Index: util/mac/process_reader.cc |
diff --git a/util/mac/process_reader.cc b/util/mac/process_reader.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..27fa4c5eeccf994b0c96d8b0aaa46ef2cc6cbead |
--- /dev/null |
+++ b/util/mac/process_reader.cc |
@@ -0,0 +1,529 @@ |
+// Copyright 2014 The Crashpad Authors. All rights reserved. |
+// |
+// Licensed under the Apache License, Version 2.0 (the "License"); |
+// you may not use this file except in compliance with the License. |
+// You may obtain a copy of the License at |
+// |
+// http://www.apache.org/licenses/LICENSE-2.0 |
+// |
+// Unless required by applicable law or agreed to in writing, software |
+// distributed under the License is distributed on an "AS IS" BASIS, |
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
+// See the License for the specific language governing permissions and |
+// limitations under the License. |
+ |
+#include "util/mac/process_reader.h" |
+ |
+#include <AvailabilityMacros.h> |
+#include <mach/mach_vm.h> |
+#include <mach-o/loader.h> |
+ |
+#include <algorithm> |
+ |
+#include "base/logging.h" |
+#include "base/mac/mach_logging.h" |
+#include "base/mac/scoped_mach_port.h" |
+#include "base/mac/scoped_mach_vm.h" |
+ |
+namespace { |
+ |
+void MachTimeValueToTimeval(const time_value& mach, timeval* tv) { |
+ tv->tv_sec = mach.seconds; |
+ tv->tv_usec = mach.microseconds; |
+} |
+ |
+kern_return_t MachVMRegionRecurseDeepest(mach_port_t task, |
+ mach_vm_address_t* address, |
+ mach_vm_size_t* size, |
+ natural_t* depth, |
+ vm_prot_t* protection, |
+ unsigned int* user_tag) { |
+ vm_region_submap_short_info_64 submap_info; |
+ mach_msg_type_number_t count = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64; |
+ while (true) { |
+ kern_return_t kr = mach_vm_region_recurse( |
+ task, |
+ address, |
+ size, |
+ depth, |
+ reinterpret_cast<vm_region_recurse_info_t>(&submap_info), |
+ &count); |
+ if (kr != KERN_SUCCESS) { |
+ return kr; |
+ } |
+ |
+ if (!submap_info.is_submap) { |
+ *protection = submap_info.protection; |
+ *user_tag = submap_info.user_tag; |
+ return KERN_SUCCESS; |
+ } |
+ |
+ ++*depth; |
+ } |
+} |
+ |
+} // namespace |
+ |
+namespace crashpad { |
+ |
+ProcessReaderThread::ProcessReaderThread() |
+ : thread_context(), |
+ float_context(), |
+ debug_context(), |
+ id(0), |
+ stack_region_address(0), |
+ stack_region_size(0), |
+ thread_specific_data_address(0), |
+ port(MACH_PORT_NULL), |
+ suspend_count(0), |
+ priority(0) { |
+} |
+ |
+ProcessReaderModule::ProcessReaderModule() : name(), address(0), timestamp(0) { |
+} |
+ |
+ProcessReaderModule::~ProcessReaderModule() { |
+} |
+ |
+ProcessReader::ProcessReader() |
+ : kern_proc_info_(), |
+ threads_(), |
+ modules_(), |
+ task_memory_(), |
+ task_(MACH_PORT_NULL), |
+ initialized_(), |
+ is_64_bit_(false), |
+ initialized_threads_(false), |
+ initialized_modules_(false) { |
+} |
+ |
+ProcessReader::~ProcessReader() { |
+ for (const ProcessReaderThread& thread : threads_) { |
+ kern_return_t kr = mach_port_deallocate(mach_task_self(), thread.port); |
+ MACH_LOG_IF(ERROR, kr != KERN_SUCCESS, kr) << "mach_port_deallocate"; |
