OLD | NEW |
| (Empty) |
1 // Copyright 2012 the V8 project authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "src/v8.h" | |
6 | |
7 #include "src/accessors.h" | |
8 #include "src/api.h" | |
9 #include "src/arguments.h" | |
10 #include "src/codegen.h" | |
11 #include "src/conversions.h" | |
12 #include "src/execution.h" | |
13 #include "src/ic-inl.h" | |
14 #include "src/prototype.h" | |
15 #include "src/runtime.h" | |
16 #include "src/stub-cache.h" | |
17 | |
18 namespace v8 { | |
19 namespace internal { | |
20 | |
21 char IC::TransitionMarkFromState(IC::State state) { | |
22 switch (state) { | |
23 case UNINITIALIZED: return '0'; | |
24 case PREMONOMORPHIC: return '.'; | |
25 case MONOMORPHIC: return '1'; | |
26 case PROTOTYPE_FAILURE: | |
27 return '^'; | |
28 case POLYMORPHIC: return 'P'; | |
29 case MEGAMORPHIC: return 'N'; | |
30 case GENERIC: return 'G'; | |
31 | |
32 // We never see the debugger states here, because the state is | |
33 // computed from the original code - not the patched code. Let | |
34 // these cases fall through to the unreachable code below. | |
35 case DEBUG_STUB: break; | |
36 // Type-vector-based ICs resolve state to one of the above. | |
37 case DEFAULT: | |
38 break; | |
39 } | |
40 UNREACHABLE(); | |
41 return 0; | |
42 } | |
43 | |
44 | |
45 const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) { | |
46 if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW"; | |
47 if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) { | |
48 return ".IGNORE_OOB"; | |
49 } | |
50 if (IsGrowStoreMode(mode)) return ".GROW"; | |
51 return ""; | |
52 } | |
53 | |
54 | |
55 #ifdef DEBUG | |
56 | |
57 #define TRACE_GENERIC_IC(isolate, type, reason) \ | |
58 do { \ | |
59 if (FLAG_trace_ic) { \ | |
60 PrintF("[%s patching generic stub in ", type); \ | |
61 JavaScriptFrame::PrintTop(isolate, stdout, false, true); \ | |
62 PrintF(" (%s)]\n", reason); \ | |
63 } \ | |
64 } while (false) | |
65 | |
66 #else | |
67 | |
68 #define TRACE_GENERIC_IC(isolate, type, reason) | |
69 | |
70 #endif // DEBUG | |
71 | |
72 | |
73 void IC::TraceIC(const char* type, Handle<Object> name) { | |
74 if (FLAG_trace_ic) { | |
75 Code* new_target = raw_target(); | |
76 State new_state = new_target->ic_state(); | |
77 TraceIC(type, name, state(), new_state); | |
78 } | |
79 } | |
80 | |
81 | |
82 void IC::TraceIC(const char* type, Handle<Object> name, State old_state, | |
83 State new_state) { | |
84 if (FLAG_trace_ic) { | |
85 Code* new_target = raw_target(); | |
86 PrintF("[%s%s in ", new_target->is_keyed_stub() ? "Keyed" : "", type); | |
87 | |
88 // TODO(jkummerow): Add support for "apply". The logic is roughly: | |
89 // marker = [fp_ + kMarkerOffset]; | |
90 // if marker is smi and marker.value == INTERNAL and | |
91 // the frame's code == builtin(Builtins::kFunctionApply): | |
92 // then print "apply from" and advance one frame | |
93 | |
94 Object* maybe_function = | |
95 Memory::Object_at(fp_ + JavaScriptFrameConstants::kFunctionOffset); | |
96 if (maybe_function->IsJSFunction()) { | |
97 JSFunction* function = JSFunction::cast(maybe_function); | |
98 JavaScriptFrame::PrintFunctionAndOffset(function, function->code(), pc(), | |
99 stdout, true); | |
100 } | |
101 | |
102 ExtraICState extra_state = new_target->extra_ic_state(); | |
103 const char* modifier = ""; | |
104 if (new_target->kind() == Code::KEYED_STORE_IC) { | |
105 modifier = GetTransitionMarkModifier( | |
106 KeyedStoreIC::GetKeyedAccessStoreMode(extra_state)); | |
107 } | |
108 PrintF(" (%c->%c%s)", TransitionMarkFromState(old_state), | |
109 TransitionMarkFromState(new_state), modifier); | |
110 #ifdef OBJECT_PRINT | |
111 OFStream os(stdout); | |
112 name->Print(os); | |
113 #else | |
114 name->ShortPrint(stdout); | |
115 #endif | |
116 PrintF("]\n"); | |
117 } | |
118 } | |
119 | |
120 #define TRACE_IC(type, name) TraceIC(type, name) | |
121 #define TRACE_VECTOR_IC(type, name, old_state, new_state) \ | |
122 TraceIC(type, name, old_state, new_state) | |
123 | |
124 IC::IC(FrameDepth depth, Isolate* isolate) | |
125 : isolate_(isolate), | |
126 target_set_(false), | |
127 target_maps_set_(false) { | |
128 // To improve the performance of the (much used) IC code, we unfold a few | |
129 // levels of the stack frame iteration code. This yields a ~35% speedup when | |
130 // running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag. | |
131 const Address entry = | |
132 Isolate::c_entry_fp(isolate->thread_local_top()); | |
133 Address constant_pool = NULL; | |
134 if (FLAG_enable_ool_constant_pool) { | |
135 constant_pool = Memory::Address_at( | |
136 entry + ExitFrameConstants::kConstantPoolOffset); | |
137 } | |
138 Address* pc_address = | |
139 reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset); | |
140 Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset); | |
141 // If there's another JavaScript frame on the stack or a | |
142 // StubFailureTrampoline, we need to look one frame further down the stack to | |
143 // find the frame pointer and the return address stack slot. | |
144 if (depth == EXTRA_CALL_FRAME) { | |
145 if (FLAG_enable_ool_constant_pool) { | |
146 constant_pool = Memory::Address_at( | |
147 fp + StandardFrameConstants::kConstantPoolOffset); | |
148 } | |
149 const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset; | |
150 pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset); | |
151 fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset); | |
152 } | |
153 #ifdef DEBUG | |
154 StackFrameIterator it(isolate); | |
155 for (int i = 0; i < depth + 1; i++) it.Advance(); | |
156 StackFrame* frame = it.frame(); | |
157 DCHECK(fp == frame->fp() && pc_address == frame->pc_address()); | |
158 #endif | |
159 fp_ = fp; | |
160 if (FLAG_enable_ool_constant_pool) { | |
161 raw_constant_pool_ = handle( | |
162 ConstantPoolArray::cast(reinterpret_cast<Object*>(constant_pool)), | |
163 isolate); | |
164 } | |
165 pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address); | |
166 target_ = handle(raw_target(), isolate); | |
167 state_ = target_->ic_state(); | |
168 kind_ = target_->kind(); | |
169 extra_ic_state_ = target_->extra_ic_state(); | |
170 } | |
171 | |
172 | |
173 SharedFunctionInfo* IC::GetSharedFunctionInfo() const { | |
174 // Compute the JavaScript frame for the frame pointer of this IC | |
175 // structure. We need this to be able to find the function | |
176 // corresponding to the frame. | |
177 StackFrameIterator it(isolate()); | |
178 while (it.frame()->fp() != this->fp()) it.Advance(); | |
179 JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame()); | |
180 // Find the function on the stack and both the active code for the | |
181 // function and the original code. | |
182 JSFunction* function = frame->function(); | |
183 return function->shared(); | |
184 } | |
185 | |
186 | |
187 Code* IC::GetCode() const { | |
188 HandleScope scope(isolate()); | |
189 Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate()); | |
190 Code* code = shared->code(); | |
191 return code; | |
192 } | |
193 | |
194 | |
195 Code* IC::GetOriginalCode() const { | |
196 HandleScope scope(isolate()); | |
197 Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate()); | |
198 DCHECK(Debug::HasDebugInfo(shared)); | |
199 Code* original_code = Debug::GetDebugInfo(shared)->original_code(); | |
200 DCHECK(original_code->IsCode()); | |
201 return original_code; | |
202 } | |
203 | |
204 | |
205 static void LookupForRead(LookupIterator* it) { | |
206 for (; it->IsFound(); it->Next()) { | |
207 switch (it->state()) { | |
208 case LookupIterator::NOT_FOUND: | |
209 case LookupIterator::TRANSITION: | |
210 UNREACHABLE(); | |
211 case LookupIterator::JSPROXY: | |
212 return; | |
213 case LookupIterator::INTERCEPTOR: { | |
214 // If there is a getter, return; otherwise loop to perform the lookup. | |
215 Handle<JSObject> holder = it->GetHolder<JSObject>(); | |
216 if (!holder->GetNamedInterceptor()->getter()->IsUndefined()) { | |
217 return; | |
218 } | |
219 break; | |
220 } | |
221 case LookupIterator::ACCESS_CHECK: | |
222 // PropertyHandlerCompiler::CheckPrototypes() knows how to emit | |
223 // access checks for global proxies. | |
224 if (it->GetHolder<JSObject>()->IsJSGlobalProxy() && | |
225 it->HasAccess(v8::ACCESS_GET)) { | |
226 break; | |
227 } | |
228 return; | |
229 case LookupIterator::PROPERTY: | |
230 if (it->HasProperty()) return; // Yay! | |
231 break; | |
232 } | |
233 } | |
234 } | |
235 | |
236 | |
237 bool IC::TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver, | |
238 Handle<String> name) { | |
