Index: test/mjsunit/es6/math-hyperbolic.js |
diff --git a/test/mjsunit/es6/math-hyperbolic.js b/test/mjsunit/es6/math-hyperbolic.js |
index 1ceb95182bdcbb2cff6da2e00436d5683fa53343..1632e00b222c5ff277bd385ec1e4d2d15795c59d 100644 |
--- a/test/mjsunit/es6/math-hyperbolic.js |
+++ b/test/mjsunit/es6/math-hyperbolic.js |
@@ -25,6 +25,9 @@ |
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
+// TODO(3468): we rely on a precise Math.exp. |
+// Flags: --no-fast-math |
+ |
[Math.sinh, Math.cosh, Math.tanh, Math.asinh, Math.acosh, Math.atanh]. |
forEach(function(fun) { |
assertTrue(isNaN(fun(NaN))); |
@@ -66,14 +69,14 @@ function test_id(fun, rev, value) { |
}); |
-assertEquals("Infinity", String(Math.cosh(-Infinity))); |
-assertEquals("Infinity", String(Math.cosh(Infinity))); |
-assertEquals("Infinity", String(Math.cosh("-Infinity"))); |
-assertEquals("Infinity", String(Math.cosh("Infinity"))); |
+assertEquals(Infinity, Math.cosh(-Infinity)); |
+assertEquals(Infinity, Math.cosh(Infinity)); |
+assertEquals(Infinity, Math.cosh("-Infinity")); |
+assertEquals(Infinity, Math.cosh("Infinity")); |
-assertEquals("-Infinity", String(Math.atanh(-1))); |
-assertEquals("Infinity", String(Math.atanh(1))); |
+assertEquals(-Infinity, Math.atanh(-1)); |
+assertEquals(Infinity, Math.atanh(1)); |
// Math.atanh(x) is NaN for |x| > 1 and NaN |
[1.000000000001, Math.PI, 10000000, 2, Infinity, NaN].forEach(function(x) { |
@@ -82,6 +85,8 @@ assertEquals("Infinity", String(Math.atanh(1))); |
}); |
+assertEquals(0, Math.sinh(0)); |
+assertEquals(-Infinity, 1/Math.sinh(-0)); |
assertEquals(1, Math.tanh(Infinity)); |
assertEquals(-1, Math.tanh(-Infinity)); |
assertEquals(1, Math.cosh(0)); |
@@ -97,9 +102,7 @@ assertEquals("Infinity", String(Math.acosh(Infinity))); |
// Some random samples. |
-assertEqualsDelta(0.5210953054937, Math.sinh(0.5), 1E-12); |
assertEqualsDelta(74.203210577788, Math.sinh(5), 1E-12); |
-assertEqualsDelta(-0.5210953054937, Math.sinh(-0.5), 1E-12); |
assertEqualsDelta(-74.203210577788, Math.sinh(-5), 1E-12); |
assertEqualsDelta(1.1276259652063, Math.cosh(0.5), 1E-12); |
@@ -134,3 +137,32 @@ assertEqualsDelta(-0.1003353477311, Math.atanh(-0.1), 1E-12); |
[1-(1E-16), 0, 1E-10, 1E-50].forEach(function(x) { |
assertEqualsDelta(Math.atanh(x), -Math.atanh(-x), 1E-12); |
}); |
+ |
+ |
+// Implementation-specific tests for sinh. |
+// Case |x| < 2^-28 |
+assertEquals(Math.pow(2, -29), Math.sinh(Math.pow(2, -29))); |
+assertEquals(-Math.pow(2, -29), Math.sinh(-Math.pow(2, -29))); |
+// Case |x| < 1 |
+assertEquals(0.5210953054937474, Math.sinh(0.5)); |
+assertEquals(-0.5210953054937474, Math.sinh(-0.5)); |
+// sinh(10*log(2)) = 1048575/2048, case |x| < 22 |
+assertEquals(1048575/2048, Math.sinh(10*Math.LN2)); |
+assertEquals(-1048575/2048, Math.sinh(-10*Math.LN2)); |
+// Case |x| < 22 |
+assertEquals(11013.232874703393, Math.sinh(10)); |
+assertEquals(-11013.232874703393, Math.sinh(-10)); |
+// Case |x| in [22, log(maxdouble)] |
+assertEquals(2.1474836479999983e9, Math.sinh(32*Math.LN2)); |
+assertEquals(-2.1474836479999983e9, Math.sinh(-32*Math.LN2)); |
+// Case |x| in [22, log(maxdouble)] |
+assertEquals(1.3440585709080678e43, Math.sinh(100)); |
+assertEquals(-1.3440585709080678e43, Math.sinh(-100)); |
+// No overflow, case |x| in [log(maxdouble), threshold] |
+assertEquals(1.7976931348621744e308, Math.sinh(710.4758600739439)); |
+assertEquals(-1.7976931348621744e308, Math.sinh(-710.4758600739439)); |
+// Overflow, case |x| > threshold |
+assertEquals(Infinity, Math.sinh(710.475860073944)); |
+assertEquals(-Infinity, Math.sinh(-710.475860073944)); |
+assertEquals(Infinity, Math.sinh(1000)); |
+assertEquals(-Infinity, Math.sinh(-1000)); |