OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
| 2 // for details. All rights reserved. Use of this source code is governed by a |
| 3 // BSD-style license that can be found in the LICENSE file. |
| 4 |
| 5 // Copyright 2009 The Go Authors. All rights reserved. |
| 6 // Use of this source code is governed by a BSD-style |
| 7 // license that can be found in the LICENSE file. |
| 8 |
| 9 /* |
| 10 * Copyright (c) 2003-2005 Tom Wu |
| 11 * Copyright (c) 2012 Adam Singer (adam@solvr.io) |
| 12 * All Rights Reserved. |
| 13 * |
| 14 * Permission is hereby granted, free of charge, to any person obtaining |
| 15 * a copy of this software and associated documentation files (the |
| 16 * "Software"), to deal in the Software without restriction, including |
| 17 * without limitation the rights to use, copy, modify, merge, publish, |
| 18 * distribute, sublicense, and/or sell copies of the Software, and to |
| 19 * permit persons to whom the Software is furnished to do so, subject to |
| 20 * the following conditions: |
| 21 * |
| 22 * The above copyright notice and this permission notice shall be |
| 23 * included in all copies or substantial portions of the Software. |
| 24 * |
| 25 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, |
| 26 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY |
| 27 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. |
| 28 * |
| 29 * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, |
| 30 * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER |
| 31 * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF |
| 32 * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT |
| 33 * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 34 * |
| 35 * In addition, the following condition applies: |
| 36 * |
| 37 * All redistributions must retain an intact copy of this copyright notice |
| 38 * and disclaimer. |
| 39 */ |
| 40 |
| 41 class _Bigint extends _IntegerImplementation implements int { |
| 42 // Bits per digit. |
| 43 static const int DIGIT_BITS = 32; |
| 44 static const int DIGIT_BASE = 1 << DIGIT_BITS; |
| 45 static const int DIGIT_MASK = (1 << DIGIT_BITS) - 1; |
| 46 |
| 47 // Bits per half digit. |
| 48 static const int DIGIT2_BITS = DIGIT_BITS >> 1; |
| 49 static const int DIGIT2_BASE = 1 << DIGIT2_BITS; |
| 50 static const int DIGIT2_MASK = (1 << DIGIT2_BITS) - 1; |
| 51 |
| 52 // Allocate extra digits so the bigint can be reused. |
| 53 static const int EXTRA_DIGITS = 4; |
| 54 |
| 55 // Floating-point unit integer precision. |
| 56 static const int FP_BITS = 52; |
| 57 static const int FP_BASE = 1 << FP_BITS; |
| 58 static const int FP_D1 = FP_BITS - DIGIT_BITS; |
| 59 static const int FP_D2 = 2 * DIGIT_BITS - FP_BITS; |
| 60 |
| 61 // Min and max of non bigint values. |
| 62 static const int MIN_INT64 = (-1) << 63; |
| 63 static const int MAX_INT64 = 0x7fffffffffffffff; |
| 64 |
| 65 // Bigint constant values. |
| 66 // Note: Not declared as final in order to satisfy optimizer, which expects |
| 67 // constants to be in canonical form (Smi). |
| 68 static _Bigint ZERO = new _Bigint(); |
| 69 static _Bigint ONE = new _Bigint()._setInt(1); |
| 70 |
| 71 // Digit conversion table for parsing. |
| 72 static final Map<int, int> DIGIT_TABLE = _createDigitTable(); |
| 73 |
| 74 // Internal data structure. |
| 75 bool get _neg native "Bigint_getNeg"; |
| 76 void set _neg(bool neg) native "Bigint_setNeg"; |
| 77 int get _used native "Bigint_getUsed"; |
| 78 void set _used(int used) native "Bigint_setUsed"; |
| 79 Uint32List get _digits native "Bigint_getDigits"; |
| 80 void set _digits(Uint32List digits) native "Bigint_setDigits"; |
| 81 |
| 82 // Factory returning an instance initialized to value 0. |
| 83 factory _Bigint() native "Bigint_allocate"; |
| 84 |
| 85 // Factory returning an instance initialized to an integer value. |
| 86 factory _Bigint._fromInt(int i) { |
| 87 return new _Bigint()._setInt(i); |
| 88 } |
| 89 |
| 90 // Factory returning an instance initialized to a hex string. |
| 91 factory _Bigint._fromHex(String s) { |
| 92 return new _Bigint()._setHex(s); |
| 93 } |
| 94 |
| 95 // Factory returning an instance initialized to a double value given by its |
| 96 // components. |
| 97 factory _Bigint._fromDouble(int sign, int significand, int exponent) { |
| 98 return new _Bigint()._setDouble(sign, significand, exponent); |
| 99 } |
| 100 |
| 101 // Initialize instance to the given value no larger than a Mint. |
| 102 _Bigint _setInt(int i) { |
| 103 assert(i is! _Bigint); |
| 104 _ensureLength(2); |
| 105 _used = 2; |
| 106 var l, h; |
| 107 if (i < 0) { |
| 108 _neg = true; |
| 109 if (i == MIN_INT64) { |