239 if (!IsNameCompatibleWithPrototypeFailure(name)) return false; | |
240 Handle<Map> receiver_map = TypeToMap(*receiver_type(), isolate()); | |
241 maybe_handler_ = target()->FindHandlerForMap(*receiver_map); | |
242 | |
243 // The current map wasn't handled yet. There's no reason to stay monomorphic, | |
244 // *unless* we're moving from a deprecated map to its replacement, or | |
245 // to a more general elements kind. | |
246 // TODO(verwaest): Check if the current map is actually what the old map | |
247 // would transition to. | |
248 if (maybe_handler_.is_null()) { | |
249 if (!receiver_map->IsJSObjectMap()) return false; | |
250 Map* first_map = FirstTargetMap(); | |
251 if (first_map == NULL) return false; | |
252 Handle<Map> old_map(first_map); | |
253 if (old_map->is_deprecated()) return true; | |
254 if (IsMoreGeneralElementsKindTransition(old_map->elements_kind(), | |
255 receiver_map->elements_kind())) { | |
256 return true; | |
257 } | |
258 return false; | |
259 } | |
260 | |
261 CacheHolderFlag flag; | |
262 Handle<Map> ic_holder_map( | |
263 GetICCacheHolder(*receiver_type(), isolate(), &flag)); | |
264 | |
265 DCHECK(flag != kCacheOnReceiver || receiver->IsJSObject()); | |
266 DCHECK(flag != kCacheOnPrototype || !receiver->IsJSReceiver()); | |
267 DCHECK(flag != kCacheOnPrototypeReceiverIsDictionary); | |
268 | |
269 if (state() == MONOMORPHIC) { | |
270 int index = ic_holder_map->IndexInCodeCache(*name, *target()); | |
271 if (index >= 0) { | |
272 ic_holder_map->RemoveFromCodeCache(*name, *target(), index); | |
273 } | |
274 } | |
275 | |
276 if (receiver->IsGlobalObject()) { | |
277 Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver); | |
278 LookupIterator it(global, name, LookupIterator::CHECK_PROPERTY); | |
279 if (!it.IsFound() || !it.HasProperty()) return false; | |
280 Handle<PropertyCell> cell = it.GetPropertyCell(); | |
281 return cell->type()->IsConstant(); | |
282 } | |
283 | |
284 return true; | |
285 } | |
286 | |
287 | |
288 bool IC::IsNameCompatibleWithPrototypeFailure(Handle<Object> name) { | |
289 if (target()->is_keyed_stub()) { | |
290 // Determine whether the failure is due to a name failure. | |
291 if (!name->IsName()) return false; | |
292 Name* stub_name = target()->FindFirstName(); | |
293 if (*name != stub_name) return false; | |
294 } | |
295 | |
296 return true; | |
297 } | |
298 | |
299 | |
300 void IC::UpdateState(Handle<Object> receiver, Handle<Object> name) { | |
301 update_receiver_type(receiver); | |
302 if (!name->IsString()) return; | |
303 if (state() != MONOMORPHIC && state() != POLYMORPHIC) return; | |
304 if (receiver->IsUndefined() || receiver->IsNull()) return; | |
305 | |
306 // Remove the target from the code cache if it became invalid | |
307 // because of changes in the prototype chain to avoid hitting it | |
308 // again. | |
309 if (TryRemoveInvalidPrototypeDependentStub(receiver, | |
310 Handle<String>::cast(name))) { | |
311 MarkPrototypeFailure(name); | |
312 return; | |
313 } | |
314 | |
315 // The builtins object is special. It only changes when JavaScript | |
316 // builtins are loaded lazily. It is important to keep inline | |
317 // caches for the builtins object monomorphic. Therefore, if we get | |
318 // an inline cache miss for the builtins object after lazily loading | |
319 // JavaScript builtins, we return uninitialized as the state to | |
320 // force the inline cache back to monomorphic state. | |
321 if (receiver->IsJSBuiltinsObject()) state_ = UNINITIALIZED; | |
322 } | |
323 | |
324 | |
325 MaybeHandle<Object> IC::TypeError(const char* type, | |
326 Handle<Object> object, | |
327 Handle<Object> key) { | |
328 HandleScope scope(isolate()); | |
329 Handle<Object> args[2] = { key, object }; | |
330 Handle<Object> error = isolate()->factory()->NewTypeError( | |
331 type, HandleVector(args, 2)); | |
332 return isolate()->Throw<Object>(error); | |
333 } | |
334 | |
335 | |
336 MaybeHandle<Object> IC::ReferenceError(const char* type, Handle<Name> name) { | |
337 HandleScope scope(isolate()); | |
338 Handle<Object> error = isolate()->factory()->NewReferenceError( | |
339 type, HandleVector(&name, 1)); | |
340 return isolate()->Throw<Object>(error); | |
341 } | |
342 | |
343 | |
344 static void ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state, | |
345 int* polymorphic_delta, | |
346 int* generic_delta) { | |
347 switch (old_state) { | |
348 case UNINITIALIZED: | |
349 case PREMONOMORPHIC: | |
350 if (new_state == UNINITIALIZED || new_state == PREMONOMORPHIC) break; | |
351 if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) { | |
352 *polymorphic_delta = 1; | |
353 } else if (new_state == MEGAMORPHIC || new_state == GENERIC) { | |
354 *generic_delta = 1; | |
355 } | |
356 break; | |
357 case MONOMORPHIC: | |
358 case POLYMORPHIC: | |
359 if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) break; | |
360 *polymorphic_delta = -1; | |
361 if (new_state == MEGAMORPHIC || new_state == GENERIC) { | |
362 *generic_delta = 1; | |
363 } | |
364 break; | |
365 case MEGAMORPHIC: | |
366 case GENERIC: | |
367 if (new_state == MEGAMORPHIC || new_state == GENERIC) break; | |
368 *generic_delta = -1; | |
369 if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) { | |
370 *polymorphic_delta = 1; | |
371 } | |
372 break; | |
373 case PROTOTYPE_FAILURE: | |
374 case DEBUG_STUB: | |
375 case DEFAULT: | |
376 UNREACHABLE(); | |
377 } | |
378 } | |
379 | |
380 | |
381 void IC::OnTypeFeedbackChanged(Isolate* isolate, Address address, | |
382 State old_state, State new_state, | |
383 bool target_remains_ic_stub) { | |
384 Code* host = isolate-> | |
385 inner_pointer_to_code_cache()->GetCacheEntry(address)->code; | |
386 if (host->kind() != Code::FUNCTION) return; | |
387 | |
388 if (FLAG_type_info_threshold > 0 && target_remains_ic_stub && | |
389 // Not all Code objects have TypeFeedbackInfo. | |
390 host->type_feedback_info()->IsTypeFeedbackInfo()) { | |
391 int polymorphic_delta = 0; // "Polymorphic" here includes monomorphic. | |
392 int generic_delta = 0; // "Generic" here includes megamorphic. | |
393 ComputeTypeInfoCountDelta(old_state, new_state, &polymorphic_delta, | |
394 &generic_delta); | |
395 TypeFeedbackInfo* info = TypeFeedbackInfo::cast(host->type_feedback_info()); | |
396 info->change_ic_with_type_info_count(polymorphic_delta); | |
397 info->change_ic_generic_count(generic_delta); | |
398 } | |
399 if (host->type_feedback_info()->IsTypeFeedbackInfo()) { | |
400 TypeFeedbackInfo* info = | |
401 TypeFeedbackInfo::cast(host->type_feedback_info()); | |
402 info->change_own_type_change_checksum(); | |
403 } | |
404 host->set_profiler_ticks(0); | |
405 isolate->runtime_profiler()->NotifyICChanged(); | |
406 // TODO(2029): When an optimized function is patched, it would | |
407 // be nice to propagate the corresponding type information to its | |
408 // unoptimized version for the benefit of later inlining. | |
409 } | |
410 | |
411 | |
412 void IC::PostPatching(Address address, Code* target, Code* old_target) { | |
413 // Type vector based ICs update these statistics at a different time because | |
414 // they don't always patch on state change. | |
415 if (target->kind() == Code::CALL_IC) return; | |
416 | |
417 Isolate* isolate = target->GetHeap()->isolate(); | |
418 State old_state = UNINITIALIZED; | |
419 State new_state = UNINITIALIZED; | |
420 bool target_remains_ic_stub = false; | |
421 if (old_target->is_inline_cache_stub() && target->is_inline_cache_stub()) { | |
422 old_state = old_target->ic_state(); | |
423 new_state = target->ic_state(); | |
424 target_remains_ic_stub = true; | |
425 } | |
426 | |
427 OnTypeFeedbackChanged(isolate, address, old_state, new_state, | |
428 target_remains_ic_stub); | |
429 } | |
430 | |
431 | |
432 void IC::RegisterWeakMapDependency(Handle<Code> stub) { | |
433 if (FLAG_collect_maps && FLAG_weak_embedded_maps_in_ic && | |
434 stub->CanBeWeakStub()) { | |
435 DCHECK(!stub->is_weak_stub()); | |
436 MapHandleList maps; | |
437 stub->FindAllMaps(&maps); | |
438 if (maps.length() == 1 && stub->IsWeakObjectInIC(*maps.at(0))) { | |
439 Map::AddDependentIC(maps.at(0), stub); | |
440 stub->mark_as_weak_stub(); | |
441 if (FLAG_enable_ool_constant_pool) { | |
442 stub->constant_pool()->set_weak_object_state( | |
443 ConstantPoolArray::WEAK_OBJECTS_IN_IC); | |
444 } | |
445 } | |
446 } | |
447 } | |
448 | |
449 | |
450 void IC::InvalidateMaps(Code* stub) { | |
451 DCHECK(stub->is_weak_stub()); | |
452 stub->mark_as_invalidated_weak_stub(); | |
453 Isolate* isolate = stub->GetIsolate(); | |