+ } |
+} |
+ |
+bool ProcessReader::Initialize(mach_port_t task) { |
+ INITIALIZATION_STATE_SET_INITIALIZING(initialized_); |
+ |
+ pid_t pid; |
+ kern_return_t kr = pid_for_task(task, &pid); |
+ if (kr != KERN_SUCCESS) { |
+ MACH_LOG(ERROR, kr) << "pid_for_task"; |
+ return false; |
+ } |
+ |
+ int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_PID, pid}; |
+ size_t len = sizeof(kern_proc_info_); |
+ if (sysctl(mib, arraysize(mib), &kern_proc_info_, &len, NULL, 0) != 0) { |
+ PLOG(ERROR) << "sysctl for pid " << pid; |
+ return false; |
+ } |
+ |
+ DCHECK_EQ(kern_proc_info_.kp_proc.p_pid, pid); |
+ |
+ is_64_bit_ = kern_proc_info_.kp_proc.p_flag & P_LP64; |
+ |
+ task_memory_.reset(new TaskMemory(task)); |
+ task_ = task; |
+ |
+ INITIALIZATION_STATE_SET_VALID(initialized_); |
+ return true; |
+} |
+ |
+void ProcessReader::StartTime(timeval* start_time) const { |
+ INITIALIZATION_STATE_DCHECK_VALID(initialized_); |
+ *start_time = kern_proc_info_.kp_proc.p_starttime; |
+} |
+ |
+bool ProcessReader::CPUTimes(timeval* user_time, timeval* system_time) const { |
+ INITIALIZATION_STATE_DCHECK_VALID(initialized_); |
+ |
+ // Calculate user and system time the same way the kernel does for |
+ // getrusage(). See 10.9.2 xnu-2422.90.20/bsd/kern/kern_resource.c calcru(). |
+ timerclear(user_time); |
+ timerclear(system_time); |
+ |
+ // As of the 10.8 SDK, the preferred routine is MACH_TASK_BASIC_INFO. |
+ // TASK_BASIC_INFO_64_COUNT is equivalent and works on earlier systems. |
+ task_basic_info_64 task_basic_info; |
+ mach_msg_type_number_t task_basic_info_count = TASK_BASIC_INFO_64_COUNT; |
+ kern_return_t kr = task_info(task_, |
+ TASK_BASIC_INFO_64, |
+ reinterpret_cast<task_info_t>(&task_basic_info), |
+ &task_basic_info_count); |
+ if (kr != KERN_SUCCESS) { |
+ MACH_LOG(WARNING, kr) << "task_info TASK_BASIC_INFO_64"; |
+ return false; |
+ } |
+ |
+ task_thread_times_info_data_t task_thread_times; |
+ mach_msg_type_number_t task_thread_times_count = TASK_THREAD_TIMES_INFO_COUNT; |
+ kr = task_info(task_, |
+ TASK_THREAD_TIMES_INFO, |
+ reinterpret_cast<task_info_t>(&task_thread_times), |
+ &task_thread_times_count); |
+ if (kr != KERN_SUCCESS) { |
+ MACH_LOG(WARNING, kr) << "task_info TASK_THREAD_TIMES"; |
+ return false; |
+ } |
+ |
+ MachTimeValueToTimeval(task_basic_info.user_time, user_time); |
+ MachTimeValueToTimeval(task_basic_info.system_time, system_time); |
+ |
+ timeval thread_user_time; |
+ MachTimeValueToTimeval(task_thread_times.user_time, &thread_user_time); |
+ timeval thread_system_time; |
+ MachTimeValueToTimeval(task_thread_times.system_time, &thread_system_time); |
+ |
+ timeradd(user_time, &thread_user_time, user_time); |
+ timeradd(system_time, &thread_system_time, system_time); |
+ |
+ return true; |
+} |
+ |
+const std::vector<ProcessReaderThread>& ProcessReader::Threads() { |
+ INITIALIZATION_STATE_DCHECK_VALID(initialized_); |
+ |
+ if (!initialized_threads_) { |
+ InitializeThreads(); |
+ } |
+ |
+ return threads_; |
+} |
+ |
+const std::vector<ProcessReaderModule>& ProcessReader::Modules() { |
+ INITIALIZATION_STATE_DCHECK_VALID(initialized_); |
+ |
