigint_setDigits"; |
+ |
+ // Factory returning an instance initialized to value 0. |
+ factory _Bigint() native "Bigint_allocate"; |
+ |
+ // Factory returning an instance initialized to an integer value. |
+ factory _Bigint._fromInt(int i) { |
+ return new _Bigint()._setInt(i); |
+ } |
+ |
+ // Factory returning an instance initialized to a hex string. |
+ factory _Bigint._fromHex(String s) { |
+ return new _Bigint()._setHex(s); |
+ } |
+ |
+ // Factory returning an instance initialized to a double value given by its |
+ // components. |
+ factory _Bigint._fromDouble(int sign, int significand, int exponent) { |
+ return new _Bigint()._setDouble(sign, significand, exponent); |
+ } |
+ |
+ // Initialize instance to the given value no larger than a Mint. |
+ _Bigint _setInt(int i) { |
+ assert(i is! _Bigint); |
+ _ensureLength(2); |
+ _used = 2; |
+ var l, h; |
+ if (i < 0) { |
+ _neg = true; |
+ if (i == MIN_INT64) { |
+ l = 0; |
+ h = 0x80000000; |
+ } else { |
+ l = (-i) & DIGIT_MASK; |
+ h = (-i) >> DIGIT_BITS; |
+ } |
+ } else { |
+ _neg = false; |
+ l = i & DIGIT_MASK; |
+ h = i >> DIGIT_BITS; |
+ } |
+ _digits[0] = l; |
+ _digits[1] = h; |
+ _clamp(); |
+ return this; |
+ } |
+ |
+ // Initialize instance to the given hex string. |
+ // TODO(regis): Copy Bigint::NewFromHexCString, fewer digit accesses. |
+ // TODO(regis): Unused. |
+ _Bigint _setHex(String s) { |
+ const int HEX_BITS = 4; |
+ const int HEX_DIGITS_PER_DIGIT = 8; |
+ var hexDigitIndex = s.length; |
+ _ensureLength((hexDigitIndex + HEX_DIGITS_PER_DIGIT - 1) ~/ HEX_DIGITS_PER_DIGIT); |
+ var bitIndex = 0; |
+ while (--hexDigitIndex >= 0) { |
+ var digit = DIGIT_TABLE[s.codeUnitAt(hexDigitIndex)]; |
+ if (digit = null) { |
+ if (s[hexDigitIndex] == "-") _neg = true; |
+ continue; // Ignore invalid digits. |
+ } |
+ _neg = false; // Ignore "-" if not at index 0. |
+ if (bitIndex == 0) { |
+ _digits[_used++] = digit; |
+ // TODO(regis): What if too many bad digits were ignored and |
+ // _used becomes larger than _digits.length? error or reallocate? |
+ } else { |
+ _digits[_used - 1] |= digit << bitIndex; |
+ } |
+ bitIndex = (bitIndex + HEX_BITS) % DIGIT_BITS; |
+ } |
+ _clamp(); |
+ return this; |
+ } |
+ |
+ // Initialize instance to the given double value. |
+ _Bigint _setDouble(int sign, int significand, int exponent) { |
+ assert(significand >= 0); |
+ assert(exponent >= 0); |
+ _setInt(significand); |
+ _neg = sign < 0; |
+ if (exponent > 0) { |
+ _lShiftTo(exponent, this); |
+ } |
+ return this; |
+ } |
+ |
+ // Create digit conversion table for parsing. |
+ static Map<int, int> _createDigitTable() { |
+ Map table = new HashMap(); |
+ int digit, value; |
+ digit = "0".codeUnitAt(0); |
+ for(value = 0; value <= 9; ++value) table[digit++] = value; |
+ digit = "a".codeUnitAt(0); |
+ for(value = 10; value < 36; ++value) table[digit++] = value; |
+ digit = "A".codeUnitAt(0); |
+ for(value = 10; value < 36; ++value) table[digit++] = value; |
+ return table; |
+ } |
+ |
+ // Return most compact integer (i.e. possibly Smi or Mint). |
+ // TODO(regis): Intrinsify. |
+ int _toValidInt() { |
+ assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised. |
+ if (_used == 0) return 0; |
+ if (_used == 1) return _neg ? -_digits[0] : _digits[0]; |
+ if (_used > 2) return this; |
+ if (_neg) { |
+ if (_digits[1] > 0x80000000) return this; |
+ if (_digits[1] == 0x80000000) { |
+ if (_digits[0] > 0) return this; |
+ return MIN_INT64; |
+ } |
+ return -((_digits[1] << DIGIT_BITS) | _digits[0]); |
+ } |
+ if (_digits[1] >= 0x80000000) return this; |
+ return (_digits[1] << DIGIT_BITS) | _digits[0]; |
+ } |
+ |