454 Heap* heap = isolate->heap(); | |
455 Object* undefined = heap->undefined_value(); | |
456 int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); | |
457 for (RelocIterator it(stub, mode_mask); !it.done(); it.next()) { | |
458 RelocInfo::Mode mode = it.rinfo()->rmode(); | |
459 if (mode == RelocInfo::EMBEDDED_OBJECT && | |
460 it.rinfo()->target_object()->IsMap()) { | |
461 it.rinfo()->set_target_object(undefined, SKIP_WRITE_BARRIER); | |
462 } | |
463 } | |
464 CpuFeatures::FlushICache(stub->instruction_start(), stub->instruction_size()); | |
465 } | |
466 | |
467 | |
468 void IC::Clear(Isolate* isolate, Address address, | |
469 ConstantPoolArray* constant_pool) { | |
470 Code* target = GetTargetAtAddress(address, constant_pool); | |
471 | |
472 // Don't clear debug break inline cache as it will remove the break point. | |
473 if (target->is_debug_stub()) return; | |
474 | |
475 switch (target->kind()) { | |
476 case Code::LOAD_IC: | |
477 return LoadIC::Clear(isolate, address, target, constant_pool); | |
478 case Code::KEYED_LOAD_IC: | |
479 return KeyedLoadIC::Clear(isolate, address, target, constant_pool); | |
480 case Code::STORE_IC: | |
481 return StoreIC::Clear(isolate, address, target, constant_pool); | |
482 case Code::KEYED_STORE_IC: | |
483 return KeyedStoreIC::Clear(isolate, address, target, constant_pool); | |
484 case Code::CALL_IC: | |
485 return CallIC::Clear(isolate, address, target, constant_pool); | |
486 case Code::COMPARE_IC: | |
487 return CompareIC::Clear(isolate, address, target, constant_pool); | |
488 case Code::COMPARE_NIL_IC: | |
489 return CompareNilIC::Clear(address, target, constant_pool); | |
490 case Code::BINARY_OP_IC: | |
491 case Code::TO_BOOLEAN_IC: | |
492 // Clearing these is tricky and does not | |
493 // make any performance difference. | |
494 return; | |
495 default: UNREACHABLE(); | |
496 } | |
497 } | |
498 | |
499 | |
500 void KeyedLoadIC::Clear(Isolate* isolate, | |
501 Address address, | |
502 Code* target, | |
503 ConstantPoolArray* constant_pool) { | |
504 if (IsCleared(target)) return; | |
505 // Make sure to also clear the map used in inline fast cases. If we | |
506 // do not clear these maps, cached code can keep objects alive | |
507 // through the embedded maps. | |
508 SetTargetAtAddress(address, *pre_monomorphic_stub(isolate), constant_pool); | |
509 } | |
510 | |
511 | |
512 void CallIC::Clear(Isolate* isolate, | |
513 Address address, | |
514 Code* target, | |
515 ConstantPoolArray* constant_pool) { | |
516 // Currently, CallIC doesn't have state changes. | |
517 } | |
518 | |
519 | |
520 void LoadIC::Clear(Isolate* isolate, | |
521 Address address, | |
522 Code* target, | |
523 ConstantPoolArray* constant_pool) { | |
524 if (IsCleared(target)) return; | |
525 Code* code = PropertyICCompiler::FindPreMonomorphic(isolate, Code::LOAD_IC, | |
526 target->extra_ic_state()); | |
527 SetTargetAtAddress(address, code, constant_pool); | |
528 } | |
529 | |
530 | |
531 void StoreIC::Clear(Isolate* isolate, | |
532 Address address, | |
533 Code* target, | |
534 ConstantPoolArray* constant_pool) { | |
535 if (IsCleared(target)) return; | |
536 Code* code = PropertyICCompiler::FindPreMonomorphic(isolate, Code::STORE_IC, | |
537 target->extra_ic_state()); | |
538 SetTargetAtAddress(address, code, constant_pool); | |
539 } | |
540 | |
541 | |
542 void KeyedStoreIC::Clear(Isolate* isolate, | |
543 Address address, | |
544 Code* target, | |
545 ConstantPoolArray* constant_pool) { | |
546 if (IsCleared(target)) return; | |
547 SetTargetAtAddress(address, | |
548 *pre_monomorphic_stub( | |
549 isolate, StoreIC::GetStrictMode(target->extra_ic_state())), | |
550 constant_pool); | |
551 } | |
552 | |
553 | |
554 void CompareIC::Clear(Isolate* isolate, | |
555 Address address, | |
556 Code* target, | |
557 ConstantPoolArray* constant_pool) { | |
558 DCHECK(CodeStub::GetMajorKey(target) == CodeStub::CompareIC); | |
559 CompareIC::State handler_state; | |
560 Token::Value op; | |
561 ICCompareStub::DecodeKey(target->stub_key(), NULL, NULL, &handler_state, &op); | |
562 // Only clear CompareICs that can retain objects. | |
563 if (handler_state != KNOWN_OBJECT) return; | |
564 SetTargetAtAddress(address, GetRawUninitialized(isolate, op), constant_pool); | |
565 PatchInlinedSmiCode(address, DISABLE_INLINED_SMI_CHECK); | |
566 } | |
567 | |
568 | |
569 // static | |
570 Handle<Code> KeyedLoadIC::generic_stub(Isolate* isolate) { | |
571 if (FLAG_compiled_keyed_generic_loads) { | |
572 return KeyedLoadGenericStub(isolate).GetCode(); | |
573 } else { | |
574 return isolate->builtins()->KeyedLoadIC_Generic(); | |
575 } | |
576 } | |
577 | |
578 | |
579 static bool MigrateDeprecated(Handle<Object> object) { | |
580 if (!object->IsJSObject()) return false; | |
581 Handle<JSObject> receiver = Handle<JSObject>::cast(object); | |
582 if (!receiver->map()->is_deprecated()) return false; | |
583 JSObject::MigrateInstance(Handle<JSObject>::cast(object)); | |
584 return true; | |
585 } | |
586 | |
587 | |
588 MaybeHandle<Object> LoadIC::Load(Handle<Object> object, Handle<Name> name) { | |
589 // If the object is undefined or null it's illegal to try to get any | |
590 // of its properties; throw a TypeError in that case. | |
591 if (object->IsUndefined() || object->IsNull()) { | |
592 return TypeError("non_object_property_load", object, name); | |
593 } | |
594 | |
595 // Check if the name is trivially convertible to an index and get | |
596 // the element or char if so. | |
597 uint32_t index; | |
598 if (kind() == Code::KEYED_LOAD_IC && name->AsArrayIndex(&index)) { | |
599 // Rewrite to the generic keyed load stub. | |
600 if (FLAG_use_ic) { | |
601 set_target(*KeyedLoadIC::generic_stub(isolate())); | |
602 TRACE_IC("LoadIC", name); | |
603 TRACE_GENERIC_IC(isolate(), "LoadIC", "name as array index"); | |
604 } | |
605 Handle<Object> result; | |
606 ASSIGN_RETURN_ON_EXCEPTION( | |
607 isolate(), | |
608 result, | |
609 Runtime::GetElementOrCharAt(isolate(), object, index), | |
610 Object); | |
611 return result; | |
612 } | |
613 | |
614 bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic; | |
615 | |
616 // Named lookup in the object. | |
617 LookupIterator it(object, name); | |
618 LookupForRead(&it); | |
619 | |
620 if (it.IsFound() || !IsUndeclaredGlobal(object)) { | |
621 // Update inline cache and stub cache. | |
622 if (use_ic) UpdateCaches(&it); | |
623 | |
624 // Get the property. | |
625 Handle<Object> result; | |
626 ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Object::GetProperty(&it), | |
627 Object); | |
628 if (it.IsFound()) { | |
629 return result; | |
630 } else if (!IsUndeclaredGlobal(object)) { | |
631 LOG(isolate(), SuspectReadEvent(*name, *object)); | |
632 return result; | |
633 } | |
634 } | |
635 return ReferenceError("not_defined", name); | |
636 } | |
637 | |
638 | |
639 static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps, | |
640 Handle<Map> new_receiver_map) { | |
641 DCHECK(!new_receiver_map.is_null()); | |
642 for (int current = 0; current < receiver_maps->length(); ++current) { | |
643 if (!receiver_maps->at(current).is_null() && | |
644 receiver_maps->at(current).is_identical_to(new_receiver_map)) { | |
645 return false; | |
646 } | |
647 } | |
648 receiver_maps->Add(new_receiver_map); | |
649 return true; | |
650 } | |
651 | |
652 | |
653 bool IC::UpdatePolymorphicIC(Handle<Name> name, Handle<Code> code) { | |
654 if (!code->is_handler()) return false; | |
655 if (target()->is_keyed_stub() && state() != PROTOTYPE_FAILURE) return false; | |
656 Handle<HeapType> type = receiver_type(); | |
657 TypeHandleList types; | |
658 CodeHandleList handlers; | |
659 | |
660 TargetTypes(&types); | |
661 int number_of_types = types.length(); | |
662 int deprecated_types = 0; | |
663 int handler_to_overwrite = -1; | |
664 | |
665 for (int i = 0; i < number_of_types; i++) { | |
666 Handle<HeapType> current_type = types.at(i); | |
667 if (current_type->IsClass() && | |
668 current_type->AsClass()->Map()->is_deprecated()) { | |
669 // Filter out deprecated maps to ensure their instances get migrated. | |
670 ++deprecated_types; | |
671 } else if (type->NowIs(current_type)) { | |
672 // If the receiver type is already in the polymorphic IC, this indicates | |
673 // there was a prototoype chain failure. In that case, just overwrite the | |
674 // handler. | |
675 handler_to_overwrite = i; | |
676 } else if (handler_to_overwrite == -1 && | |
677 current_type->IsClass() && | |
678 type->IsClass() && | |
679 IsTransitionOfMonomorphicTarget(*current_type->AsClass()->Map(), | |