+ if (!initialized_modules_) { |
+ InitializeModules(); |
+ } |
+ |
+ return modules_; |
+} |
+ |
+void ProcessReader::InitializeThreads() { |
+ DCHECK(!initialized_threads_); |
+ DCHECK(threads_.empty()); |
+ |
+ initialized_threads_ = true; |
+ |
+ thread_act_array_t threads; |
+ mach_msg_type_number_t thread_count = 0; |
+ kern_return_t kr = task_threads(task_, &threads, &thread_count); |
+ if (kr != KERN_SUCCESS) { |
+ MACH_LOG(WARNING, kr) << "task_threads"; |
+ return; |
+ } |
+ |
+ // The send rights in the |threads| array won’t have their send rights managed |
+ // by anything until they’re added to |threads_| by the loop below. Any early |
+ // return (or exception) that happens between here and the completion of the |
+ // loop below will leak thread port send rights. |
+ |
+ base::mac::ScopedMachVM threads_vm( |
+ reinterpret_cast<vm_address_t>(threads), |
+ mach_vm_round_page(thread_count * sizeof(*threads))); |
+ |
+ for (size_t index = 0; index < thread_count; ++index) { |
+ ProcessReaderThread thread; |
+ thread.port = threads[index]; |
+ |
+#if defined(ARCH_CPU_X86_FAMILY) |
+ const thread_state_flavor_t kThreadStateFlavor = |
+ Is64Bit() ? x86_THREAD_STATE64 : x86_THREAD_STATE32; |
+ mach_msg_type_number_t thread_state_count = |
+ Is64Bit() ? x86_THREAD_STATE64_COUNT : x86_THREAD_STATE32_COUNT; |
+ |
+ // TODO(mark): Use the AVX variants instead of the FLOAT variants? They’re |
+ // supported on 10.6 and later. |
+ const thread_state_flavor_t kFloatStateFlavor = |
+ Is64Bit() ? x86_FLOAT_STATE64 : x86_FLOAT_STATE32; |
+ mach_msg_type_number_t float_state_count = |
+ Is64Bit() ? x86_FLOAT_STATE64_COUNT : x86_FLOAT_STATE32_COUNT; |
+ |
+ const thread_state_flavor_t kDebugStateFlavor = |
+ Is64Bit() ? x86_DEBUG_STATE64 : x86_DEBUG_STATE32; |
+ mach_msg_type_number_t debug_state_count = |
+ Is64Bit() ? x86_DEBUG_STATE64_COUNT : x86_DEBUG_STATE32_COUNT; |
+#endif |
+ |
+ kr = thread_get_state( |
+ thread.port, |
+ kThreadStateFlavor, |
+ reinterpret_cast<thread_state_t>(&thread.thread_context), |
+ &thread_state_count); |
+ if (kr != KERN_SUCCESS) { |
+ MACH_LOG(ERROR, kr) << "thread_get_state(" << kThreadStateFlavor << ")"; |
+ continue; |
+ } |
+ |
+ kr = thread_get_state( |
+ thread.port, |
+ kFloatStateFlavor, |
+ reinterpret_cast<thread_state_t>(&thread.float_context), |
+ &float_state_count); |
+ if (kr != KERN_SUCCESS) { |
+ MACH_LOG(ERROR, kr) << "thread_get_state(" << kFloatStateFlavor << ")"; |
+ continue; |
+ } |
+ |
+ kr = thread_get_state( |
+ thread.port, |
+ kDebugStateFlavor, |
+ reinterpret_cast<thread_state_t>(&thread.debug_context), |
+ &debug_state_count); |
+ if (kr != KERN_SUCCESS) { |
+ MACH_LOG(ERROR, kr) << "thread_get_state(" << kDebugStateFlavor << ")"; |
+ continue; |
+ } |
+ |
+ thread_basic_info basic_info; |
+ mach_msg_type_number_t count = THREAD_BASIC_INFO_COUNT; |
+ kr = thread_info(thread.port, |
+ THREAD_BASIC_INFO, |
+ reinterpret_cast<thread_info_t>(&basic_info), |
+ &count); |
+ if (kr != KERN_SUCCESS) { |
+ MACH_LOG(WARNING, kr) << "thread_info(THREAD_BASIC_INFO)"; |
+ } else { |
+ thread.suspend_count = basic_info.suspend_count; |
+ } |