| 110 l = 0; |
| 111 h = 0x80000000; |
| 112 } else { |
| 113 l = (-i) & DIGIT_MASK; |
| 114 h = (-i) >> DIGIT_BITS; |
| 115 } |
| 116 } else { |
| 117 _neg = false; |
| 118 l = i & DIGIT_MASK; |
| 119 h = i >> DIGIT_BITS; |
| 120 } |
| 121 _digits[0] = l; |
| 122 _digits[1] = h; |
| 123 _clamp(); |
| 124 return this; |
| 125 } |
| 126 |
| 127 // Initialize instance to the given hex string. |
| 128 // TODO(regis): Copy Bigint::NewFromHexCString, fewer digit accesses. |
| 129 // TODO(regis): Unused. |
| 130 _Bigint _setHex(String s) { |
| 131 const int HEX_BITS = 4; |
| 132 const int HEX_DIGITS_PER_DIGIT = 8; |
| 133 var hexDigitIndex = s.length; |
| 134 _ensureLength((hexDigitIndex + HEX_DIGITS_PER_DIGIT - 1) ~/ HEX_DIGITS_PER_D
IGIT); |
| 135 var bitIndex = 0; |
| 136 while (--hexDigitIndex >= 0) { |
| 137 var digit = DIGIT_TABLE[s.codeUnitAt(hexDigitIndex)]; |
| 138 if (digit = null) { |
| 139 if (s[hexDigitIndex] == "-") _neg = true; |
| 140 continue; // Ignore invalid digits. |
| 141 } |
| 142 _neg = false; // Ignore "-" if not at index 0. |
| 143 if (bitIndex == 0) { |
| 144 _digits[_used++] = digit; |
| 145 // TODO(regis): What if too many bad digits were ignored and |
| 146 // _used becomes larger than _digits.length? error or reallocate? |
| 147 } else { |
| 148 _digits[_used - 1] |= digit << bitIndex; |
| 149 } |
| 150 bitIndex = (bitIndex + HEX_BITS) % DIGIT_BITS; |
| 151 } |
| 152 _clamp(); |
| 153 return this; |
| 154 } |
| 155 |
| 156 // Initialize instance to the given double value. |
| 157 _Bigint _setDouble(int sign, int significand, int exponent) { |
| 158 assert(significand >= 0); |
| 159 assert(exponent >= 0); |
| 160 _setInt(significand); |
| 161 _neg = sign < 0; |
| 162 if (exponent > 0) { |
| 163 _lShiftTo(exponent, this); |
| 164 } |
| 165 return this; |
| 166 } |
| 167 |
| 168 // Create digit conversion table for parsing. |
| 169 static Map<int, int> _createDigitTable() { |
| 170 Map table = new HashMap(); |
| 171 int digit, value; |
| 172 digit = "0".codeUnitAt(0); |
| 173 for(value = 0; value <= 9; ++value) table[digit++] = value; |
| 174 digit = "a".codeUnitAt(0); |
| 175 for(value = 10; value < 36; ++value) table[digit++] = value; |
| 176 digit = "A".codeUnitAt(0); |
| 177 for(value = 10; value < 36; ++value) table[digit++] = value; |
| 178 return table; |
| 179 } |
| 180 |
| 181 // Return most compact integer (i.e. possibly Smi or Mint). |
| 182 // TODO(regis): Intrinsify. |
| 183 int _toValidInt() { |
| 184 assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised. |
| 185 if (_used == 0) return 0; |
| 186 if (_used == 1) return _neg ? -_digits[0] : _digits[0]; |
| 187 if (_used > 2) return this; |
| 188 if (_neg) { |
| 189 if (_digits[1] > 0x80000000) return this; |
| 190 if (_digits[1] == 0x80000000) { |
| 191 if (_digits[0] > 0) return this; |
| 192 return MIN_INT64; |
| 193 } |
| 194 return -((_digits[1] << DIGIT_BITS) | _digits[0]); |
| 195 } |
| 196 if (_digits[1] >= 0x80000000) return this; |
| 197 return (_digits[1] << DIGIT_BITS) | _digits[0]; |
| 198 } |
| 199 |
| 200 // Conversion from int to bigint. |
| 201 _Bigint _toBigint() => this; |
| 202 |
| 203 // Make sure at least 'length' _digits are allocated. |
| 204 // Copy existing _digits if reallocation is necessary. |
| 205 // TODO(regis): Check that we are not preserving _digits unnecessarily. |
| 206 void _ensureLength(int length) { |
| 207 if (length > 0 && (_digits == null || length > _digits.length)) { |
| 208 var new_digits = new Uint32List(length + EXTRA_DIGITS); |
| 209 if (_digits != null) { |
| 210 for (var i = _used; --i >= 0; ) { |
| 211 new_digits[i] = _digits[i]; |
| 212 } |
| 213 } |
| 214 _digits = new_digits; |
| 215 } |
| 216 } |
| 217 |
| 218 // Clamp off excess high _digits. |
| 219 void _clamp() { |
| 220 while (_used > 0 && _digits[_used - 1] == 0) { |
| 221 --_used; |
| 222 } |
| 223 assert(_used > 0 || !_neg); |
| 224 } |
| 225 |
| 226 // Copy this to r. |
| 227 void _copyTo(r) { |
| 228 r._ensureLength(_used); |
| 229 for (var i = _used - 1; i >= 0; --i) { |
| 230 r._digits[i] = _digits[i]; |
| 231 } |
| 232 r._used = _used; |
| 233 r._neg = _neg; |
| 234 } |
| 235 |
| 236 // Return the bit length of digit x. |
| 237 int _nbits(int x) { |
| 238 var r = 1, t; |
| 239 if ((t = x >> 16) != 0) { x = t; r += 16; } |
| 240 if ((t = x >> 8) != 0) { x = t; r += 8; } |
| 241 if ((t = x >> 4) != 0) { x = t; r += 4; } |
| 242 if ((t = x >> 2) != 0) { x = t; r += 2; } |
| 243 if ((x >> 1) != 0) { r += 1; } |
| 244 return r; |
| 245 } |
| 246 |
| 247 // r = this << n*DIGIT_BITS. |
| 248 void _dlShiftTo(n, r) { |
| 249 var r_used = _used + n; |