+ // Conversion from int to bigint. |
+ _Bigint _toBigint() => this; |
+ |
+ // Make sure at least 'length' _digits are allocated. |
+ // Copy existing _digits if reallocation is necessary. |
+ // TODO(regis): Check that we are not preserving _digits unnecessarily. |
+ void _ensureLength(int length) { |
+ if (length > 0 && (_digits == null || length > _digits.length)) { |
+ var new_digits = new Uint32List(length + EXTRA_DIGITS); |
+ if (_digits != null) { |
+ for (var i = _used; --i >= 0; ) { |
+ new_digits[i] = _digits[i]; |
+ } |
+ } |
+ _digits = new_digits; |
+ } |
+ } |
+ |
+ // Clamp off excess high _digits. |
+ void _clamp() { |
+ while (_used > 0 && _digits[_used - 1] == 0) { |
+ --_used; |
+ } |
+ assert(_used > 0 || !_neg); |
+ } |
+ |
+ // Copy this to r. |
+ void _copyTo(_Bigint r) { |
+ r._ensureLength(_used); |
+ for (var i = _used - 1; i >= 0; --i) { |
+ r._digits[i] = _digits[i]; |
+ } |
+ r._used = _used; |
+ r._neg = _neg; |
+ } |
+ |
+ // Return the bit length of digit x. |
+ int _nbits(int x) { |
+ var r = 1, t; |
+ if ((t = x >> 16) != 0) { x = t; r += 16; } |
+ if ((t = x >> 8) != 0) { x = t; r += 8; } |
+ if ((t = x >> 4) != 0) { x = t; r += 4; } |
+ if ((t = x >> 2) != 0) { x = t; r += 2; } |
+ if ((x >> 1) != 0) { r += 1; } |
+ return r; |
+ } |
+ |
+ // r = this << n*DIGIT_BITS. |
+ void _dlShiftTo(int n, _Bigint r) { |
+ var r_used = _used + n; |
+ r._ensureLength(r_used); |
+ for (var i = _used - 1; i >= 0; --i) { |
+ r._digits[i + n] = _digits[i]; |
+ } |
+ for (var i = n - 1; i >= 0; --i) { |
+ r._digits[i] = 0; |
+ } |
+ r._used = r_used; |
+ r._neg = _neg; |
+ } |
+ |
+ // r = this >> n*DIGIT_BITS. |
+ void _drShiftTo(int n, _Bigint r) { |
+ var r_used = _used - n; |
+ if (r_used < 0) { |
+ if (_neg) { |
+ // Set r to -1. |
+ r._neg = true; |
+ r._ensureLength(1); |
+ r._used = 1; |
+ r._digits[0] = 1; |
+ } else { |
+ // Set r to 0. |
+ r._neg = false; |
+ r._used = 0; |
+ } |
+ return; |
+ } |
+ r._ensureLength(r_used); |
+ for (var i = n; i < _used; ++i) { |
+ r._digits[i - n] = _digits[i]; |
+ } |
+ r._used = r_used; |
+ r._neg = _neg; |
+ if (_neg) { |
+ // Round down if any bit was shifted out. |
+ for (var i = 0; i < n; i++) { |
+ if (_digits[i] != 0) { |
+ r._subTo(ONE, r); |
+ break; |
+ } |
+ } |
+ } |
+ } |
+ |
+ // r = this << n. |
+ void _lShiftTo(int n, _Bigint r) { |
+ var ds = n ~/ DIGIT_BITS; |
+ var bs = n % DIGIT_BITS; |
+ if (bs == 0) { |
+ _dlShiftTo(ds, r); |
+ return; |
+ } |
+ var cbs = DIGIT_BITS - bs; |
+ var bm = (1 << cbs) - 1; |
+ var r_used = _used + ds + 1; |
+ r._ensureLength(r_used); |
+ var c = 0; |
+ for (var i = _used - 1; i >= 0; --i) { |
+ r._digits[i + ds + 1] = (_digits[i] >> cbs) | c; |
+ c = (_digits[i] & bm) << bs; |
+ } |
+ for (var i = ds - 1; i >= 0; --i) { |
+ r._digits[i] = 0; |
+ } |
+ r._digits[ds] = c; |
+ r._used = r_used; |
+ r._neg = _neg; |
+ r._clamp(); |
+ } |
+ |
+ // r = this >> n. |
+ void _rShiftTo(int n, _Bigint r) { |
+ var ds = n ~/ DIGIT_BITS; |
+ var bs = n % DIGIT_BITS; |
+ if (bs == 0) { |
+ _drShiftTo(ds, r); |
+ return; |
+ } |
+ var r_used = _used - ds; |
+ if (r_used <= 0) { |
+ if (_neg) { |
+ // Set r to -1. |
+ r._neg = true; |
+ r._ensureLength(1); |
+ r._used = 1; |
+ r._digits[0] = 1; |
+ } else { |
+ // Set r to 0. |
+ r._neg = false; |
+ r._used = 0; |
+ } |
+ return; |
+ } |
+ var cbs = DIGIT_BITS - bs; |
+ var bm = (1 << bs) - 1; |
+ r._ensureLength(r_used); |
+ r._digits[0] = _digits[ds] >> bs; |
+ for (var i = ds + 1; i < _used; ++i) { |
+ r._digits[i - ds - 1] |= (_digits[i] & bm) << cbs; |
+ r._digits[i - ds] = _digits[i] >> bs; |
+ } |
+ r._neg = _neg; |
+ r._used = r_used; |
