Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file | |
| 2 // for details. All rights reserved. Use of this source code is governed by a | |
| 3 // BSD-style license that can be found in the LICENSE file. | |
| 4 | |
| 5 // Copyright 2009 The Go Authors. All rights reserved. | |
| 6 // Use of this source code is governed by a BSD-style | |
| 7 // license that can be found in the LICENSE file. | |
| 8 | |
| 9 /* | |
| 10 * Copyright (c) 2003-2005 Tom Wu | |
| 11 * Copyright (c) 2012 Adam Singer (adam@solvr.io) | |
| 12 * All Rights Reserved. | |
| 13 * | |
| 14 * Permission is hereby granted, free of charge, to any person obtaining | |
| 15 * a copy of this software and associated documentation files (the | |
| 16 * "Software"), to deal in the Software without restriction, including | |
| 17 * without limitation the rights to use, copy, modify, merge, publish, | |
| 18 * distribute, sublicense, and/or sell copies of the Software, and to | |
| 19 * permit persons to whom the Software is furnished to do so, subject to | |
| 20 * the following conditions: | |
| 21 * | |
| 22 * The above copyright notice and this permission notice shall be | |
| 23 * included in all copies or substantial portions of the Software. | |
| 24 * | |
| 25 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, | |
| 26 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY | |
| 27 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. | |
| 28 * | |
| 29 * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, | |
| 30 * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER | |
| 31 * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF | |
| 32 * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT | |
| 33 * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |
| 34 * | |
| 35 * In addition, the following condition applies: | |
| 36 * | |
| 37 * All redistributions must retain an intact copy of this copyright notice | |
| 38 * and disclaimer. | |
| 39 */ | |
| 40 | |
| 41 class _Bigint extends _IntegerImplementation implements int { | |
| 42 // Bits per digit. | |
| 43 static const int DIGIT_BITS = 32; | |
|
Florian Schneider
2014/09/08 09:10:19
Ideally, this should be platform-specific and depe
regis
2014/09/09 19:18:14
Ideally, yes. But this would require a tremendous
| |
| 44 static const int DIGIT_BASE = 1 << DIGIT_BITS; | |
| 45 static const int DIGIT_MASK = (1 << DIGIT_BITS) - 1; | |
| 46 | |
| 47 // Bits per half digit. | |
| 48 static const int DIGIT2_BITS = DIGIT_BITS >> 1; | |
| 49 static const int DIGIT2_BASE = 1 << DIGIT2_BITS; | |
| 50 static const int DIGIT2_MASK = (1 << DIGIT2_BITS) - 1; | |
| 51 | |
| 52 // Allocate extra digits so the bigint can be reused. | |
| 53 static const int EXTRA_DIGITS = 4; | |
| 54 | |
| 55 // Floating-point unit integer precision. | |
| 56 static const int FP_BITS = 52; | |
|
Florian Schneider
2014/09/08 09:10:19
These constants should not be needed anymore since
regis
2014/09/09 19:18:14
These constants are needed to approximate a divisi
| |
| 57 static const int FP_BASE = 1 << FP_BITS; | |
| 58 static const int FP_D1 = FP_BITS - DIGIT_BITS; | |
| 59 static const int FP_D2 = 2 * DIGIT_BITS - FP_BITS; | |
| 60 | |
| 61 // Min and max of non bigint values. | |
| 62 static const int MIN_INT64 = (-1) << 63; | |
| 63 static const int MAX_INT64 = 0x7fffffffffffffff; | |
| 64 | |
| 65 // Bigint constant values. | |
| 66 static final _Bigint ZERO = new _Bigint(); | |
| 67 static final _Bigint ONE = new _Bigint()._setInt(1); | |
| 68 static final _Bigint MINUS_ONE = new _Bigint()._setInt(-1); | |
| 69 | |
| 70 // Digit conversion table for parsing. | |
| 71 static final Map<int, int> DIGIT_TABLE = _createDigitTable(); | |
| 72 | |
| 73 // Internal data structure. | |
| 74 // TODO(regis): Remove RawBigint and native getters/setters/factory or | |
| 75 // intrinsify these native field accessors. | |
| 76 /* | |
| 77 bool _neg; | |
| 78 int _used; // Number of uint32 digits used, _used <= _digits.length. | |
| 79 Uint32List _digits; | |
| 80 */ | |
|
srdjan
2014/09/08 19:19:49
Remove dead code.
regis
2014/09/09 19:18:14
Done.
| |
| 81 bool get _neg native "Bigint_getNeg"; | |
| 82 void set _neg(bool neg) native "Bigint_setNeg"; | |
| 83 int get _used native "Bigint_getUsed"; | |
| 84 void set _used(int used) native "Bigint_setUsed"; | |
| 85 Uint32List get _digits native "Bigint_getDigits"; | |
| 86 void set _digits(Uint32List digits) native "Bigint_setDigits"; | |
| 87 | |
| 88 // Factory returning an instance initialized to value 0. | |
| 89 factory _Bigint() native "Bigint_allocate"; | |
| 90 | |
| 91 // Factory returning an instance initialized to an integer value. | |
| 92 factory _Bigint._fromInt(int i) { | |
| 93 return new _Bigint()._setInt(i); | |
| 94 } | |
| 95 | |
| 96 // Factory returning an instance initialized to a hex string. | |
| 97 factory _Bigint._fromHex(String s) { | |
| 98 return new _Bigint()._setHex(s); | |