| 250 r._ensureLength(r_used); |
| 251 for (var i = _used - 1; i >= 0; --i) { |
| 252 r._digits[i + n] = _digits[i]; |
| 253 } |
| 254 for (var i = n - 1; i >= 0; --i) { |
| 255 r._digits[i] = 0; |
| 256 } |
| 257 r._used = r_used; |
| 258 r._neg = _neg; |
| 259 } |
| 260 |
| 261 // r = this >> n*DIGIT_BITS. |
| 262 void _drShiftTo(n, r) { |
| 263 var r_used = _used - n; |
| 264 if (r_used < 0) { |
| 265 if (_neg) { |
| 266 // Set r to -1. |
| 267 r._neg = true; |
| 268 r._ensureLength(1); |
| 269 r._used = 1; |
| 270 r._digits[0] = 1; |
| 271 } else { |
| 272 // Set r to 0. |
| 273 r._neg = false; |
| 274 r._used = 0; |
| 275 } |
| 276 return; |
| 277 } |
| 278 r._ensureLength(r_used); |
| 279 for (var i = n; i < _used; ++i) { |
| 280 r._digits[i - n] = _digits[i]; |
| 281 } |
| 282 r._used = r_used; |
| 283 r._neg = _neg; |
| 284 if (_neg) { |
| 285 // Round down if any bit was shifted out. |
| 286 for (var i = 0; i < n; i++) { |
| 287 if (_digits[i] != 0) { |
| 288 r._subTo(ONE, r); |
| 289 break; |
| 290 } |
| 291 } |
| 292 } |
| 293 } |
| 294 |
| 295 // r = this << n. |
| 296 void _lShiftTo(n, r) { |
| 297 var ds = n ~/ DIGIT_BITS; |
| 298 var bs = n % DIGIT_BITS; |
| 299 if (bs == 0) { |
| 300 _dlShiftTo(ds, r); |
| 301 return; |
| 302 } |
| 303 var cbs = DIGIT_BITS - bs; |
| 304 var bm = (1 << cbs) - 1; |
| 305 var r_used = _used + ds + 1; |
| 306 r._ensureLength(r_used); |
| 307 var c = 0; |
| 308 for (var i = _used - 1; i >= 0; --i) { |
| 309 r._digits[i + ds + 1] = (_digits[i] >> cbs) | c; |
| 310 c = (_digits[i] & bm) << bs; |
| 311 } |
| 312 for (var i = ds - 1; i >= 0; --i) { |
| 313 r._digits[i] = 0; |
| 314 } |
| 315 r._digits[ds] = c; |
| 316 r._used = r_used; |
| 317 r._neg = _neg; |
| 318 r._clamp(); |
| 319 } |
| 320 |
| 321 // r = this >> n. |
| 322 void _rShiftTo(n, r) { |
| 323 var ds = n ~/ DIGIT_BITS; |
| 324 var bs = n % DIGIT_BITS; |
| 325 if (bs == 0) { |
| 326 _drShiftTo(ds, r); |
| 327 return; |
| 328 } |
| 329 var r_used = _used - ds; |
| 330 if (r_used <= 0) { |
| 331 if (_neg) { |
| 332 // Set r to -1. |
| 333 r._neg = true; |
| 334 r._ensureLength(1); |
| 335 r._used = 1; |
| 336 r._digits[0] = 1; |
| 337 } else { |
| 338 // Set r to 0. |
| 339 r._neg = false; |
| 340 r._used = 0; |
| 341 } |
| 342 return; |
| 343 } |
| 344 var cbs = DIGIT_BITS - bs; |
| 345 var bm = (1 << bs) - 1; |
| 346 r._ensureLength(r_used); |
| 347 r._digits[0] = _digits[ds] >> bs; |
| 348 for (var i = ds + 1; i < _used; ++i) { |
| 349 r._digits[i - ds - 1] |= (_digits[i] & bm) << cbs; |
| 350 r._digits[i - ds] = _digits[i] >> bs; |
| 351 } |
| 352 r._neg = _neg; |
| 353 r._used = r_used; |
| 354 r._clamp(); |
| 355 if (_neg) { |
| 356 // Round down if any bit was shifted out. |
| 357 if ((_digits[ds] & bm) != 0) { |
| 358 r._subTo(ONE, r); |
| 359 return; |
| 360 } |
| 361 for (var i = 0; i < ds; i++) { |
| 362 if (_digits[i] != 0) { |
| 363 r._subTo(ONE, r); |
| 364 return; |
| 365 } |
| 366 } |
| 367 } |
| 368 } |
| 369 |
| 370 // Return 0 if abs(this) == abs(a). |
| 371 // Return a positive number if abs(this) > abs(a). |
| 372 // Return a negative number if abs(this) < abs(a). |
| 373 int _absCompareTo(a) { |
| 374 var r = _used - a._used; |
| 375 if (r == 0) { |
| 376 var i = _used; |
| 377 while (--i >= 0 && (r = _digits[i] - a._digits[i]) == 0); |
| 378 } |
| 379 return r; |
| 380 } |
| 381 |
| 382 // Return 0 if this == a. |
| 383 // Return a positive number if this > a. |
| 384 // Return a negative number if this < a. |
| 385 int _compareTo(a) { |
| 386 var r; |
| 387 if (_neg == a._neg) { |
| 388 r = _absCompareTo(a); |
| 389 if (_neg) { |
| 390 r = -r; |
| 391 } |
| 392 } else if (_neg) { |
| 393 r = -1; |
| 394 } else { |
| 395 r = 1; |
| 396 } |
| 397 return r; |
| 398 } |
| 399 |
| 400 // r = abs(this) + abs(a). |
| 401 void _absAddTo(a, r) { |
| 402 if (_used < a._used) { |
| 403 a._absAddTo(this, r); |
| 404 return; |
| 405 } |
| 406 if (_used == 0) { |
| 407 // Set r to 0. |
| 408 r._neg = false; |
| 409 r._used = 0; |
| 410 return; |
| 411 } |
| 412 if (a._used == 0) { |
| 413 _copyTo(r); |
| 414 return; |
| 415 } |
| 416 r._ensureLength(_used + 1); |
| 417 var c = 0; |
| 418 for (var i = 0; i < a._used; i++) { |
| 419 c += _digits[i] + a._digits[i]; |
| 420 r._digits[i] = c & DIGIT_MASK; |
| 421 c >>= DIGIT_BITS; |
| 422 } |
| 423 for (var i = a._used; i < _used; i++) { |
| 424 c += _digits[i]; |
| 425 r._digits[i] = c & DIGIT_MASK; |
| 426 c >>= DIGIT_BITS; |
| 427 } |
| 428 r._digits[_used] = c; |
| 429 r._used = _used + 1; |
| 430 r._clamp(); |
| 431 } |
| 432 |
| 433 // r = abs(this) - abs(a), with abs(this) >= abs(a). |
