Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(8)

Side by Side Diff: runtime/lib/bigint.dart

Issue 509153003: New bigint implementation in the vm. (Closed) Base URL: http://dart.googlecode.com/svn/branches/bleeding_edge/dart/
Patch Set: Created 6 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
2 // for details. All rights reserved. Use of this source code is governed by a
3 // BSD-style license that can be found in the LICENSE file.
4
5 // Copyright 2009 The Go Authors. All rights reserved.
6 // Use of this source code is governed by a BSD-style
7 // license that can be found in the LICENSE file.
8
9 /*
10 * Copyright (c) 2003-2005 Tom Wu
11 * Copyright (c) 2012 Adam Singer (adam@solvr.io)
12 * All Rights Reserved.
13 *
14 * Permission is hereby granted, free of charge, to any person obtaining
15 * a copy of this software and associated documentation files (the
16 * "Software"), to deal in the Software without restriction, including
17 * without limitation the rights to use, copy, modify, merge, publish,
18 * distribute, sublicense, and/or sell copies of the Software, and to
19 * permit persons to whom the Software is furnished to do so, subject to
20 * the following conditions:
21 *
22 * The above copyright notice and this permission notice shall be
23 * included in all copies or substantial portions of the Software.
24 *
25 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
27 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
28 *
29 * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
30 * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
31 * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
32 * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
33 * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
34 *
35 * In addition, the following condition applies:
36 *
37 * All redistributions must retain an intact copy of this copyright notice
38 * and disclaimer.
39 */
40
41 class _Bigint extends _IntegerImplementation implements int {
42 // Bits per digit.
43 static const int DIGIT_BITS = 32;
Florian Schneider 2014/09/08 09:10:19 Ideally, this should be platform-specific and depe
regis 2014/09/09 19:18:14 Ideally, yes. But this would require a tremendous
44 static const int DIGIT_BASE = 1 << DIGIT_BITS;
45 static const int DIGIT_MASK = (1 << DIGIT_BITS) - 1;
46
47 // Bits per half digit.
48 static const int DIGIT2_BITS = DIGIT_BITS >> 1;
49 static const int DIGIT2_BASE = 1 << DIGIT2_BITS;
50 static const int DIGIT2_MASK = (1 << DIGIT2_BITS) - 1;
51
52 // Allocate extra digits so the bigint can be reused.
53 static const int EXTRA_DIGITS = 4;
54
55 // Floating-point unit integer precision.
56 static const int FP_BITS = 52;
Florian Schneider 2014/09/08 09:10:19 These constants should not be needed anymore since
regis 2014/09/09 19:18:14 These constants are needed to approximate a divisi
57 static const int FP_BASE = 1 << FP_BITS;
58 static const int FP_D1 = FP_BITS - DIGIT_BITS;
59 static const int FP_D2 = 2 * DIGIT_BITS - FP_BITS;
60
61 // Min and max of non bigint values.
62 static const int MIN_INT64 = (-1) << 63;
63 static const int MAX_INT64 = 0x7fffffffffffffff;
64
65 // Bigint constant values.
66 static final _Bigint ZERO = new _Bigint();
67 static final _Bigint ONE = new _Bigint()._setInt(1);
68 static final _Bigint MINUS_ONE = new _Bigint()._setInt(-1);
69
70 // Digit conversion table for parsing.
71 static final Map<int, int> DIGIT_TABLE = _createDigitTable();
72
73 // Internal data structure.
74 // TODO(regis): Remove RawBigint and native getters/setters/factory or
75 // intrinsify these native field accessors.
76 /*
77 bool _neg;
78 int _used; // Number of uint32 digits used, _used <= _digits.length.
79 Uint32List _digits;
80 */
srdjan 2014/09/08 19:19:49 Remove dead code.
regis 2014/09/09 19:18:14 Done.
81 bool get _neg native "Bigint_getNeg";
82 void set _neg(bool neg) native "Bigint_setNeg";
83 int get _used native "Bigint_getUsed";
84 void set _used(int used) native "Bigint_setUsed";
85 Uint32List get _digits native "Bigint_getDigits";
86 void set _digits(Uint32List digits) native "Bigint_setDigits";
87
88 // Factory returning an instance initialized to value 0.
89 factory _Bigint() native "Bigint_allocate";
90
91 // Factory returning an instance initialized to an integer value.
92 factory _Bigint._fromInt(int i) {
93 return new _Bigint()._setInt(i);
94 }
95
96 // Factory returning an instance initialized to a hex string.
97 factory _Bigint._fromHex(String s) {
98 return new _Bigint()._setHex(s);
99 }
100
101 // Factory returning an instance initialized to a double value given by its
102 // components.
103 factory _Bigint._fromDouble(int sign, int significand, int exponent) {
104 return new _Bigint()._setDouble(sign, significand, exponent);
105 }
106
107 // Initialize instance to the given value no larger than a Mint.
