OLD | NEW |
---|---|
(Empty) | |
1 // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file | |
2 // for details. All rights reserved. Use of this source code is governed by a | |
3 // BSD-style license that can be found in the LICENSE file. | |
4 | |
5 // Copyright 2009 The Go Authors. All rights reserved. | |
6 // Use of this source code is governed by a BSD-style | |
7 // license that can be found in the LICENSE file. | |
8 | |
9 /* | |
10 * Copyright (c) 2003-2005 Tom Wu | |
11 * Copyright (c) 2012 Adam Singer (adam@solvr.io) | |
12 * All Rights Reserved. | |
13 * | |
14 * Permission is hereby granted, free of charge, to any person obtaining | |
15 * a copy of this software and associated documentation files (the | |
16 * "Software"), to deal in the Software without restriction, including | |
17 * without limitation the rights to use, copy, modify, merge, publish, | |
18 * distribute, sublicense, and/or sell copies of the Software, and to | |
19 * permit persons to whom the Software is furnished to do so, subject to | |
20 * the following conditions: | |
21 * | |
22 * The above copyright notice and this permission notice shall be | |
23 * included in all copies or substantial portions of the Software. | |
24 * | |
25 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, | |
26 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY | |
27 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. | |
28 * | |
29 * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, | |
30 * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER | |
31 * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF | |
32 * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT | |
33 * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | |
34 * | |
35 * In addition, the following condition applies: | |
36 * | |
37 * All redistributions must retain an intact copy of this copyright notice | |
38 * and disclaimer. | |
39 */ | |
40 | |
41 class _Bigint extends _IntegerImplementation implements int { | |
42 // Bits per digit. | |
43 static const int DIGIT_BITS = 32; | |
44 static const int DIGIT_BASE = 1 << DIGIT_BITS; | |
45 static const int DIGIT_MASK = (1 << DIGIT_BITS) - 1; | |
46 | |
47 // Bits per half digit. | |
48 static const int DIGIT2_BITS = DIGIT_BITS >> 1; | |
49 static const int DIGIT2_BASE = 1 << DIGIT2_BITS; | |
50 static const int DIGIT2_MASK = (1 << DIGIT2_BITS) - 1; | |
51 | |
52 // Allocate extra digits so the bigint can be reused. | |
53 static const int EXTRA_DIGITS = 4; | |
54 | |
55 // Floating-point unit integer precision. | |
56 static const int FP_BITS = 52; | |
57 static const int FP_BASE = 1 << FP_BITS; | |
58 static const int FP_D1 = FP_BITS - DIGIT_BITS; | |
59 static const int FP_D2 = 2 * DIGIT_BITS - FP_BITS; | |
60 | |
61 // Min and max of non bigint values. | |
62 static const int MIN_INT64 = (-1) << 63; | |
63 static const int MAX_INT64 = 0x7fffffffffffffff; | |
64 | |
65 // Bigint constant values. | |
66 // Note: Not declared as final in order to satisfy optimizer, which expects | |
67 // constants to be in canonical form (Smi). | |
68 static _Bigint ZERO = new _Bigint(); | |
69 static _Bigint ONE = new _Bigint()._setInt(1); | |
70 | |
71 // Digit conversion table for parsing. | |
72 static final Map<int, int> DIGIT_TABLE = _createDigitTable(); | |
73 | |
74 // Internal data structure. | |
75 bool get _neg native "Bigint_getNeg"; | |
76 void set _neg(bool neg) native "Bigint_setNeg"; | |
77 int get _used native "Bigint_getUsed"; | |
78 void set _used(int used) native "Bigint_setUsed"; | |
79 Uint32List get _digits native "Bigint_getDigits"; | |
Vyacheslav Egorov (Google)
2014/09/10 11:44:12
Any reason why is this not a real field?
This is
regis
2014/09/10 17:34:17
Class _Bigint being part of the integer class hier
Vyacheslav Egorov (Google)
2014/09/10 17:40:44
But we can force fields declared in the dart code
| |
80 void set _digits(Uint32List digits) native "Bigint_setDigits"; | |
81 | |
82 // Factory returning an instance initialized to value 0. | |
83 factory _Bigint() native "Bigint_allocate"; | |
84 | |
85 // Factory returning an instance initialized to an integer value. | |
86 factory _Bigint._fromInt(int i) { | |
87 return new _Bigint()._setInt(i); | |
88 } | |
89 | |
90 // Factory returning an instance initialized to a hex string. | |
91 factory _Bigint._fromHex(String s) { | |
92 return new _Bigint()._setHex(s); | |
93 } | |
94 | |
95 // Factory returning an instance initialized to a double value given by its | |
96 // components. | |
97 factory _Bigint._fromDouble(int sign, int significand, int exponent) { | |
98 return new _Bigint()._setDouble(sign, significand, exponent); | |
99 } | |
100 | |