| 434 void _absSubTo(a, r) { |
| 435 assert(_absCompareTo(a) >= 0); |
| 436 if (_used == 0) { |
| 437 // Set r to 0. |
| 438 r._neg = false; |
| 439 r._used = 0; |
| 440 return; |
| 441 } |
| 442 if (a._used == 0) { |
| 443 _copyTo(r); |
| 444 return; |
| 445 } |
| 446 r._ensureLength(_used); |
| 447 var c = 0; |
| 448 for (var i = 0; i < a._used; i++) { |
| 449 c += _digits[i] - a._digits[i]; |
| 450 r._digits[i] = c & DIGIT_MASK; |
| 451 c >>= DIGIT_BITS; |
| 452 } |
| 453 for (var i = a._used; i < _used; i++) { |
| 454 c += _digits[i]; |
| 455 r._digits[i] = c & DIGIT_MASK; |
| 456 c >>= DIGIT_BITS; |
| 457 } |
| 458 r._used = _used; |
| 459 r._clamp(); |
| 460 } |
| 461 |
| 462 // r = abs(this) & abs(a). |
| 463 void _absAndTo(a, r) { |
| 464 var r_used = (_used < a._used) ? _used : a._used; |
| 465 r._ensureLength(r_used); |
| 466 for (var i = 0; i < r_used; i++) { |
| 467 r._digits[i] = _digits[i] & a._digits[i]; |
| 468 } |
| 469 r._used = r_used; |
| 470 r._clamp(); |
| 471 } |
| 472 |
| 473 // r = abs(this) &~ abs(a). |
| 474 void _absAndNotTo(a, r) { |
| 475 var r_used = _used; |
| 476 r._ensureLength(r_used); |
| 477 var m = (r_used < a._used) ? r_used : a._used; |
| 478 for (var i = 0; i < m; i++) { |
| 479 r._digits[i] = _digits[i] &~ a._digits[i]; |
| 480 } |
| 481 for (var i = m; i < r_used; i++) { |
| 482 r._digits[i] = _digits[i]; |
| 483 } |
| 484 r._used = r_used; |
| 485 r._clamp(); |
| 486 } |
| 487 |
| 488 // r = abs(this) | abs(a). |
| 489 void _absOrTo(a, r) { |
| 490 var r_used = (_used > a._used) ? _used : a._used; |
| 491 r._ensureLength(r_used); |
| 492 var l, m; |
| 493 if (_used < a._used) { |
| 494 l = a; |
| 495 m = _used; |
| 496 } else { |
| 497 l = this; |
| 498 m = a._used; |
| 499 } |
| 500 for (var i = 0; i < m; i++) { |
| 501 r._digits[i] = _digits[i] | a._digits[i]; |
| 502 } |
| 503 for (var i = m; i < r_used; i++) { |
| 504 r._digits[i] = l._digits[i]; |
| 505 } |
| 506 r._used = r_used; |
| 507 r._clamp(); |
| 508 } |
| 509 |
| 510 // r = abs(this) ^ abs(a). |
| 511 void _absXorTo(a, r) { |
| 512 var r_used = (_used > a._used) ? _used : a._used; |
| 513 r._ensureLength(r_used); |
| 514 var l, m; |
| 515 if (_used < a._used) { |
| 516 l = a; |
| 517 m = _used; |
| 518 } else { |
| 519 l = this; |
| 520 m = a._used; |
| 521 } |
| 522 for (var i = 0; i < m; i++) { |
| 523 r._digits[i] = _digits[i] ^ a._digits[i]; |
| 524 } |
| 525 for (var i = m; i < r_used; i++) { |
| 526 r._digits[i] = l._digits[i]; |
| 527 } |
| 528 r._used = r_used; |
| 529 r._clamp(); |
| 530 } |
| 531 |
| 532 // Return r = this & a. |
| 533 _andTo(a, r) { |
| 534 if (_neg == a._neg) { |
| 535 if (_neg) { |
| 536 // (-this) & (-a) == ~(this-1) & ~(a-1) |
| 537 // == ~((this-1) | (a-1)) |
| 538 // == -(((this-1) | (a-1)) + 1) |
| 539 _Bigint t1 = new _Bigint(); |
| 540 _absSubTo(ONE, t1); |
| 541 _Bigint a1 = new _Bigint(); |
| 542 a._absSubTo(ONE, a1); |
| 543 t1._absOrTo(a1, r); |
| 544 r._absAddTo(ONE, r); |
| 545 r._neg = true; // r cannot be zero if this and a are negative. |
| 546 return r; |
| 547 } |
| 548 _absAndTo(a, r); |
| 549 r._neg = false; |
| 550 return r; |
| 551 } |
| 552 // _neg != a._neg |
| 553 var p, n; |
| 554 if (_neg) { |
| 555 p = a; |
| 556 n = this; |
| 557 } else { // & is symmetric. |
| 558 p = this; |
| 559 n = a; |
| 560 } |
| 561 // p & (-n) == p & ~(n-1) == p &~ (n-1) |
| 562 _Bigint n1 = new _Bigint(); |
| 563 n._absSubTo(ONE, n1); |
| 564 p._absAndNotTo(n1, r); |
| 565 r._neg = false; |
| 566 return r; |
| 567 } |
| 568 |
| 569 // Return r = this &~ a. |
| 570 _andNotTo(a, r) { |
| 571 if (_neg == a._neg) { |
| 572 if (_neg) { |
| 573 // (-this) &~ (-a) == ~(this-1) &~ ~(a-1) |
| 574 // == ~(this-1) & (a-1) |
| 575 // == (a-1) &~ (this-1) |
| 576 _Bigint t1 = new _Bigint(); |
| 577 _absSubTo(ONE, t1); |
| 578 _Bigint a1 = new _Bigint(); |
| 579 a._absSubTo(ONE, a1); |
| 580 a1._absAndNotTo(t1, r); |
| 581 r._neg = false; |
| 582 return r; |
| 583 } |
| 584 _absAndNotTo(a, r); |
| 585 r._neg = false; |
| 586 return r; |
| 587 } |
| 588 if (_neg) { |
| 589 // (-this) &~ a == ~(this-1) &~ a |
| 590 // == ~(this-1) & ~a |
| 591 // == ~((this-1) | a) |
| 592 // == -(((this-1) | a) + 1) |
| 593 _Bigint t1 = new _Bigint(); |
| 594 _absSubTo(ONE, t1); |
| 595 t1._absOrTo(a, r); |
| 596 r._absAddTo(ONE, r); |
| 597 r._neg = true; // r cannot be zero if this is negative and a is positive. |
| 598 return r; |
| 599 } |
| 600 // this &~ (-a) == this &~ ~(a-1) == this & (a-1) |
| 601 _Bigint a1 = new _Bigint(); |
| 602 a._absSubTo(ONE, a1); |
| 603 _absAndTo(a1, r); |
| 604 r._neg = false; |
| 605 return r; |
| 606 } |