108 _Bigint _setInt(int i) {
109 assert(i is! _Bigint);
110 _ensureLength(2);
111 _used = 2;
112 var l, h;
113 if (i < 0) {
114 _neg = true;
115 if (i == MIN_INT64) {
116 l = 0;
117 h = 0x80000000;
118 } else {
119 l = (-i) & DIGIT_MASK;
120 h = (-i) >> DIGIT_BITS;
121 }
122 } else {
123 _neg = false;
124 l = i & DIGIT_MASK;
125 h = i >> DIGIT_BITS;
126 }
127 _digits[0] = l;
128 _digits[1] = h;
129 _clamp();
130 return this;
131 }
132
133 // Initialize instance to the given hex string.
134 // TODO(regis): Copy Bigint::NewFromHexCString, fewer digit accesses.
135 // TODO(regis): Unused.
136 _Bigint _setHex(String s) {
137 const int HEX_BITS = 4;
138 const int HEX_DIGITS_PER_DIGIT = 8;
139 var hexDigitIndex = s.length;
140 _ensureLength((hexDigitIndex + HEX_DIGITS_PER_DIGIT - 1) ~/ HEX_DIGITS_PER_D IGIT);
141 var bitIndex = 0;
142 while (--hexDigitIndex >= 0) {
143 var digit = DIGIT_TABLE[s.codeUnitAt(hexDigitIndex)];
144 if (digit = null) {
145 if (s[hexDigitIndex] == "-") _neg = true;
146 continue; // Ignore invalid digits.
147 }
148 _neg = false; // Ignore "-" if not at index 0.
149 if (bitIndex == 0) {
150 _digits[_used++] = digit;
151 // TODO(regis): What if too many bad digits were ignored and
152 // _used becomes larger than _digits.length? error or reallocate?
153 } else {
154 _digits[_used - 1] |= digit << bitIndex;
155 }
156 bitIndex = (bitIndex + HEX_BITS) % DIGIT_BITS;
157 }
158 _clamp();
159 return this;
160 }
161
162 // Initialize instance to the given double value.
163 _Bigint _setDouble(int sign, int significand, int exponent) {
164 assert(significand >= 0);
165 assert(exponent >= 0);
166 _setInt(significand);
167 _neg = sign < 0;
168 if (exponent > 0) {
169 _lShiftTo(exponent, this);
170 }
171 return this;
172 }
173
174 // Create digit conversion table for parsing.
175 static Map<int, int> _createDigitTable() {
176 Map table = new HashMap();
177 int digit, value;
178 digit = "0".codeUnitAt(0);
179 for(value = 0; value <= 9; ++value) table[digit++] = value;
180 digit = "a".codeUnitAt(0);
181 for(value = 10; value < 36; ++value) table[digit++] = value;
182 digit = "A".codeUnitAt(0);
183 for(value = 10; value < 36; ++value) table[digit++] = value;
184 return table;
185 }
186
187 // Return most compact integer (i.e. possibly Smi or Mint).
188 // TODO(regis): Intrinsify.
189 int _toValidInt() {
190 assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised.
191 if (_used == 0) return 0;
192 if (_used == 1) return _neg ? -_digits[0] : _digits[0];
193 if (_used > 2) return this;
194 if (_neg) {
195 if (_digits[1] > 0x80000000) return this;
196 if (_digits[1] == 0x80000000) {
197 if (_digits[0] > 0) return this;
198 return MIN_INT64;
199 }
200 return -((_digits[1] << DIGIT_BITS) | _digits[0]);
201 }
202 if (_digits[1] >= 0x80000000) return this;
203 return (_digits[1] << DIGIT_BITS) | _digits[0];
204 }
205
206 // Conversion from int to bigint.
207 _Bigint _toBigint() => this;
208
209 // Make sure at least 'length' _digits are allocated.
210 // Copy existing _digits if reallocation is necessary.
211 // TODO(regis): Check that we are not preserving _digits unnecessarily.
212 void _ensureLength(int length) {
213 if (length > 0 && (_digits == null || length > _digits.length)) {
214 var new_digits = new Uint32List(length + EXTRA_DIGITS);
215 if (_digits != null) {
216 for (var i = _used; --i >= 0; ) {
217 new_digits[i] = _digits[i];
218 }
219 }
220 _digits = new_digits;
221 }
222 }
223
224 // Clamp off excess high _digits.
225 void _clamp() {
226 while (_used > 0 && _digits[_used - 1] == 0) {
227 --_used;
228 }
229 assert(_used > 0 || !_neg);
230 }
231
232 // Copy this to r.
233 void _copyTo(r) {
srdjan 2014/09/09 19:31:44 Please add type to arguments (here and below).
regis 2014/09/09 21:19:37 Done.
234 r._ensureLength(_used);
235 for (var i = _used - 1; i >= 0; --i) {
236 r._digits[i] = _digits[i];
237 }
238 r._used = _used;
239 r._neg = _neg;
240 }
241
242 // Return the bit length of digit x.
243 int _nbits(int x) {
244 var r = 1, t;
245 if ((t = x >> 16) != 0) { x = t; r += 16; }
246 if ((t = x >> 8) != 0) { x = t; r += 8; }
247 if ((t = x >> 4) != 0) { x = t; r += 4; }
248 if ((t = x >> 2) != 0) { x = t; r += 2; }
249 if ((x >> 1) != 0) { r += 1; }
250 return r;
251 }
252
253 // r = this << n*DIGIT_BITS.