+ r._clamp(); |
+ if (_neg) { |
+ // Round down if any bit was shifted out. |
+ if ((_digits[ds] & bm) != 0) { |
+ r._subTo(ONE, r); |
+ return; |
+ } |
+ for (var i = 0; i < ds; i++) { |
+ if (_digits[i] != 0) { |
+ r._subTo(ONE, r); |
+ return; |
+ } |
+ } |
+ } |
+ } |
+ |
+ // Return 0 if abs(this) == abs(a). |
+ // Return a positive number if abs(this) > abs(a). |
+ // Return a negative number if abs(this) < abs(a). |
+ int _absCompareTo(_Bigint a) { |
+ var r = _used - a._used; |
+ if (r == 0) { |
+ var i = _used; |
+ while (--i >= 0 && (r = _digits[i] - a._digits[i]) == 0); |
+ } |
+ return r; |
+ } |
+ |
+ // Return 0 if this == a. |
+ // Return a positive number if this > a. |
+ // Return a negative number if this < a. |
+ int _compareTo(_Bigint a) { |
+ var r; |
+ if (_neg == a._neg) { |
+ r = _absCompareTo(a); |
+ if (_neg) { |
+ r = -r; |
+ } |
+ } else if (_neg) { |
+ r = -1; |
+ } else { |
+ r = 1; |
+ } |
+ return r; |
+ } |
+ |
+ // r = abs(this) + abs(a). |
+ void _absAddTo(_Bigint a, _Bigint r) { |
+ if (_used < a._used) { |
+ a._absAddTo(this, r); |
+ return; |
+ } |
+ if (_used == 0) { |
+ // Set r to 0. |
+ r._neg = false; |
+ r._used = 0; |
+ return; |
+ } |
+ if (a._used == 0) { |
+ _copyTo(r); |
+ return; |
+ } |
+ r._ensureLength(_used + 1); |
+ var c = 0; |
+ for (var i = 0; i < a._used; i++) { |
+ c += _digits[i] + a._digits[i]; |
+ r._digits[i] = c & DIGIT_MASK; |
+ c >>= DIGIT_BITS; |
+ } |
+ for (var i = a._used; i < _used; i++) { |
+ c += _digits[i]; |
+ r._digits[i] = c & DIGIT_MASK; |
+ c >>= DIGIT_BITS; |
+ } |
+ r._digits[_used] = c; |
+ r._used = _used + 1; |
+ r._clamp(); |
+ } |
+ |
+ // r = abs(this) - abs(a), with abs(this) >= abs(a). |
+ void _absSubTo(_Bigint a, _Bigint r) { |
+ assert(_absCompareTo(a) >= 0); |
+ if (_used == 0) { |
+ // Set r to 0. |
+ r._neg = false; |
+ r._used = 0; |
+ return; |
+ } |
+ if (a._used == 0) { |
+ _copyTo(r); |
+ return; |
+ } |
+ r._ensureLength(_used); |
+ var c = 0; |
+ for (var i = 0; i < a._used; i++) { |
+ c += _digits[i] - a._digits[i]; |
+ r._digits[i] = c & DIGIT_MASK; |
+ c >>= DIGIT_BITS; |
+ } |
+ for (var i = a._used; i < _used; i++) { |
+ c += _digits[i]; |
+ r._digits[i] = c & DIGIT_MASK; |
+ c >>= DIGIT_BITS; |
+ } |
+ r._used = _used; |
+ r._clamp(); |
+ } |
+ |
+ // r = abs(this) & abs(a). |
+ void _absAndTo(_Bigint a, _Bigint r) { |
+ var r_used = (_used < a._used) ? _used : a._used; |
+ r._ensureLength(r_used); |
+ for (var i = 0; i < r_used; i++) { |
+ r._digits[i] = _digits[i] & a._digits[i]; |
+ } |
+ r._used = r_used; |
+ r._clamp(); |
+ } |
+ |
+ // r = abs(this) &~ abs(a). |
+ void _absAndNotTo(_Bigint a, _Bigint r) { |
+ var r_used = _used; |
+ r._ensureLength(r_used); |
+ var m = (r_used < a._used) ? r_used : a._used; |
+ for (var i = 0; i < m; i++) { |
+ r._digits[i] = _digits[i] &~ a._digits[i]; |
+ } |
+ for (var i = m; i < r_used; i++) { |
+ r._digits[i] = _digits[i]; |
+ } |
+ r._used = r_used; |
+ r._clamp(); |
+ } |
+ |
+ // r = abs(this) | abs(a). |
+ void _absOrTo(_Bigint a, _Bigint r) { |
+ var r_used = (_used > a._used) ? _used : a._used; |
+ r._ensureLength(r_used); |
+ var l, m; |
+ if (_used < a._used) { |
+ l = a; |
+ m = _used; |
+ } else { |
+ l = this; |
+ m = a._used; |
+ } |
+ for (var i = 0; i < m; i++) { |
+ r._digits[i] = _digits[i] | a._digits[i]; |
+ } |
+ for (var i = m; i < r_used; i++) { |
+ r._digits[i] = l._digits[i]; |
+ } |
+ r._used = r_used; |
+ r._clamp(); |
+ } |
+ |
+ // r = abs(this) ^ abs(a). |
+ void _absXorTo(_Bigint a, _Bigint r) { |
+ var r_used = (_used > a._used) ? _used : a._used; |
+ r._ensureLength(r_used); |
+ var l, m; |