| 607 |
| 608 // Return r = this | a. |
| 609 _orTo(a, r) { |
| 610 if (_neg == a._neg) { |
| 611 if (_neg) { |
| 612 // (-this) | (-a) == ~(this-1) | ~(a-1) |
| 613 // == ~((this-1) & (a-1)) |
| 614 // == -(((this-1) & (a-1)) + 1) |
| 615 _Bigint t1 = new _Bigint(); |
| 616 _absSubTo(ONE, t1); |
| 617 _Bigint a1 = new _Bigint(); |
| 618 a._absSubTo(ONE, a1); |
| 619 t1._absAndTo(a1, r); |
| 620 r._absAddTo(ONE, r); |
| 621 r._neg = true; // r cannot be zero if this and a are negative. |
| 622 return r; |
| 623 } |
| 624 _absOrTo(a, r); |
| 625 r._neg = false; |
| 626 return r; |
| 627 } |
| 628 // _neg != a._neg |
| 629 var p, n; |
| 630 if (_neg) { |
| 631 p = a; |
| 632 n = this; |
| 633 } else { // | is symmetric. |
| 634 p = this; |
| 635 n = a; |
| 636 } |
| 637 // p | (-n) == p | ~(n-1) == ~((n-1) &~ p) == -(~((n-1) &~ p) + 1) |
| 638 _Bigint n1 = new _Bigint(); |
| 639 n._absSubTo(ONE, n1); |
| 640 n1._absAndNotTo(p, r); |
| 641 r._absAddTo(ONE, r); |
| 642 r._neg = true; // r cannot be zero if only one of this or a is negative. |
| 643 return r; |
| 644 } |
| 645 |
| 646 // Return r = this ^ a. |
| 647 _xorTo(a, r) { |
| 648 if (_neg == a._neg) { |
| 649 if (_neg) { |
| 650 // (-this) ^ (-a) == ~(this-1) ^ ~(a-1) == (this-1) ^ (a-1) |
| 651 _Bigint t1 = new _Bigint(); |
| 652 _absSubTo(ONE, t1); |
| 653 _Bigint a1 = new _Bigint(); |
| 654 a._absSubTo(ONE, a1); |
| 655 t1._absXorTo(a1, r); |
| 656 r._neg = false; |
| 657 return r; |
| 658 } |
| 659 _absXorTo(a, r); |
| 660 r._neg = false; |
| 661 return r; |
| 662 } |
| 663 // _neg != a._neg |
| 664 var p, n; |
| 665 if (_neg) { |
| 666 p = a; |
| 667 n = this; |
| 668 } else { // ^ is symmetric. |
| 669 p = this; |
| 670 n = a; |
| 671 } |
| 672 // p ^ (-n) == p ^ ~(n-1) == ~(p ^ (n-1)) == -((p ^ (n-1)) + 1) |
| 673 _Bigint n1 = new _Bigint(); |
| 674 n._absSubTo(ONE, n1); |
| 675 p._absXorTo(n1, r); |
| 676 r._absAddTo(ONE, r); |
| 677 r._neg = true; // r cannot be zero if only one of this or a is negative. |
| 678 return r; |
| 679 } |
| 680 |
| 681 // Return r = ~this. |
| 682 _notTo(r) { |
| 683 if (_neg) { |
| 684 // ~(-this) == ~(~(this-1)) == this-1 |
| 685 _absSubTo(ONE, r); |
| 686 r._neg = false; |
| 687 return r; |
| 688 } |
| 689 // ~this == -this-1 == -(this+1) |
| 690 _absAddTo(ONE, r); |
| 691 r._neg = true; // r cannot be zero if this is positive. |
| 692 return r; |
| 693 } |
| 694 |
| 695 // Return r = this + a. |
| 696 _addTo(a, r) { |
| 697 var r_neg = _neg; |
| 698 if (_neg == a._neg) { |
| 699 // this + a == this + a |
| 700 // (-this) + (-a) == -(this + a) |
| 701 _absAddTo(a, r); |
| 702 } else { |
| 703 // this + (-a) == this - a == -(this - a) |
| 704 // (-this) + a == a - this == -(this - a) |
| 705 if (_absCompareTo(a) >= 0) { |
| 706 _absSubTo(a, r); |
| 707 } else { |
| 708 r_neg = !r_neg; |
| 709 a._absSubTo(this, r); |
| 710 } |
| 711 } |
| 712 r._neg = r_neg; |
| 713 return r; |
| 714 } |
| 715 |
| 716 // Return r = this - a. |
| 717 _subTo(a, r) { |
| 718 var r_neg = _neg; |
| 719 if (_neg != a._neg) { |
| 720 // this - (-a) == this + a |
| 721 // (-this) - a == -(this + a) |
| 722 _absAddTo(a, r); |
| 723 } else { |
| 724 // this - a == this - a == -(this - a) |
| 725 // (-this) - (-a) == a - this == -(this - a) |
| 726 if (_absCompareTo(a) >= 0) { |
| 727 _absSubTo(a, r); |
| 728 } else { |
| 729 r_neg = !r_neg; |
| 730 a._absSubTo(this, r); |
| 731 } |
| 732 } |
| 733 r._neg = r_neg; |
| 734 return r; |
| 735 } |
| 736 |
| 737 // Accumulate multiply. |
| 738 // this[i..i+n-1]: bigint multiplicand. |
| 739 // x: digit multiplier. |
| 740 // w[j..j+n-1]: bigint accumulator. |
| 741 // c: int carry in. |
| 742 // Returns carry out. |
| 743 // w[j..j+n-1] += this[i..i+n-1] * x + c. |
| 744 // Returns carry out. |
| 745 // TODO(regis): _sqrTo is the only caller passing an x possibly larger than |
| 746 // a digit (2*digit) and passing a non-zero carry in. Refactor? |
| 747 int _am(int i, int x, _Bigint w, int j, int c, int n) { |
| 748 if (x == 0 && c == 0) { |
| 749 // No-op if both x and c are 0. |
| 750 return 0; |
| 751 } |
| 752 int xl = x & DIGIT2_MASK; |
| 753 int xh = x >> DIGIT2_BITS; |
| 754 while (--n >= 0) { |
| 755 int l = _digits[i] & DIGIT2_MASK; |
| 756 int h = _digits[i++] >> DIGIT2_BITS; |
| 757 int m = xh*l + h*xl; |
| 758 l = xl*l + ((m & DIGIT2_MASK) << DIGIT2_BITS) + w._digits[j] + c; |
| 759 c = (l >> DIGIT_BITS) + (m >> DIGIT2_BITS) + xh*h; |
| 760 w._digits[j++] = l & DIGIT_MASK; |
| 761 } |
| 762 return c; |
| 763 } |
| 764 |
| 765 // r = this * a. |
| 766 void _mulTo(a, r) { |
| 767 // TODO(regis): Use karatsuba multiplication when appropriate. |