254 void _dlShiftTo(n, r) {
255 var r_used = _used + n;
256 r._ensureLength(r_used);
257 for (var i = _used - 1; i >= 0; --i) {
258 r._digits[i + n] = _digits[i];
259 }
260 for (var i = n - 1; i >= 0; --i) {
261 r._digits[i] = 0;
262 }
263 r._used = r_used;
264 r._neg = _neg;
265 }
266
267 // r = this >> n*DIGIT_BITS.
268 void _drShiftTo(n, r) {
269 var r_used = _used - n;
270 if (r_used < 0) {
271 if (_neg) {
272 MINUS_ONE._copyTo(r);
273 } else {
274 ZERO._copyTo(r);
275 }
276 return;
277 }
278 r._ensureLength(r_used);
279 for (var i = n; i < _used; ++i) {
280 r._digits[i - n] = _digits[i];
281 }
282 r._used = r_used;
283 r._neg = _neg;
284 if (_neg) {
285 // Round down if any bit was shifted out.
286 for (var i = 0; i < n; i++) {
287 if (_digits[i] != 0) {
288 r._subTo(ONE, r);
289 break;
290 }
291 }
292 }
293 }
294
295 // r = this << n.
296 void _lShiftTo(n, r) {
297 var ds = n ~/ DIGIT_BITS;
298 var bs = n % DIGIT_BITS;
299 if (bs == 0) {
300 _dlShiftTo(ds, r);
301 return;
302 }
303 var cbs = DIGIT_BITS - bs;
304 var bm = (1 << cbs) - 1;
305 var r_used = _used + ds + 1;
306 r._ensureLength(r_used);
307 var c = 0;
308 for (var i = _used - 1; i >= 0; --i) {
309 r._digits[i + ds + 1] = (_digits[i] >> cbs) | c;
310 c = (_digits[i] & bm) << bs;
311 }
312 for (var i = ds - 1; i >= 0; --i) {
313 r._digits[i] = 0;
314 }
315 r._digits[ds] = c;
316 r._used = r_used;
317 r._neg = _neg;
318 r._clamp();
319 }
320
321 // r = this >> n.
322 void _rShiftTo(n, r) {
323 var ds = n ~/ DIGIT_BITS;
324 var bs = n % DIGIT_BITS;
325 if (bs == 0) {
326 _drShiftTo(ds, r);
327 return;
328 }
329 var r_used = _used - ds;
330 if (r_used <= 0) {
331 if (_neg) {
332 MINUS_ONE._copyTo(r);
333 } else {
334 ZERO._copyTo(r);
335 }
336 return;
337 }
338 var cbs = DIGIT_BITS - bs;
339 var bm = (1 << bs) - 1;
340 r._ensureLength(r_used);
341 r._digits[0] = _digits[ds] >> bs;
342 for (var i = ds + 1; i < _used; ++i) {
343 r._digits[i - ds - 1] |= (_digits[i] & bm) << cbs;
344 r._digits[i - ds] = _digits[i] >> bs;
345 }
346 r._neg = _neg;
347 r._used = r_used;
348 r._clamp();
349 if (_neg) {
350 // Round down if any bit was shifted out.
351 if ((_digits[ds] & bm) != 0) {
352 r._subTo(ONE, r);
353 return;
354 }
355 for (var i = 0; i < ds; i++) {
356 if (_digits[i] != 0) {
357 r._subTo(ONE, r);
358 return;
359 }
360 }
361 }
362 }
363
364 // Return 0 if abs(this) == abs(a).
365 // Return a positive number if abs(this) > abs(a).
366 // Return a negative number if abs(this) < abs(a).
367 int _absCompareTo(a) {
368 var r = _used - a._used;
369 if (r == 0) {
370 var i = _used;
371 while (--i >= 0 && (r = _digits[i] - a._digits[i]) == 0);
372 }
373 return r;
374 }
375
376 // Return 0 if this == a.
377 // Return a positive number if this > a.
378 // Return a negative number if this < a.
379 int _compareTo(a) {
380 var r;
381 if (_neg == a._neg) {
382 r = _absCompareTo(a);
383 if (_neg) {
384 r = -r;
385 }
386 } else if (_neg) {
387 r = -1;
388 } else {
389 r = 1;
390 }
391 return r;
392 }
393
394 // r = abs(this) + abs(a).
395 void _absAddTo(a, r) {
396 if (_used < a._used) {
397 a._absAddTo(this, r);
398 return;
399 }
400 if (_used == 0) {
401 ZERO._copyTo(r);
402 return;
403 }
404 if (a._used == 0) {
405 _copyTo(r);
406 return;
407 }
408 r._ensureLength(_used + 1);
409 var c = 0;
410 for (var i = 0; i < a._used; i++) {
411 c += _digits[i] + a._digits[i];
412 r._digits[i] = c & DIGIT_MASK;
413 c >>= DIGIT_BITS;
414 }
415 for (var i = a._used; i < _used; i++) {
416 c += _digits[i];
417 r._digits[i] = c & DIGIT_MASK;
418 c >>= DIGIT_BITS;
419 }
420 r._digits[_used] = c;
421 r._used = _used + 1;
422 r._clamp();
423 }
424
425 // r = abs(this) - abs(a), with abs(this) >= abs(a).