+ if (_used < a._used) { |
+ l = a; |
+ m = _used; |
+ } else { |
+ l = this; |
+ m = a._used; |
+ } |
+ for (var i = 0; i < m; i++) { |
+ r._digits[i] = _digits[i] ^ a._digits[i]; |
+ } |
+ for (var i = m; i < r_used; i++) { |
+ r._digits[i] = l._digits[i]; |
+ } |
+ r._used = r_used; |
+ r._clamp(); |
+ } |
+ |
+ // Return r = this & a. |
+ _Bigint _andTo(_Bigint a, _Bigint r) { |
+ if (_neg == a._neg) { |
+ if (_neg) { |
+ // (-this) & (-a) == ~(this-1) & ~(a-1) |
+ // == ~((this-1) | (a-1)) |
+ // == -(((this-1) | (a-1)) + 1) |
+ _Bigint t1 = new _Bigint(); |
+ _absSubTo(ONE, t1); |
+ _Bigint a1 = new _Bigint(); |
+ a._absSubTo(ONE, a1); |
+ t1._absOrTo(a1, r); |
+ r._absAddTo(ONE, r); |
+ r._neg = true; // r cannot be zero if this and a are negative. |
+ return r; |
+ } |
+ _absAndTo(a, r); |
+ r._neg = false; |
+ return r; |
+ } |
+ // _neg != a._neg |
+ var p, n; |
+ if (_neg) { |
+ p = a; |
+ n = this; |
+ } else { // & is symmetric. |
+ p = this; |
+ n = a; |
+ } |
+ // p & (-n) == p & ~(n-1) == p &~ (n-1) |
+ _Bigint n1 = new _Bigint(); |
+ n._absSubTo(ONE, n1); |
+ p._absAndNotTo(n1, r); |
+ r._neg = false; |
+ return r; |
+ } |
+ |
+ // Return r = this &~ a. |
+ _Bigint _andNotTo(_Bigint a, _Bigint r) { |
+ if (_neg == a._neg) { |
+ if (_neg) { |
+ // (-this) &~ (-a) == ~(this-1) &~ ~(a-1) |
+ // == ~(this-1) & (a-1) |
+ // == (a-1) &~ (this-1) |
+ _Bigint t1 = new _Bigint(); |
+ _absSubTo(ONE, t1); |
+ _Bigint a1 = new _Bigint(); |
+ a._absSubTo(ONE, a1); |
+ a1._absAndNotTo(t1, r); |
+ r._neg = false; |
+ return r; |
+ } |
+ _absAndNotTo(a, r); |
+ r._neg = false; |
+ return r; |
+ } |
+ if (_neg) { |
+ // (-this) &~ a == ~(this-1) &~ a |
+ // == ~(this-1) & ~a |
+ // == ~((this-1) | a) |
+ // == -(((this-1) | a) + 1) |
+ _Bigint t1 = new _Bigint(); |
+ _absSubTo(ONE, t1); |
+ t1._absOrTo(a, r); |
+ r._absAddTo(ONE, r); |
+ r._neg = true; // r cannot be zero if this is negative and a is positive. |
+ return r; |
+ } |
+ // this &~ (-a) == this &~ ~(a-1) == this & (a-1) |
+ _Bigint a1 = new _Bigint(); |
+ a._absSubTo(ONE, a1); |
+ _absAndTo(a1, r); |
+ r._neg = false; |
+ return r; |
+ } |
+ |
+ // Return r = this | a. |
+ _Bigint _orTo(_Bigint a, _Bigint r) { |
+ if (_neg == a._neg) { |
+ if (_neg) { |
+ // (-this) | (-a) == ~(this-1) | ~(a-1) |
+ // == ~((this-1) & (a-1)) |
+ // == -(((this-1) & (a-1)) + 1) |
+ _Bigint t1 = new _Bigint(); |
+ _absSubTo(ONE, t1); |
+ _Bigint a1 = new _Bigint(); |
+ a._absSubTo(ONE, a1); |
+ t1._absAndTo(a1, r); |
+ r._absAddTo(ONE, r); |
+ r._neg = true; // r cannot be zero if this and a are negative. |
+ return r; |
+ } |
+ _absOrTo(a, r); |
+ r._neg = false; |
+ return r; |
+ } |
+ // _neg != a._neg |
+ var p, n; |
+ if (_neg) { |
+ p = a; |
+ n = this; |
+ } else { // | is symmetric. |
+ p = this; |
+ n = a; |
+ } |
+ // p | (-n) == p | ~(n-1) == ~((n-1) &~ p) == -(~((n-1) &~ p) + 1) |
+ _Bigint n1 = new _Bigint(); |
+ n._absSubTo(ONE, n1); |
+ n1._absAndNotTo(p, r); |
+ r._absAddTo(ONE, r); |
+ r._neg = true; // r cannot be zero if only one of this or a is negative. |
+ return r; |
+ } |
+ |
+ // Return r = this ^ a. |
+ _Bigint _xorTo(_Bigint a, _Bigint r) { |
+ if (_neg == a._neg) { |
+ if (_neg) { |
+ // (-this) ^ (-a) == ~(this-1) ^ ~(a-1) == (this-1) ^ (a-1) |
+ _Bigint t1 = new _Bigint(); |
+ _absSubTo(ONE, t1); |
+ _Bigint a1 = new _Bigint(); |
+ a._absSubTo(ONE, a1); |
+ t1._absXorTo(a1, r); |
+ r._neg = false; |
+ return r; |
+ } |
+ _absXorTo(a, r); |
+ r._neg = false; |
+ return r; |
+ } |
+ // _neg != a._neg |
+ var p, n; |
+ if (_neg) { |
+ p = a; |
+ n = this; |
+ } else { // ^ is symmetric. |
+ p = this; |
+ n = a; |
+ } |
