| Index: test/mjsunit/sin-cos.js
|
| diff --git a/test/mjsunit/sin-cos.js b/test/mjsunit/sin-cos.js
|
| index e38dfdf814e18c7013b288a4d0c460a7a5355096..b893cce936bd9f66cf73ed0b54c399b32817157b 100644
|
| --- a/test/mjsunit/sin-cos.js
|
| +++ b/test/mjsunit/sin-cos.js
|
| @@ -42,9 +42,101 @@ cosTest();
|
|
|
| // By accident, the slow case for sine and cosine were both sine at
|
| // some point. This is a regression test for that issue.
|
| -var x = Math.pow(2, 70);
|
| +var x = Math.pow(2, 30);
|
| assertTrue(Math.sin(x) != Math.cos(x));
|
|
|
| // Ensure that sine and log are not the same.
|
| x = 0.5;
|
| assertTrue(Math.sin(x) != Math.log(x));
|
| +
|
| +// Test against approximation by series.
|
| +var factorial = [1];
|
| +var accuracy = 50;
|
| +for (var i = 1; i < accuracy; i++) {
|
| + factorial[i] = factorial[i-1] * i;
|
| +}
|
| +
|
| +// We sum up in the reverse order for higher precision, as we expect the terms
|
| +// to grow smaller for x reasonably close to 0.
|
| +function precision_sum(array) {
|
| + var result = 0;
|
| + while (array.length > 0) {
|
| + result += array.pop();
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +function sin(x) {
|
| + var sign = 1;
|
| + var x2 = x*x;
|
| + var terms = [];
|
| + for (var i = 1; i < accuracy; i += 2) {
|
| + terms.push(sign * x / factorial[i]);
|
| + x *= x2;
|
| + sign *= -1;
|
| + }
|
| + return precision_sum(terms);
|
| +}
|
| +
|
| +function cos(x) {
|
| + var sign = -1;
|
| + var x2 = x*x;
|
| + x = x2;
|
| + var terms = [1];
|
| + for (var i = 2; i < accuracy; i += 2) {
|
| + terms.push(sign * x / factorial[i]);
|
| + x *= x2;
|
| + sign *= -1;
|
| + }
|
| + return precision_sum(terms);
|
| +}
|
| +
|
| +function abs_error(fun, ref, x) {
|
| + return Math.abs(ref(x) - fun(x));
|
| +}
|
| +
|
| +var test_inputs = [];
|
| +for (var i = -10000; i < 10000; i += 177) test_inputs.push(i/1257);
|
| +var epsilon = 0.000001;
|
| +
|
| +test_inputs.push(0);
|
| +test_inputs.push(0 + epsilon);
|
| +test_inputs.push(0 - epsilon);
|
| +test_inputs.push(Math.PI/2);
|
| +test_inputs.push(Math.PI/2 + epsilon);
|
| +test_inputs.push(Math.PI/2 - epsilon);
|
| +test_inputs.push(Math.PI);
|
| +test_inputs.push(Math.PI + epsilon);
|
| +test_inputs.push(Math.PI - epsilon);
|
| +test_inputs.push(- 2*Math.PI);
|
| +test_inputs.push(- 2*Math.PI + epsilon);
|
| +test_inputs.push(- 2*Math.PI - epsilon);
|
| +
|
| +var squares = [];
|
| +for (var i = 0; i < test_inputs.length; i++) {
|
| + var x = test_inputs[i];
|
| + var err_sin = abs_error(Math.sin, sin, x);
|
| + var err_cos = abs_error(Math.cos, cos, x)
|
| + assertTrue(err_sin < 1E-13);
|
| + assertTrue(err_cos < 1E-13);
|
| + squares.push(err_sin*err_sin + err_cos*err_cos);
|
| +}
|
| +
|
| +// Sum squares up by adding them pairwise, to avoid losing precision.
|
| +while (squares.length > 1) {
|
| + var reduced = [];
|
| + if (squares.length % 2 == 1) reduced.push(squares.pop());
|
| + // Remaining number of elements is even.
|
| + while(squares.length > 1) reduced.push(squares.pop() + squares.pop());
|
| + squares = reduced;
|
| +}
|
| +
|
| +var err_rms = Math.sqrt(squares[0] / test_inputs.length / 2);
|
| +assertTrue(err_rms < 1E-14);
|
| +
|
| +assertEquals(-1, Math.cos({ valueOf: function() { return Math.PI; } }));
|
| +assertEquals(0, Math.sin("0x00000"));
|
| +assertTrue(isNaN(Math.sin(Infinity)));
|
| +assertTrue(isNaN(Math.cos("-Infinity")));
|
| +assertEquals("Infinity", String(Math.tan(Math.PI/2)));
|
| +assertEquals("-Infinity", String(Math.tan(-Math.PI/2)));
|
|
|