| 99 } | |
| 100 | |
| 101 // Factory returning an instance initialized to a double value given by its | |
| 102 // components. | |
| 103 factory _Bigint._fromDouble(int sign, int significand, int exponent) { | |
| 104 return new _Bigint()._setDouble(sign, significand, exponent); | |
| 105 } | |
| 106 | |
| 107 // Initialize instance to the given value no larger than a Mint. | |
| 108 _Bigint _setInt(int i) { | |
| 109 assert(i is! _Bigint); | |
| 110 _ensureLength(2); | |
| 111 _used = 2; | |
| 112 var l, h; | |
| 113 if (i < 0) { | |
| 114 _neg = true; | |
| 115 if (i == MIN_INT64) { | |
| 116 l = 0; | |
| 117 h = 0x80000000; | |
| 118 } else { | |
| 119 l = (-i) & DIGIT_MASK; | |
| 120 h = (-i) >> DIGIT_BITS; | |
| 121 } | |
| 122 } else { | |
| 123 _neg = false; | |
| 124 l = i & DIGIT_MASK; | |
| 125 h = i >> DIGIT_BITS; | |
| 126 } | |
| 127 _digits[0] = l; | |
| 128 _digits[1] = h; | |
| 129 _clamp(); | |
| 130 return this; | |
| 131 } | |
| 132 | |
| 133 // Initialize instance to the given hex string. | |
| 134 // TODO(regis): Copy Bigint::NewFromHexCString, fewer digit accesses. | |
| 135 // TODO(regis): Unused. | |
| 136 _Bigint _setHex(String s) { | |
| 137 const int HEX_BITS = 4; | |
| 138 const int HEX_DIGITS_PER_DIGIT = 8; | |
| 139 var hexDigitIndex = s.length; | |
| 140 _ensureLength((hexDigitIndex + HEX_DIGITS_PER_DIGIT - 1) ~/ HEX_DIGITS_PER_D IGIT); | |
| 141 var bitIndex = 0; | |
| 142 while (--hexDigitIndex >= 0) { | |
| 143 var digit = DIGIT_TABLE[s.codeUnitAt(hexDigitIndex)]; | |
| 144 if (digit = null) { | |
| 145 if (s[hexDigitIndex] == "-") _neg = true; | |
| 146 continue; // Ignore invalid digits. | |
| 147 } | |
| 148 _neg = false; // Ignore "-" if not at index 0. | |
| 149 if (bitIndex == 0) { | |
| 150 _digits[_used++] = digit; | |
| 151 // TODO(regis): What if too many bad digits were ignored and | |
| 152 // _used becomes larger than _digits.length? error or reallocate? | |
| 153 } else { | |
| 154 _digits[_used - 1] |= digit << bitIndex; | |
| 155 } | |
| 156 bitIndex = (bitIndex + HEX_BITS) % DIGIT_BITS; | |
| 157 } | |
| 158 _clamp(); | |
| 159 return this; | |
| 160 } | |
| 161 | |
| 162 // Initialize instance to the given double value. | |
| 163 _Bigint _setDouble(int sign, int significand, int exponent) { | |
| 164 assert(significand >= 0); | |
| 165 assert(exponent >= 0); | |
| 166 _setInt(significand); | |
| 167 _neg = sign < 0; | |
| 168 if (exponent > 0) { | |
| 169 _lShiftTo(exponent, this); | |
| 170 } | |
| 171 return this; | |
| 172 } | |
| 173 | |
| 174 // Create digit conversion table for parsing. | |
| 175 static Map<int, int> _createDigitTable() { | |
| 176 Map table = new HashMap(); | |
| 177 int digit, value; | |
| 178 digit = "0".codeUnitAt(0); | |
| 179 for(value = 0; value <= 9; ++value) table[digit++] = value; | |
| 180 digit = "a".codeUnitAt(0); | |
| 181 for(value = 10; value < 36; ++value) table[digit++] = value; | |
| 182 digit = "A".codeUnitAt(0); | |
| 183 for(value = 10; value < 36; ++value) table[digit++] = value; | |
| 184 return table; | |
| 185 } | |
| 186 | |
| 187 // Return most compact integer (i.e. possibly Smi or Mint). | |
| 188 // TODO(regis): Intrinsify. | |
| 189 int _toValidInt() { | |
| 190 assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised. | |
| 191 if (_used == 0) return 0; | |
| 192 if (_used == 1) return _neg ? -_digits[0] : _digits[0]; | |
| 193 if (_used > 2) return this; | |
| 194 if (_neg) { | |
| 195 if (_digits[1] > 0x80000000) return this; | |
| 196 if (_digits[1] == 0x80000000) { | |
| 197 if (_digits[0] > 0) return this; | |
| 198 return MIN_INT64; | |
| 199 } | |
| 200 return -((_digits[1] << DIGIT_BITS) | _digits[0]); | |
| 201 } | |
| 202 if (_digits[1] >= 0x80000000) return this; | |
| 203 return (_digits[1] << DIGIT_BITS) | _digits[0]; | |
| 204 } | |
| 205 | |
| 206 // Conversion from int to bigint. | |
| 207 _Bigint _toBigint() => this; | |
| 208 | |
| 209 // Make sure at least 'length' _digits are allocated. | |
| 210 // Copy existing _digits if reallocation is necessary. | |
| 211 // TODO(regis): Check that we are not preserving _digits unnecessarily. | |
| 212 void _ensureLength(int length) { | |
| 213 if (length > 0 && (_digits == null || length > _digits.length)) { | |
| 214 var new_digits = new Uint32List(length + EXTRA_DIGITS); | |
| 215 if (_digits != null) { | |
| 216 for (var i = _used; --i >= 0; ) { | |
| 217 new_digits[i] = _digits[i]; | |
| 218 } | |
| 219 } | |
| 220 _digits = new_digits; | |
| 221 } | |
| 222 } | |
| 223 | |
| 224 // Clamp off excess high _digits. | |
| 225 void _clamp() { | |
| 226 while (_used > 0 && _digits[_used - 1] == 0) { | |
| 227 --_used; | |
| 228 } | |
| 229 assert(_used > 0 || !_neg); | |
| 230 } | |
| 231 | |
| 232 // Copy this to r. | |
| 233 void _copyTo(r) { | |
|
srdjan
2014/09/09 19:31:44
Please add type to arguments (here and below).
regis
2014/09/09 21:19:37
Done.