680 *type->AsClass()->Map())) { | |
681 handler_to_overwrite = i; | |
682 } | |
683 } | |
684 | |
685 int number_of_valid_types = | |
686 number_of_types - deprecated_types - (handler_to_overwrite != -1); | |
687 | |
688 if (number_of_valid_types >= 4) return false; | |
689 if (number_of_types == 0) return false; | |
690 if (!target()->FindHandlers(&handlers, types.length())) return false; | |
691 | |
692 number_of_valid_types++; | |
693 if (number_of_valid_types > 1 && target()->is_keyed_stub()) return false; | |
694 Handle<Code> ic; | |
695 if (number_of_valid_types == 1) { | |
696 ic = PropertyICCompiler::ComputeMonomorphic(kind(), name, type, code, | |
697 extra_ic_state()); | |
698 } else { | |
699 if (handler_to_overwrite >= 0) { | |
700 handlers.Set(handler_to_overwrite, code); | |
701 if (!type->NowIs(types.at(handler_to_overwrite))) { | |
702 types.Set(handler_to_overwrite, type); | |
703 } | |
704 } else { | |
705 types.Add(type); | |
706 handlers.Add(code); | |
707 } | |
708 ic = PropertyICCompiler::ComputePolymorphic(kind(), &types, &handlers, | |
709 number_of_valid_types, name, | |
710 extra_ic_state()); | |
711 } | |
712 set_target(*ic); | |
713 return true; | |
714 } | |
715 | |
716 | |
717 Handle<HeapType> IC::CurrentTypeOf(Handle<Object> object, Isolate* isolate) { | |
718 return object->IsJSGlobalObject() | |
719 ? HeapType::Constant(Handle<JSGlobalObject>::cast(object), isolate) | |
720 : HeapType::NowOf(object, isolate); | |
721 } | |
722 | |
723 | |
724 Handle<Map> IC::TypeToMap(HeapType* type, Isolate* isolate) { | |
725 if (type->Is(HeapType::Number())) | |
726 return isolate->factory()->heap_number_map(); | |
727 if (type->Is(HeapType::Boolean())) return isolate->factory()->boolean_map(); | |
728 if (type->IsConstant()) { | |
729 return handle( | |
730 Handle<JSGlobalObject>::cast(type->AsConstant()->Value())->map()); | |
731 } | |
732 DCHECK(type->IsClass()); | |
733 return type->AsClass()->Map(); | |
734 } | |
735 | |
736 | |
737 template <class T> | |
738 typename T::TypeHandle IC::MapToType(Handle<Map> map, | |
739 typename T::Region* region) { | |
740 if (map->instance_type() == HEAP_NUMBER_TYPE) { | |
741 return T::Number(region); | |
742 } else if (map->instance_type() == ODDBALL_TYPE) { | |
743 // The only oddballs that can be recorded in ICs are booleans. | |
744 return T::Boolean(region); | |
745 } else { | |
746 return T::Class(map, region); | |
747 } | |
748 } | |
749 | |
750 | |
751 template | |
752 Type* IC::MapToType<Type>(Handle<Map> map, Zone* zone); | |
753 | |
754 | |
755 template | |
756 Handle<HeapType> IC::MapToType<HeapType>(Handle<Map> map, Isolate* region); | |
757 | |
758 | |
759 void IC::UpdateMonomorphicIC(Handle<Code> handler, Handle<Name> name) { | |
760 DCHECK(handler->is_handler()); | |
761 Handle<Code> ic = PropertyICCompiler::ComputeMonomorphic( | |
762 kind(), name, receiver_type(), handler, extra_ic_state()); | |
763 set_target(*ic); | |
764 } | |
765 | |
766 | |
767 void IC::CopyICToMegamorphicCache(Handle<Name> name) { | |
768 TypeHandleList types; | |
769 CodeHandleList handlers; | |
770 TargetTypes(&types); | |
771 if (!target()->FindHandlers(&handlers, types.length())) return; | |
772 for (int i = 0; i < types.length(); i++) { | |
773 UpdateMegamorphicCache(*types.at(i), *name, *handlers.at(i)); | |
774 } | |
775 } | |
776 | |
777 | |
778 bool IC::IsTransitionOfMonomorphicTarget(Map* source_map, Map* target_map) { | |
779 if (source_map == NULL) return true; | |
780 if (target_map == NULL) return false; | |
781 ElementsKind target_elements_kind = target_map->elements_kind(); | |
782 bool more_general_transition = | |
783 IsMoreGeneralElementsKindTransition( | |
784 source_map->elements_kind(), target_elements_kind); | |
785 Map* transitioned_map = more_general_transition | |
786 ? source_map->LookupElementsTransitionMap(target_elements_kind) | |
787 : NULL; | |
788 | |
789 return transitioned_map == target_map; | |
790 } | |
791 | |
792 | |
793 void IC::PatchCache(Handle<Name> name, Handle<Code> code) { | |
794 switch (state()) { | |
795 case UNINITIALIZED: | |
796 case PREMONOMORPHIC: | |
797 UpdateMonomorphicIC(code, name); | |
798 break; | |
799 case PROTOTYPE_FAILURE: | |
800 case MONOMORPHIC: | |
801 case POLYMORPHIC: | |
802 if (!target()->is_keyed_stub() || state() == PROTOTYPE_FAILURE) { | |
803 if (UpdatePolymorphicIC(name, code)) break; | |
804 CopyICToMegamorphicCache(name); | |
805 } | |
806 set_target(*megamorphic_stub()); | |
807 // Fall through. | |
808 case MEGAMORPHIC: | |
809 UpdateMegamorphicCache(*receiver_type(), *name, *code); | |
810 break; | |
811 case DEBUG_STUB: | |
812 break; | |
813 case DEFAULT: | |
814 case GENERIC: | |
815 UNREACHABLE(); | |
816 break; | |
817 } | |
818 } | |
819 | |
820 | |
821 Handle<Code> LoadIC::initialize_stub(Isolate* isolate, | |
822 ExtraICState extra_state) { | |
823 return PropertyICCompiler::ComputeLoad(isolate, UNINITIALIZED, extra_state); | |
824 } | |
825 | |
826 | |
827 Handle<Code> LoadIC::megamorphic_stub() { | |
828 if (kind() == Code::LOAD_IC) { | |
829 return PropertyICCompiler::ComputeLoad(isolate(), MEGAMORPHIC, | |
830 extra_ic_state()); | |
831 } else { | |
832 DCHECK_EQ(Code::KEYED_LOAD_IC, kind()); | |
833 return KeyedLoadIC::generic_stub(isolate()); | |
834 } | |
835 } | |
836 | |
837 | |
838 Handle<Code> LoadIC::pre_monomorphic_stub(Isolate* isolate, | |
839 ExtraICState extra_state) { | |
840 return PropertyICCompiler::ComputeLoad(isolate, PREMONOMORPHIC, extra_state); | |
841 } | |
842 | |
843 | |
844 Handle<Code> KeyedLoadIC::pre_monomorphic_stub(Isolate* isolate) { | |
845 return isolate->builtins()->KeyedLoadIC_PreMonomorphic(); | |
846 } | |
847 | |
848 | |
849 Handle<Code> LoadIC::pre_monomorphic_stub() const { | |
850 if (kind() == Code::LOAD_IC) { | |
851 return LoadIC::pre_monomorphic_stub(isolate(), extra_ic_state()); | |
852 } else { | |
853 DCHECK_EQ(Code::KEYED_LOAD_IC, kind()); | |
854 return KeyedLoadIC::pre_monomorphic_stub(isolate()); | |
855 } | |
856 } | |
857 | |
858 | |
859 Handle<Code> LoadIC::SimpleFieldLoad(FieldIndex index) { | |
860 LoadFieldStub stub(isolate(), index); | |
861 return stub.GetCode(); | |
862 } | |
863 | |
864 | |
865 void LoadIC::UpdateCaches(LookupIterator* lookup) { | |
866 if (state() == UNINITIALIZED) { | |
867 // This is the first time we execute this inline cache. Set the target to | |
868 // the pre monomorphic stub to delay setting the monomorphic state. | |
869 set_target(*pre_monomorphic_stub()); | |
870 TRACE_IC("LoadIC", lookup->name()); | |
871 return; | |
872 } | |
873 | |
874 Handle<Code> code; | |
875 if (lookup->state() == LookupIterator::JSPROXY || | |
876 lookup->state() == LookupIterator::ACCESS_CHECK) { | |
877 code = slow_stub(); | |
878 } else if (!lookup->IsFound()) { | |
879 if (kind() == Code::LOAD_IC) { | |
880 code = NamedLoadHandlerCompiler::ComputeLoadNonexistent(lookup->name(), | |
881 receiver_type()); | |
882 // TODO(jkummerow/verwaest): Introduce a builtin that handles this case. | |
883 if (code.is_null()) code = slow_stub(); | |
884 } else { | |
885 code = slow_stub(); | |
886 } | |
887 } else { | |
888 code = ComputeHandler(lookup); | |
889 } | |
890 | |
891 PatchCache(lookup->name(), code); | |
892 TRACE_IC("LoadIC", lookup->name()); | |
893 } | |
894 | |
895 | |
896 void IC::UpdateMegamorphicCache(HeapType* type, Name* name, Code* code) { | |
897 if (kind() == Code::KEYED_LOAD_IC || kind() == Code::KEYED_STORE_IC) return; | |
898 Map* map = *TypeToMap(type, isolate()); | |
899 isolate()->stub_cache()->Set(name, map, code); | |
900 } | |
901 | |
902 | |
903 Handle<Code> IC::ComputeHandler(LookupIterator* lookup, Handle<Object> value) { | |
904 bool receiver_is_holder = | |
905 lookup->GetReceiver().is_identical_to(lookup->GetHolder<JSObject>()); | |
906 CacheHolderFlag flag; | |
907 Handle<Map> stub_holder_map = IC::GetHandlerCacheHolder( | |
908 *receiver_type(), receiver_is_holder, isolate(), &flag); | |
909 | |
910 Handle<Code> code = PropertyHandlerCompiler::Find( | |
911 lookup->name(), stub_holder_map, kind(), flag, | |
912 lookup->holder_map()->is_dictionary_map() ? Code::NORMAL : Code::FAST); | |
913 // Use the cached value if it exists, and if it is different from the | |
914 // handler that just missed. | |
915 if (!code.is_null()) { | |
916 if (!maybe_handler_.is_null() && | |
917 !maybe_handler_.ToHandleChecked().is_identical_to(code)) { | |
918 return code; | |
919 } | |
920 if (maybe_handler_.is_null()) { | |
921 // maybe_handler_ is only populated for MONOMORPHIC and POLYMORPHIC ICs. | |