+ // p ^ (-n) == p ^ ~(n-1) == ~(p ^ (n-1)) == -((p ^ (n-1)) + 1) |
+ _Bigint n1 = new _Bigint(); |
+ n._absSubTo(ONE, n1); |
+ p._absXorTo(n1, r); |
+ r._absAddTo(ONE, r); |
+ r._neg = true; // r cannot be zero if only one of this or a is negative. |
+ return r; |
+ } |
+ |
+ // Return r = ~this. |
+ _Bigint _notTo(_Bigint r) { |
+ if (_neg) { |
+ // ~(-this) == ~(~(this-1)) == this-1 |
+ _absSubTo(ONE, r); |
+ r._neg = false; |
+ return r; |
+ } |
+ // ~this == -this-1 == -(this+1) |
+ _absAddTo(ONE, r); |
+ r._neg = true; // r cannot be zero if this is positive. |
+ return r; |
+ } |
+ |
+ // Return r = this + a. |
+ _Bigint _addTo(_Bigint a, _Bigint r) { |
+ var r_neg = _neg; |
+ if (_neg == a._neg) { |
+ // this + a == this + a |
+ // (-this) + (-a) == -(this + a) |
+ _absAddTo(a, r); |
+ } else { |
+ // this + (-a) == this - a == -(this - a) |
+ // (-this) + a == a - this == -(this - a) |
+ if (_absCompareTo(a) >= 0) { |
+ _absSubTo(a, r); |
+ } else { |
+ r_neg = !r_neg; |
+ a._absSubTo(this, r); |
+ } |
+ } |
+ r._neg = r_neg; |
+ return r; |
+ } |
+ |
+ // Return r = this - a. |
+ _Bigint _subTo(_Bigint a, _Bigint r) { |
+ var r_neg = _neg; |
+ if (_neg != a._neg) { |
+ // this - (-a) == this + a |
+ // (-this) - a == -(this + a) |
+ _absAddTo(a, r); |
+ } else { |
+ // this - a == this - a == -(this - a) |
+ // (-this) - (-a) == a - this == -(this - a) |
+ if (_absCompareTo(a) >= 0) { |
+ _absSubTo(a, r); |
+ } else { |
+ r_neg = !r_neg; |
+ a._absSubTo(this, r); |
+ } |
+ } |
+ r._neg = r_neg; |
+ return r; |
+ } |
+ |
+ // Accumulate multiply. |
+ // this[i..i+n-1]: bigint multiplicand. |
+ // x: digit multiplier. |
+ // w[j..j+n-1]: bigint accumulator. |
+ // c: int carry in. |
+ // Returns carry out. |
+ // w[j..j+n-1] += this[i..i+n-1] * x + c. |
+ // Returns carry out. |
+ // TODO(regis): _sqrTo is the only caller passing an x possibly larger than |
+ // a digit (2*digit) and passing a non-zero carry in. Refactor? |
+ int _am(int i, int x, _Bigint w, int j, int c, int n) { |
+ if (x == 0 && c == 0) { |
+ // No-op if both x and c are 0. |
+ return 0; |
+ } |
+ int xl = x & DIGIT2_MASK; |
+ int xh = x >> DIGIT2_BITS; |
+ while (--n >= 0) { |
+ int l = _digits[i] & DIGIT2_MASK; |
+ int h = _digits[i++] >> DIGIT2_BITS; |
+ int m = xh*l + h*xl; |
+ l = xl*l + ((m & DIGIT2_MASK) << DIGIT2_BITS) + w._digits[j] + c; |
+ c = (l >> DIGIT_BITS) + (m >> DIGIT2_BITS) + xh*h; |
+ w._digits[j++] = l & DIGIT_MASK; |
+ } |
+ return c; |
+ } |
+ |
+ // r = this * a. |
+ void _mulTo(_Bigint a, _Bigint r) { |
+ // TODO(regis): Use karatsuba multiplication when appropriate. |
+ var i = _used; |
+ r._ensureLength(i + a._used); |
+ r._used = i + a._used; |
+ while (--i >= 0) { |
+ r._digits[i] = 0; |
+ } |
+ for (i = 0; i < a._used; ++i) { |
+ // TODO(regis): Replace _am with addMulVVW. |
+ r._digits[i + _used] = _am(0, a._digits[i], r, i, 0, _used); |
+ } |
+ r._clamp(); |
+ r._neg = r._used > 0 && _neg != a._neg; // Zero cannot be negative. |
+ } |
+ |
+ // r = this^2, r != this. |
+ void _sqrTo(_Bigint r) { |
+ var i = 2 * _used; |
+ r._ensureLength(i); |
+ r._used = i; |
+ while (--i >= 0) { |
+ r._digits[i] = 0; |
+ } |
+ for (i = 0; i < _used - 1; ++i) { |
+ var c = _am(i, _digits[i], r, 2*i, 0, 1); |
+ var d = r._digits[i + _used]; |
+ d += _am(i + 1, _digits[i] << 1, r, 2*i + 1, c, _used - i - 1); |
+ if (d >= DIGIT_BASE) { |
+ r._digits[i + _used] = d - DIGIT_BASE; |
+ r._digits[i + _used + 1] = 1; |
+ } else { |
+ r._digits[i + _used] = d; |
+ } |
+ } |
+ if (r._used > 0) { |
+ r._digits[r._used - 1] += _am(i, _digits[i], r, 2*i, 0, 1); |
+ } |
+ r._neg = false; |
+ r._clamp(); |