| |
| 234 r._ensureLength(_used); | |
| 235 for (var i = _used - 1; i >= 0; --i) { | |
| 236 r._digits[i] = _digits[i]; | |
| 237 } | |
| 238 r._used = _used; | |
| 239 r._neg = _neg; | |
| 240 } | |
| 241 | |
| 242 // Return the bit length of digit x. | |
| 243 int _nbits(int x) { | |
| 244 var r = 1, t; | |
| 245 if ((t = x >> 16) != 0) { x = t; r += 16; } | |
| 246 if ((t = x >> 8) != 0) { x = t; r += 8; } | |
| 247 if ((t = x >> 4) != 0) { x = t; r += 4; } | |
| 248 if ((t = x >> 2) != 0) { x = t; r += 2; } | |
| 249 if ((x >> 1) != 0) { r += 1; } | |
| 250 return r; | |
| 251 } | |
| 252 | |
| 253 // r = this << n*DIGIT_BITS. | |
| 254 void _dlShiftTo(n, r) { | |
| 255 var r_used = _used + n; | |
| 256 r._ensureLength(r_used); | |
| 257 for (var i = _used - 1; i >= 0; --i) { | |
| 258 r._digits[i + n] = _digits[i]; | |
| 259 } | |
| 260 for (var i = n - 1; i >= 0; --i) { | |
| 261 r._digits[i] = 0; | |
| 262 } | |
| 263 r._used = r_used; | |
| 264 r._neg = _neg; | |
| 265 } | |
| 266 | |
| 267 // r = this >> n*DIGIT_BITS. | |
| 268 void _drShiftTo(n, r) { | |
| 269 var r_used = _used - n; | |
| 270 if (r_used < 0) { | |
| 271 if (_neg) { | |
| 272 MINUS_ONE._copyTo(r); | |
| 273 } else { | |
| 274 ZERO._copyTo(r); | |
| 275 } | |
| 276 return; | |
| 277 } | |
| 278 r._ensureLength(r_used); | |
| 279 for (var i = n; i < _used; ++i) { | |
| 280 r._digits[i - n] = _digits[i]; | |
| 281 } | |
| 282 r._used = r_used; | |
| 283 r._neg = _neg; | |
| 284 if (_neg) { | |
| 285 // Round down if any bit was shifted out. | |
| 286 for (var i = 0; i < n; i++) { | |
| 287 if (_digits[i] != 0) { | |
| 288 r._subTo(ONE, r); | |
| 289 break; | |
| 290 } | |
| 291 } | |
| 292 } | |
| 293 } | |
| 294 | |
| 295 // r = this << n. | |
| 296 void _lShiftTo(n, r) { | |
| 297 var ds = n ~/ DIGIT_BITS; | |
| 298 var bs = n % DIGIT_BITS; | |
| 299 if (bs == 0) { | |
| 300 _dlShiftTo(ds, r); | |
| 301 return; | |
| 302 } | |
| 303 var cbs = DIGIT_BITS - bs; | |
| 304 var bm = (1 << cbs) - 1; | |
| 305 var r_used = _used + ds + 1; | |
| 306 r._ensureLength(r_used); | |
| 307 var c = 0; | |
| 308 for (var i = _used - 1; i >= 0; --i) { | |
| 309 r._digits[i + ds + 1] = (_digits[i] >> cbs) | c; | |
| 310 c = (_digits[i] & bm) << bs; | |
| 311 } | |
| 312 for (var i = ds - 1; i >= 0; --i) { | |
| 313 r._digits[i] = 0; | |
| 314 } | |
| 315 r._digits[ds] = c; | |
| 316 r._used = r_used; | |
| 317 r._neg = _neg; | |
| 318 r._clamp(); | |
| 319 } | |
| 320 | |
| 321 // r = this >> n. | |
| 322 void _rShiftTo(n, r) { | |
| 323 var ds = n ~/ DIGIT_BITS; | |
| 324 var bs = n % DIGIT_BITS; | |
| 325 if (bs == 0) { | |
| 326 _drShiftTo(ds, r); | |
| 327 return; | |
| 328 } | |
| 329 var r_used = _used - ds; | |
| 330 if (r_used <= 0) { | |
| 331 if (_neg) { | |
| 332 MINUS_ONE._copyTo(r); | |
| 333 } else { | |
| 334 ZERO._copyTo(r); | |
| 335 } | |
| 336 return; | |
| 337 } | |
| 338 var cbs = DIGIT_BITS - bs; | |
| 339 var bm = (1 << bs) - 1; | |
| 340 r._ensureLength(r_used); | |
| 341 r._digits[0] = _digits[ds] >> bs; | |
| 342 for (var i = ds + 1; i < _used; ++i) { | |
| 343 r._digits[i - ds - 1] |= (_digits[i] & bm) << cbs; | |
| 344 r._digits[i - ds] = _digits[i] >> bs; | |
| 345 } | |
| 346 r._neg = _neg; | |
| 347 r._used = r_used; | |
| 348 r._clamp(); | |
| 349 if (_neg) { | |
| 350 // Round down if any bit was shifted out. | |
| 351 if ((_digits[ds] & bm) != 0) { | |
| 352 r._subTo(ONE, r); | |
| 353 return; | |
| 354 } | |
| 355 for (var i = 0; i < ds; i++) { | |
| 356 if (_digits[i] != 0) { | |
| 357 r._subTo(ONE, r); | |
| 358 return; | |
| 359 } | |
| 360 } | |
| 361 } | |
| 362 } | |
| 363 | |
| 364 // Return 0 if abs(this) == abs(a). | |
| 365 // Return a positive number if abs(this) > abs(a). | |
| 366 // Return a negative number if abs(this) < abs(a). | |
| 367 int _absCompareTo(a) { | |
| 368 var r = _used - a._used; | |
| 369 if (r == 0) { | |
| 370 var i = _used; | |
| 371 while (--i >= 0 && (r = _digits[i] - a._digits[i]) == 0); | |
| 372 } | |
| 373 return r; | |
| 374 } | |
| 375 | |
| 376 // Return 0 if this == a. | |
| 377 // Return a positive number if this > a. | |
| 378 // Return a negative number if this < a. | |
| 379 int _compareTo(a) { | |
| 380 var r; | |
| 381 if (_neg == a._neg) { | |
| 382 r = _absCompareTo(a); | |
| 383 if (_neg) { | |
| 384 r = -r; | |
| 385 } | |
| 386 } else if (_neg) { | |
| 387 r = -1; | |
| 388 } else { | |
| 389 r = 1; | |
| 390 } | |
| 391 return r; | |
| 392 } | |
| 393 | |
| 394 // r = abs(this) + abs(a). | |
| 395 void _absAddTo(a, r) { | |
| 396 if (_used < a._used) { | |
| 397 a._absAddTo(this, r); | |
| 398 return; | |
| 399 } | |
| 400 if (_used == 0) { | |
| 401 ZERO._copyTo(r); | |
| 402 return; | |
| 403 } | |
| 404 if (a._used == 0) { | |
| 405 _copyTo(r); | |