+ |
+ thread_identifier_info identifier_info; |
+ count = THREAD_IDENTIFIER_INFO_COUNT; |
+ kr = thread_info(thread.port, |
+ THREAD_IDENTIFIER_INFO, |
+ reinterpret_cast<thread_info_t>(&identifier_info), |
+ &count); |
+ if (kr != KERN_SUCCESS) { |
+ MACH_LOG(WARNING, kr) << "thread_info(THREAD_IDENTIFIER_INFO)"; |
+ } else { |
+ thread.id = identifier_info.thread_id; |
+ |
+ // thread_identifier_info::thread_handle contains the base of the |
+ // thread-specific data area, which on x86 and x86_64 is the thread’s base |
+ // address of the %gs segment. 10.9.2 xnu-2422.90.20/osfmk/kern/thread.c |
+ // thread_info_internal() gets the value from |
+ // machine_thread::cthread_self, which is the same value used to set the |
+ // %gs base in xnu-2422.90.20/osfmk/i386/pcb_native.c |
+ // act_machine_switch_pcb(). |
+ // |
+ // This address is the internal pthread’s _pthread::tsd[], an array of |
+ // void* values that can be indexed by pthread_key_t values. |
+ thread.thread_specific_data_address = identifier_info.thread_handle; |
+ } |
+ |
+ thread_precedence_policy precedence; |
+ count = THREAD_PRECEDENCE_POLICY_COUNT; |
+ boolean_t get_default = FALSE; |
+ kr = thread_policy_get(thread.port, |
+ THREAD_PRECEDENCE_POLICY, |
+ reinterpret_cast<thread_policy_t>(&precedence), |
+ &count, |
+ &get_default); |
+ if (kr != KERN_SUCCESS) { |
+ MACH_LOG(INFO, kr) << "thread_policy_get"; |
+ } else { |
+ thread.priority = precedence.importance; |
+ } |
+ |
+#if defined(ARCH_CPU_X86_FAMILY) |
+ mach_vm_address_t stack_pointer = Is64Bit() |
+ ? thread.thread_context.t64.__rsp |
+ : thread.thread_context.t32.__esp; |
+#endif |
+ |
+ thread.stack_region_address = |
+ CalculateStackRegion(stack_pointer, &thread.stack_region_size); |
+ |
+ threads_.push_back(thread); |
+ } |
+} |
+ |
+void ProcessReader::InitializeModules() { |
+ DCHECK(!initialized_modules_); |
+ DCHECK(modules_.empty()); |
+ |
+ initialized_modules_ = true; |
+ |
+ // TODO(mark): Complete this implementation. The implementation depends on |
+ // process_types, which cannot land yet because it depends on this file, |
+ // process_reader. This temporary “cut” was made to avoid a review that’s too |
+ // large. Yes, this circular dependency is unfortunate. Suggestions are |
+ // welcome. |
+} |
+ |
+mach_vm_address_t ProcessReader::CalculateStackRegion( |
+ mach_vm_address_t stack_pointer, |
+ mach_vm_size_t* stack_region_size) { |
+ INITIALIZATION_STATE_DCHECK_VALID(initialized_); |
+ |
+ // For pthreads, it may be possible to compute the stack region based on the |
+ // internal _pthread::stackaddr and _pthread::stacksize. The _pthread struct |
+ // for a thread can be located at TSD slot 0, or the known offsets of |
+ // stackaddr and stacksize from the TSD area could be used. |
+ mach_vm_address_t region_base = stack_pointer; |
+ mach_vm_size_t region_size; |
+ natural_t depth = 0; |
+ vm_prot_t protection; |
+ unsigned int user_tag; |
+ kern_return_t kr = MachVMRegionRecurseDeepest( |
+ task_, ®ion_base, ®ion_size, &depth, &protection, &user_tag); |
+ if (kr != KERN_SUCCESS) { |
+ MACH_LOG(INFO, kr) << "mach_vm_region_recurse"; |