+ } |
+ |
+ // Truncating division and remainder. |
+ // If q != null, q = trunc(this / a). |
+ // If r != null, r = this - a * trunc(this / a). |
+ void _divRemTo(_Bigint a, _Bigint q, _Bigint r) { |
+ if (a._used == 0) return; |
+ if (_used < a._used) { |
+ if (q != null) { |
+ // Set q to 0. |
+ q._neg = false; |
+ q._used = 0; |
+ } |
+ if (r != null) { |
+ _copyTo(r); |
+ } |
+ return; |
+ } |
+ if (r == null) { |
+ r = new _Bigint(); |
+ } |
+ var y = new _Bigint(); |
+ var nsh = DIGIT_BITS - _nbits(a._digits[a._used - 1]); // normalize modulus |
+ if (nsh > 0) { |
+ a._lShiftTo(nsh, y); |
+ _lShiftTo(nsh, r); |
+ } |
+ else { |
+ a._copyTo(y); |
+ _copyTo(r); |
+ } |
+ // We consider this and a positive. Ignore the copied sign. |
+ y._neg = false; |
+ r._neg = false; |
+ var y_used = y._used; |
+ var y0 = y._digits[y_used - 1]; |
+ if (y0 == 0) return; |
+ var yt = y0*(1 << FP_D1) + ((y_used > 1) ? y._digits[y_used - 2] >> FP_D2 : 0); |
+ var d1 = FP_BASE/yt; |
+ var d2 = (1 << FP_D1)/yt; |
+ var e = 1 << FP_D2; |
+ var i = r._used; |
+ var j = i - y_used; |
+ _Bigint t = (q == null) ? new _Bigint() : q; |
+ |
+ y._dlShiftTo(j, t); |
+ |
+ if (r._compareTo(t) >= 0) { |
+ r._digits[r._used++] = 1; |
+ r._subTo(t, r); |
+ } |
+ ONE._dlShiftTo(y_used, t); |
+ t._subTo(y, y); // "negative" y so we can replace sub with _am later |
+ while (y._used < y_used) { |
+ y._digits[y._used++] = 0; |
+ } |
+ while (--j >= 0) { |
+ // Estimate quotient digit |
+ var qd = (r._digits[--i] == y0) |
+ ? DIGIT_MASK |
+ : (r._digits[i]*d1 + (r._digits[i - 1] + e)*d2).floor(); |
+ if ((r._digits[i] += y._am(0, qd, r, j, 0, y_used)) < qd) { // Try it out |
+ y._dlShiftTo(j, t); |
+ r._subTo(t, r); |
+ while (r._digits[i] < --qd) { |
+ r._subTo(t, r); |
+ } |
+ } |
+ } |
+ if (q != null) { |
+ r._drShiftTo(y_used, q); |
+ if (_neg != a._neg) { |
+ ZERO._subTo(q, q); |
+ } |
+ } |
+ r._used = y_used; |
+ r._clamp(); |
+ if (nsh > 0) { |
+ r._rShiftTo(nsh, r); // Denormalize remainder |
+ } |
+ if (_neg) { |
+ ZERO._subTo(r, r); |
+ } |
+ } |
+ |
+ int get _identityHashCode { |
+ return this; |
+ } |
+ int operator ~() { |
+ _Bigint result = new _Bigint(); |
+ _notTo(result); |
+ return result._toValidInt(); |
+ } |
+ |
+ int get bitLength { |
+ if (_used == 0) return 0; |
+ if (_neg) return (~this).bitLength; |
+ return DIGIT_BITS*(_used - 1) + _nbits(_digits[_used - 1]); |
+ } |
+ |
+ // This method must support smi._toBigint()._shrFromInt(int). |
+ int _shrFromInt(int other) { |
+ if (_used == 0) return other; // Shift amount is zero. |
+ if (_neg) throw "negative shift amount"; // TODO(regis): What exception? |
+ assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised. |
+ var shift; |
+ if (_used > 2 || (_used == 2 && _digits[1] > 0x10000000)) { |
+ if (other < 0) { |
+ return -1; |
+ } else { |
+ return 0; |
+ } |
+ } else { |
+ shift = ((_used == 2) ? (_digits[1] << DIGIT_BITS) : 0) + _digits[0]; |
+ } |
+ _Bigint result = new _Bigint(); |
+ other._toBigint()._rShiftTo(shift, result); |
+ return result._toValidInt(); |
+ } |
+ |
+ // This method must support smi._toBigint()._shlFromInt(int). |
+ // An out of memory exception is thrown if the result cannot be allocated. |
+ int _shlFromInt(int other) { |
+ if (_used == 0) return other; // Shift amount is zero. |
+ if (_neg) throw "negative shift amount"; // TODO(regis): What exception? |
+ assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised. |
+ var shift; |
+ if (_used > 2 || (_used == 2 && _digits[1] > 0x10000000)) { |
+ throw new OutOfMemoryError(); |
+ } else { |
+ shift = ((_used == 2) ? (_digits[1] << DIGIT_BITS) : 0) + _digits[0]; |