922 // In MEGAMORPHIC case, check if the handler in the megamorphic stub | |
923 // cache (which just missed) is different from the cached handler. | |
924 if (state() == MEGAMORPHIC && lookup->GetReceiver()->IsHeapObject()) { | |
925 Map* map = Handle<HeapObject>::cast(lookup->GetReceiver())->map(); | |
926 Code* megamorphic_cached_code = | |
927 isolate()->stub_cache()->Get(*lookup->name(), map, code->flags()); | |
928 if (megamorphic_cached_code != *code) return code; | |
929 } else { | |
930 return code; | |
931 } | |
932 } | |
933 } | |
934 | |
935 code = CompileHandler(lookup, value, flag); | |
936 DCHECK(code->is_handler()); | |
937 | |
938 if (code->type() != Code::NORMAL) { | |
939 Map::UpdateCodeCache(stub_holder_map, lookup->name(), code); | |
940 } | |
941 | |
942 return code; | |
943 } | |
944 | |
945 | |
946 Handle<Code> LoadIC::CompileHandler(LookupIterator* lookup, | |
947 Handle<Object> unused, | |
948 CacheHolderFlag cache_holder) { | |
949 Handle<Object> receiver = lookup->GetReceiver(); | |
950 if (receiver->IsString() && | |
951 Name::Equals(isolate()->factory()->length_string(), lookup->name())) { | |
952 FieldIndex index = FieldIndex::ForInObjectOffset(String::kLengthOffset); | |
953 return SimpleFieldLoad(index); | |
954 } | |
955 | |
956 if (receiver->IsStringWrapper() && | |
957 Name::Equals(isolate()->factory()->length_string(), lookup->name())) { | |
958 StringLengthStub string_length_stub(isolate()); | |
959 return string_length_stub.GetCode(); | |
960 } | |
961 | |
962 // Use specialized code for getting prototype of functions. | |
963 if (receiver->IsJSFunction() && | |
964 Name::Equals(isolate()->factory()->prototype_string(), lookup->name()) && | |
965 Handle<JSFunction>::cast(receiver)->should_have_prototype() && | |
966 !Handle<JSFunction>::cast(receiver) | |
967 ->map() | |
968 ->has_non_instance_prototype()) { | |
969 Handle<Code> stub; | |
970 FunctionPrototypeStub function_prototype_stub(isolate()); | |
971 return function_prototype_stub.GetCode(); | |
972 } | |
973 | |
974 Handle<HeapType> type = receiver_type(); | |
975 Handle<JSObject> holder = lookup->GetHolder<JSObject>(); | |
976 bool receiver_is_holder = receiver.is_identical_to(holder); | |
977 // -------------- Interceptors -------------- | |
978 if (lookup->state() == LookupIterator::INTERCEPTOR) { | |
979 DCHECK(!holder->GetNamedInterceptor()->getter()->IsUndefined()); | |
980 NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder, | |
981 cache_holder); | |
982 // Perform a lookup behind the interceptor. Copy the LookupIterator since | |
983 // the original iterator will be used to fetch the value. | |
984 LookupIterator it(lookup); | |
985 it.Next(); | |
986 LookupForRead(&it); | |
987 return compiler.CompileLoadInterceptor(&it); | |
988 } | |
989 | |
990 // -------------- Accessors -------------- | |
991 DCHECK(lookup->state() == LookupIterator::PROPERTY); | |
992 if (lookup->property_kind() == LookupIterator::ACCESSOR) { | |
993 // Use simple field loads for some well-known callback properties. | |
994 if (receiver_is_holder) { | |
995 DCHECK(receiver->IsJSObject()); | |
996 Handle<JSObject> js_receiver = Handle<JSObject>::cast(receiver); | |
997 int object_offset; | |
998 if (Accessors::IsJSObjectFieldAccessor<HeapType>(type, lookup->name(), | |
999 &object_offset)) { | |
1000 FieldIndex index = | |
1001 FieldIndex::ForInObjectOffset(object_offset, js_receiver->map()); | |
1002 return SimpleFieldLoad(index); | |
1003 } | |
1004 } | |
1005 | |
1006 Handle<Object> accessors = lookup->GetAccessors(); | |
1007 if (accessors->IsExecutableAccessorInfo()) { | |
1008 Handle<ExecutableAccessorInfo> info = | |
1009 Handle<ExecutableAccessorInfo>::cast(accessors); | |
1010 if (v8::ToCData<Address>(info->getter()) == 0) return slow_stub(); | |
1011 if (!ExecutableAccessorInfo::IsCompatibleReceiverType(isolate(), info, | |
1012 type)) { | |
1013 return slow_stub(); | |
1014 } | |
1015 if (!holder->HasFastProperties()) return slow_stub(); | |
1016 NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder, | |
1017 cache_holder); | |
1018 return compiler.CompileLoadCallback(lookup->name(), info); | |
1019 } | |
1020 if (accessors->IsAccessorPair()) { | |
1021 Handle<Object> getter(Handle<AccessorPair>::cast(accessors)->getter(), | |
1022 isolate()); | |
1023 if (!getter->IsJSFunction()) return slow_stub(); | |
1024 if (!holder->HasFastProperties()) return slow_stub(); | |
1025 Handle<JSFunction> function = Handle<JSFunction>::cast(getter); | |
1026 if (!receiver->IsJSObject() && !function->IsBuiltin() && | |
1027 function->shared()->strict_mode() == SLOPPY) { | |
1028 // Calling sloppy non-builtins with a value as the receiver | |
1029 // requires boxing. | |
1030 return slow_stub(); | |
1031 } | |
1032 CallOptimization call_optimization(function); | |
1033 NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder, | |
1034 cache_holder); | |
1035 if (call_optimization.is_simple_api_call() && | |
1036 call_optimization.IsCompatibleReceiver(receiver, holder)) { | |
1037 return compiler.CompileLoadCallback(lookup->name(), call_optimization); | |
1038 } | |
1039 return compiler.CompileLoadViaGetter(lookup->name(), function); | |
1040 } | |
1041 // TODO(dcarney): Handle correctly. | |
1042 DCHECK(accessors->IsDeclaredAccessorInfo()); | |
1043 return slow_stub(); | |
1044 } | |
1045 | |
1046 // -------------- Dictionary properties -------------- | |
1047 DCHECK(lookup->property_kind() == LookupIterator::DATA); | |
1048 if (lookup->property_encoding() == LookupIterator::DICTIONARY) { | |
1049 if (kind() != Code::LOAD_IC) return slow_stub(); | |
1050 if (holder->IsGlobalObject()) { | |
1051 NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder, | |
1052 cache_holder); | |
1053 Handle<PropertyCell> cell = lookup->GetPropertyCell(); | |
1054 Handle<Code> code = compiler.CompileLoadGlobal(cell, lookup->name(), | |
1055 lookup->IsConfigurable()); | |
1056 // TODO(verwaest): Move caching of these NORMAL stubs outside as well. | |
1057 CacheHolderFlag flag; | |
1058 Handle<Map> stub_holder_map = | |
1059 GetHandlerCacheHolder(*type, receiver_is_holder, isolate(), &flag); | |
1060 Map::UpdateCodeCache(stub_holder_map, lookup->name(), code); | |
1061 return code; | |
1062 } | |
1063 // There is only one shared stub for loading normalized | |
1064 // properties. It does not traverse the prototype chain, so the | |
1065 // property must be found in the object for the stub to be | |
1066 // applicable. | |
1067 if (!receiver_is_holder) return slow_stub(); | |
1068 return isolate()->builtins()->LoadIC_Normal(); | |
1069 } | |
1070 | |
1071 // -------------- Fields -------------- | |
1072 DCHECK(lookup->property_encoding() == LookupIterator::DESCRIPTOR); | |
1073 if (lookup->property_details().type() == FIELD) { | |
1074 FieldIndex field = lookup->GetFieldIndex(); | |
1075 if (receiver_is_holder) { | |
1076 return SimpleFieldLoad(field); | |
1077 } | |
1078 NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder, | |
1079 cache_holder); | |
1080 return compiler.CompileLoadField(lookup->name(), field); | |
1081 } | |
1082 | |
1083 // -------------- Constant properties -------------- | |
1084 DCHECK(lookup->property_details().type() == CONSTANT); | |
1085 if (receiver_is_holder) { | |
1086 LoadConstantStub stub(isolate(), lookup->GetConstantIndex()); | |
1087 return stub.GetCode(); | |
1088 } | |
1089 NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder, | |
1090 cache_holder); | |
1091 return compiler.CompileLoadConstant(lookup->name(), | |
1092 lookup->GetConstantIndex()); | |
1093 } | |
1094 | |
1095 | |
1096 static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) { | |
1097 // This helper implements a few common fast cases for converting | |
1098 // non-smi keys of keyed loads/stores to a smi or a string. | |
1099 if (key->IsHeapNumber()) { | |
1100 double value = Handle<HeapNumber>::cast(key)->value(); | |
1101 if (std::isnan(value)) { | |
1102 key = isolate->factory()->nan_string(); | |
1103 } else { | |
1104 int int_value = FastD2I(value); | |
1105 if (value == int_value && Smi::IsValid(int_value)) { | |
1106 key = Handle<Smi>(Smi::FromInt(int_value), isolate); | |
1107 } | |
1108 } | |
1109 } else if (key->IsUndefined()) { | |
1110 key = isolate->factory()->undefined_string(); | |
1111 } | |
1112 return key; | |
1113 } | |
1114 | |
1115 | |
1116 Handle<Code> KeyedLoadIC::LoadElementStub(Handle<JSObject> receiver) { | |
1117 // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS | |
1118 // via megamorphic stubs, since they don't have a map in their relocation info | |
1119 // and so the stubs can't be harvested for the object needed for a map check. | |
1120 if (target()->type() != Code::NORMAL) { | |
1121 TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type"); | |
1122 return generic_stub(); | |
1123 } | |
1124 | |
1125 Handle<Map> receiver_map(receiver->map(), isolate()); | |
1126 MapHandleList target_receiver_maps; | |
1127 if (target().is_identical_to(string_stub())) { | |
1128 target_receiver_maps.Add(isolate()->factory()->string_map()); | |
1129 } else { | |
1130 TargetMaps(&target_receiver_maps); | |
1131 } | |
1132 if (target_receiver_maps.length() == 0) { | |
1133 return PropertyICCompiler::ComputeKeyedLoadMonomorphic(receiver_map); | |
1134 } | |
1135 | |
1136 // The first time a receiver is seen that is a transitioned version of the | |
1137 // previous monomorphic receiver type, assume the new ElementsKind is the | |
1138 // monomorphic type. This benefits global arrays that only transition | |
1139 // once, and all call sites accessing them are faster if they remain | |
1140 // monomorphic. If this optimistic assumption is not true, the IC will | |
1141 // miss again and it will become polymorphic and support both the | |
1142 // untransitioned and transitioned maps. | |
1143 if (state() == MONOMORPHIC && | |
1144 IsMoreGeneralElementsKindTransition( | |
1145 target_receiver_maps.at(0)->elements_kind(), | |
1146 receiver->GetElementsKind())) { | |
1147 return PropertyICCompiler::ComputeKeyedLoadMonomorphic(receiver_map); | |
1148 } | |
1149 | |
1150 DCHECK(state() != GENERIC); | |
1151 | |
1152 // Determine the list of receiver maps that this call site has seen, | |
1153 // adding the map that was just encountered. | |
1154 if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) { | |
1155 // If the miss wasn't due to an unseen map, a polymorphic stub | |
1156 // won't help, use the generic stub. | |
1157 TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice"); | |
1158 return generic_stub(); | |
1159 } | |
1160 | |
1161 // If the maximum number of receiver maps has been exceeded, use the generic | |
1162 // version of the IC. | |
1163 if (target_receiver_maps.length() > kMaxKeyedPolymorphism) { | |
1164 TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded"); | |
1165 return generic_stub(); | |
1166 } | |
1167 | |
1168 return PropertyICCompiler::ComputeKeyedLoadPolymorphic(&target_receiver_maps); | |
1169 } | |
1170 | |
1171 | |
1172 MaybeHandle<Object> KeyedLoadIC::Load(Handle<Object> object, | |
1173 Handle<Object> key) { | |
1174 if (MigrateDeprecated(object)) { | |
1175 Handle<Object> result; | |
1176 ASSIGN_RETURN_ON_EXCEPTION( | |
1177 isolate(), | |
1178 result, | |
1179 Runtime::GetObjectProperty(isolate(), object, key), | |
1180 Object); | |
1181 return result; | |
1182 } | |
1183 | |
1184 Handle<Object> load_handle; | |
1185 Handle<Code> stub = generic_stub(); | |
1186 | |
1187 // Check for non-string values that can be converted into an | |
1188 // internalized string directly or is representable as a smi. | |
1189 key = TryConvertKey(key, isolate()); | |
1190 | |
1191 if (key->IsInternalizedString() || key->IsSymbol()) { | |
1192 ASSIGN_RETURN_ON_EXCEPTION( | |
1193 isolate(), | |
1194 load_handle, | |
1195 LoadIC::Load(object, Handle<Name>::cast(key)), | |
1196 Object); | |
1197 } else if (FLAG_use_ic && !object->IsAccessCheckNeeded()) { | |
1198 if (object->IsString() && key->IsNumber()) { | |
1199 if (state() == UNINITIALIZED) stub = string_stub(); | |
1200 } else if (object->IsJSObject()) { | |
1201 Handle<JSObject> receiver = Handle<JSObject>::cast(object); | |
1202 if (receiver->elements()->map() == | |
1203 isolate()->heap()->sloppy_arguments_elements_map()) { | |
1204 stub = sloppy_arguments_stub(); | |
1205 } else if (receiver->HasIndexedInterceptor()) { | |
1206 stub = indexed_interceptor_stub(); | |
1207 } else if (!Object::ToSmi(isolate(), key).is_null() && | |
1208 (!target().is_identical_to(sloppy_arguments_stub()))) { | |
1209 stub = LoadElementStub(receiver); | |
1210 } | |
1211 } | |
1212 } | |
1213 | |
1214 if (!is_target_set()) { | |
1215 Code* generic = *generic_stub(); | |
1216 if (*stub == generic) { | |
1217 TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "set generic"); | |
1218 } | |
1219 set_target(*stub); | |
1220 TRACE_IC("LoadIC", key); | |
1221 } | |
1222 | |
1223 if (!load_handle.is_null()) return load_handle; | |
1224 Handle<Object> result; | |
1225 ASSIGN_RETURN_ON_EXCEPTION( | |
1226 isolate(), | |
1227 result, | |
1228 Runtime::GetObjectProperty(isolate(), object, key), | |
1229 Object); | |
1230 return result; | |
1231 } | |
1232 | |
1233 | |
1234 bool StoreIC::LookupForWrite(LookupIterator* it, Handle<Object> value, | |
1235 JSReceiver::StoreFromKeyed store_mode) { | |
1236 // Disable ICs for non-JSObjects for now. | |
1237 if (!it->GetReceiver()->IsJSObject()) return false; | |
1238 Handle<JSObject> receiver = Handle<JSObject>::cast(it->GetReceiver()); | |
1239 DCHECK(!receiver->map()->is_deprecated()); | |
1240 | |
1241 for (; it->IsFound(); it->Next()) { | |
1242 switch (it->state()) { | |
1243 case LookupIterator::NOT_FOUND: | |
1244 case LookupIterator::TRANSITION: | |
1245 UNREACHABLE(); | |
1246 case LookupIterator::JSPROXY: | |
1247 return false; | |
1248 case LookupIterator::INTERCEPTOR: { | |
1249 Handle<JSObject> holder = it->GetHolder<JSObject>(); | |
1250 InterceptorInfo* info = holder->GetNamedInterceptor(); | |
1251 if (it->HolderIsReceiverOrHiddenPrototype()) { | |
1252 if (!info->setter()->IsUndefined()) return true; | |
1253 } else if (!info->getter()->IsUndefined() || | |
1254 !info->query()->IsUndefined()) { | |
1255 return false; | |
1256 } | |
1257 break; | |
1258 } | |
1259 case LookupIterator::ACCESS_CHECK: | |
1260 if (it->GetHolder<JSObject>()->IsAccessCheckNeeded()) return false; | |
1261 break; | |
1262 case LookupIterator::PROPERTY: | |
1263 if (!it->HasProperty()) break; | |
1264 if (it->IsReadOnly()) return false; | |
1265 if (it->property_kind() == LookupIterator::ACCESSOR) return true; | |
1266 if (it->GetHolder<JSObject>().is_identical_to(receiver)) { | |
1267 it->PrepareForDataProperty(value); | |
1268 // The previous receiver map might just have been deprecated, | |
1269 // so reload it. | |
1270 update_receiver_type(receiver); | |
1271 return true; | |
1272 } | |
1273 | |
1274 // Receiver != holder. | |
1275 if (receiver->IsJSGlobalProxy()) { | |
1276 PrototypeIterator iter(it->isolate(), receiver); | |
1277 return it->GetHolder<Object>().is_identical_to( | |
1278 PrototypeIterator::GetCurrent(iter)); | |
1279 } | |
1280 | |
1281 it->PrepareTransitionToDataProperty(value, NONE, store_mode); | |
1282 return it->IsCacheableTransition(); | |
1283 } | |
1284 } | |
1285 | |
1286 it->PrepareTransitionToDataProperty(value, NONE, store_mode); | |
1287 return it->IsCacheableTransition(); | |
1288 } | |
1289 | |
1290 | |
1291 MaybeHandle<Object> StoreIC::Store(Handle<Object> object, | |
1292 Handle<Name> name, | |
1293 Handle<Object> value, | |
1294 JSReceiver::StoreFromKeyed store_mode) { | |
1295 // TODO(verwaest): Let SetProperty do the migration, since storing a property | |
1296 // might deprecate the current map again, if value does not fit. | |
1297 if (MigrateDeprecated(object) || object->IsJSProxy()) { | |
1298 Handle<Object> result; | |
1299 ASSIGN_RETURN_ON_EXCEPTION( | |
1300 isolate(), result, | |
1301 Object::SetProperty(object, name, value, strict_mode()), Object); | |
1302 return result; | |
1303 } | |
1304 | |
1305 // If the object is undefined or null it's illegal to try to set any | |
1306 // properties on it; throw a TypeError in that case. | |
1307 if (object->IsUndefined() || object->IsNull()) { | |
1308 return TypeError("non_object_property_store", object, name); | |
1309 } | |
1310 | |
1311 // Check if the given name is an array index. | |
1312 uint32_t index; | |
1313 if (name->AsArrayIndex(&index)) { | |
1314 // Ignore other stores where the receiver is not a JSObject. | |
1315 // TODO(1475): Must check prototype chains of object wrappers. | |
1316 if (!object->IsJSObject()) return value; | |
1317 Handle<JSObject> receiver = Handle<JSObject>::cast(object); | |
1318 | |
1319 Handle<Object> result; | |
1320 ASSIGN_RETURN_ON_EXCEPTION( | |
1321 isolate(), | |
1322 result, | |
1323 JSObject::SetElement(receiver, index, value, NONE, strict_mode()), | |
1324 Object); | |
1325 return value; | |
1326 } | |
1327 | |
1328 // Observed objects are always modified through the runtime. | |