| 406 return; | |
| 407 } | |
| 408 r._ensureLength(_used + 1); | |
| 409 var c = 0; | |
| 410 for (var i = 0; i < a._used; i++) { | |
| 411 c += _digits[i] + a._digits[i]; | |
| 412 r._digits[i] = c & DIGIT_MASK; | |
| 413 c >>= DIGIT_BITS; | |
| 414 } | |
| 415 for (var i = a._used; i < _used; i++) { | |
| 416 c += _digits[i]; | |
| 417 r._digits[i] = c & DIGIT_MASK; | |
| 418 c >>= DIGIT_BITS; | |
| 419 } | |
| 420 r._digits[_used] = c; | |
| 421 r._used = _used + 1; | |
| 422 r._clamp(); | |
| 423 } | |
| 424 | |
| 425 // r = abs(this) - abs(a), with abs(this) >= abs(a). | |
| 426 void _absSubTo(a, r) { | |
| 427 assert(_absCompareTo(a) >= 0); | |
| 428 if (_used == 0) { | |
| 429 ZERO._copyTo(r); | |
| 430 return; | |
| 431 } | |
| 432 if (a._used == 0) { | |
| 433 _copyTo(r); | |
| 434 return; | |
| 435 } | |
| 436 r._ensureLength(_used); | |
| 437 var c = 0; | |
| 438 for (var i = 0; i < a._used; i++) { | |
| 439 c += _digits[i] - a._digits[i]; | |
| 440 r._digits[i] = c & DIGIT_MASK; | |
| 441 c >>= DIGIT_BITS; | |
| 442 } | |
| 443 for (var i = a._used; i < _used; i++) { | |
| 444 c += _digits[i]; | |
| 445 r._digits[i] = c & DIGIT_MASK; | |
| 446 c >>= DIGIT_BITS; | |
| 447 } | |
| 448 r._used = _used; | |
| 449 r._clamp(); | |
| 450 } | |
| 451 | |
| 452 // r = abs(this) & abs(a). | |
| 453 void _absAndTo(a, r) { | |
| 454 var r_used = (_used < a._used) ? _used : a._used; | |
| 455 r._ensureLength(r_used); | |
| 456 for (var i = 0; i < r_used; i++) { | |
| 457 r._digits[i] = _digits[i] & a._digits[i]; | |
| 458 } | |
| 459 r._used = r_used; | |
| 460 r._clamp(); | |
| 461 } | |
| 462 | |
| 463 // r = abs(this) &~ abs(a). | |
| 464 void _absAndNotTo(a, r) { | |
| 465 var r_used = _used; | |
| 466 r._ensureLength(r_used); | |
| 467 var m = (r_used < a._used) ? r_used : a._used; | |
| 468 for (var i = 0; i < m; i++) { | |
| 469 r._digits[i] = _digits[i] &~ a._digits[i]; | |
| 470 } | |
| 471 for (var i = m; i < r_used; i++) { | |
| 472 r._digits[i] = _digits[i]; | |
| 473 } | |
| 474 r._used = r_used; | |
| 475 r._clamp(); | |
| 476 } | |
| 477 | |
| 478 // r = abs(this) | abs(a). | |
| 479 void _absOrTo(a, r) { | |
| 480 var r_used = (_used > a._used) ? _used : a._used; | |
| 481 r._ensureLength(r_used); | |
| 482 var l, m; | |
| 483 if (_used < a._used) { | |
| 484 l = a; | |
| 485 m = _used; | |
| 486 } else { | |
| 487 l = this; | |
| 488 m = a._used; | |
| 489 } | |
| 490 for (var i = 0; i < m; i++) { | |
| 491 r._digits[i] = _digits[i] | a._digits[i]; | |
| 492 } | |
| 493 for (var i = m; i < r_used; i++) { | |
| 494 r._digits[i] = l._digits[i]; | |
| 495 } | |
| 496 r._used = r_used; | |
| 497 r._clamp(); | |
| 498 } | |
| 499 | |
| 500 // r = abs(this) ^ abs(a). | |
| 501 void _absXorTo(a, r) { | |
| 502 var r_used = (_used > a._used) ? _used : a._used; | |
| 503 r._ensureLength(r_used); | |
| 504 var l, m; | |
| 505 if (_used < a._used) { | |
| 506 l = a; | |
| 507 m = _used; | |
| 508 } else { | |
| 509 l = this; | |
| 510 m = a._used; | |
| 511 } | |
| 512 for (var i = 0; i < m; i++) { | |
| 513 r._digits[i] = _digits[i] ^ a._digits[i]; | |
| 514 } | |
| 515 for (var i = m; i < r_used; i++) { | |
| 516 r._digits[i] = l._digits[i]; | |
| 517 } | |
| 518 r._used = r_used; | |
| 519 r._clamp(); | |
| 520 } | |
| 521 | |
| 522 // Return r = this & a. | |
| 523 _andTo(a, r) { | |
| 524 if (_neg == a._neg) { | |
| 525 if (_neg) { | |
| 526 // (-this) & (-a) == ~(this-1) & ~(a-1) | |
| 527 // == ~((this-1) | (a-1)) | |
| 528 // == -(((this-1) | (a-1)) + 1) | |
| 529 _Bigint t1 = new _Bigint(); | |
| 530 _absSubTo(ONE, t1); | |
| 531 _Bigint a1 = new _Bigint(); | |
| 532 a._absSubTo(ONE, a1); | |
| 533 t1._absOrTo(a1, r); | |
| 534 r._absAddTo(ONE, r); | |
| 535 r._neg = true; // r cannot be zero if this and a are negative. | |
| 536 return r; | |
| 537 } | |
| 538 _absAndTo(a, r); | |
| 539 r._neg = false; | |
| 540 return r; | |
| 541 } | |
| 542 // _neg != a._neg | |
| 543 var p, n; | |
| 544 if (_neg) { | |
| 545 p = a; | |
| 546 n = this; | |
| 547 } else { // & is symmetric. | |
| 548 p = this; | |
| 549 n = a; | |
| 550 } | |
| 551 // p & (-n) == p & ~(n-1) == p &~ (n-1) | |
| 552 _Bigint n1 = new _Bigint(); | |
| 553 n._absSubTo(ONE, n1); | |
| 554 p._absAndNotTo(n1, r); | |
| 555 r._neg = false; | |
| 556 return r; | |
| 557 } | |
| 558 | |
| 559 // Return r = this &~ a. | |
| 560 _andNotTo(a, r) { | |
| 561 if (_neg == a._neg) { | |
| 562 if (_neg) { | |
| 563 // (-this) &~ (-a) == ~(this-1) &~ ~(a-1) | |
| 564 // == ~(this-1) & (a-1) | |
| 565 // == (a-1) &~ (this-1) | |
| 566 _Bigint t1 = new _Bigint(); | |
| 567 _absSubTo(ONE, t1); | |
| 568 _Bigint a1 = new _Bigint(); | |
| 569 a._absSubTo(ONE, a1); | |
| 570 a1._absAndNotTo(t1, r); | |
| 571 r._neg = false; | |