426 void _absSubTo(a, r) {
427 assert(_absCompareTo(a) >= 0);
428 if (_used == 0) {
429 ZERO._copyTo(r);
430 return;
431 }
432 if (a._used == 0) {
433 _copyTo(r);
434 return;
435 }
436 r._ensureLength(_used);
437 var c = 0;
438 for (var i = 0; i < a._used; i++) {
439 c += _digits[i] - a._digits[i];
440 r._digits[i] = c & DIGIT_MASK;
441 c >>= DIGIT_BITS;
442 }
443 for (var i = a._used; i < _used; i++) {
444 c += _digits[i];
445 r._digits[i] = c & DIGIT_MASK;
446 c >>= DIGIT_BITS;
447 }
448 r._used = _used;
449 r._clamp();
450 }
451
452 // r = abs(this) & abs(a).
453 void _absAndTo(a, r) {
454 var r_used = (_used < a._used) ? _used : a._used;
455 r._ensureLength(r_used);
456 for (var i = 0; i < r_used; i++) {
457 r._digits[i] = _digits[i] & a._digits[i];
458 }
459 r._used = r_used;
460 r._clamp();
461 }
462
463 // r = abs(this) &~ abs(a).
464 void _absAndNotTo(a, r) {
465 var r_used = _used;
466 r._ensureLength(r_used);
467 var m = (r_used < a._used) ? r_used : a._used;
468 for (var i = 0; i < m; i++) {
469 r._digits[i] = _digits[i] &~ a._digits[i];
470 }
471 for (var i = m; i < r_used; i++) {
472 r._digits[i] = _digits[i];
473 }
474 r._used = r_used;
475 r._clamp();
476 }
477
478 // r = abs(this) | abs(a).
479 void _absOrTo(a, r) {
480 var r_used = (_used > a._used) ? _used : a._used;
481 r._ensureLength(r_used);
482 var l, m;
483 if (_used < a._used) {
484 l = a;
485 m = _used;
486 } else {
487 l = this;
488 m = a._used;
489 }
490 for (var i = 0; i < m; i++) {
491 r._digits[i] = _digits[i] | a._digits[i];
492 }
493 for (var i = m; i < r_used; i++) {
494 r._digits[i] = l._digits[i];
495 }
496 r._used = r_used;
497 r._clamp();
498 }
499
500 // r = abs(this) ^ abs(a).
501 void _absXorTo(a, r) {
502 var r_used = (_used > a._used) ? _used : a._used;
503 r._ensureLength(r_used);
504 var l, m;
505 if (_used < a._used) {
506 l = a;
507 m = _used;
508 } else {
509 l = this;
510 m = a._used;
511 }
512 for (var i = 0; i < m; i++) {
513 r._digits[i] = _digits[i] ^ a._digits[i];
514 }
515 for (var i = m; i < r_used; i++) {
516 r._digits[i] = l._digits[i];
517 }
518 r._used = r_used;
519 r._clamp();
520 }
521
522 // Return r = this & a.
523 _andTo(a, r) {
524 if (_neg == a._neg) {
525 if (_neg) {
526 // (-this) & (-a) == ~(this-1) & ~(a-1)
527 // == ~((this-1) | (a-1))
528 // == -(((this-1) | (a-1)) + 1)
529 _Bigint t1 = new _Bigint();
530 _absSubTo(ONE, t1);
531 _Bigint a1 = new _Bigint();
532 a._absSubTo(ONE, a1);
533 t1._absOrTo(a1, r);
534 r._absAddTo(ONE, r);
535 r._neg = true; // r cannot be zero if this and a are negative.
536 return r;
537 }
538 _absAndTo(a, r);
539 r._neg = false;
540 return r;
541 }
542 // _neg != a._neg
543 var p, n;
544 if (_neg) {
545 p = a;
546 n = this;
547 } else { // & is symmetric.
548 p = this;
549 n = a;
550 }
551 // p & (-n) == p & ~(n-1) == p &~ (n-1)
552 _Bigint n1 = new _Bigint();
553 n._absSubTo(ONE, n1);
554 p._absAndNotTo(n1, r);
555 r._neg = false;
556 return r;
557 }
558
559 // Return r = this &~ a.
560 _andNotTo(a, r) {
561 if (_neg == a._neg) {
562 if (_neg) {
563 // (-this) &~ (-a) == ~(this-1) &~ ~(a-1)
564 // == ~(this-1) & (a-1)
565 // == (a-1) &~ (this-1)
566 _Bigint t1 = new _Bigint();
567 _absSubTo(ONE, t1);
568 _Bigint a1 = new _Bigint();
569 a._absSubTo(ONE, a1);
570 a1._absAndNotTo(t1, r);
571 r._neg = false;
572 return r;
573 }
574 _absAndNotTo(a, r);
575 r._neg = false;
576 return r;
577 }
578 if (_neg) {
579 // (-this) &~ a == ~(this-1) &~ a
580 // == ~(this-1) & ~a
581 // == ~((this-1) | a)
582 // == -(((this-1) | a) + 1)
583 _Bigint t1 = new _Bigint();
584 _absSubTo(ONE, t1);
585 t1._absOrTo(a, r);
586 r._absAddTo(ONE, r);
587 r._neg = true; // r cannot be zero if this is negative and a is positive.