+ *stack_region_size = 0; |
+ return 0; |
+ } |
+ |
+ if (region_base > stack_pointer) { |
+ // There’s nothing mapped at the stack pointer’s address. Something may have |
+ // trashed the stack pointer. Note that this shouldn’t happen for a normal |
+ // stack guard region violation because the guard region is mapped but has |
+ // VM_PROT_NONE protection. |
+ *stack_region_size = 0; |
+ return 0; |
+ } |
+ |
+ mach_vm_address_t start_address = stack_pointer; |
+ |
+ if ((protection & VM_PROT_READ) == 0) { |
+ // If the region isn’t readable, the stack pointer probably points to the |
+ // guard region. Don’t include it as part of the stack, and don’t include |
+ // anything at any lower memory address. The code below may still possibly |
+ // find the real stack region at a memory address higher than this region. |
+ start_address = region_base + region_size; |
+ } else { |
+ // If the ABI requires a red zone, adjust the region to include it if |
+ // possible. |
+ LocateRedZone(&start_address, ®ion_base, ®ion_size, user_tag); |
+ |
+ // Regardless of whether the ABI requires a red zone, capture up to |
+ // kExtraCaptureSize additional bytes of stack, but only if present in the |
+ // region that was already found. |
+ const mach_vm_size_t kExtraCaptureSize = 128; |
+ start_address = std::max(start_address >= kExtraCaptureSize |
+ ? start_address - kExtraCaptureSize |
+ : start_address, |
+ region_base); |
+ |
+ // Align start_address to a 16-byte boundary, which can help readers by |
+ // ensuring that data is aligned properly. This could page-align instead, |
+ // but that might be wasteful. |
+ const mach_vm_size_t kDesiredAlignment = 16; |
+ start_address &= ~(kDesiredAlignment - 1); |
+ DCHECK_GE(start_address, region_base); |
+ } |
+ |
+ region_size -= (start_address - region_base); |
+ region_base = start_address; |
+ |
+ mach_vm_size_t total_region_size = region_size; |
+ |
+ // The stack region may have gotten split up into multiple abutting regions. |
+ // Try to coalesce them. This frequently happens for the main thread’s stack |
+ // when setrlimit(RLIMIT_STACK, …) is called. It may also happen if a region |
+ // is split up due to an mprotect() or vm_protect() call. |
+ // |
+ // Stack regions created by the kernel and the pthreads library will be marked |
+ // with the VM_MEMORY_STACK user tag. Scanning for multiple adjacent regions |
+ // with the same tag should find an entire stack region. Checking that the |
+ // protection on individual regions is not VM_PROT_NONE should guarantee that |
+ // this algorithm doesn’t collect map entries belonging to another thread’s |
+ // stack: well-behaved stacks (such as those created by the kernel and the |
+ // pthreads library) have VM_PROT_NONE guard regions at their low-address |
+ // ends. |
+ // |
+ // Other stack regions may not be so well-behaved and thus if user_tag is not |
+ // VM_MEMORY_STACK, the single region that was found is used as-is without |
+ // trying to merge it with other adjacent regions. |
+ if (user_tag == VM_MEMORY_STACK) { |
+ mach_vm_address_t try_address = region_base; |
+ mach_vm_address_t original_try_address; |