| 572 return r; | |
| 573 } | |
| 574 _absAndNotTo(a, r); | |
| 575 r._neg = false; | |
| 576 return r; | |
| 577 } | |
| 578 if (_neg) { | |
| 579 // (-this) &~ a == ~(this-1) &~ a | |
| 580 // == ~(this-1) & ~a | |
| 581 // == ~((this-1) | a) | |
| 582 // == -(((this-1) | a) + 1) | |
| 583 _Bigint t1 = new _Bigint(); | |
| 584 _absSubTo(ONE, t1); | |
| 585 t1._absOrTo(a, r); | |
| 586 r._absAddTo(ONE, r); | |
| 587 r._neg = true; // r cannot be zero if this is negative and a is positive. | |
| 588 return r; | |
| 589 } | |
| 590 // this &~ (-a) == this &~ ~(a-1) == this & (a-1) | |
| 591 _Bigint a1 = new _Bigint(); | |
| 592 a._absSubTo(ONE, a1); | |
| 593 _absAndTo(a1, r); | |
| 594 r._neg = false; | |
| 595 return r; | |
| 596 } | |
| 597 | |
| 598 // Return r = this | a. | |
| 599 _orTo(a, r) { | |
| 600 if (_neg == a._neg) { | |
| 601 if (_neg) { | |
| 602 // (-this) | (-a) == ~(this-1) | ~(a-1) | |
| 603 // == ~((this-1) & (a-1)) | |
| 604 // == -(((this-1) & (a-1)) + 1) | |
| 605 _Bigint t1 = new _Bigint(); | |
| 606 _absSubTo(ONE, t1); | |
| 607 _Bigint a1 = new _Bigint(); | |
| 608 a._absSubTo(ONE, a1); | |
| 609 t1._absAndTo(a1, r); | |
| 610 r._absAddTo(ONE, r); | |
| 611 r._neg = true; // r cannot be zero if this and a are negative. | |
| 612 return r; | |
| 613 } | |
| 614 _absOrTo(a, r); | |
| 615 r._neg = false; | |
| 616 return r; | |
| 617 } | |
| 618 // _neg != a._neg | |
| 619 var p, n; | |
| 620 if (_neg) { | |
| 621 p = a; | |
| 622 n = this; | |
| 623 } else { // | is symmetric. | |
| 624 p = this; | |
| 625 n = a; | |
| 626 } | |
| 627 // p | (-n) == p | ~(n-1) == ~((n-1) &~ p) == -(~((n-1) &~ p) + 1) | |
| 628 _Bigint n1 = new _Bigint(); | |
| 629 n._absSubTo(ONE, n1); | |
| 630 n1._absAndNotTo(p, r); | |
| 631 r._absAddTo(ONE, r); | |
| 632 r._neg = true; // r cannot be zero if only one of this or a is negative. | |
| 633 return r; | |
| 634 } | |
| 635 | |
| 636 // Return r = this ^ a. | |
| 637 _xorTo(a, r) { | |
| 638 if (_neg == a._neg) { | |
| 639 if (_neg) { | |
| 640 // (-this) ^ (-a) == ~(this-1) ^ ~(a-1) == (this-1) ^ (a-1) | |
| 641 _Bigint t1 = new _Bigint(); | |
| 642 _absSubTo(ONE, t1); | |
| 643 _Bigint a1 = new _Bigint(); | |
| 644 a._absSubTo(ONE, a1); | |
| 645 t1._absXorTo(a1, r); | |
| 646 r._neg = false; | |
| 647 return r; | |
| 648 } | |
| 649 _absXorTo(a, r); | |
| 650 r._neg = false; | |
| 651 return r; | |
| 652 } | |
| 653 // _neg != a._neg | |
| 654 var p, n; | |
| 655 if (_neg) { | |
| 656 p = a; | |
| 657 n = this; | |
| 658 } else { // ^ is symmetric. | |
| 659 p = this; | |
| 660 n = a; | |
| 661 } | |
| 662 // p ^ (-n) == p ^ ~(n-1) == ~(p ^ (n-1)) == -((p ^ (n-1)) + 1) | |
| 663 _Bigint n1 = new _Bigint(); | |
| 664 n._absSubTo(ONE, n1); | |
| 665 p._absXorTo(n1, r); | |
| 666 r._absAddTo(ONE, r); | |
| 667 r._neg = true; // r cannot be zero if only one of this or a is negative. | |
| 668 return r; | |
| 669 } | |
| 670 | |
| 671 // Return r = ~this. | |
| 672 _notTo(r) { | |
| 673 if (_neg) { | |
| 674 // ~(-this) == ~(~(this-1)) == this-1 | |
| 675 _absSubTo(ONE, r); | |
| 676 r._neg = false; | |
| 677 return r; | |
| 678 } | |
| 679 // ~this == -this-1 == -(this+1) | |
| 680 _absAddTo(ONE, r); | |
| 681 r._neg = true; // r cannot be zero if this is positive. | |
| 682 return r; | |
| 683 } | |
| 684 | |
| 685 // Return r = this + a. | |
| 686 _addTo(a, r) { | |
| 687 var r_neg = _neg; | |
| 688 if (_neg == a._neg) { | |
| 689 // this + a == this + a | |
| 690 // (-this) + (-a) == -(this + a) | |
| 691 _absAddTo(a, r); | |
| 692 } else { | |
| 693 // this + (-a) == this - a == -(this - a) | |
| 694 // (-this) + a == a - this == -(this - a) | |
| 695 if (_absCompareTo(a) >= 0) { | |
| 696 _absSubTo(a, r); | |
| 697 } else { | |
| 698 r_neg = !r_neg; | |
| 699 a._absSubTo(this, r); | |
| 700 } | |
| 701 } | |
| 702 r._neg = r_neg; | |
| 703 return r; | |
| 704 } | |
| 705 | |
| 706 // Return r = this - a. | |
| 707 _subTo(a, r) { | |
| 708 var r_neg = _neg; | |
| 709 if (_neg != a._neg) { | |
| 710 // this - (-a) == this + a | |
| 711 // (-this) - a == -(this + a) | |
| 712 _absAddTo(a, r); | |
| 713 } else { | |
| 714 // this - a == this - a == -(this - a) | |
| 715 // (-this) - (-a) == a - this == -(this - a) | |
| 716 if (_absCompareTo(a) >= 0) { | |
| 717 _absSubTo(a, r); | |
| 718 } else { | |
| 719 r_neg = !r_neg; | |
| 720 a._absSubTo(this, r); | |
| 721 } | |
| 722 } | |
| 723 r._neg = r_neg; | |
| 724 return r; | |
| 725 } | |
| 726 | |
| 727 // Accumulate multiply. | |
| 728 // this[i..i+n-1]: bigint multiplicand. | |
| 729 // x: digit multiplier. | |
| 730 // w[j..j+n-1]: bigint accumulator. | |
| 731 // c: int carry in. | |
| 732 // Returns carry out. | |
| 733 // w[j..j+n-1] += this[i..i+n-1] * x + c. | |
| 734 // Returns carry out. | |