| 768 var i = _used; |
| 769 r._ensureLength(i + a._used); |
| 770 r._used = i + a._used; |
| 771 while (--i >= 0) { |
| 772 r._digits[i] = 0; |
| 773 } |
| 774 for (i = 0; i < a._used; ++i) { |
| 775 // TODO(regis): Replace _am with addMulVVW. |
| 776 r._digits[i + _used] = _am(0, a._digits[i], r, i, 0, _used); |
| 777 } |
| 778 r._clamp(); |
| 779 r._neg = r._used > 0 && _neg != a._neg; // Zero cannot be negative. |
| 780 } |
| 781 |
| 782 // r = this^2, r != this. |
| 783 void _sqrTo(r) { |
| 784 var i = 2 * _used; |
| 785 r._ensureLength(i); |
| 786 r._used = i; |
| 787 while (--i >= 0) { |
| 788 r._digits[i] = 0; |
| 789 } |
| 790 for (i = 0; i < _used - 1; ++i) { |
| 791 var c = _am(i, _digits[i], r, 2*i, 0, 1); |
| 792 var d = r._digits[i + _used]; |
| 793 d += _am(i + 1, _digits[i] << 1, r, 2*i + 1, c, _used - i - 1); |
| 794 if (d >= DIGIT_BASE) { |
| 795 r._digits[i + _used] = d - DIGIT_BASE; |
| 796 r._digits[i + _used + 1] = 1; |
| 797 } else { |
| 798 r._digits[i + _used] = d; |
| 799 } |
| 800 } |
| 801 if (r._used > 0) { |
| 802 r._digits[r._used - 1] += _am(i, _digits[i], r, 2*i, 0, 1); |
| 803 } |
| 804 r._neg = false; |
| 805 r._clamp(); |
| 806 } |
| 807 |
| 808 // Truncating division and remainder. |
| 809 // If q != null, q = trunc(this / a). |
| 810 // If r != null, r = this - a * trunc(this / a). |
| 811 void _divRemTo(a, q, r) { |
| 812 if (a._used == 0) return; |
| 813 if (_used < a._used) { |
| 814 if (q != null) { |
| 815 // Set q to 0. |
| 816 q._neg = false; |
| 817 q._used = 0; |
| 818 } |
| 819 if (r != null) { |
| 820 _copyTo(r); |
| 821 } |
| 822 return; |
| 823 } |
| 824 if (r == null) { |
| 825 r = new _Bigint(); |
| 826 } |
| 827 var y = new _Bigint(); |
| 828 var nsh = DIGIT_BITS - _nbits(a._digits[a._used - 1]); // normalize modulus |
| 829 if (nsh > 0) { |
| 830 a._lShiftTo(nsh, y); |
| 831 _lShiftTo(nsh, r); |
| 832 } |
| 833 else { |
| 834 a._copyTo(y); |
| 835 _copyTo(r); |
| 836 } |
| 837 // We consider this and a positive. Ignore the copied sign. |
| 838 y._neg = false; |
| 839 r._neg = false; |
| 840 var y_used = y._used; |
| 841 var y0 = y._digits[y_used - 1]; |
| 842 if (y0 == 0) return; |
| 843 var yt = y0*(1 << FP_D1) + ((y_used > 1) ? y._digits[y_used - 2] >> FP_D2 :
0); |
| 844 var d1 = FP_BASE/yt; |
| 845 var d2 = (1 << FP_D1)/yt; |
| 846 var e = 1 << FP_D2; |
| 847 var i = r._used; |
| 848 var j = i - y_used; |
| 849 _Bigint t = (q == null) ? new _Bigint() : q; |
| 850 |
| 851 y._dlShiftTo(j, t); |
| 852 |
| 853 if (r._compareTo(t) >= 0) { |
| 854 r._digits[r._used++] = 1; |
| 855 r._subTo(t, r); |
| 856 } |
| 857 ONE._dlShiftTo(y_used, t); |
| 858 t._subTo(y, y); // "negative" y so we can replace sub with _am later |
| 859 while (y._used < y_used) { |
| 860 y._digits[y._used++] = 0; |
| 861 } |
| 862 while (--j >= 0) { |
| 863 // Estimate quotient digit |
| 864 var qd = (r._digits[--i] == y0) |
| 865 ? DIGIT_MASK |
| 866 : (r._digits[i]*d1 + (r._digits[i - 1] + e)*d2).floor(); |
| 867 if ((r._digits[i] += y._am(0, qd, r, j, 0, y_used)) < qd) { // Try it out |
| 868 y._dlShiftTo(j, t); |
| 869 r._subTo(t, r); |
| 870 while (r._digits[i] < --qd) { |
| 871 r._subTo(t, r); |
| 872 } |
| 873 } |
| 874 } |
| 875 if (q != null) { |
| 876 r._drShiftTo(y_used, q); |
| 877 if (_neg != a._neg) { |
| 878 ZERO._subTo(q, q); |
| 879 } |
| 880 } |
| 881 r._used = y_used; |
| 882 r._clamp(); |
| 883 if (nsh > 0) { |
| 884 r._rShiftTo(nsh, r); // Denormalize remainder |
| 885 } |
| 886 if (_neg) { |
| 887 ZERO._subTo(r, r); |
| 888 } |
| 889 } |
| 890 |
| 891 int get _identityHashCode { |
| 892 return this; |
| 893 } |
| 894 int operator ~() { |
| 895 _Bigint result = new _Bigint(); |
| 896 _notTo(result); |
| 897 return result._toValidInt(); |
| 898 } |
| 899 |
| 900 int get bitLength { |
| 901 if (_used == 0) return 0; |
| 902 if (_neg) return (~this).bitLength; |
| 903 return DIGIT_BITS*(_used - 1) + _nbits(_digits[_used - 1]); |
| 904 } |
| 905 |
| 906 // This method must support smi._toBigint()._shrFromInt(int). |
| 907 int _shrFromInt(int other) { |
| 908 if (_used == 0) return other; // Shift amount is zero. |
| 909 if (_neg) throw "negative shift amount"; // TODO(regis): What exception? |
| 910 assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised. |
| 911 var shift; |
| 912 if (_used > 2 || (_used == 2 && _digits[1] > 0x10000000)) { |
| 913 if (other < 0) { |
| 914 return -1; |
| 915 } else { |
| 916 return 0; |
| 917 } |
| 918 } else { |
| 919 shift = ((_used == 2) ? (_digits[1] << DIGIT_BITS) : 0) + _digits[0]; |
| 920 } |
| 921 _Bigint result = new _Bigint(); |
| 922 other._toBigint()._rShiftTo(shift, result); |
