Index: src/ic/stub-cache.h |
diff --git a/src/ic/stub-cache.h b/src/ic/stub-cache.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..eb5343f85610f7d0b0f87f8612178568584aeab8 |
--- /dev/null |
+++ b/src/ic/stub-cache.h |
@@ -0,0 +1,168 @@ |
+// Copyright 2012 the V8 project authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#ifndef V8_STUB_CACHE_H_ |
+#define V8_STUB_CACHE_H_ |
+ |
+#include "src/macro-assembler.h" |
+ |
+namespace v8 { |
+namespace internal { |
+ |
+ |
+// The stub cache is used for megamorphic property accesses. |
+// It maps (map, name, type) to property access handlers. The cache does not |
+// need explicit invalidation when a prototype chain is modified, since the |
+// handlers verify the chain. |
+ |
+ |
+class SCTableReference { |
+ public: |
+ Address address() const { return address_; } |
+ |
+ private: |
+ explicit SCTableReference(Address address) : address_(address) {} |
+ |
+ Address address_; |
+ |
+ friend class StubCache; |
+}; |
+ |
+ |
+class StubCache { |
+ public: |
+ struct Entry { |
+ Name* key; |
+ Code* value; |
+ Map* map; |
+ }; |
+ |
+ void Initialize(); |
+ // Access cache for entry hash(name, map). |
+ Code* Set(Name* name, Map* map, Code* code); |
+ Code* Get(Name* name, Map* map, Code::Flags flags); |
+ // Clear the lookup table (@ mark compact collection). |
+ void Clear(); |
+ // Collect all maps that match the name and flags. |
+ void CollectMatchingMaps(SmallMapList* types, Handle<Name> name, |
+ Code::Flags flags, Handle<Context> native_context, |
+ Zone* zone); |
+ // Generate code for probing the stub cache table. |
+ // Arguments extra, extra2 and extra3 may be used to pass additional scratch |
+ // registers. Set to no_reg if not needed. |
+ void GenerateProbe(MacroAssembler* masm, Code::Flags flags, Register receiver, |
+ Register name, Register scratch, Register extra, |
+ Register extra2 = no_reg, Register extra3 = no_reg); |
+ |
+ enum Table { kPrimary, kSecondary }; |
+ |
+ SCTableReference key_reference(StubCache::Table table) { |
+ return SCTableReference( |
+ reinterpret_cast<Address>(&first_entry(table)->key)); |
+ } |
+ |
+ SCTableReference map_reference(StubCache::Table table) { |
+ return SCTableReference( |
+ reinterpret_cast<Address>(&first_entry(table)->map)); |
+ } |
+ |
+ SCTableReference value_reference(StubCache::Table table) { |
+ return SCTableReference( |
+ reinterpret_cast<Address>(&first_entry(table)->value)); |
+ } |
+ |
+ StubCache::Entry* first_entry(StubCache::Table table) { |
+ switch (table) { |
+ case StubCache::kPrimary: |
+ return StubCache::primary_; |
+ case StubCache::kSecondary: |
+ return StubCache::secondary_; |
+ } |
+ UNREACHABLE(); |
+ return NULL; |
+ } |
+ |
+ Isolate* isolate() { return isolate_; } |
+ |
+ // Setting the entry size such that the index is shifted by Name::kHashShift |
+ // is convenient; shifting down the length field (to extract the hash code) |
+ // automatically discards the hash bit field. |
+ static const int kCacheIndexShift = Name::kHashShift; |
+ |
+ private: |
+ explicit StubCache(Isolate* isolate); |
+ |
+ // The stub cache has a primary and secondary level. The two levels have |
+ // different hashing algorithms in order to avoid simultaneous collisions |
+ // in both caches. Unlike a probing strategy (quadratic or otherwise) the |
+ // update strategy on updates is fairly clear and simple: Any existing entry |
+ // in the primary cache is moved to the secondary cache, and secondary cache |
+ // entries are overwritten. |
+ |
+ // Hash algorithm for the primary table. This algorithm is replicated in |
+ // assembler for every architecture. Returns an index into the table that |
+ // is scaled by 1 << kCacheIndexShift. |
+ static int PrimaryOffset(Name* name, Code::Flags flags, Map* map) { |
+ STATIC_ASSERT(kCacheIndexShift == Name::kHashShift); |
+ // Compute the hash of the name (use entire hash field). |
+ DCHECK(name->HasHashCode()); |
+ uint32_t field = name->hash_field(); |
+ // Using only the low bits in 64-bit mode is unlikely to increase the |
+ // risk of collision even if the heap is spread over an area larger than |
+ // 4Gb (and not at all if it isn't). |
+ uint32_t map_low32bits = |
+ static_cast<uint32_t>(reinterpret_cast<uintptr_t>(map)); |
+ // We always set the in_loop bit to zero when generating the lookup code |
+ // so do it here too so the hash codes match. |
+ uint32_t iflags = |
+ (static_cast<uint32_t>(flags) & ~Code::kFlagsNotUsedInLookup); |
+ // Base the offset on a simple combination of name, flags, and map. |
+ uint32_t key = (map_low32bits + field) ^ iflags; |
+ return key & ((kPrimaryTableSize - 1) << kCacheIndexShift); |
+ } |
+ |
+ // Hash algorithm for the secondary table. This algorithm is replicated in |
+ // assembler for every architecture. Returns an index into the table that |
+ // is scaled by 1 << kCacheIndexShift. |
+ static int SecondaryOffset(Name* name, Code::Flags flags, int seed) { |
+ // Use the seed from the primary cache in the secondary cache. |
+ uint32_t name_low32bits = |
+ static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name)); |
+ // We always set the in_loop bit to zero when generating the lookup code |
+ // so do it here too so the hash codes match. |
+ uint32_t iflags = |
+ (static_cast<uint32_t>(flags) & ~Code::kFlagsNotUsedInLookup); |
+ uint32_t key = (seed - name_low32bits) + iflags; |
+ return key & ((kSecondaryTableSize - 1) << kCacheIndexShift); |
+ } |
+ |
+ // Compute the entry for a given offset in exactly the same way as |
+ // we do in generated code. We generate an hash code that already |
+ // ends in Name::kHashShift 0s. Then we multiply it so it is a multiple |
+ // of sizeof(Entry). This makes it easier to avoid making mistakes |
+ // in the hashed offset computations. |
+ static Entry* entry(Entry* table, int offset) { |
+ const int multiplier = sizeof(*table) >> Name::kHashShift; |
+ return reinterpret_cast<Entry*>(reinterpret_cast<Address>(table) + |
+ offset * multiplier); |
+ } |
+ |
+ static const int kPrimaryTableBits = 11; |
+ static const int kPrimaryTableSize = (1 << kPrimaryTableBits); |
+ static const int kSecondaryTableBits = 9; |
+ static const int kSecondaryTableSize = (1 << kSecondaryTableBits); |
+ |
+ Entry primary_[kPrimaryTableSize]; |
+ Entry secondary_[kSecondaryTableSize]; |
+ Isolate* isolate_; |
+ |
+ friend class Isolate; |
+ friend class SCTableReference; |
+ |
+ DISALLOW_COPY_AND_ASSIGN(StubCache); |
+}; |
+} |
+} // namespace v8::internal |
+ |
+#endif // V8_STUB_CACHE_H_ |