| 735 // TODO(regis): _sqrTo is the only caller passing an x possibly larger than | |
| 736 // a digit (2*digit) and passing a non-zero carry in. Refactor? | |
| 737 int _am(int i, int x, _Bigint w, int j, int c, int n) { | |
| 738 if (x == 0 && c == 0) { | |
| 739 // No-op if both x and c are 0. | |
| 740 return 0; | |
| 741 } | |
| 742 int xl = x & DIGIT2_MASK; | |
| 743 int xh = x >> DIGIT2_BITS; | |
| 744 while (--n >= 0) { | |
| 745 int l = _digits[i] & DIGIT2_MASK; | |
| 746 int h = _digits[i++] >> DIGIT2_BITS; | |
| 747 int m = xh*l + h*xl; | |
| 748 l = xl*l + ((m & DIGIT2_MASK) << DIGIT2_BITS) + w._digits[j] + c; | |
| 749 c = (l >> DIGIT_BITS) + (m >> DIGIT2_BITS) + xh*h; | |
| 750 w._digits[j++] = l & DIGIT_MASK; | |
| 751 } | |
| 752 return c; | |
| 753 } | |
| 754 | |
| 755 // r = this * a. | |
| 756 void _mulTo(a, r) { | |
| 757 // TODO(regis): Use karatsuba multiplication when appropriate. | |
| 758 var i = _used; | |
| 759 r._ensureLength(i + a._used); | |
| 760 r._used = i + a._used; | |
| 761 while (--i >= 0) { | |
| 762 r._digits[i] = 0; | |
| 763 } | |
| 764 for (i = 0; i < a._used; ++i) { | |
| 765 // TODO(regis): Replace _am with addMulVVW. | |
| 766 r._digits[i + _used] = _am(0, a._digits[i], r, i, 0, _used); | |
| 767 } | |
| 768 r._clamp(); | |
| 769 r._neg = r._used > 0 && _neg != a._neg; // Zero cannot be negative. | |
| 770 } | |
| 771 | |
| 772 // r = this^2, r != this. | |
| 773 void _sqrTo(r) { | |
| 774 var i = 2 * _used; | |
| 775 r._ensureLength(i); | |
| 776 r._used = i; | |
| 777 while (--i >= 0) { | |
| 778 r._digits[i] = 0; | |
| 779 } | |
| 780 for (i = 0; i < _used - 1; ++i) { | |
| 781 var c = _am(i, _digits[i], r, 2*i, 0, 1); | |
| 782 var d = r._digits[i + _used]; | |
| 783 d += _am(i + 1, _digits[i] << 1, r, 2*i + 1, c, _used - i - 1); | |
| 784 if (d >= DIGIT_BASE) { | |
| 785 r._digits[i + _used] = d - DIGIT_BASE; | |
| 786 r._digits[i + _used + 1] = 1; | |
| 787 } else { | |
| 788 r._digits[i + _used] = d; | |
| 789 } | |
| 790 } | |
| 791 if (r._used > 0) { | |
| 792 r._digits[r._used - 1] += _am(i, _digits[i], r, 2*i, 0, 1); | |
| 793 } | |
| 794 r._neg = false; | |
| 795 r._clamp(); | |
| 796 } | |
| 797 | |
| 798 // Truncating division and remainder. | |
| 799 // If q != null, q = trunc(this / a). | |
| 800 // If r != null, r = this - a * trunc(this / a). | |
| 801 void _divRemTo(a, q, r) { | |
| 802 if (a._used == 0) return; | |
| 803 if (_used < a._used) { | |
| 804 if (q != null) { | |
| 805 // Set q to 0. | |
| 806 q._neg = false; | |
| 807 q._used = 0; | |
| 808 } | |
| 809 if (r != null) { | |
| 810 _copyTo(r); | |
| 811 } | |
| 812 return; | |
| 813 } | |
| 814 if (r == null) { | |
| 815 r = new _Bigint(); | |
| 816 } | |
| 817 var y = new _Bigint(); | |
| 818 var nsh = DIGIT_BITS - _nbits(a._digits[a._used - 1]); // normalize modulus | |
| 819 if (nsh > 0) { | |
| 820 a._lShiftTo(nsh, y); | |
| 821 _lShiftTo(nsh, r); | |
| 822 } | |
| 823 else { | |
| 824 a._copyTo(y); | |
| 825 _copyTo(r); | |
| 826 } | |
| 827 // We consider this and a positive. Ignore the copied sign. | |
| 828 y._neg = false; | |
| 829 r._neg = false; | |
| 830 var y_used = y._used; | |
| 831 var y0 = y._digits[y_used - 1]; | |
| 832 if (y0 == 0) return; | |
| 833 var yt = y0*(1 << FP_D1) + ((y_used > 1) ? y._digits[y_used - 2] >> FP_D2 : 0); | |
| 834 var d1 = FP_BASE/yt; | |
| 835 var d2 = (1 << FP_D1)/yt; | |
| 836 var e = 1 << FP_D2; | |
| 837 var i = r._used; | |
| 838 var j = i - y_used; | |
| 839 _Bigint t = (q == null) ? new _Bigint() : q; | |
| 840 | |
| 841 y._dlShiftTo(j, t); | |
| 842 | |
| 843 if (r._compareTo(t) >= 0) { | |
| 844 r._digits[r._used++] = 1; | |
| 845 r._subTo(t, r); | |
| 846 } | |
| 847 ONE._dlShiftTo(y_used, t); | |
| 848 t._subTo(y, y); // "negative" y so we can replace sub with _am later | |
| 849 while (y._used < y_used) { | |
| 850 y._digits[y._used++] = 0; | |
| 851 } | |
| 852 while (--j >= 0) { | |
| 853 // Estimate quotient digit | |
| 854 var qd = (r._digits[--i] == y0) | |
| 855 ? DIGIT_MASK | |
| 856 : (r._digits[i]*d1 + (r._digits[i - 1] + e)*d2).floor(); | |
| 857 if ((r._digits[i] += y._am(0, qd, r, j, 0, y_used)) < qd) { // Try it out | |
| 858 y._dlShiftTo(j, t); | |
| 859 r._subTo(t, r); | |
| 860 while (r._digits[i] < --qd) { | |
| 861 r._subTo(t, r); | |
| 862 } | |
| 863 } | |
| 864 } | |
| 865 if (q != null) { | |
| 866 r._drShiftTo(y_used, q); | |
| 867 if (_neg != a._neg) { | |
| 868 ZERO._subTo(q, q); | |
| 869 } | |
| 870 } | |
| 871 r._used = y_used; | |
| 872 r._clamp(); | |
| 873 if (nsh > 0) { | |
| 874 r._rShiftTo(nsh, r); // Denormalize remainder | |
| 875 } | |
| 876 if (_neg) { | |
| 877 ZERO._subTo(r, r); | |
| 878 } | |
| 879 } | |
| 880 | |
| 881 int get _identityHashCode { | |