588 return r;
589 }
590 // this &~ (-a) == this &~ ~(a-1) == this & (a-1)
591 _Bigint a1 = new _Bigint();
592 a._absSubTo(ONE, a1);
593 _absAndTo(a1, r);
594 r._neg = false;
595 return r;
596 }
597
598 // Return r = this | a.
599 _orTo(a, r) {
600 if (_neg == a._neg) {
601 if (_neg) {
602 // (-this) | (-a) == ~(this-1) | ~(a-1)
603 // == ~((this-1) & (a-1))
604 // == -(((this-1) & (a-1)) + 1)
605 _Bigint t1 = new _Bigint();
606 _absSubTo(ONE, t1);
607 _Bigint a1 = new _Bigint();
608 a._absSubTo(ONE, a1);
609 t1._absAndTo(a1, r);
610 r._absAddTo(ONE, r);
611 r._neg = true; // r cannot be zero if this and a are negative.
612 return r;
613 }
614 _absOrTo(a, r);
615 r._neg = false;
616 return r;
617 }
618 // _neg != a._neg
619 var p, n;
620 if (_neg) {
621 p = a;
622 n = this;
623 } else { // | is symmetric.
624 p = this;
625 n = a;
626 }
627 // p | (-n) == p | ~(n-1) == ~((n-1) &~ p) == -(~((n-1) &~ p) + 1)
628 _Bigint n1 = new _Bigint();
629 n._absSubTo(ONE, n1);
630 n1._absAndNotTo(p, r);
631 r._absAddTo(ONE, r);
632 r._neg = true; // r cannot be zero if only one of this or a is negative.
633 return r;
634 }
635
636 // Return r = this ^ a.
637 _xorTo(a, r) {
638 if (_neg == a._neg) {
639 if (_neg) {
640 // (-this) ^ (-a) == ~(this-1) ^ ~(a-1) == (this-1) ^ (a-1)
641 _Bigint t1 = new _Bigint();
642 _absSubTo(ONE, t1);
643 _Bigint a1 = new _Bigint();
644 a._absSubTo(ONE, a1);
645 t1._absXorTo(a1, r);
646 r._neg = false;
647 return r;
648 }
649 _absXorTo(a, r);
650 r._neg = false;
651 return r;
652 }
653 // _neg != a._neg
654 var p, n;
655 if (_neg) {
656 p = a;
657 n = this;
658 } else { // ^ is symmetric.
659 p = this;
660 n = a;
661 }
662 // p ^ (-n) == p ^ ~(n-1) == ~(p ^ (n-1)) == -((p ^ (n-1)) + 1)
663 _Bigint n1 = new _Bigint();
664 n._absSubTo(ONE, n1);
665 p._absXorTo(n1, r);
666 r._absAddTo(ONE, r);
667 r._neg = true; // r cannot be zero if only one of this or a is negative.
668 return r;
669 }
670
671 // Return r = ~this.
672 _notTo(r) {
673 if (_neg) {
674 // ~(-this) == ~(~(this-1)) == this-1
675 _absSubTo(ONE, r);
676 r._neg = false;
677 return r;
678 }
679 // ~this == -this-1 == -(this+1)
680 _absAddTo(ONE, r);
681 r._neg = true; // r cannot be zero if this is positive.
682 return r;
683 }
684
685 // Return r = this + a.
686 _addTo(a, r) {
687 var r_neg = _neg;
688 if (_neg == a._neg) {
689 // this + a == this + a
690 // (-this) + (-a) == -(this + a)
691 _absAddTo(a, r);
692 } else {
693 // this + (-a) == this - a == -(this - a)
694 // (-this) + a == a - this == -(this - a)
695 if (_absCompareTo(a) >= 0) {
696 _absSubTo(a, r);
697 } else {
698 r_neg = !r_neg;
699 a._absSubTo(this, r);
700 }
701 }
702 r._neg = r_neg;
703 return r;
704 }
705
706 // Return r = this - a.
707 _subTo(a, r) {
708 var r_neg = _neg;
709 if (_neg != a._neg) {
710 // this - (-a) == this + a
711 // (-this) - a == -(this + a)
712 _absAddTo(a, r);
713 } else {
714 // this - a == this - a == -(this - a)
715 // (-this) - (-a) == a - this == -(this - a)
716 if (_absCompareTo(a) >= 0) {
717 _absSubTo(a, r);
718 } else {
719 r_neg = !r_neg;
720 a._absSubTo(this, r);
721 }
722 }
723 r._neg = r_neg;
724 return r;
725 }
726
727 // Accumulate multiply.
728 // this[i..i+n-1]: bigint multiplicand.
729 // x: digit multiplier.
730 // w[j..j+n-1]: bigint accumulator.
731 // c: int carry in.
732 // Returns carry out.
733 // w[j..j+n-1] += this[i..i+n-1] * x + c.
734 // Returns carry out.
735 // TODO(regis): _sqrTo is the only caller passing an x possibly larger than
736 // a digit (2*digit) and passing a non-zero carry in. Refactor?