| 923 return result._toValidInt(); |
| 924 } |
| 925 |
| 926 // This method must support smi._toBigint()._shlFromInt(int). |
| 927 // An out of memory exception is thrown if the result cannot be allocated. |
| 928 int _shlFromInt(int other) { |
| 929 if (_used == 0) return other; // Shift amount is zero. |
| 930 if (_neg) throw "negative shift amount"; // TODO(regis): What exception? |
| 931 assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised. |
| 932 var shift; |
| 933 if (_used > 2 || (_used == 2 && _digits[1] > 0x10000000)) { |
| 934 throw new OutOfMemoryError(); |
| 935 } else { |
| 936 shift = ((_used == 2) ? (_digits[1] << DIGIT_BITS) : 0) + _digits[0]; |
| 937 } |
| 938 _Bigint result = new _Bigint(); |
| 939 other._toBigint()._lShiftTo(shift, result); |
| 940 return result._toValidInt(); |
| 941 } |
| 942 |
| 943 int pow(int exponent) { |
| 944 throw "Bigint.pow not implemented"; |
| 945 } |
| 946 |
| 947 // Overriden operators and methods. |
| 948 |
| 949 // The following operators override operators of _IntegerImplementation for |
| 950 // efficiency, but are not necessary for correctness. They shortcut native |
| 951 // calls that would return null because the receiver is _Bigint. |
| 952 num operator +(num other) { |
| 953 return other._toBigint()._addFromInteger(this); |
| 954 } |
| 955 num operator -(num other) { |
| 956 return other._toBigint()._subFromInteger(this); |
| 957 } |
| 958 num operator *(num other) { |
| 959 return other._toBigint()._mulFromInteger(this); |
| 960 } |
| 961 num operator ~/(num other) { |
| 962 if ((other is int) && (other == 0)) { |
| 963 throw const IntegerDivisionByZeroException(); |
| 964 } |
| 965 return other._toBigint()._truncDivFromInteger(this); |
| 966 } |
| 967 num operator /(num other) { |
| 968 return this.toDouble() / other.toDouble(); |
| 969 } |
| 970 // TODO(regis): Investigate strange behavior with % double.INFINITY. |
| 971 /* |
| 972 num operator %(num other) { |
| 973 if ((other is int) && (other == 0)) { |
| 974 throw const IntegerDivisionByZeroException(); |
| 975 } |
| 976 return other._toBigint()._moduloFromInteger(this); |
| 977 } |
| 978 */ |
| 979 int operator &(int other) { |
| 980 return other._toBigint()._bitAndFromInteger(this); |
| 981 } |
| 982 int operator |(int other) { |
| 983 return other._toBigint()._bitOrFromInteger(this); |
| 984 } |
| 985 int operator ^(int other) { |
| 986 return other._toBigint()._bitXorFromInteger(this); |
| 987 } |
| 988 int operator >>(int other) { |
| 989 return other._toBigint()._shrFromInt(this); |
| 990 } |
| 991 int operator <<(int other) { |
| 992 return other._toBigint()._shlFromInt(this); |
| 993 } |
| 994 // End of operator shortcuts. |
| 995 |
| 996 int operator -() { |
| 997 if (_used == 0) { |
| 998 return this; |
| 999 } |
| 1000 var r = new _Bigint(); |
| 1001 _copyTo(r); |
| 1002 r._neg = !_neg; |
| 1003 return r._toValidInt(); |
| 1004 } |
| 1005 |
| 1006 int get sign { |
| 1007 return (_used == 0) ? 0 : _neg ? -1 : 1; |
| 1008 } |
| 1009 |
| 1010 bool get isEven => _used == 0 || (_digits[0] & 1) == 0; |
| 1011 bool get isNegative => _neg; |
| 1012 |
| 1013 _leftShiftWithMask32(count, mask) { |
| 1014 if (_used == 0) return 0; |
| 1015 if (count is! _Smi) { |
| 1016 _shlFromInt(count); // Throws out of memory exception. |
| 1017 } |
| 1018 assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised. |
| 1019 if (count > 31) return 0; |
| 1020 return (_digits[0] << count) & mask; |
| 1021 } |
| 1022 |
| 1023 int _bitAndFromInteger(int other) { |
| 1024 _Bigint result = new _Bigint(); |
| 1025 other._toBigint()._andTo(this, result); |
| 1026 return result._toValidInt(); |
| 1027 } |
| 1028 int _bitOrFromInteger(int other) { |
| 1029 _Bigint result = new _Bigint(); |
| 1030 other._toBigint()._orTo(this, result); |
| 1031 return result._toValidInt(); |
| 1032 } |
| 1033 int _bitXorFromInteger(int other) { |
| 1034 _Bigint result = new _Bigint(); |
| 1035 other._toBigint()._xorTo(this, result); |
| 1036 return result._toValidInt(); |
| 1037 } |
| 1038 int _addFromInteger(int other) { |
| 1039 _Bigint result = new _Bigint(); |
| 1040 other._toBigint()._addTo(this, result); |
| 1041 return result._toValidInt(); |
| 1042 } |
| 1043 int _subFromInteger(int other) { |
| 1044 _Bigint result = new _Bigint(); |
| 1045 other._toBigint()._subTo(this, result); |
| 1046 return result._toValidInt(); |
| 1047 } |
| 1048 int _mulFromInteger(int other) { |
| 1049 _Bigint result = new _Bigint(); |
| 1050 other._toBigint()._mulTo(this, result); |
| 1051 return result._toValidInt(); |
| 1052 } |
| 1053 int _truncDivFromInteger(int other) { |
