| Index: test/mjsunit/es6/math-hyperbolic.js
|
| diff --git a/test/mjsunit/es6/math-hyperbolic.js b/test/mjsunit/es6/math-hyperbolic.js
|
| index 1ceb95182bdcbb2cff6da2e00436d5683fa53343..1632e00b222c5ff277bd385ec1e4d2d15795c59d 100644
|
| --- a/test/mjsunit/es6/math-hyperbolic.js
|
| +++ b/test/mjsunit/es6/math-hyperbolic.js
|
| @@ -25,6 +25,9 @@
|
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
| +// TODO(3468): we rely on a precise Math.exp.
|
| +// Flags: --no-fast-math
|
| +
|
| [Math.sinh, Math.cosh, Math.tanh, Math.asinh, Math.acosh, Math.atanh].
|
| forEach(function(fun) {
|
| assertTrue(isNaN(fun(NaN)));
|
| @@ -66,14 +69,14 @@ function test_id(fun, rev, value) {
|
| });
|
|
|
|
|
| -assertEquals("Infinity", String(Math.cosh(-Infinity)));
|
| -assertEquals("Infinity", String(Math.cosh(Infinity)));
|
| -assertEquals("Infinity", String(Math.cosh("-Infinity")));
|
| -assertEquals("Infinity", String(Math.cosh("Infinity")));
|
| +assertEquals(Infinity, Math.cosh(-Infinity));
|
| +assertEquals(Infinity, Math.cosh(Infinity));
|
| +assertEquals(Infinity, Math.cosh("-Infinity"));
|
| +assertEquals(Infinity, Math.cosh("Infinity"));
|
|
|
|
|
| -assertEquals("-Infinity", String(Math.atanh(-1)));
|
| -assertEquals("Infinity", String(Math.atanh(1)));
|
| +assertEquals(-Infinity, Math.atanh(-1));
|
| +assertEquals(Infinity, Math.atanh(1));
|
|
|
| // Math.atanh(x) is NaN for |x| > 1 and NaN
|
| [1.000000000001, Math.PI, 10000000, 2, Infinity, NaN].forEach(function(x) {
|
| @@ -82,6 +85,8 @@ assertEquals("Infinity", String(Math.atanh(1)));
|
| });
|
|
|
|
|
| +assertEquals(0, Math.sinh(0));
|
| +assertEquals(-Infinity, 1/Math.sinh(-0));
|
| assertEquals(1, Math.tanh(Infinity));
|
| assertEquals(-1, Math.tanh(-Infinity));
|
| assertEquals(1, Math.cosh(0));
|
| @@ -97,9 +102,7 @@ assertEquals("Infinity", String(Math.acosh(Infinity)));
|
|
|
|
|
| // Some random samples.
|
| -assertEqualsDelta(0.5210953054937, Math.sinh(0.5), 1E-12);
|
| assertEqualsDelta(74.203210577788, Math.sinh(5), 1E-12);
|
| -assertEqualsDelta(-0.5210953054937, Math.sinh(-0.5), 1E-12);
|
| assertEqualsDelta(-74.203210577788, Math.sinh(-5), 1E-12);
|
|
|
| assertEqualsDelta(1.1276259652063, Math.cosh(0.5), 1E-12);
|
| @@ -134,3 +137,32 @@ assertEqualsDelta(-0.1003353477311, Math.atanh(-0.1), 1E-12);
|
| [1-(1E-16), 0, 1E-10, 1E-50].forEach(function(x) {
|
| assertEqualsDelta(Math.atanh(x), -Math.atanh(-x), 1E-12);
|
| });
|
| +
|
| +
|
| +// Implementation-specific tests for sinh.
|
| +// Case |x| < 2^-28
|
| +assertEquals(Math.pow(2, -29), Math.sinh(Math.pow(2, -29)));
|
| +assertEquals(-Math.pow(2, -29), Math.sinh(-Math.pow(2, -29)));
|
| +// Case |x| < 1
|
| +assertEquals(0.5210953054937474, Math.sinh(0.5));
|
| +assertEquals(-0.5210953054937474, Math.sinh(-0.5));
|
| +// sinh(10*log(2)) = 1048575/2048, case |x| < 22
|
| +assertEquals(1048575/2048, Math.sinh(10*Math.LN2));
|
| +assertEquals(-1048575/2048, Math.sinh(-10*Math.LN2));
|
| +// Case |x| < 22
|
| +assertEquals(11013.232874703393, Math.sinh(10));
|
| +assertEquals(-11013.232874703393, Math.sinh(-10));
|
| +// Case |x| in [22, log(maxdouble)]
|
| +assertEquals(2.1474836479999983e9, Math.sinh(32*Math.LN2));
|
| +assertEquals(-2.1474836479999983e9, Math.sinh(-32*Math.LN2));
|
| +// Case |x| in [22, log(maxdouble)]
|
| +assertEquals(1.3440585709080678e43, Math.sinh(100));
|
| +assertEquals(-1.3440585709080678e43, Math.sinh(-100));
|
| +// No overflow, case |x| in [log(maxdouble), threshold]
|
| +assertEquals(1.7976931348621744e308, Math.sinh(710.4758600739439));
|
| +assertEquals(-1.7976931348621744e308, Math.sinh(-710.4758600739439));
|
| +// Overflow, case |x| > threshold
|
| +assertEquals(Infinity, Math.sinh(710.475860073944));
|
| +assertEquals(-Infinity, Math.sinh(-710.475860073944));
|
| +assertEquals(Infinity, Math.sinh(1000));
|
| +assertEquals(-Infinity, Math.sinh(-1000));
|
|
|