+ } |
+ _Bigint result = new _Bigint(); |
+ other._toBigint()._lShiftTo(shift, result); |
+ return result._toValidInt(); |
+ } |
+ |
+ int pow(int exponent) { |
+ throw "Bigint.pow not implemented"; |
+ } |
+ |
+ // Overriden operators and methods. |
+ |
+ // The following operators override operators of _IntegerImplementation for |
+ // efficiency, but are not necessary for correctness. They shortcut native |
+ // calls that would return null because the receiver is _Bigint. |
+ num operator +(num other) { |
+ return other._toBigint()._addFromInteger(this); |
+ } |
+ num operator -(num other) { |
+ return other._toBigint()._subFromInteger(this); |
+ } |
+ num operator *(num other) { |
+ return other._toBigint()._mulFromInteger(this); |
+ } |
+ num operator ~/(num other) { |
+ if ((other is int) && (other == 0)) { |
+ throw const IntegerDivisionByZeroException(); |
+ } |
+ return other._toBigint()._truncDivFromInteger(this); |
+ } |
+ num operator /(num other) { |
+ return this.toDouble() / other.toDouble(); |
+ } |
+ // TODO(regis): Investigate strange behavior with % double.INFINITY. |
+ /* |
+ num operator %(num other) { |
+ if ((other is int) && (other == 0)) { |
+ throw const IntegerDivisionByZeroException(); |
+ } |
+ return other._toBigint()._moduloFromInteger(this); |
+ } |
+ */ |
+ int operator &(int other) { |
+ return other._toBigint()._bitAndFromInteger(this); |
+ } |
+ int operator |(int other) { |
+ return other._toBigint()._bitOrFromInteger(this); |
+ } |
+ int operator ^(int other) { |
+ return other._toBigint()._bitXorFromInteger(this); |
+ } |
+ int operator >>(int other) { |
+ return other._toBigint()._shrFromInt(this); |
+ } |
+ int operator <<(int other) { |
+ return other._toBigint()._shlFromInt(this); |
+ } |
+ // End of operator shortcuts. |
+ |
+ int operator -() { |
+ if (_used == 0) { |
+ return this; |
+ } |
+ var r = new _Bigint(); |
+ _copyTo(r); |
+ r._neg = !_neg; |
+ return r._toValidInt(); |
+ } |
+ |
+ int get sign { |
+ return (_used == 0) ? 0 : _neg ? -1 : 1; |
+ } |
+ |
+ bool get isEven => _used == 0 || (_digits[0] & 1) == 0; |
+ bool get isNegative => _neg; |
+ |
+ _leftShiftWithMask32(int count, int mask) { |
+ if (_used == 0) return 0; |
+ if (count is! _Smi) { |
+ _shlFromInt(count); // Throws out of memory exception. |
+ } |
+ assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised. |
+ if (count > 31) return 0; |
+ return (_digits[0] << count) & mask; |
+ } |
+ |
+ int _bitAndFromInteger(int other) { |
+ _Bigint result = new _Bigint(); |
+ other._toBigint()._andTo(this, result); |
+ return result._toValidInt(); |
+ } |
+ int _bitOrFromInteger(int other) { |
+ _Bigint result = new _Bigint(); |
+ other._toBigint()._orTo(this, result); |
+ return result._toValidInt(); |
+ } |
+ int _bitXorFromInteger(int other) { |
+ _Bigint result = new _Bigint(); |
+ other._toBigint()._xorTo(this, result); |
+ return result._toValidInt(); |
+ } |
+ int _addFromInteger(int other) { |
+ _Bigint result = new _Bigint(); |
+ other._toBigint()._addTo(this, result); |
+ return result._toValidInt(); |
+ } |
+ int _subFromInteger(int other) { |
+ _Bigint result = new _Bigint(); |
+ other._toBigint()._subTo(this, result); |
+ return result._toValidInt(); |
+ } |
+ int _mulFromInteger(int other) { |
+ _Bigint result = new _Bigint(); |
+ other._toBigint()._mulTo(this, result); |
+ return result._toValidInt(); |
+ } |
+ int _truncDivFromInteger(int other) { |
+ _Bigint result = new _Bigint(); |
+ other._toBigint()._divRemTo(this, result, null); |
+ return result._toValidInt(); |
+ } |
+ int _moduloFromInteger(int other) { |
+ _Bigint result = new _Bigint(); |