101 // Initialize instance to the given value no larger than a Mint. | |
102 _Bigint _setInt(int i) { | |
103 assert(i is! _Bigint); | |
104 _ensureLength(2); | |
105 _used = 2; | |
106 var l, h; | |
107 if (i < 0) { | |
108 _neg = true; | |
109 if (i == MIN_INT64) { | |
110 l = 0; | |
111 h = 0x80000000; | |
112 } else { | |
113 l = (-i) & DIGIT_MASK; | |
114 h = (-i) >> DIGIT_BITS; | |
115 } | |
116 } else { | |
117 _neg = false; | |
118 l = i & DIGIT_MASK; | |
119 h = i >> DIGIT_BITS; | |
120 } | |
121 _digits[0] = l; | |
122 _digits[1] = h; | |
123 _clamp(); | |
124 return this; | |
125 } | |
126 | |
127 // Initialize instance to the given hex string. | |
128 // TODO(regis): Copy Bigint::NewFromHexCString, fewer digit accesses. | |
129 // TODO(regis): Unused. | |
130 _Bigint _setHex(String s) { | |
131 const int HEX_BITS = 4; | |
132 const int HEX_DIGITS_PER_DIGIT = 8; | |
133 var hexDigitIndex = s.length; | |
134 _ensureLength((hexDigitIndex + HEX_DIGITS_PER_DIGIT - 1) ~/ HEX_DIGITS_PER_D IGIT); | |
135 var bitIndex = 0; | |
136 while (--hexDigitIndex >= 0) { | |
137 var digit = DIGIT_TABLE[s.codeUnitAt(hexDigitIndex)]; | |
138 if (digit = null) { | |
139 if (s[hexDigitIndex] == "-") _neg = true; | |
140 continue; // Ignore invalid digits. | |
141 } | |
142 _neg = false; // Ignore "-" if not at index 0. | |
143 if (bitIndex == 0) { | |
144 _digits[_used++] = digit; | |
145 // TODO(regis): What if too many bad digits were ignored and | |
146 // _used becomes larger than _digits.length? error or reallocate? | |
147 } else { | |
148 _digits[_used - 1] |= digit << bitIndex; | |
149 } | |
150 bitIndex = (bitIndex + HEX_BITS) % DIGIT_BITS; | |
151 } | |
152 _clamp(); | |
153 return this; | |
154 } | |
155 | |
156 // Initialize instance to the given double value. | |
157 _Bigint _setDouble(int sign, int significand, int exponent) { | |
158 assert(significand >= 0); | |
159 assert(exponent >= 0); | |
160 _setInt(significand); | |
161 _neg = sign < 0; | |
162 if (exponent > 0) { | |
163 _lShiftTo(exponent, this); | |
164 } | |
165 return this; | |
166 } | |
167 | |
168 // Create digit conversion table for parsing. | |
169 static Map<int, int> _createDigitTable() { | |
170 Map table = new HashMap(); | |
171 int digit, value; | |
172 digit = "0".codeUnitAt(0); | |
173 for(value = 0; value <= 9; ++value) table[digit++] = value; | |
174 digit = "a".codeUnitAt(0); | |
175 for(value = 10; value < 36; ++value) table[digit++] = value; | |
176 digit = "A".codeUnitAt(0); | |
177 for(value = 10; value < 36; ++value) table[digit++] = value; | |
178 return table; | |
179 } | |
180 | |
181 // Return most compact integer (i.e. possibly Smi or Mint). | |
182 // TODO(regis): Intrinsify. | |
183 int _toValidInt() { | |
184 assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised. | |
185 if (_used == 0) return 0; | |
186 if (_used == 1) return _neg ? -_digits[0] : _digits[0]; | |
187 if (_used > 2) return this; | |
188 if (_neg) { | |
189 if (_digits[1] > 0x80000000) return this; | |
190 if (_digits[1] == 0x80000000) { | |
191 if (_digits[0] > 0) return this; | |
192 return MIN_INT64; | |
193 } | |
194 return -((_digits[1] << DIGIT_BITS) | _digits[0]); | |
195 } | |
196 if (_digits[1] >= 0x80000000) return this; | |
197 return (_digits[1] << DIGIT_BITS) | _digits[0]; | |
198 } | |
199 | |
200 // Conversion from int to bigint. | |
201 _Bigint _toBigint() => this; | |
202 | |
203 // Make sure at least 'length' _digits are allocated. | |
204 // Copy existing _digits if reallocation is necessary. | |
205 // TODO(regis): Check that we are not preserving _digits unnecessarily. | |
206 void _ensureLength(int length) { | |
207 if (length > 0 && (_digits == null || length > _digits.length)) { | |
208 var new_digits = new Uint32List(length + EXTRA_DIGITS); | |
209 if (_digits != null) { | |
210 for (var i = _used; --i >= 0; ) { | |
211 new_digits[i] = _digits[i]; | |
212 } | |
213 } | |
214 _digits = new_digits; | |
215 } | |
216 } | |
217 | |
218 // Clamp off excess high _digits. | |
219 void _clamp() { | |
220 while (_used > 0 && _digits[_used - 1] == 0) { | |
221 --_used; | |
222 } | |
223 assert(_used > 0 || !_neg); | |
224 } | |
225 | |
226 // Copy this to r. | |
227 void _copyTo(_Bigint r) { | |
228 r._ensureLength(_used); | |
229 for (var i = _used - 1; i >= 0; --i) { | |
230 r._digits[i] = _digits[i]; | |
231 } | |
232 r._used = _used; | |
233 r._neg = _neg; | |
234 } | |
235 | |
236 // Return the bit length of digit x. | |
237 int _nbits(int x) { | |
238 var r = 1, t; | |
239 if ((t = x >> 16) != 0) { x = t; r += 16; } | |
240 if ((t = x >> 8) != 0) { x = t; r += 8; } | |
241 if ((t = x >> 4) != 0) { x = t; r += 4; } | |
242 if ((t = x >> 2) != 0) { x = t; r += 2; } | |