737 int _am(int i, int x, _Bigint w, int j, int c, int n) {
738 if (x == 0 && c == 0) {
739 // No-op if both x and c are 0.
740 return 0;
741 }
742 int xl = x & DIGIT2_MASK;
743 int xh = x >> DIGIT2_BITS;
744 while (--n >= 0) {
745 int l = _digits[i] & DIGIT2_MASK;
746 int h = _digits[i++] >> DIGIT2_BITS;
747 int m = xh*l + h*xl;
748 l = xl*l + ((m & DIGIT2_MASK) << DIGIT2_BITS) + w._digits[j] + c;
749 c = (l >> DIGIT_BITS) + (m >> DIGIT2_BITS) + xh*h;
750 w._digits[j++] = l & DIGIT_MASK;
751 }
752 return c;
753 }
754
755 // r = this * a.
756 void _mulTo(a, r) {
757 // TODO(regis): Use karatsuba multiplication when appropriate.
758 var i = _used;
759 r._ensureLength(i + a._used);
760 r._used = i + a._used;
761 while (--i >= 0) {
762 r._digits[i] = 0;
763 }
764 for (i = 0; i < a._used; ++i) {
765 // TODO(regis): Replace _am with addMulVVW.
766 r._digits[i + _used] = _am(0, a._digits[i], r, i, 0, _used);
767 }
768 r._clamp();
769 r._neg = r._used > 0 && _neg != a._neg; // Zero cannot be negative.
770 }
771
772 // r = this^2, r != this.
773 void _sqrTo(r) {
774 var i = 2 * _used;
775 r._ensureLength(i);
776 r._used = i;
777 while (--i >= 0) {
778 r._digits[i] = 0;
779 }
780 for (i = 0; i < _used - 1; ++i) {
781 var c = _am(i, _digits[i], r, 2*i, 0, 1);
782 var d = r._digits[i + _used];
783 d += _am(i + 1, _digits[i] << 1, r, 2*i + 1, c, _used - i - 1);
784 if (d >= DIGIT_BASE) {
785 r._digits[i + _used] = d - DIGIT_BASE;
786 r._digits[i + _used + 1] = 1;
787 } else {
788 r._digits[i + _used] = d;
789 }
790 }
791 if (r._used > 0) {
792 r._digits[r._used - 1] += _am(i, _digits[i], r, 2*i, 0, 1);
793 }
794 r._neg = false;
795 r._clamp();
796 }
797
798 // Truncating division and remainder.
799 // If q != null, q = trunc(this / a).
800 // If r != null, r = this - a * trunc(this / a).
801 void _divRemTo(a, q, r) {
802 if (a._used == 0) return;
803 if (_used < a._used) {
804 if (q != null) {
805 // Set q to 0.
806 q._neg = false;
807 q._used = 0;
808 }
809 if (r != null) {
810 _copyTo(r);
811 }
812 return;
813 }
814 if (r == null) {
815 r = new _Bigint();
816 }
817 var y = new _Bigint();
818 var nsh = DIGIT_BITS - _nbits(a._digits[a._used - 1]); // normalize modulus
819 if (nsh > 0) {
820 a._lShiftTo(nsh, y);
821 _lShiftTo(nsh, r);
822 }
823 else {
824 a._copyTo(y);
825 _copyTo(r);
826 }
827 // We consider this and a positive. Ignore the copied sign.
828 y._neg = false;
829 r._neg = false;
830 var y_used = y._used;
831 var y0 = y._digits[y_used - 1];
832 if (y0 == 0) return;
833 var yt = y0*(1 << FP_D1) + ((y_used > 1) ? y._digits[y_used - 2] >> FP_D2 : 0);
834 var d1 = FP_BASE/yt;
835 var d2 = (1 << FP_D1)/yt;
836 var e = 1 << FP_D2;
837 var i = r._used;
838 var j = i - y_used;
839 _Bigint t = (q == null) ? new _Bigint() : q;
840
841 y._dlShiftTo(j, t);
842
843 if (r._compareTo(t) >= 0) {
844 r._digits[r._used++] = 1;
845 r._subTo(t, r);
846 }
847 ONE._dlShiftTo(y_used, t);
848 t._subTo(y, y); // "negative" y so we can replace sub with _am later
849 while (y._used < y_used) {
850 y._digits[y._used++] = 0;
851 }
852 while (--j >= 0) {
853 // Estimate quotient digit
854 var qd = (r._digits[--i] == y0)
855 ? DIGIT_MASK
856 : (r._digits[i]*d1 + (r._digits[i - 1] + e)*d2).floor();
857 if ((r._digits[i] += y._am(0, qd, r, j, 0, y_used)) < qd) { // Try it out
858 y._dlShiftTo(j, t);
859 r._subTo(t, r);
860 while (r._digits[i] < --qd) {
861 r._subTo(t, r);
862 }
863 }
864 }
865 if (q != null) {
866 r._drShiftTo(y_used, q);
867 if (_neg != a._neg) {
868 ZERO._subTo(q, q);
869 }
870 }
871 r._used = y_used;
872 r._clamp();
873 if (nsh > 0) {
874 r._rShiftTo(nsh, r); // Denormalize remainder
875 }
876 if (_neg) {
877 ZERO._subTo(r, r);
878 }
879 }
880
881 int get _identityHashCode {
882 return this;
883 }
884 int operator ~() {
885 _Bigint result = new _Bigint();
886 _notTo(result);
887 return result._toValidInt();
888 }
889
890 int get bitLength {
891 if (_used == 0) return 0;
892 if (_neg) return (~this).bitLength;
893 return DIGIT_BITS*(_used - 1) + _nbits(_digits[_used - 1]);
894 }
895
896 // This method must support smi._toBigint()._shrFromInt(int).