1329 if (object->IsHeapObject() && | |
1330 Handle<HeapObject>::cast(object)->map()->is_observed()) { | |
1331 Handle<Object> result; | |
1332 ASSIGN_RETURN_ON_EXCEPTION( | |
1333 isolate(), result, | |
1334 Object::SetProperty(object, name, value, strict_mode(), store_mode), | |
1335 Object); | |
1336 return result; | |
1337 } | |
1338 | |
1339 LookupIterator it(object, name); | |
1340 if (FLAG_use_ic) UpdateCaches(&it, value, store_mode); | |
1341 | |
1342 // Set the property. | |
1343 Handle<Object> result; | |
1344 ASSIGN_RETURN_ON_EXCEPTION( | |
1345 isolate(), result, | |
1346 Object::SetProperty(&it, value, strict_mode(), store_mode), Object); | |
1347 return result; | |
1348 } | |
1349 | |
1350 | |
1351 OStream& operator<<(OStream& os, const CallIC::State& s) { | |
1352 return os << "(args(" << s.arg_count() << "), " | |
1353 << (s.call_type() == CallIC::METHOD ? "METHOD" : "FUNCTION") | |
1354 << ", "; | |
1355 } | |
1356 | |
1357 | |
1358 Handle<Code> CallIC::initialize_stub(Isolate* isolate, | |
1359 int argc, | |
1360 CallType call_type) { | |
1361 CallICStub stub(isolate, State(argc, call_type)); | |
1362 Handle<Code> code = stub.GetCode(); | |
1363 return code; | |
1364 } | |
1365 | |
1366 | |
1367 Handle<Code> StoreIC::initialize_stub(Isolate* isolate, | |
1368 StrictMode strict_mode) { | |
1369 ExtraICState extra_state = ComputeExtraICState(strict_mode); | |
1370 Handle<Code> ic = | |
1371 PropertyICCompiler::ComputeStore(isolate, UNINITIALIZED, extra_state); | |
1372 return ic; | |
1373 } | |
1374 | |
1375 | |
1376 Handle<Code> StoreIC::megamorphic_stub() { | |
1377 return PropertyICCompiler::ComputeStore(isolate(), MEGAMORPHIC, | |
1378 extra_ic_state()); | |
1379 } | |
1380 | |
1381 | |
1382 Handle<Code> StoreIC::generic_stub() const { | |
1383 return PropertyICCompiler::ComputeStore(isolate(), GENERIC, extra_ic_state()); | |
1384 } | |
1385 | |
1386 | |
1387 Handle<Code> StoreIC::pre_monomorphic_stub(Isolate* isolate, | |
1388 StrictMode strict_mode) { | |
1389 ExtraICState state = ComputeExtraICState(strict_mode); | |
1390 return PropertyICCompiler::ComputeStore(isolate, PREMONOMORPHIC, state); | |
1391 } | |
1392 | |
1393 | |
1394 void StoreIC::UpdateCaches(LookupIterator* lookup, Handle<Object> value, | |
1395 JSReceiver::StoreFromKeyed store_mode) { | |
1396 if (state() == UNINITIALIZED) { | |
1397 // This is the first time we execute this inline cache. Set the target to | |
1398 // the pre monomorphic stub to delay setting the monomorphic state. | |
1399 set_target(*pre_monomorphic_stub()); | |
1400 TRACE_IC("StoreIC", lookup->name()); | |
1401 return; | |
1402 } | |
1403 | |
1404 Handle<Code> code = LookupForWrite(lookup, value, store_mode) | |
1405 ? ComputeHandler(lookup, value) | |
1406 : slow_stub(); | |
1407 | |
1408 PatchCache(lookup->name(), code); | |
1409 TRACE_IC("StoreIC", lookup->name()); | |
1410 } | |
1411 | |
1412 | |
1413 Handle<Code> StoreIC::CompileHandler(LookupIterator* lookup, | |
1414 Handle<Object> value, | |
1415 CacheHolderFlag cache_holder) { | |
1416 DCHECK_NE(LookupIterator::JSPROXY, lookup->state()); | |
1417 | |
1418 // This is currently guaranteed by checks in StoreIC::Store. | |
1419 Handle<JSObject> receiver = Handle<JSObject>::cast(lookup->GetReceiver()); | |
1420 Handle<JSObject> holder = lookup->GetHolder<JSObject>(); | |
1421 DCHECK(!receiver->IsAccessCheckNeeded()); | |
1422 | |
1423 // -------------- Transition -------------- | |
1424 if (lookup->state() == LookupIterator::TRANSITION) { | |
1425 Handle<Map> transition = lookup->transition_map(); | |
1426 // Currently not handled by CompileStoreTransition. | |
1427 if (!holder->HasFastProperties()) return slow_stub(); | |
1428 | |
1429 DCHECK(lookup->IsCacheableTransition()); | |
1430 NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder); | |
1431 return compiler.CompileStoreTransition(transition, lookup->name()); | |
1432 } | |
1433 | |
1434 // -------------- Interceptors -------------- | |
1435 if (lookup->state() == LookupIterator::INTERCEPTOR) { | |
1436 DCHECK(!holder->GetNamedInterceptor()->setter()->IsUndefined()); | |
1437 NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder); | |
1438 return compiler.CompileStoreInterceptor(lookup->name()); | |
1439 } | |
1440 | |
1441 // -------------- Accessors -------------- | |
1442 DCHECK(lookup->state() == LookupIterator::PROPERTY); | |
1443 if (lookup->property_kind() == LookupIterator::ACCESSOR) { | |
1444 if (!holder->HasFastProperties()) return slow_stub(); | |
1445 Handle<Object> accessors = lookup->GetAccessors(); | |
1446 if (accessors->IsExecutableAccessorInfo()) { | |
1447 Handle<ExecutableAccessorInfo> info = | |
1448 Handle<ExecutableAccessorInfo>::cast(accessors); | |
1449 if (v8::ToCData<Address>(info->setter()) == 0) return slow_stub(); | |
1450 if (!ExecutableAccessorInfo::IsCompatibleReceiverType(isolate(), info, | |
1451 receiver_type())) { | |
1452 return slow_stub(); | |
1453 } | |
1454 NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder); | |
1455 return compiler.CompileStoreCallback(receiver, lookup->name(), info); | |
1456 } else if (accessors->IsAccessorPair()) { | |
1457 Handle<Object> setter(Handle<AccessorPair>::cast(accessors)->setter(), | |
1458 isolate()); | |
1459 if (!setter->IsJSFunction()) return slow_stub(); | |
1460 Handle<JSFunction> function = Handle<JSFunction>::cast(setter); | |
1461 CallOptimization call_optimization(function); | |
1462 NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder); | |
1463 if (call_optimization.is_simple_api_call() && | |
1464 call_optimization.IsCompatibleReceiver(receiver, holder)) { | |
1465 return compiler.CompileStoreCallback(receiver, lookup->name(), | |
1466 call_optimization); | |
1467 } | |
1468 return compiler.CompileStoreViaSetter(receiver, lookup->name(), | |
1469 Handle<JSFunction>::cast(setter)); | |
1470 } | |
1471 // TODO(dcarney): Handle correctly. | |
1472 DCHECK(accessors->IsDeclaredAccessorInfo()); | |
1473 return slow_stub(); | |
1474 } | |
1475 | |
1476 // -------------- Dictionary properties -------------- | |
1477 DCHECK(lookup->property_kind() == LookupIterator::DATA); | |
1478 if (lookup->property_encoding() == LookupIterator::DICTIONARY) { | |
1479 if (holder->IsGlobalObject()) { | |
1480 Handle<PropertyCell> cell = lookup->GetPropertyCell(); | |
1481 Handle<HeapType> union_type = PropertyCell::UpdatedType(cell, value); | |
1482 StoreGlobalStub stub(isolate(), union_type->IsConstant(), | |
1483 receiver->IsJSGlobalProxy()); | |
1484 Handle<Code> code = stub.GetCodeCopyFromTemplate( | |
1485 Handle<GlobalObject>::cast(holder), cell); | |
1486 // TODO(verwaest): Move caching of these NORMAL stubs outside as well. | |
1487 HeapObject::UpdateMapCodeCache(receiver, lookup->name(), code); | |
1488 return code; | |
1489 } | |
1490 DCHECK(holder.is_identical_to(receiver)); | |
1491 return isolate()->builtins()->StoreIC_Normal(); | |
1492 } | |
1493 | |
1494 // -------------- Fields -------------- | |
1495 DCHECK(lookup->property_encoding() == LookupIterator::DESCRIPTOR); | |
1496 if (lookup->property_details().type() == FIELD) { | |
1497 bool use_stub = true; | |
1498 if (lookup->representation().IsHeapObject()) { | |
1499 // Only use a generic stub if no types need to be tracked. | |
1500 Handle<HeapType> field_type = lookup->GetFieldType(); | |
1501 HeapType::Iterator<Map> it = field_type->Classes(); | |
1502 use_stub = it.Done(); | |
1503 } | |
1504 if (use_stub) { | |
1505 StoreFieldStub stub(isolate(), lookup->GetFieldIndex(), | |
1506 lookup->representation()); | |
1507 return stub.GetCode(); | |
1508 } | |
1509 NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder); | |
1510 return compiler.CompileStoreField(lookup); | |
1511 } | |
1512 | |
1513 // -------------- Constant properties -------------- | |
1514 DCHECK(lookup->property_details().type() == CONSTANT); | |
1515 return slow_stub(); | |
1516 } | |
1517 | |
1518 | |
1519 Handle<Code> KeyedStoreIC::StoreElementStub(Handle<JSObject> receiver, | |
1520 KeyedAccessStoreMode store_mode) { | |
1521 // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS | |
1522 // via megamorphic stubs, since they don't have a map in their relocation info | |
1523 // and so the stubs can't be harvested for the object needed for a map check. | |
1524 if (target()->type() != Code::NORMAL) { | |
1525 TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type"); | |
1526 return generic_stub(); | |
1527 } | |
1528 | |
1529 Handle<Map> receiver_map(receiver->map(), isolate()); | |
1530 MapHandleList target_receiver_maps; | |