243 if ((x >> 1) != 0) { r += 1; } | |
244 return r; | |
245 } | |
246 | |
247 // r = this << n*DIGIT_BITS. | |
248 void _dlShiftTo(int n, _Bigint r) { | |
249 var r_used = _used + n; | |
250 r._ensureLength(r_used); | |
251 for (var i = _used - 1; i >= 0; --i) { | |
252 r._digits[i + n] = _digits[i]; | |
253 } | |
254 for (var i = n - 1; i >= 0; --i) { | |
255 r._digits[i] = 0; | |
256 } | |
257 r._used = r_used; | |
258 r._neg = _neg; | |
259 } | |
260 | |
261 // r = this >> n*DIGIT_BITS. | |
262 void _drShiftTo(int n, _Bigint r) { | |
263 var r_used = _used - n; | |
264 if (r_used < 0) { | |
265 if (_neg) { | |
266 // Set r to -1. | |
267 r._neg = true; | |
268 r._ensureLength(1); | |
269 r._used = 1; | |
270 r._digits[0] = 1; | |
271 } else { | |
272 // Set r to 0. | |
273 r._neg = false; | |
274 r._used = 0; | |
275 } | |
276 return; | |
277 } | |
278 r._ensureLength(r_used); | |
279 for (var i = n; i < _used; ++i) { | |
280 r._digits[i - n] = _digits[i]; | |
281 } | |
282 r._used = r_used; | |
283 r._neg = _neg; | |
284 if (_neg) { | |
285 // Round down if any bit was shifted out. | |
286 for (var i = 0; i < n; i++) { | |
287 if (_digits[i] != 0) { | |
288 r._subTo(ONE, r); | |
289 break; | |
290 } | |
291 } | |
292 } | |
293 } | |
294 | |
295 // r = this << n. | |
296 void _lShiftTo(int n, _Bigint r) { | |
297 var ds = n ~/ DIGIT_BITS; | |
298 var bs = n % DIGIT_BITS; | |
299 if (bs == 0) { | |
300 _dlShiftTo(ds, r); | |
301 return; | |
302 } | |
303 var cbs = DIGIT_BITS - bs; | |
304 var bm = (1 << cbs) - 1; | |
305 var r_used = _used + ds + 1; | |
306 r._ensureLength(r_used); | |
307 var c = 0; | |
308 for (var i = _used - 1; i >= 0; --i) { | |
309 r._digits[i + ds + 1] = (_digits[i] >> cbs) | c; | |
310 c = (_digits[i] & bm) << bs; | |
311 } | |
312 for (var i = ds - 1; i >= 0; --i) { | |
313 r._digits[i] = 0; | |
314 } | |
315 r._digits[ds] = c; | |
316 r._used = r_used; | |
317 r._neg = _neg; | |
318 r._clamp(); | |
319 } | |
320 | |
321 // r = this >> n. | |
322 void _rShiftTo(int n, _Bigint r) { | |
323 var ds = n ~/ DIGIT_BITS; | |
324 var bs = n % DIGIT_BITS; | |
325 if (bs == 0) { | |
326 _drShiftTo(ds, r); | |
327 return; | |
328 } | |
329 var r_used = _used - ds; | |
330 if (r_used <= 0) { | |
331 if (_neg) { | |
332 // Set r to -1. | |
333 r._neg = true; | |
334 r._ensureLength(1); | |
335 r._used = 1; | |
336 r._digits[0] = 1; | |
337 } else { | |
338 // Set r to 0. | |
339 r._neg = false; | |
340 r._used = 0; | |
341 } | |
342 return; | |
343 } | |
344 var cbs = DIGIT_BITS - bs; | |
345 var bm = (1 << bs) - 1; | |
346 r._ensureLength(r_used); | |
347 r._digits[0] = _digits[ds] >> bs; | |
348 for (var i = ds + 1; i < _used; ++i) { | |
349 r._digits[i - ds - 1] |= (_digits[i] & bm) << cbs; | |
350 r._digits[i - ds] = _digits[i] >> bs; | |
351 } | |
352 r._neg = _neg; | |
353 r._used = r_used; | |
354 r._clamp(); | |
355 if (_neg) { | |
356 // Round down if any bit was shifted out. | |
357 if ((_digits[ds] & bm) != 0) { | |
358 r._subTo(ONE, r); | |
359 return; | |
360 } | |
361 for (var i = 0; i < ds; i++) { | |
362 if (_digits[i] != 0) { | |
363 r._subTo(ONE, r); | |
364 return; | |
365 } | |
366 } | |
367 } | |
368 } | |
369 | |
370 // Return 0 if abs(this) == abs(a). | |
371 // Return a positive number if abs(this) > abs(a). | |
372 // Return a negative number if abs(this) < abs(a). | |
373 int _absCompareTo(_Bigint a) { | |
374 var r = _used - a._used; | |
375 if (r == 0) { | |
376 var i = _used; | |
377 while (--i >= 0 && (r = _digits[i] - a._digits[i]) == 0); | |
378 } | |
379 return r; | |
380 } | |
381 | |
382 // Return 0 if this == a. | |
383 // Return a positive number if this > a. | |
384 // Return a negative number if this < a. | |
385 int _compareTo(_Bigint a) { | |
386 var r; | |
387 if (_neg == a._neg) { | |
388 r = _absCompareTo(a); | |
389 if (_neg) { | |
390 r = -r; | |
391 } | |
392 } else if (_neg) { | |
393 r = -1; | |
394 } else { | |
395 r = 1; | |
396 } | |
397 return r; | |
398 } | |
399 | |
400 // r = abs(this) + abs(a). | |
401 void _absAddTo(_Bigint a, _Bigint r) { | |
402 if (_used < a._used) { | |
403 a._absAddTo(this, r); | |
404 return; | |
405 } | |
406 if (_used == 0) { | |
407 // Set r to 0. | |
408 r._neg = false; | |
409 r._used = 0; | |
410 return; | |
411 } | |
412 if (a._used == 0) { | |
413 _copyTo(r); | |
414 return; | |
415 } | |
416 r._ensureLength(_used + 1); | |
417 var c = 0; | |
418 for (var i = 0; i < a._used; i++) { | |
419 c += _digits[i] + a._digits[i]; | |
420 r._digits[i] = c & DIGIT_MASK; | |
421 c >>= DIGIT_BITS; | |
422 } | |
423 for (var i = a._used; i < _used; i++) { | |
424 c += _digits[i]; | |
425 r._digits[i] = c & DIGIT_MASK; | |
426 c >>= DIGIT_BITS; | |
427 } | |