| 882 return this; | |
| 883 } | |
| 884 int operator ~() { | |
| 885 _Bigint result = new _Bigint(); | |
| 886 _notTo(result); | |
| 887 return result._toValidInt(); | |
| 888 } | |
| 889 | |
| 890 int get bitLength { | |
| 891 if (_used == 0) return 0; | |
| 892 if (_neg) return (~this).bitLength; | |
| 893 return DIGIT_BITS*(_used - 1) + _nbits(_digits[_used - 1]); | |
| 894 } | |
| 895 | |
| 896 // This method must support smi._toBigint()._shrFromInt(int). | |
| 897 int _shrFromInt(int other) { | |
| 898 if (_used == 0) return other; // Shift amount is zero. | |
| 899 if (_neg) throw "negative shift amount"; // TODO(regis): What exception? | |
| 900 assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised. | |
| 901 var shift; | |
| 902 if (_used > 2 || (_used == 2 && _digits[1] > 0x10000000)) { | |
| 903 if (other < 0) { | |
| 904 return -1; | |
| 905 } else { | |
| 906 return 0; | |
| 907 } | |
| 908 } else { | |
| 909 shift = ((_used == 2) ? (_digits[1] << DIGIT_BITS) : 0) + _digits[0]; | |
| 910 } | |
| 911 _Bigint result = new _Bigint(); | |
| 912 other._toBigint()._rShiftTo(shift, result); | |
| 913 return result._toValidInt(); | |
| 914 } | |
| 915 | |
| 916 // This method must support smi._toBigint()._shlFromInt(int). | |
| 917 // An out of memory exception is thrown if the result cannot be allocated. | |
| 918 int _shlFromInt(int other) { | |
| 919 if (_used == 0) return other; // Shift amount is zero. | |
| 920 if (_neg) throw "negative shift amount"; // TODO(regis): What exception? | |
| 921 assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised. | |
| 922 var shift; | |
| 923 if (_used > 2 || (_used == 2 && _digits[1] > 0x10000000)) { | |
| 924 throw new OutOfMemoryError(); | |
| 925 } else { | |
| 926 shift = ((_used == 2) ? (_digits[1] << DIGIT_BITS) : 0) + _digits[0]; | |
| 927 } | |
| 928 _Bigint result = new _Bigint(); | |
| 929 other._toBigint()._lShiftTo(shift, result); | |
| 930 return result._toValidInt(); | |
| 931 } | |
| 932 | |
| 933 int pow(int exponent) { | |
| 934 throw "Bigint.pow not implemented"; | |
| 935 } | |
| 936 | |
| 937 // Overriden operators and methods. | |
| 938 | |
| 939 int operator -() { | |
| 940 if (_used == 0) { | |
| 941 return this; | |
| 942 } | |
| 943 var r = new _Bigint(); | |
| 944 _copyTo(r); | |
| 945 r._neg = !_neg; | |
| 946 return r._toValidInt(); | |
| 947 } | |
| 948 | |
| 949 int get sign { | |
| 950 return (_used == 0) ? 0 : _neg ? -1 : 1; | |
| 951 } | |
| 952 | |
| 953 bool get isEven => _used == 0 || (_digits[0] & 1) == 0; | |
| 954 bool get isNegative => _neg; | |
| 955 | |
| 956 _leftShiftWithMask32(count, mask) { | |
| 957 if (_used == 0) return 0; | |
| 958 if (count is! _Smi) { | |
| 959 _shlFromInt(count); // Throws out of memory exception. | |
| 960 } | |
| 961 assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised. | |
| 962 if (count > 31) return 0; | |
| 963 return (_digits[0] << count) & mask; | |
| 964 } | |
| 965 | |
| 966 int _bitAndFromInteger(int other) { | |
| 967 _Bigint result = new _Bigint(); | |
| 968 other._toBigint()._andTo(this, result); | |
| 969 return result._toValidInt(); | |
| 970 } | |
| 971 int _bitOrFromInteger(int other) { | |
| 972 _Bigint result = new _Bigint(); | |
| 973 other._toBigint()._orTo(this, result); | |
| 974 return result._toValidInt(); | |
| 975 } | |
| 976 int _bitXorFromInteger(int other) { | |
| 977 _Bigint result = new _Bigint(); | |
| 978 other._toBigint()._xorTo(this, result); | |
| 979 return result._toValidInt(); | |
| 980 } | |
| 981 int _addFromInteger(int other) { | |
| 982 _Bigint result = new _Bigint(); | |
| 983 other._toBigint()._addTo(this, result); | |
| 984 return result._toValidInt(); | |
| 985 } | |
| 986 int _subFromInteger(int other) { | |
| 987 _Bigint result = new _Bigint(); | |
| 988 other._toBigint()._subTo(this, result); | |
| 989 return result._toValidInt(); | |
| 990 } | |
| 991 int _mulFromInteger(int other) { | |
| 992 _Bigint result = new _Bigint(); | |
| 993 other._toBigint()._mulTo(this, result); | |
| 994 return result._toValidInt(); | |
| 995 } | |
| 996 int _truncDivFromInteger(int other) { | |
| 997 _Bigint result = new _Bigint(); | |
| 998 other._toBigint()._divRemTo(this, result, null); | |
| 999 return result._toValidInt(); | |
| 1000 } | |
| 1001 int _moduloFromInteger(int other) { | |
| 1002 _Bigint result = new _Bigint(); | |
| 1003 var ob = other._toBigint(); | |
| 1004 other._toBigint()._divRemTo(this, null, result); | |
| 1005 if (result._neg) { | |
| 1006 if (_neg) { | |
| 1007 result._subTo(this, result); | |
| 1008 } else { | |
| 1009 result._addTo(this, result); | |
| 1010 } | |
| 1011 } | |
| 1012 return result._toValidInt(); | |
| 1013 } | |
| 1014 int _remainderFromInteger(int other) { | |
| 1015 _Bigint result = new _Bigint(); | |