| 1054 _Bigint result = new _Bigint(); |
| 1055 other._toBigint()._divRemTo(this, result, null); |
| 1056 return result._toValidInt(); |
| 1057 } |
| 1058 int _moduloFromInteger(int other) { |
| 1059 _Bigint result = new _Bigint(); |
| 1060 var ob = other._toBigint(); |
| 1061 other._toBigint()._divRemTo(this, null, result); |
| 1062 if (result._neg) { |
| 1063 if (_neg) { |
| 1064 result._subTo(this, result); |
| 1065 } else { |
| 1066 result._addTo(this, result); |
| 1067 } |
| 1068 } |
| 1069 return result._toValidInt(); |
| 1070 } |
| 1071 int _remainderFromInteger(int other) { |
| 1072 _Bigint result = new _Bigint(); |
| 1073 other._toBigint()._divRemTo(this, null, result); |
| 1074 return result._toValidInt(); |
| 1075 } |
| 1076 bool _greaterThanFromInteger(int other) { |
| 1077 return other._toBigint()._compareTo(this) > 0; |
| 1078 } |
| 1079 bool _equalToInteger(int other) { |
| 1080 return other._toBigint()._compareTo(this) == 0; |
| 1081 } |
| 1082 |
| 1083 // New method to support crypto. |
| 1084 |
| 1085 // Return this.pow(e) mod m, with 256 <= e < 1<<32. |
| 1086 int modPow(int e, int m) { |
| 1087 assert(e >= 256 && !m.isEven()); |
| 1088 if (e >= (1 << 32)) { |
| 1089 throw "Bigint.modPow with exponent larger than 32-bit not implemented"; |
| 1090 } |
| 1091 _Reduction z = new _Montgomery(m); |
| 1092 var r = new _Bigint(); |
| 1093 var r2 = new _Bigint(); |
| 1094 var g = z.convert(this); |
| 1095 int i = _nbits(e) - 1; |
| 1096 g._copyTo(r); |
| 1097 while (--i >= 0) { |
| 1098 z.sqrTo(r, r2); |
| 1099 if ((e & (1 << i)) > 0) { |
| 1100 z.mulTo(r2, g, r); |
| 1101 } else { |
| 1102 var t = r; |
| 1103 r = r2; |
| 1104 r2 = t; |
| 1105 } |
| 1106 } |
| 1107 return z.revert(r)._toValidInt(); |
| 1108 } |
| 1109 } |
| 1110 |
| 1111 // New classes to support crypto (modPow method). |
| 1112 |
| 1113 class _Reduction { |
| 1114 const _Reduction(); |
| 1115 _Bigint _convert(_Bigint x) => x; |
| 1116 _Bigint _revert(_Bigint x) => x; |
| 1117 |
| 1118 void _mulTo(_Bigint x, _Bigint y, _Bigint r) { |
| 1119 x._mulTo(y, r); |
| 1120 } |
| 1121 |
| 1122 void _sqrTo(_Bigint x, _Bigint r) { |
| 1123 x._sqrTo(r); |
| 1124 } |
| 1125 } |
| 1126 |
| 1127 // Montgomery reduction on _Bigint. |
| 1128 class _Montgomery implements _Reduction { |
| 1129 final _Bigint _m; |
| 1130 var _mp; |
| 1131 var _mpl; |
| 1132 var _mph; |
| 1133 var _um; |
| 1134 var _mused2; |
| 1135 |
| 1136 _Montgomery(this._m) { |
| 1137 _mp = _m._invDigit(); |
| 1138 _mpl = _mp & _Bigint.DIGIT2_MASK; |
| 1139 _mph = _mp >> _Bigint.DIGIT2_BITS; |
| 1140 _um = (1 << (_Bigint.DIGIT_BITS - _Bigint.DIGIT2_BITS)) - 1; |
| 1141 _mused2 = 2*_m._used; |
| 1142 } |
| 1143 |
| 1144 // Return x*R mod _m |
| 1145 _Bigint _convert(_Bigint x) { |
| 1146 var r = new _Bigint(); |
| 1147 x.abs()._dlShiftTo(_m._used, r); |
| 1148 r._divRemTo(_m, null, r); |
| 1149 if (x._neg && !r._neg && r._used > 0) { |
| 1150 _m._subTo(r, r); |
| 1151 } |
| 1152 return r; |
| 1153 } |
| 1154 |
| 1155 // Return x/R mod _m |
| 1156 _Bigint _revert(_Bigint x) { |
| 1157 var r = new _Bigint(); |
| 1158 x._copyTo(r); |
| 1159 _reduce(r); |
| 1160 return r; |
| 1161 } |
| 1162 |
| 1163 // x = x/R mod _m |
| 1164 void _reduce(_Bigint x) { |
| 1165 x._ensureLength(_mused2 + 1); |
| 1166 while (x._used <= _mused2) { // Pad x so _am has enough room later. |
| 1167 x._digits[x._used++] = 0; |
| 1168 } |
| 1169 for (var i = 0; i < _m._used; ++i) { |
| 1170 // Faster way of calculating u0 = x[i]*mp mod DIGIT_BASE. |
| 1171 var j = x._digits[i] & _Bigint.DIGIT2_MASK; |
| 1172 var u0 = (j*_mpl + (((j*_mph + (x._digits[i] >> _Bigint.DIGIT2_BITS) |
| 1173 *_mpl) & _um) << _Bigint.DIGIT2_BITS)) & _Bigint.DIGIT_MASK; |
| 1174 // Use _am to combine the multiply-shift-add into one call. |
| 1175 j = i + _m._used; |
| 1176 var digit = x._digits[j]; |
| 1177 digit += _m ._am(0, u0, x, i, 0, _m ._used); |
| 1178 // propagate carry |
| 1179 while (digit >= _Bigint.DIGIT_BASE) { |
| 1180 digit -= _Bigint.DIGIT_BASE; |
| 1181 x._digits[j++] = digit; |
| 1182 digit = x._digits[j]; |
| 1183 digit++; |
| 1184 } |
| 1185 x._digits[j] = digit; |
| 1186 } |
| 1187 x._clamp(); |
| 1188 x._drShiftTo(_m ._used, x); |
| 1189 if (x._compareTo(_m ) >= 0) { |
| 1190 x._subTo(_m , x); |
| 1191 } |
| 1192 } |
| 1193 |
| 1194 // r = x^2/R mod _m ; x != r |
| 1195 void _sqrTo(_Bigint x, _Bigint r) { |
| 1196 x._sqrTo(r); |
| 1197 _reduce(r); |
| 1198 } |
| 1199 |
| 1200 // r = x*y/R mod _m ; x, y != r |
| 1201 void _mulTo(_Bigint x, _Bigint y, _Bigint r) { |
| 1202 x._mulTo(y, r); |
| 1203 _reduce(r); |
| 1204 } |
| 1205 } |
| 1206 |
OLD | NEW |