428 r._digits[_used] = c; | |
429 r._used = _used + 1; | |
430 r._clamp(); | |
431 } | |
432 | |
433 // r = abs(this) - abs(a), with abs(this) >= abs(a). | |
434 void _absSubTo(_Bigint a, _Bigint r) { | |
435 assert(_absCompareTo(a) >= 0); | |
436 if (_used == 0) { | |
437 // Set r to 0. | |
438 r._neg = false; | |
439 r._used = 0; | |
440 return; | |
441 } | |
442 if (a._used == 0) { | |
443 _copyTo(r); | |
444 return; | |
445 } | |
446 r._ensureLength(_used); | |
447 var c = 0; | |
448 for (var i = 0; i < a._used; i++) { | |
449 c += _digits[i] - a._digits[i]; | |
450 r._digits[i] = c & DIGIT_MASK; | |
451 c >>= DIGIT_BITS; | |
452 } | |
453 for (var i = a._used; i < _used; i++) { | |
454 c += _digits[i]; | |
455 r._digits[i] = c & DIGIT_MASK; | |
456 c >>= DIGIT_BITS; | |
457 } | |
458 r._used = _used; | |
459 r._clamp(); | |
460 } | |
461 | |
462 // r = abs(this) & abs(a). | |
463 void _absAndTo(_Bigint a, _Bigint r) { | |
464 var r_used = (_used < a._used) ? _used : a._used; | |
465 r._ensureLength(r_used); | |
466 for (var i = 0; i < r_used; i++) { | |
467 r._digits[i] = _digits[i] & a._digits[i]; | |
468 } | |
469 r._used = r_used; | |
470 r._clamp(); | |
471 } | |
472 | |
473 // r = abs(this) &~ abs(a). | |
474 void _absAndNotTo(_Bigint a, _Bigint r) { | |
475 var r_used = _used; | |
476 r._ensureLength(r_used); | |
477 var m = (r_used < a._used) ? r_used : a._used; | |
478 for (var i = 0; i < m; i++) { | |
479 r._digits[i] = _digits[i] &~ a._digits[i]; | |
480 } | |
481 for (var i = m; i < r_used; i++) { | |
482 r._digits[i] = _digits[i]; | |
483 } | |
484 r._used = r_used; | |
485 r._clamp(); | |
486 } | |
487 | |
488 // r = abs(this) | abs(a). | |
489 void _absOrTo(_Bigint a, _Bigint r) { | |
490 var r_used = (_used > a._used) ? _used : a._used; | |
491 r._ensureLength(r_used); | |
492 var l, m; | |
493 if (_used < a._used) { | |
494 l = a; | |
495 m = _used; | |
496 } else { | |
497 l = this; | |
498 m = a._used; | |
499 } | |
500 for (var i = 0; i < m; i++) { | |
501 r._digits[i] = _digits[i] | a._digits[i]; | |
502 } | |
503 for (var i = m; i < r_used; i++) { | |
504 r._digits[i] = l._digits[i]; | |
505 } | |
506 r._used = r_used; | |
507 r._clamp(); | |
508 } | |
509 | |
510 // r = abs(this) ^ abs(a). | |
511 void _absXorTo(_Bigint a, _Bigint r) { | |
512 var r_used = (_used > a._used) ? _used : a._used; | |
513 r._ensureLength(r_used); | |
514 var l, m; | |
515 if (_used < a._used) { | |
516 l = a; | |
517 m = _used; | |
518 } else { | |
519 l = this; | |
520 m = a._used; | |
521 } | |
522 for (var i = 0; i < m; i++) { | |
523 r._digits[i] = _digits[i] ^ a._digits[i]; | |
524 } | |
525 for (var i = m; i < r_used; i++) { | |
526 r._digits[i] = l._digits[i]; | |
527 } | |
528 r._used = r_used; | |
529 r._clamp(); | |
530 } | |
531 | |
532 // Return r = this & a. | |
533 _Bigint _andTo(_Bigint a, _Bigint r) { | |
534 if (_neg == a._neg) { | |
535 if (_neg) { | |
536 // (-this) & (-a) == ~(this-1) & ~(a-1) | |
537 // == ~((this-1) | (a-1)) | |
538 // == -(((this-1) | (a-1)) + 1) | |
539 _Bigint t1 = new _Bigint(); | |
540 _absSubTo(ONE, t1); | |
541 _Bigint a1 = new _Bigint(); | |
542 a._absSubTo(ONE, a1); | |
543 t1._absOrTo(a1, r); | |
544 r._absAddTo(ONE, r); | |
545 r._neg = true; // r cannot be zero if this and a are negative. | |
546 return r; | |
547 } | |
548 _absAndTo(a, r); | |
549 r._neg = false; | |
550 return r; | |
551 } | |
552 // _neg != a._neg | |
553 var p, n; | |
554 if (_neg) { | |
555 p = a; | |
556 n = this; | |
557 } else { // & is symmetric. | |
558 p = this; | |
559 n = a; | |
560 } | |
561 // p & (-n) == p & ~(n-1) == p &~ (n-1) | |
562 _Bigint n1 = new _Bigint(); | |
563 n._absSubTo(ONE, n1); | |
564 p._absAndNotTo(n1, r); | |
565 r._neg = false; | |
566 return r; | |
567 } | |
568 | |
569 // Return r = this &~ a. | |
570 _Bigint _andNotTo(_Bigint a, _Bigint r) { | |
571 if (_neg == a._neg) { | |
572 if (_neg) { | |
573 // (-this) &~ (-a) == ~(this-1) &~ ~(a-1) | |
574 // == ~(this-1) & (a-1) | |
575 // == (a-1) &~ (this-1) | |
576 _Bigint t1 = new _Bigint(); | |
577 _absSubTo(ONE, t1); | |
578 _Bigint a1 = new _Bigint(); | |
579 a._absSubTo(ONE, a1); | |
580 a1._absAndNotTo(t1, r); | |
581 r._neg = false; | |
582 return r; | |
583 } | |
584 _absAndNotTo(a, r); | |
585 r._neg = false; | |
586 return r; | |
587 } | |
588 if (_neg) { | |
589 // (-this) &~ a == ~(this-1) &~ a | |
590 // == ~(this-1) & ~a | |
591 // == ~((this-1) | a) | |
592 // == -(((this-1) | a) + 1) | |
593 _Bigint t1 = new _Bigint(); | |
594 _absSubTo(ONE, t1); | |
595 t1._absOrTo(a, r); | |
596 r._absAddTo(ONE, r); | |
597 r._neg = true; // r cannot be zero if this is negative and a is positive. | |
598 return r; | |
599 } | |