| 1016 other._toBigint()._divRemTo(this, null, result); | |
| 1017 return result._toValidInt(); | |
| 1018 } | |
| 1019 bool _greaterThanFromInteger(int other) { | |
| 1020 return other._toBigint()._compareTo(this) > 0; | |
| 1021 } | |
| 1022 bool _equalToInteger(int other) { | |
| 1023 return other._toBigint()._compareTo(this) == 0; | |
| 1024 } | |
| 1025 | |
| 1026 // New method to support crypto. | |
| 1027 | |
| 1028 // Return this.pow(e) mod m, with 256 <= e < 1<<32. | |
| 1029 int modPow(int e, int m) { | |
| 1030 assert(e >= 256 && !m.isEven()); | |
| 1031 if (e >= (1 << 32)) { | |
| 1032 throw "Bigint.modPow with exponent larger than 32-bit not implemented"; | |
| 1033 } | |
| 1034 _Reduction z = new _Montgomery(m); | |
| 1035 var r = new _Bigint(); | |
| 1036 var r2 = new _Bigint(); | |
| 1037 var g = z.convert(this); | |
| 1038 int i = _nbits(e) - 1; | |
| 1039 g._copyTo(r); | |
| 1040 while (--i >= 0) { | |
| 1041 z.sqrTo(r, r2); | |
| 1042 if ((e & (1 << i)) > 0) { | |
| 1043 z.mulTo(r2, g, r); | |
| 1044 } else { | |
| 1045 var t = r; | |
| 1046 r = r2; | |
| 1047 r2 = t; | |
| 1048 } | |
| 1049 } | |
| 1050 return z.revert(r)._toValidInt(); | |
| 1051 } | |
| 1052 | |
| 1053 | |
| 1054 /* | |
| 1055 // Static helpers _used to intrinsify primitive operations on _digits. | |
| 1056 static int _mulWW(int x, int y) { | |
| 1057 x &= DIGIT_MASK; | |
| 1058 y &= DIGIT_MASK; | |
| 1059 return x*y; | |
| 1060 } | |
| 1061 | |
| 1062 static int _remainder; | |
| 1063 | |
| 1064 static int _divWW(int x, int y) { | |
| 1065 x &= TWO_DIGIT_MASK; | |
| 1066 y &= DIGIT_MASK; | |
| 1067 _remainder = x % y; | |
| 1068 return x ~/ y; | |
| 1069 } | |
| 1070 } | |
| 1071 */ | |
| 1072 } | |
| 1073 | |
| 1074 // New classes to support crypto (modPow method). | |
| 1075 | |
| 1076 class _Reduction { | |
| 1077 const _Reduction(); | |
| 1078 _Bigint _convert(_Bigint x) => x; | |
| 1079 _Bigint _revert(_Bigint x) => x; | |
| 1080 void _mulTo(_Bigint x, _Bigint y, _Bigint r) { | |
| 1081 x._mulTo(y, r); | |
| 1082 } | |
| 1083 void _sqrTo(_Bigint x, _Bigint r) { | |
| 1084 x._sqrTo(r); | |
| 1085 } | |
| 1086 } | |
| 1087 | |
| 1088 // Montgomery reduction on _Bigint. | |
| 1089 class _Montgomery implements _Reduction { | |
| 1090 final _Bigint _m; | |
| 1091 var _mp; | |
| 1092 var _mpl; | |
| 1093 var _mph; | |
| 1094 var _um; | |
| 1095 var _mused2; | |
| 1096 | |
| 1097 _Montgomery(this._m) { | |
| 1098 _mp = _m._invDigit(); | |
| 1099 _mpl = _mp & _Bigint.DIGIT2_MASK; | |
| 1100 _mph = _mp >> _Bigint.DIGIT2_BITS; | |
| 1101 _um = (1 << (_Bigint.DIGIT_BITS - _Bigint.DIGIT2_BITS)) - 1; | |
| 1102 _mused2 = 2*_m._used; | |
| 1103 } | |
| 1104 | |
| 1105 // Return x*R mod _m | |
| 1106 _Bigint _convert(_Bigint x) { | |
| 1107 var r = new _Bigint(); | |
| 1108 x.abs()._dlShiftTo(_m._used, r); | |
| 1109 r._divRemTo(_m, null, r); | |
| 1110 if (x._neg && r._compareTo(_Bigint.ZERO) > 0) { | |
| 1111 _m._subTo(r, r); | |
| 1112 } | |
| 1113 return r; | |
| 1114 } | |
| 1115 | |
| 1116 // Return x/R mod _m | |
| 1117 _Bigint _revert(_Bigint x) { | |
| 1118 var r = new _Bigint(); | |
| 1119 x._copyTo(r); | |
| 1120 _reduce(r); | |
| 1121 return r; | |
| 1122 } | |
| 1123 | |
| 1124 // x = x/R mod _m | |
| 1125 void _reduce(_Bigint x) { | |
| 1126 x._ensureLength(_mused2 + 1); | |
| 1127 while (x._used <= _mused2) { // Pad x so _am has enough room later. | |
| 1128 x._digits[x._used++] = 0; | |
| 1129 } | |
| 1130 for (var i = 0; i < _m._used; ++i) { | |
| 1131 // Faster way of calculating u0 = x[i]*mp mod DIGIT_BASE. | |
| 1132 var j = x._digits[i] & _Bigint.DIGIT2_MASK; | |
| 1133 var u0 = (j*_mpl + (((j*_mph + (x._digits[i] >> _Bigint.DIGIT2_BITS) | |
| 1134 *_mpl) & _um) << _Bigint.DIGIT2_BITS)) & _Bigint.DIGIT_MASK; | |
| 1135 // Use _am to combine the multiply-shift-add into one call. | |
| 1136 j = i + _m._used; | |
| 1137 var digit = x._digits[j]; | |
| 1138 digit += _m ._am(0, u0, x, i, 0, _m ._used); | |
| 1139 // propagate carry | |
| 1140 while (digit >= _Bigint.DIGIT_BASE) { | |
| 1141 digit -= _Bigint.DIGIT_BASE; | |
| 1142 x._digits[j++] = digit; | |
| 1143 digit = x._digits[j]; | |
| 1144 digit++; | |
| 1145 } | |
| 1146 x._digits[j] = digit; | |
| 1147 } | |
| 1148 x._clamp(); | |
| 1149 x._drShiftTo(_m ._used, x); | |
| 1150 if (x._compareTo(_m ) >= 0) { | |
| 1151 x._subTo(_m , x); | |
| 1152 } | |
| 1153 } | |
| 1154 | |
| 1155 // r = x^2/R mod _m ; x != r | |
| 1156 void _sqrTo(_Bigint x, _Bigint r) { | |
| 1157 x._sqrTo(r); | |
| 1158 _reduce(r); | |
| 1159 } | |
| 1160 | |
| 1161 // r = x*y/R mod _m ; x, y != r | |
| 1162 void _mulTo(_Bigint x, _Bigint y, _Bigint r) { | |
| 1163 x._mulTo(y, r); | |
| 1164 _reduce(r); | |
| 1165 } | |
| 1166 } | |
| 1167 | |
| OLD | NEW |