897 int _shrFromInt(int other) {
898 if (_used == 0) return other; // Shift amount is zero.
899 if (_neg) throw "negative shift amount"; // TODO(regis): What exception?
900 assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised.
901 var shift;
902 if (_used > 2 || (_used == 2 && _digits[1] > 0x10000000)) {
903 if (other < 0) {
904 return -1;
905 } else {
906 return 0;
907 }
908 } else {
909 shift = ((_used == 2) ? (_digits[1] << DIGIT_BITS) : 0) + _digits[0];
910 }
911 _Bigint result = new _Bigint();
912 other._toBigint()._rShiftTo(shift, result);
913 return result._toValidInt();
914 }
915
916 // This method must support smi._toBigint()._shlFromInt(int).
917 // An out of memory exception is thrown if the result cannot be allocated.
918 int _shlFromInt(int other) {
919 if (_used == 0) return other; // Shift amount is zero.
920 if (_neg) throw "negative shift amount"; // TODO(regis): What exception?
921 assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised.
922 var shift;
923 if (_used > 2 || (_used == 2 && _digits[1] > 0x10000000)) {
924 throw new OutOfMemoryError();
925 } else {
926 shift = ((_used == 2) ? (_digits[1] << DIGIT_BITS) : 0) + _digits[0];
927 }
928 _Bigint result = new _Bigint();
929 other._toBigint()._lShiftTo(shift, result);
930 return result._toValidInt();
931 }
932
933 int pow(int exponent) {
934 throw "Bigint.pow not implemented";
935 }
936
937 // Overriden operators and methods.
938
939 int operator -() {
940 if (_used == 0) {
941 return this;
942 }
943 var r = new _Bigint();
944 _copyTo(r);
945 r._neg = !_neg;
946 return r._toValidInt();
947 }
948
949 int get sign {
950 return (_used == 0) ? 0 : _neg ? -1 : 1;
951 }
952
953 bool get isEven => _used == 0 || (_digits[0] & 1) == 0;
954 bool get isNegative => _neg;
955
956 _leftShiftWithMask32(count, mask) {
957 if (_used == 0) return 0;
958 if (count is! _Smi) {
959 _shlFromInt(count); // Throws out of memory exception.
960 }
961 assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised.
962 if (count > 31) return 0;
963 return (_digits[0] << count) & mask;
964 }
965
966 int _bitAndFromInteger(int other) {
967 _Bigint result = new _Bigint();
968 other._toBigint()._andTo(this, result);
969 return result._toValidInt();
970 }
971 int _bitOrFromInteger(int other) {
972 _Bigint result = new _Bigint();
973 other._toBigint()._orTo(this, result);
974 return result._toValidInt();
975 }
976 int _bitXorFromInteger(int other) {
977 _Bigint result = new _Bigint();
978 other._toBigint()._xorTo(this, result);
979 return result._toValidInt();
980 }
981 int _addFromInteger(int other) {
982 _Bigint result = new _Bigint();
983 other._toBigint()._addTo(this, result);
984 return result._toValidInt();
985 }
986 int _subFromInteger(int other) {
987 _Bigint result = new _Bigint();
988 other._toBigint()._subTo(this, result);
989 return result._toValidInt();
990 }
991 int _mulFromInteger(int other) {
992 _Bigint result = new _Bigint();
993 other._toBigint()._mulTo(this, result);
994 return result._toValidInt();
995 }
996 int _truncDivFromInteger(int other) {
997 _Bigint result = new _Bigint();
998 other._toBigint()._divRemTo(this, result, null);
999 return result._toValidInt();
1000 }
1001 int _moduloFromInteger(int other) {
1002 _Bigint result = new _Bigint();
1003 var ob = other._toBigint();
1004 other._toBigint()._divRemTo(this, null, result);
1005 if (result._neg) {
1006 if (_neg) {
1007 result._subTo(this, result);
1008 } else {
1009 result._addTo(this, result);
1010 }
1011 }
1012 return result._toValidInt();
1013 }
1014 int _remainderFromInteger(int other) {
1015 _Bigint result = new _Bigint();
1016 other._toBigint()._divRemTo(this, null, result);
1017 return result._toValidInt();
1018 }
1019 bool _greaterThanFromInteger(int other) {
1020 return other._toBigint()._compareTo(this) > 0;
1021 }
1022 bool _equalToInteger(int other) {
1023 return other._toBigint()._compareTo(this) == 0;
1024 }
1025
1026 // New method to support crypto.