600 // this &~ (-a) == this &~ ~(a-1) == this & (a-1) | |
601 _Bigint a1 = new _Bigint(); | |
602 a._absSubTo(ONE, a1); | |
603 _absAndTo(a1, r); | |
604 r._neg = false; | |
605 return r; | |
606 } | |
607 | |
608 // Return r = this | a. | |
609 _Bigint _orTo(_Bigint a, _Bigint r) { | |
610 if (_neg == a._neg) { | |
611 if (_neg) { | |
612 // (-this) | (-a) == ~(this-1) | ~(a-1) | |
613 // == ~((this-1) & (a-1)) | |
614 // == -(((this-1) & (a-1)) + 1) | |
615 _Bigint t1 = new _Bigint(); | |
616 _absSubTo(ONE, t1); | |
617 _Bigint a1 = new _Bigint(); | |
618 a._absSubTo(ONE, a1); | |
619 t1._absAndTo(a1, r); | |
620 r._absAddTo(ONE, r); | |
621 r._neg = true; // r cannot be zero if this and a are negative. | |
622 return r; | |
623 } | |
624 _absOrTo(a, r); | |
625 r._neg = false; | |
626 return r; | |
627 } | |
628 // _neg != a._neg | |
629 var p, n; | |
630 if (_neg) { | |
631 p = a; | |
632 n = this; | |
633 } else { // | is symmetric. | |
634 p = this; | |
635 n = a; | |
636 } | |
637 // p | (-n) == p | ~(n-1) == ~((n-1) &~ p) == -(~((n-1) &~ p) + 1) | |
638 _Bigint n1 = new _Bigint(); | |
639 n._absSubTo(ONE, n1); | |
640 n1._absAndNotTo(p, r); | |
641 r._absAddTo(ONE, r); | |
642 r._neg = true; // r cannot be zero if only one of this or a is negative. | |
643 return r; | |
644 } | |
645 | |
646 // Return r = this ^ a. | |
647 _Bigint _xorTo(_Bigint a, _Bigint r) { | |
648 if (_neg == a._neg) { | |
649 if (_neg) { | |
650 // (-this) ^ (-a) == ~(this-1) ^ ~(a-1) == (this-1) ^ (a-1) | |
651 _Bigint t1 = new _Bigint(); | |
652 _absSubTo(ONE, t1); | |
653 _Bigint a1 = new _Bigint(); | |
654 a._absSubTo(ONE, a1); | |
655 t1._absXorTo(a1, r); | |
656 r._neg = false; | |
657 return r; | |
658 } | |
659 _absXorTo(a, r); | |
660 r._neg = false; | |
661 return r; | |
662 } | |
663 // _neg != a._neg | |
664 var p, n; | |
665 if (_neg) { | |
666 p = a; | |
667 n = this; | |
668 } else { // ^ is symmetric. | |
669 p = this; | |
670 n = a; | |
671 } | |
672 // p ^ (-n) == p ^ ~(n-1) == ~(p ^ (n-1)) == -((p ^ (n-1)) + 1) | |
673 _Bigint n1 = new _Bigint(); | |
674 n._absSubTo(ONE, n1); | |
675 p._absXorTo(n1, r); | |
676 r._absAddTo(ONE, r); | |
677 r._neg = true; // r cannot be zero if only one of this or a is negative. | |
678 return r; | |
679 } | |
680 | |
681 // Return r = ~this. | |
682 _Bigint _notTo(_Bigint r) { | |
683 if (_neg) { | |
684 // ~(-this) == ~(~(this-1)) == this-1 | |
685 _absSubTo(ONE, r); | |
686 r._neg = false; | |
687 return r; | |
688 } | |
689 // ~this == -this-1 == -(this+1) | |
690 _absAddTo(ONE, r); | |
691 r._neg = true; // r cannot be zero if this is positive. | |
692 return r; | |
693 } | |
694 | |
695 // Return r = this + a. | |
696 _Bigint _addTo(_Bigint a, _Bigint r) { | |
697 var r_neg = _neg; | |
698 if (_neg == a._neg) { | |
699 // this + a == this + a | |
700 // (-this) + (-a) == -(this + a) | |
701 _absAddTo(a, r); | |
702 } else { | |
703 // this + (-a) == this - a == -(this - a) | |
704 // (-this) + a == a - this == -(this - a) | |
705 if (_absCompareTo(a) >= 0) { | |
706 _absSubTo(a, r); | |
707 } else { | |
708 r_neg = !r_neg; | |
709 a._absSubTo(this, r); | |
710 } | |
711 } | |
712 r._neg = r_neg; | |
713 return r; | |
714 } | |
715 | |
716 // Return r = this - a. | |
717 _Bigint _subTo(_Bigint a, _Bigint r) { | |
718 var r_neg = _neg; | |
719 if (_neg != a._neg) { | |
720 // this - (-a) == this + a | |
721 // (-this) - a == -(this + a) | |
722 _absAddTo(a, r); | |
723 } else { | |
724 // this - a == this - a == -(this - a) | |
725 // (-this) - (-a) == a - this == -(this - a) | |
726 if (_absCompareTo(a) >= 0) { | |
727 _absSubTo(a, r); | |
728 } else { | |
729 r_neg = !r_neg; | |
730 a._absSubTo(this, r); | |
731 } | |
732 } | |
733 r._neg = r_neg; | |
734 return r; | |
735 } | |
736 | |
737 // Accumulate multiply. | |
738 // this[i..i+n-1]: bigint multiplicand. | |
739 // x: digit multiplier. | |
740 // w[j..j+n-1]: bigint accumulator. | |
741 // c: int carry in. | |
742 // Returns carry out. | |
743 // w[j..j+n-1] += this[i..i+n-1] * x + c. | |
744 // Returns carry out. | |
745 // TODO(regis): _sqrTo is the only caller passing an x possibly larger than | |
746 // a digit (2*digit) and passing a non-zero carry in. Refactor? | |
747 int _am(int i, int x, _Bigint w, int j, int c, int n) { | |
748 if (x == 0 && c == 0) { | |
749 // No-op if both x and c are 0. | |
750 return 0; | |
751 } | |
752 int xl = x & DIGIT2_MASK; | |
753 int xh = x >> DIGIT2_BITS; | |
754 while (--n >= 0) { | |
755 int l = _digits[i] & DIGIT2_MASK; | |
756 int h = _digits[i++] >> DIGIT2_BITS; | |
757 int m = xh*l + h*xl; | |
758 l = xl*l + ((m & DIGIT2_MASK) << DIGIT2_BITS) + w._digits[j] + c; | |
759 c = (l >> DIGIT_BITS) + (m >> DIGIT2_BITS) + xh*h; | |