+ |
+ while (try_address += region_size, |
+ original_try_address = try_address, |
+ (kr = MachVMRegionRecurseDeepest(task_, |
+ &try_address, |
+ ®ion_size, |
+ &depth, |
+ &protection, |
+ &user_tag) == KERN_SUCCESS) && |
+ try_address == original_try_address && |
+ (protection & VM_PROT_READ) != 0 && |
+ user_tag == VM_MEMORY_STACK) { |
+ total_region_size += region_size; |
+ } |
+ |
+ if (kr != KERN_SUCCESS && kr != KERN_INVALID_ADDRESS) { |
+ // Tolerate KERN_INVALID_ADDRESS because it will be returned when there |
+ // are no more regions in the map at or above the specified |try_address|. |
+ MACH_LOG(INFO, kr) << "mach_vm_region_recurse"; |
+ } |
+ } |
+ |
+ *stack_region_size = total_region_size; |
+ return region_base; |
+} |
+ |
+void ProcessReader::LocateRedZone(mach_vm_address_t* const start_address, |
+ mach_vm_address_t* const region_base, |
+ mach_vm_address_t* const region_size, |
+ const unsigned int user_tag) { |
+#if defined(ARCH_CPU_X86_FAMILY) |
+ if (Is64Bit()) { |
+ // x86_64 has a red zone. See AMD64 ABI 0.99.6, |
+ // http://www.x86-64.org/documentation/abi.pdf, section 3.2.2, “The Stack |
+ // Frame”. |
+ const mach_vm_size_t kRedZoneSize = 128; |
+ mach_vm_address_t red_zone_base = |
+ *start_address >= kRedZoneSize ? *start_address - kRedZoneSize : 0; |
+ bool red_zone_ok = false; |
+ if (red_zone_base >= *region_base) { |
+ // The red zone is within the region already discovered. |
+ red_zone_ok = true; |
+ } else if (red_zone_base < *region_base && user_tag == VM_MEMORY_STACK) { |
+ // Probe to see if there’s a region immediately below the one already |
+ // discovered. |
+ mach_vm_address_t red_zone_region_base = red_zone_base; |
+ mach_vm_size_t red_zone_region_size; |
+ natural_t red_zone_depth = 0; |
+ vm_prot_t red_zone_protection; |
+ unsigned int red_zone_user_tag; |
+ kern_return_t kr = MachVMRegionRecurseDeepest(task_, |
+ &red_zone_region_base, |
+ &red_zone_region_size, |
+ &red_zone_depth, |
+ &red_zone_protection, |
+ &red_zone_user_tag); |
+ if (kr != KERN_SUCCESS) { |
+ MACH_LOG(INFO, kr) << "mach_vm_region_recurse"; |
+ *start_address = *region_base; |
+ } else if (red_zone_region_base + red_zone_region_size == *region_base && |
+ (red_zone_protection & VM_PROT_READ) != 0 && |
+ red_zone_user_tag == user_tag) { |
+ // The region containing the red zone is immediately below the region |
+ // already found, it’s readable (not the guard region), and it has the |
+ // same user tag as the region already found, so merge them. |
+ red_zone_ok = true; |
+ *region_base -= red_zone_region_size; |
+ *region_size += red_zone_region_size; |
+ } |
+ } |
+ |
+ if (red_zone_ok) { |
+ // Begin capturing from the base of the red zone (but not the entire |
+ // region that encompasses the red zone). |
+ *start_address = red_zone_base; |
+ } else { |
+ // The red zone would go lower into another region in memory, but no |
+ // region was found. Memory can only be captured to an address as low as |
+ // the base address of the region already found. |
+ *start_address = *region_base; |
+ } |
+ } |
+#endif |
+} |
+ |
+} // namespace crashpad |