+ var ob = other._toBigint(); |
+ other._toBigint()._divRemTo(this, null, result); |
+ if (result._neg) { |
+ if (_neg) { |
+ result._subTo(this, result); |
+ } else { |
+ result._addTo(this, result); |
+ } |
+ } |
+ return result._toValidInt(); |
+ } |
+ int _remainderFromInteger(int other) { |
+ _Bigint result = new _Bigint(); |
+ other._toBigint()._divRemTo(this, null, result); |
+ return result._toValidInt(); |
+ } |
+ bool _greaterThanFromInteger(int other) { |
+ return other._toBigint()._compareTo(this) > 0; |
+ } |
+ bool _equalToInteger(int other) { |
+ return other._toBigint()._compareTo(this) == 0; |
+ } |
+ |
+ // New method to support crypto. |
+ |
+ // Return this.pow(e) mod m, with 256 <= e < 1<<32. |
+ int modPow(int e, int m) { |
+ assert(e >= 256 && !m.isEven()); |
+ if (e >= (1 << 32)) { |
+ throw "Bigint.modPow with exponent larger than 32-bit not implemented"; |
+ } |
+ _Reduction z = new _Montgomery(m); |
+ var r = new _Bigint(); |
+ var r2 = new _Bigint(); |
+ var g = z.convert(this); |
+ int i = _nbits(e) - 1; |
+ g._copyTo(r); |
+ while (--i >= 0) { |
+ z.sqrTo(r, r2); |
+ if ((e & (1 << i)) > 0) { |
+ z.mulTo(r2, g, r); |
+ } else { |
+ var t = r; |
+ r = r2; |
+ r2 = t; |
+ } |
+ } |
+ return z.revert(r)._toValidInt(); |
+ } |
+} |
+ |
+// New classes to support crypto (modPow method). |
+ |
+class _Reduction { |
+ const _Reduction(); |
+ _Bigint _convert(_Bigint x) => x; |
+ _Bigint _revert(_Bigint x) => x; |
+ |
+ void _mulTo(_Bigint x, _Bigint y, _Bigint r) { |
+ x._mulTo(y, r); |
+ } |
+ |
+ void _sqrTo(_Bigint x, _Bigint r) { |
+ x._sqrTo(r); |
+ } |
+} |
+ |
+// Montgomery reduction on _Bigint. |
+class _Montgomery implements _Reduction { |
+ final _Bigint _m; |
+ var _mp; |
+ var _mpl; |
+ var _mph; |
+ var _um; |
+ var _mused2; |
+ |
+ _Montgomery(this._m) { |
+ _mp = _m._invDigit(); |
+ _mpl = _mp & _Bigint.DIGIT2_MASK; |
+ _mph = _mp >> _Bigint.DIGIT2_BITS; |
+ _um = (1 << (_Bigint.DIGIT_BITS - _Bigint.DIGIT2_BITS)) - 1; |
+ _mused2 = 2*_m._used; |
+ } |
+ |
+ // Return x*R mod _m |
+ _Bigint _convert(_Bigint x) { |
+ var r = new _Bigint(); |
+ x.abs()._dlShiftTo(_m._used, r); |
+ r._divRemTo(_m, null, r); |
+ if (x._neg && !r._neg && r._used > 0) { |
+ _m._subTo(r, r); |
+ } |
+ return r; |
+ } |
+ |
+ // Return x/R mod _m |
+ _Bigint _revert(_Bigint x) { |
+ var r = new _Bigint(); |
+ x._copyTo(r); |
+ _reduce(r); |
+ return r; |
+ } |
+ |
+ // x = x/R mod _m |
+ void _reduce(_Bigint x) { |
+ x._ensureLength(_mused2 + 1); |
+ while (x._used <= _mused2) { // Pad x so _am has enough room later. |
+ x._digits[x._used++] = 0; |
+ } |
+ for (var i = 0; i < _m._used; ++i) { |
+ // Faster way of calculating u0 = x[i]*mp mod DIGIT_BASE. |
+ var j = x._digits[i] & _Bigint.DIGIT2_MASK; |
+ var u0 = (j*_mpl + (((j*_mph + (x._digits[i] >> _Bigint.DIGIT2_BITS) |
+ *_mpl) & _um) << _Bigint.DIGIT2_BITS)) & _Bigint.DIGIT_MASK; |
+ // Use _am to combine the multiply-shift-add into one call. |
+ j = i + _m._used; |
+ var digit = x._digits[j]; |
+ digit += _m ._am(0, u0, x, i, 0, _m ._used); |
+ // propagate carry |
+ while (digit >= _Bigint.DIGIT_BASE) { |
+ digit -= _Bigint.DIGIT_BASE; |
+ x._digits[j++] = digit; |
+ digit = x._digits[j]; |
+ digit++; |
+ } |
+ x._digits[j] = digit; |
+ } |
+ x._clamp(); |
+ x._drShiftTo(_m ._used, x); |
+ if (x._compareTo(_m ) >= 0) { |
+ x._subTo(_m , x); |
+ } |
+ } |
+ |
+ // r = x^2/R mod _m ; x != r |
+ void _sqrTo(_Bigint x, _Bigint r) { |
+ x._sqrTo(r); |
+ _reduce(r); |
+ } |
+ |
+ // r = x*y/R mod _m ; x, y != r |
+ void _mulTo(_Bigint x, _Bigint y, _Bigint r) { |
+ x._mulTo(y, r); |
+ _reduce(r); |
+ } |
+} |
+ |