760 w._digits[j++] = l & DIGIT_MASK; | |
761 } | |
762 return c; | |
763 } | |
764 | |
765 // r = this * a. | |
766 void _mulTo(_Bigint a, _Bigint r) { | |
767 // TODO(regis): Use karatsuba multiplication when appropriate. | |
768 var i = _used; | |
769 r._ensureLength(i + a._used); | |
770 r._used = i + a._used; | |
771 while (--i >= 0) { | |
772 r._digits[i] = 0; | |
773 } | |
774 for (i = 0; i < a._used; ++i) { | |
775 // TODO(regis): Replace _am with addMulVVW. | |
776 r._digits[i + _used] = _am(0, a._digits[i], r, i, 0, _used); | |
777 } | |
778 r._clamp(); | |
779 r._neg = r._used > 0 && _neg != a._neg; // Zero cannot be negative. | |
780 } | |
781 | |
782 // r = this^2, r != this. | |
783 void _sqrTo(_Bigint r) { | |
784 var i = 2 * _used; | |
785 r._ensureLength(i); | |
786 r._used = i; | |
787 while (--i >= 0) { | |
788 r._digits[i] = 0; | |
789 } | |
790 for (i = 0; i < _used - 1; ++i) { | |
791 var c = _am(i, _digits[i], r, 2*i, 0, 1); | |
792 var d = r._digits[i + _used]; | |
793 d += _am(i + 1, _digits[i] << 1, r, 2*i + 1, c, _used - i - 1); | |
794 if (d >= DIGIT_BASE) { | |
795 r._digits[i + _used] = d - DIGIT_BASE; | |
796 r._digits[i + _used + 1] = 1; | |
797 } else { | |
798 r._digits[i + _used] = d; | |
799 } | |
800 } | |
801 if (r._used > 0) { | |
802 r._digits[r._used - 1] += _am(i, _digits[i], r, 2*i, 0, 1); | |
803 } | |
804 r._neg = false; | |
805 r._clamp(); | |
806 } | |
807 | |
808 // Truncating division and remainder. | |
809 // If q != null, q = trunc(this / a). | |
810 // If r != null, r = this - a * trunc(this / a). | |
811 void _divRemTo(_Bigint a, _Bigint q, _Bigint r) { | |
812 if (a._used == 0) return; | |
813 if (_used < a._used) { | |
814 if (q != null) { | |
815 // Set q to 0. | |
816 q._neg = false; | |
817 q._used = 0; | |
818 } | |
819 if (r != null) { | |
820 _copyTo(r); | |
821 } | |
822 return; | |
823 } | |
824 if (r == null) { | |
825 r = new _Bigint(); | |
826 } | |
827 var y = new _Bigint(); | |
828 var nsh = DIGIT_BITS - _nbits(a._digits[a._used - 1]); // normalize modulus | |
829 if (nsh > 0) { | |
830 a._lShiftTo(nsh, y); | |
831 _lShiftTo(nsh, r); | |
832 } | |
833 else { | |
834 a._copyTo(y); | |
835 _copyTo(r); | |
836 } | |
837 // We consider this and a positive. Ignore the copied sign. | |
838 y._neg = false; | |
839 r._neg = false; | |
840 var y_used = y._used; | |
841 var y0 = y._digits[y_used - 1]; | |
842 if (y0 == 0) return; | |
843 var yt = y0*(1 << FP_D1) + ((y_used > 1) ? y._digits[y_used - 2] >> FP_D2 : 0); | |
844 var d1 = FP_BASE/yt; | |
845 var d2 = (1 << FP_D1)/yt; | |
846 var e = 1 << FP_D2; | |
847 var i = r._used; | |
848 var j = i - y_used; | |
849 _Bigint t = (q == null) ? new _Bigint() : q; | |
850 | |
851 y._dlShiftTo(j, t); | |
852 | |
853 if (r._compareTo(t) >= 0) { | |
854 r._digits[r._used++] = 1; | |
855 r._subTo(t, r); | |
856 } | |
857 ONE._dlShiftTo(y_used, t); | |
858 t._subTo(y, y); // "negative" y so we can replace sub with _am later | |
859 while (y._used < y_used) { | |
860 y._digits[y._used++] = 0; | |
861 } | |
862 while (--j >= 0) { | |
863 // Estimate quotient digit | |
864 var qd = (r._digits[--i] == y0) | |
865 ? DIGIT_MASK | |
866 : (r._digits[i]*d1 + (r._digits[i - 1] + e)*d2).floor(); | |
867 if ((r._digits[i] += y._am(0, qd, r, j, 0, y_used)) < qd) { // Try it out | |
868 y._dlShiftTo(j, t); | |
869 r._subTo(t, r); | |
870 while (r._digits[i] < --qd) { | |
871 r._subTo(t, r); | |
872 } | |
873 } | |
874 } | |
875 if (q != null) { | |
876 r._drShiftTo(y_used, q); | |
877 if (_neg != a._neg) { | |
878 ZERO._subTo(q, q); | |
879 } | |
880 } | |
881 r._used = y_used; | |
882 r._clamp(); | |
883 if (nsh > 0) { | |
884 r._rShiftTo(nsh, r); // Denormalize remainder | |
885 } | |
886 if (_neg) { | |
887 ZERO._subTo(r, r); | |
888 } | |
889 } | |
890 | |
891 int get _identityHashCode { | |
892 return this; | |
893 } | |
894 int operator ~() { | |
895 _Bigint result = new _Bigint(); | |
896 _notTo(result); | |
897 return result._toValidInt(); | |
898 } | |
899 | |
900 int get bitLength { | |
901 if (_used == 0) return 0; | |
902 if (_neg) return (~this).bitLength; | |
903 return DIGIT_BITS*(_used - 1) + _nbits(_digits[_used - 1]); | |
904 } | |
905 | |
906 // This method must support smi._toBigint()._shrFromInt(int). | |
907 int _shrFromInt(int other) { | |
908 if (_used == 0) return other; // Shift amount is zero. | |
909 if (_neg) throw "negative shift amount"; // TODO(regis): What exception? | |
910 assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised. | |
911 var shift; | |
912 if (_used > 2 || (_used == 2 && _digits[1] > 0x10000000)) { | |
913 if (other < 0) { | |
914 return -1; | |
915 } else { | |
916 return 0; | |
917 } | |
918 } else { | |