1027
1028 // Return this.pow(e) mod m, with 256 <= e < 1<<32.
1029 int modPow(int e, int m) {
1030 assert(e >= 256 && !m.isEven());
1031 if (e >= (1 << 32)) {
1032 throw "Bigint.modPow with exponent larger than 32-bit not implemented";
1033 }
1034 _Reduction z = new _Montgomery(m);
1035 var r = new _Bigint();
1036 var r2 = new _Bigint();
1037 var g = z.convert(this);
1038 int i = _nbits(e) - 1;
1039 g._copyTo(r);
1040 while (--i >= 0) {
1041 z.sqrTo(r, r2);
1042 if ((e & (1 << i)) > 0) {
1043 z.mulTo(r2, g, r);
1044 } else {
1045 var t = r;
1046 r = r2;
1047 r2 = t;
1048 }
1049 }
1050 return z.revert(r)._toValidInt();
1051 }
1052
1053
1054 /*
1055 // Static helpers _used to intrinsify primitive operations on _digits.
1056 static int _mulWW(int x, int y) {
1057 x &= DIGIT_MASK;
1058 y &= DIGIT_MASK;
1059 return x*y;
1060 }
1061
1062 static int _remainder;
1063
1064 static int _divWW(int x, int y) {
1065 x &= TWO_DIGIT_MASK;
1066 y &= DIGIT_MASK;
1067 _remainder = x % y;
1068 return x ~/ y;
1069 }
1070 }
1071 */
1072 }
1073
1074 // New classes to support crypto (modPow method).
1075
1076 class _Reduction {
1077 const _Reduction();
1078 _Bigint _convert(_Bigint x) => x;
1079 _Bigint _revert(_Bigint x) => x;
1080 void _mulTo(_Bigint x, _Bigint y, _Bigint r) {
1081 x._mulTo(y, r);
1082 }
1083 void _sqrTo(_Bigint x, _Bigint r) {
1084 x._sqrTo(r);
1085 }
1086 }
1087
1088 // Montgomery reduction on _Bigint.
1089 class _Montgomery implements _Reduction {
1090 final _Bigint _m;
1091 var _mp;
1092 var _mpl;
1093 var _mph;
1094 var _um;
1095 var _mused2;
1096
1097 _Montgomery(this._m) {
1098 _mp = _m._invDigit();
1099 _mpl = _mp & _Bigint.DIGIT2_MASK;
1100 _mph = _mp >> _Bigint.DIGIT2_BITS;
1101 _um = (1 << (_Bigint.DIGIT_BITS - _Bigint.DIGIT2_BITS)) - 1;
1102 _mused2 = 2*_m._used;
1103 }
1104
1105 // Return x*R mod _m
1106 _Bigint _convert(_Bigint x) {
1107 var r = new _Bigint();
1108 x.abs()._dlShiftTo(_m._used, r);
1109 r._divRemTo(_m, null, r);
1110 if (x._neg && r._compareTo(_Bigint.ZERO) > 0) {
1111 _m._subTo(r, r);
1112 }
1113 return r;
1114 }
1115
1116 // Return x/R mod _m
1117 _Bigint _revert(_Bigint x) {
1118 var r = new _Bigint();
1119 x._copyTo(r);
1120 _reduce(r);
1121 return r;
1122 }
1123
1124 // x = x/R mod _m
1125 void _reduce(_Bigint x) {
1126 x._ensureLength(_mused2 + 1);
1127 while (x._used <= _mused2) { // Pad x so _am has enough room later.
1128 x._digits[x._used++] = 0;
1129 }
1130 for (var i = 0; i < _m._used; ++i) {
1131 // Faster way of calculating u0 = x[i]*mp mod DIGIT_BASE.
1132 var j = x._digits[i] & _Bigint.DIGIT2_MASK;
1133 var u0 = (j*_mpl + (((j*_mph + (x._digits[i] >> _Bigint.DIGIT2_BITS)
1134 *_mpl) & _um) << _Bigint.DIGIT2_BITS)) & _Bigint.DIGIT_MASK;
1135 // Use _am to combine the multiply-shift-add into one call.
1136 j = i + _m._used;
1137 var digit = x._digits[j];
1138 digit += _m ._am(0, u0, x, i, 0, _m ._used);
1139 // propagate carry
1140 while (digit >= _Bigint.DIGIT_BASE) {
1141 digit -= _Bigint.DIGIT_BASE;
1142 x._digits[j++] = digit;
1143 digit = x._digits[j];
1144 digit++;
1145 }
1146 x._digits[j] = digit;
1147 }
1148 x._clamp();
1149 x._drShiftTo(_m ._used, x);
1150 if (x._compareTo(_m ) >= 0) {
1151 x._subTo(_m , x);
1152 }
1153 }
1154
1155 // r = x^2/R mod _m ; x != r
1156 void _sqrTo(_Bigint x, _Bigint r) {
1157 x._sqrTo(r);
1158 _reduce(r);
1159 }
1160
1161 // r = x*y/R mod _m ; x, y != r
1162 void _mulTo(_Bigint x, _Bigint y, _Bigint r) {
1163 x._mulTo(y, r);
1164 _reduce(r);
1165 }
1166 }
1167
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698