Index: test/mjsunit/sin-cos.js |
diff --git a/test/mjsunit/sin-cos.js b/test/mjsunit/sin-cos.js |
index e38dfdf814e18c7013b288a4d0c460a7a5355096..b893cce936bd9f66cf73ed0b54c399b32817157b 100644 |
--- a/test/mjsunit/sin-cos.js |
+++ b/test/mjsunit/sin-cos.js |
@@ -42,9 +42,101 @@ cosTest(); |
// By accident, the slow case for sine and cosine were both sine at |
// some point. This is a regression test for that issue. |
-var x = Math.pow(2, 70); |
+var x = Math.pow(2, 30); |
assertTrue(Math.sin(x) != Math.cos(x)); |
// Ensure that sine and log are not the same. |
x = 0.5; |
assertTrue(Math.sin(x) != Math.log(x)); |
+ |
+// Test against approximation by series. |
+var factorial = [1]; |
+var accuracy = 50; |
+for (var i = 1; i < accuracy; i++) { |
+ factorial[i] = factorial[i-1] * i; |
+} |
+ |
+// We sum up in the reverse order for higher precision, as we expect the terms |
+// to grow smaller for x reasonably close to 0. |
+function precision_sum(array) { |
+ var result = 0; |
+ while (array.length > 0) { |
+ result += array.pop(); |
+ } |
+ return result; |
+} |
+ |
+function sin(x) { |
+ var sign = 1; |
+ var x2 = x*x; |
+ var terms = []; |
+ for (var i = 1; i < accuracy; i += 2) { |
+ terms.push(sign * x / factorial[i]); |
+ x *= x2; |
+ sign *= -1; |
+ } |
+ return precision_sum(terms); |
+} |
+ |
+function cos(x) { |
+ var sign = -1; |
+ var x2 = x*x; |
+ x = x2; |
+ var terms = [1]; |
+ for (var i = 2; i < accuracy; i += 2) { |
+ terms.push(sign * x / factorial[i]); |
+ x *= x2; |
+ sign *= -1; |
+ } |
+ return precision_sum(terms); |
+} |
+ |
+function abs_error(fun, ref, x) { |
+ return Math.abs(ref(x) - fun(x)); |
+} |
+ |
+var test_inputs = []; |
+for (var i = -10000; i < 10000; i += 177) test_inputs.push(i/1257); |
+var epsilon = 0.000001; |
+ |
+test_inputs.push(0); |
+test_inputs.push(0 + epsilon); |
+test_inputs.push(0 - epsilon); |
+test_inputs.push(Math.PI/2); |
+test_inputs.push(Math.PI/2 + epsilon); |
+test_inputs.push(Math.PI/2 - epsilon); |
+test_inputs.push(Math.PI); |
+test_inputs.push(Math.PI + epsilon); |
+test_inputs.push(Math.PI - epsilon); |
+test_inputs.push(- 2*Math.PI); |
+test_inputs.push(- 2*Math.PI + epsilon); |
+test_inputs.push(- 2*Math.PI - epsilon); |
+ |
+var squares = []; |
+for (var i = 0; i < test_inputs.length; i++) { |
+ var x = test_inputs[i]; |
+ var err_sin = abs_error(Math.sin, sin, x); |
+ var err_cos = abs_error(Math.cos, cos, x) |
+ assertTrue(err_sin < 1E-13); |
+ assertTrue(err_cos < 1E-13); |
+ squares.push(err_sin*err_sin + err_cos*err_cos); |
+} |
+ |
+// Sum squares up by adding them pairwise, to avoid losing precision. |
+while (squares.length > 1) { |
+ var reduced = []; |
+ if (squares.length % 2 == 1) reduced.push(squares.pop()); |
+ // Remaining number of elements is even. |
+ while(squares.length > 1) reduced.push(squares.pop() + squares.pop()); |
+ squares = reduced; |
+} |
+ |
+var err_rms = Math.sqrt(squares[0] / test_inputs.length / 2); |
+assertTrue(err_rms < 1E-14); |
+ |
+assertEquals(-1, Math.cos({ valueOf: function() { return Math.PI; } })); |
+assertEquals(0, Math.sin("0x00000")); |
+assertTrue(isNaN(Math.sin(Infinity))); |
+assertTrue(isNaN(Math.cos("-Infinity"))); |
+assertEquals("Infinity", String(Math.tan(Math.PI/2))); |
+assertEquals("-Infinity", String(Math.tan(-Math.PI/2))); |