919 shift = ((_used == 2) ? (_digits[1] << DIGIT_BITS) : 0) + _digits[0]; | |
920 } | |
921 _Bigint result = new _Bigint(); | |
922 other._toBigint()._rShiftTo(shift, result); | |
923 return result._toValidInt(); | |
924 } | |
925 | |
926 // This method must support smi._toBigint()._shlFromInt(int). | |
927 // An out of memory exception is thrown if the result cannot be allocated. | |
928 int _shlFromInt(int other) { | |
929 if (_used == 0) return other; // Shift amount is zero. | |
930 if (_neg) throw "negative shift amount"; // TODO(regis): What exception? | |
931 assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised. | |
932 var shift; | |
933 if (_used > 2 || (_used == 2 && _digits[1] > 0x10000000)) { | |
934 throw new OutOfMemoryError(); | |
935 } else { | |
936 shift = ((_used == 2) ? (_digits[1] << DIGIT_BITS) : 0) + _digits[0]; | |
937 } | |
938 _Bigint result = new _Bigint(); | |
939 other._toBigint()._lShiftTo(shift, result); | |
940 return result._toValidInt(); | |
941 } | |
942 | |
943 int pow(int exponent) { | |
944 throw "Bigint.pow not implemented"; | |
945 } | |
946 | |
947 // Overriden operators and methods. | |
948 | |
949 // The following operators override operators of _IntegerImplementation for | |
950 // efficiency, but are not necessary for correctness. They shortcut native | |
951 // calls that would return null because the receiver is _Bigint. | |
952 num operator +(num other) { | |
953 return other._toBigint()._addFromInteger(this); | |
954 } | |
955 num operator -(num other) { | |
956 return other._toBigint()._subFromInteger(this); | |
957 } | |
958 num operator *(num other) { | |
959 return other._toBigint()._mulFromInteger(this); | |
960 } | |
961 num operator ~/(num other) { | |
962 if ((other is int) && (other == 0)) { | |
963 throw const IntegerDivisionByZeroException(); | |
964 } | |
965 return other._toBigint()._truncDivFromInteger(this); | |
966 } | |
967 num operator /(num other) { | |
968 return this.toDouble() / other.toDouble(); | |
969 } | |
970 // TODO(regis): Investigate strange behavior with % double.INFINITY. | |
971 /* | |
972 num operator %(num other) { | |
973 if ((other is int) && (other == 0)) { | |
974 throw const IntegerDivisionByZeroException(); | |
975 } | |
976 return other._toBigint()._moduloFromInteger(this); | |
977 } | |
978 */ | |
979 int operator &(int other) { | |
980 return other._toBigint()._bitAndFromInteger(this); | |
981 } | |
982 int operator |(int other) { | |
983 return other._toBigint()._bitOrFromInteger(this); | |
984 } | |
985 int operator ^(int other) { | |
986 return other._toBigint()._bitXorFromInteger(this); | |
987 } | |
988 int operator >>(int other) { | |
989 return other._toBigint()._shrFromInt(this); | |
990 } | |
991 int operator <<(int other) { | |
992 return other._toBigint()._shlFromInt(this); | |
993 } | |
994 // End of operator shortcuts. | |
995 | |
996 int operator -() { | |
997 if (_used == 0) { | |
998 return this; | |
999 } | |
1000 var r = new _Bigint(); | |
1001 _copyTo(r); | |
1002 r._neg = !_neg; | |
1003 return r._toValidInt(); | |
1004 } | |
1005 | |
1006 int get sign { | |
1007 return (_used == 0) ? 0 : _neg ? -1 : 1; | |
1008 } | |
1009 | |
1010 bool get isEven => _used == 0 || (_digits[0] & 1) == 0; | |
1011 bool get isNegative => _neg; | |
1012 | |
1013 _leftShiftWithMask32(int count, int mask) { | |
1014 if (_used == 0) return 0; | |
1015 if (count is! _Smi) { | |
1016 _shlFromInt(count); // Throws out of memory exception. | |
1017 } | |
1018 assert(DIGIT_BITS == 32); // Otherwise this code needs to be revised. | |
1019 if (count > 31) return 0; | |
1020 return (_digits[0] << count) & mask; | |
1021 } | |
1022 | |
1023 int _bitAndFromInteger(int other) { | |
1024 _Bigint result = new _Bigint(); | |
1025 other._toBigint()._andTo(this, result); | |
1026 return result._toValidInt(); | |
1027 } | |
1028 int _bitOrFromInteger(int other) { | |
1029 _Bigint result = new _Bigint(); | |
1030 other._toBigint()._orTo(this, result); | |
1031 return result._toValidInt(); | |
1032 } | |
1033 int _bitXorFromInteger(int other) { | |
1034 _Bigint result = new _Bigint(); | |
1035 other._toBigint()._xorTo(this, result); | |
1036 return result._toValidInt(); | |
1037 } | |
1038 int _addFromInteger(int other) { | |
1039 _Bigint result = new _Bigint(); | |
1040 other._toBigint()._addTo(this, result); | |
1041 return result._toValidInt(); | |
1042 } | |
1043 int _subFromInteger(int other) { | |
1044 _Bigint result = new _Bigint(); | |
1045 other._toBigint()._subTo(this, result); | |
1046 return result._toValidInt(); | |
1047 } | |
1048 int _mulFromInteger(int other) { | |
1049 _Bigint result = new _Bigint(); | |
1050 other._toBigint()._mulTo(this, result); | |
1051 return result._toValidInt(); | |
1052 } | |
1053 int _truncDivFromInteger(int other) { | |
1054 _Bigint result = new _Bigint(); | |
1055 other._toBigint()._divRemTo(this, result, null); | |
1056 return result._toValidInt(); | |
1057 } | |
1058 int _moduloFromInteger(int other) { | |
1059 _Bigint result = new _Bigint(); | |
1060 var ob = other._toBigint(); | |
1061 other._toBigint()._divRemTo(this, null, result); | |
1062 if (result._neg) { | |
1063 if (_neg) { | |
1064 result._subTo(this, result); | |
1065 } else { | |
1066 result._addTo(this, result); | |
1067 } | |
1068 } | |
1069 return result._toValidInt(); | |
1070 } | |
1071 int _remainderFromInteger(int other) { | |
1072 _Bigint result = new _Bigint(); | |
1073 other._toBigint()._divRemTo(this, null, result); | |
1074 return result._toValidInt(); | |
1075 } | |
1076 bool _greaterThanFromInteger(int other) { | |
1077 return other._toBigint()._compareTo(this) > 0; | |
1078 } | |
1079 bool _equalToInteger(int other) { | |
1080 return other._toBigint()._compareTo(this) == 0; | |
1081 } | |
1082 | |
1083 // New method to support crypto. | |
1084 | |
1085 // Return this.pow(e) mod m, with 256 <= e < 1<<32. | |
1086 int modPow(int e, int m) { | |
1087 assert(e >= 256 && !m.isEven()); | |
1088 if (e >= (1 << 32)) { | |
1089 throw "Bigint.modPow with exponent larger than 32-bit not implemented"; | |
1090 } | |
1091 _Reduction z = new _Montgomery(m); | |
1092 var r = new _Bigint(); | |
1093 var r2 = new _Bigint(); | |
1094 var g = z.convert(this); | |
1095 int i = _nbits(e) - 1; | |
1096 g._copyTo(r); | |
1097 while (--i >= 0) { | |
1098 z.sqrTo(r, r2); | |
1099 if ((e & (1 << i)) > 0) { | |
1100 z.mulTo(r2, g, r); | |
1101 } else { | |
1102 var t = r; | |
1103 r = r2; | |
1104 r2 = t; | |
1105 } | |
1106 } | |
1107 return z.revert(r)._toValidInt(); | |
1108 } | |
1109 } | |
1110 | |
1111 // New classes to support crypto (modPow method). | |
1112 | |
1113 class _Reduction { | |
1114 const _Reduction(); | |
1115 _Bigint _convert(_Bigint x) => x; | |
1116 _Bigint _revert(_Bigint x) => x; | |
1117 | |
1118 void _mulTo(_Bigint x, _Bigint y, _Bigint r) { | |
1119 x._mulTo(y, r); | |
1120 } | |
1121 | |
1122 void _sqrTo(_Bigint x, _Bigint r) { | |
1123 x._sqrTo(r); | |
1124 } | |
1125 } | |
1126 | |
1127 // Montgomery reduction on _Bigint. | |
1128 class _Montgomery implements _Reduction { | |
1129 final _Bigint _m; | |
1130 var _mp; | |
1131 var _mpl; | |
1132 var _mph; | |
1133 var _um; | |
1134 var _mused2; | |
1135 | |
1136 _Montgomery(this._m) { | |
1137 _mp = _m._invDigit(); | |
1138 _mpl = _mp & _Bigint.DIGIT2_MASK; | |
1139 _mph = _mp >> _Bigint.DIGIT2_BITS; | |
1140 _um = (1 << (_Bigint.DIGIT_BITS - _Bigint.DIGIT2_BITS)) - 1; | |
1141 _mused2 = 2*_m._used; | |
1142 } | |
1143 | |
1144 // Return x*R mod _m | |
1145 _Bigint _convert(_Bigint x) { | |
1146 var r = new _Bigint(); | |
1147 x.abs()._dlShiftTo(_m._used, r); | |
1148 r._divRemTo(_m, null, r); | |
1149 if (x._neg && !r._neg && r._used > 0) { | |
1150 _m._subTo(r, r); | |
1151 } | |
1152 return r; | |
1153 } | |
1154 | |
1155 // Return x/R mod _m | |
1156 _Bigint _revert(_Bigint x) { | |
1157 var r = new _Bigint(); | |
1158 x._copyTo(r); | |
1159 _reduce(r); | |
1160 return r; | |
1161 } | |
1162 | |
1163 // x = x/R mod _m | |
1164 void _reduce(_Bigint x) { | |
1165 x._ensureLength(_mused2 + 1); | |
1166 while (x._used <= _mused2) { // Pad x so _am has enough room later. | |
1167 x._digits[x._used++] = 0; | |
1168 } | |
1169 for (var i = 0; i < _m._used; ++i) { | |
1170 // Faster way of calculating u0 = x[i]*mp mod DIGIT_BASE. | |
1171 var j = x._digits[i] & _Bigint.DIGIT2_MASK; | |
1172 var u0 = (j*_mpl + (((j*_mph + (x._digits[i] >> _Bigint.DIGIT2_BITS) | |
1173 *_mpl) & _um) << _Bigint.DIGIT2_BITS)) & _Bigint.DIGIT_MASK; | |
1174 // Use _am to combine the multiply-shift-add into one call. | |
1175 j = i + _m._used; | |
1176 var digit = x._digits[j]; | |
1177 digit += _m ._am(0, u0, x, i, 0, _m ._used); | |
1178 // propagate carry | |
1179 while (digit >= _Bigint.DIGIT_BASE) { | |
1180 digit -= _Bigint.DIGIT_BASE; | |
1181 x._digits[j++] = digit; | |
1182 digit = x._digits[j]; | |
1183 digit++; | |
1184 } | |
1185 x._digits[j] = digit; | |
1186 } | |
1187 x._clamp(); | |
1188 x._drShiftTo(_m ._used, x); | |
1189 if (x._compareTo(_m ) >= 0) { | |
1190 x._subTo(_m , x); | |
1191 } | |
1192 } | |
1193 | |
1194 // r = x^2/R mod _m ; x != r | |
1195 void _sqrTo(_Bigint x, _Bigint r) { | |
1196 x._sqrTo(r); | |
1197 _reduce(r); | |
1198 } | |
1199 | |
1200 // r = x*y/R mod _m ; x, y != r | |
1201 void _mulTo(_Bigint x, _Bigint y, _Bigint r) { | |
1202 x._mulTo(y, r); | |
1203 _reduce(r); | |
1204 } | |
1205 } | |
1206 | |
OLD | NEW |