1531 TargetMaps(&target_receiver_maps); | |
1532 if (target_receiver_maps.length() == 0) { | |
1533 Handle<Map> monomorphic_map = | |
1534 ComputeTransitionedMap(receiver_map, store_mode); | |
1535 store_mode = GetNonTransitioningStoreMode(store_mode); | |
1536 return PropertyICCompiler::ComputeKeyedStoreMonomorphic( | |
1537 monomorphic_map, strict_mode(), store_mode); | |
1538 } | |
1539 | |
1540 // There are several special cases where an IC that is MONOMORPHIC can still | |
1541 // transition to a different GetNonTransitioningStoreMode IC that handles a | |
1542 // superset of the original IC. Handle those here if the receiver map hasn't | |
1543 // changed or it has transitioned to a more general kind. | |
1544 KeyedAccessStoreMode old_store_mode = | |
1545 KeyedStoreIC::GetKeyedAccessStoreMode(target()->extra_ic_state()); | |
1546 Handle<Map> previous_receiver_map = target_receiver_maps.at(0); | |
1547 if (state() == MONOMORPHIC) { | |
1548 Handle<Map> transitioned_receiver_map = receiver_map; | |
1549 if (IsTransitionStoreMode(store_mode)) { | |
1550 transitioned_receiver_map = | |
1551 ComputeTransitionedMap(receiver_map, store_mode); | |
1552 } | |
1553 if ((receiver_map.is_identical_to(previous_receiver_map) && | |
1554 IsTransitionStoreMode(store_mode)) || | |
1555 IsTransitionOfMonomorphicTarget(*previous_receiver_map, | |
1556 *transitioned_receiver_map)) { | |
1557 // If the "old" and "new" maps are in the same elements map family, or | |
1558 // if they at least come from the same origin for a transitioning store, | |
1559 // stay MONOMORPHIC and use the map for the most generic ElementsKind. | |
1560 store_mode = GetNonTransitioningStoreMode(store_mode); | |
1561 return PropertyICCompiler::ComputeKeyedStoreMonomorphic( | |
1562 transitioned_receiver_map, strict_mode(), store_mode); | |
1563 } else if (*previous_receiver_map == receiver->map() && | |
1564 old_store_mode == STANDARD_STORE && | |
1565 (store_mode == STORE_AND_GROW_NO_TRANSITION || | |
1566 store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS || | |
1567 store_mode == STORE_NO_TRANSITION_HANDLE_COW)) { | |
1568 // A "normal" IC that handles stores can switch to a version that can | |
1569 // grow at the end of the array, handle OOB accesses or copy COW arrays | |
1570 // and still stay MONOMORPHIC. | |
1571 return PropertyICCompiler::ComputeKeyedStoreMonomorphic( | |
1572 receiver_map, strict_mode(), store_mode); | |
1573 } | |
1574 } | |
1575 | |
1576 DCHECK(state() != GENERIC); | |
1577 | |
1578 bool map_added = | |
1579 AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map); | |
1580 | |
1581 if (IsTransitionStoreMode(store_mode)) { | |
1582 Handle<Map> transitioned_receiver_map = | |
1583 ComputeTransitionedMap(receiver_map, store_mode); | |
1584 map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps, | |
1585 transitioned_receiver_map); | |
1586 } | |
1587 | |
1588 if (!map_added) { | |
1589 // If the miss wasn't due to an unseen map, a polymorphic stub | |
1590 // won't help, use the generic stub. | |
1591 TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice"); | |
1592 return generic_stub(); | |
1593 } | |
1594 | |
1595 // If the maximum number of receiver maps has been exceeded, use the generic | |
1596 // version of the IC. | |
1597 if (target_receiver_maps.length() > kMaxKeyedPolymorphism) { | |
1598 TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded"); | |
1599 return generic_stub(); | |
1600 } | |
1601 | |
1602 // Make sure all polymorphic handlers have the same store mode, otherwise the | |
1603 // generic stub must be used. | |
1604 store_mode = GetNonTransitioningStoreMode(store_mode); | |
1605 if (old_store_mode != STANDARD_STORE) { | |
1606 if (store_mode == STANDARD_STORE) { | |
1607 store_mode = old_store_mode; | |
1608 } else if (store_mode != old_store_mode) { | |
1609 TRACE_GENERIC_IC(isolate(), "KeyedIC", "store mode mismatch"); | |
1610 return generic_stub(); | |
1611 } | |
1612 } | |
1613 | |
1614 // If the store mode isn't the standard mode, make sure that all polymorphic | |
1615 // receivers are either external arrays, or all "normal" arrays. Otherwise, | |
1616 // use the generic stub. | |
1617 if (store_mode != STANDARD_STORE) { | |
1618 int external_arrays = 0; | |
1619 for (int i = 0; i < target_receiver_maps.length(); ++i) { | |
1620 if (target_receiver_maps[i]->has_external_array_elements() || | |
1621 target_receiver_maps[i]->has_fixed_typed_array_elements()) { | |
1622 external_arrays++; | |
1623 } | |
1624 } | |
1625 if (external_arrays != 0 && | |
1626 external_arrays != target_receiver_maps.length()) { | |
1627 TRACE_GENERIC_IC(isolate(), "KeyedIC", | |
1628 "unsupported combination of external and normal arrays"); | |
1629 return generic_stub(); | |
1630 } | |
1631 } | |
1632 | |
1633 return PropertyICCompiler::ComputeKeyedStorePolymorphic( | |
1634 &target_receiver_maps, store_mode, strict_mode()); | |
1635 } | |
1636 | |
1637 | |
1638 Handle<Map> KeyedStoreIC::ComputeTransitionedMap( | |
1639 Handle<Map> map, | |
1640 KeyedAccessStoreMode store_mode) { | |
1641 switch (store_mode) { | |
1642 case STORE_TRANSITION_SMI_TO_OBJECT: | |
1643 case STORE_TRANSITION_DOUBLE_TO_OBJECT: | |
1644 case STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT: | |
1645 case STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT: | |
1646 return Map::TransitionElementsTo(map, FAST_ELEMENTS); | |
1647 case STORE_TRANSITION_SMI_TO_DOUBLE: | |
1648 case STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE: | |
1649 return Map::TransitionElementsTo(map, FAST_DOUBLE_ELEMENTS); | |
1650 case STORE_TRANSITION_HOLEY_SMI_TO_OBJECT: | |
1651 case STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT: | |
1652 case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT: | |
1653 case STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT: | |
1654 return Map::TransitionElementsTo(map, FAST_HOLEY_ELEMENTS); | |
1655 case STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE: | |
1656 case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE: | |
1657 return Map::TransitionElementsTo(map, FAST_HOLEY_DOUBLE_ELEMENTS); | |
1658 case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS: | |
1659 DCHECK(map->has_external_array_elements()); | |
1660 // Fall through | |
1661 case STORE_NO_TRANSITION_HANDLE_COW: | |
1662 case STANDARD_STORE: | |
1663 case STORE_AND_GROW_NO_TRANSITION: | |
1664 return map; | |
1665 } | |
1666 UNREACHABLE(); | |
1667 return MaybeHandle<Map>().ToHandleChecked(); | |
1668 } | |
1669 | |
1670 | |
1671 bool IsOutOfBoundsAccess(Handle<JSObject> receiver, | |
1672 int index) { | |
1673 if (receiver->IsJSArray()) { | |
1674 return JSArray::cast(*receiver)->length()->IsSmi() && | |
1675 index >= Smi::cast(JSArray::cast(*receiver)->length())->value(); | |
1676 } | |
1677 return index >= receiver->elements()->length(); | |
1678 } | |
1679 | |
1680 | |
1681 KeyedAccessStoreMode KeyedStoreIC::GetStoreMode(Handle<JSObject> receiver, | |
1682 Handle<Object> key, | |
1683 Handle<Object> value) { | |
1684 Handle<Smi> smi_key = Object::ToSmi(isolate(), key).ToHandleChecked(); | |
1685 int index = smi_key->value(); | |
1686 bool oob_access = IsOutOfBoundsAccess(receiver, index); | |
1687 // Don't consider this a growing store if the store would send the receiver to | |
1688 // dictionary mode. | |
1689 bool allow_growth = receiver->IsJSArray() && oob_access && | |
1690 !receiver->WouldConvertToSlowElements(key); | |
1691 if (allow_growth) { | |
1692 // Handle growing array in stub if necessary. | |
1693 if (receiver->HasFastSmiElements()) { | |
1694 if (value->IsHeapNumber()) { | |
1695 if (receiver->HasFastHoleyElements()) { | |
1696 return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE; | |
1697 } else { | |
1698 return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE; | |
1699 } | |
1700 } | |
1701 if (value->IsHeapObject()) { | |
1702 if (receiver->HasFastHoleyElements()) { | |
1703 return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT; | |
1704 } else { | |
1705 return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT; | |
1706 } | |
1707 } | |
1708 } else if (receiver->HasFastDoubleElements()) { | |
1709 if (!value->IsSmi() && !value->IsHeapNumber()) { | |
1710 if (receiver->HasFastHoleyElements()) { | |
1711 return STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT; | |
1712 } else { | |
1713 return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT; | |
1714 } | |
1715 } | |
1716 } | |
1717 return STORE_AND_GROW_NO_TRANSITION; | |
1718 } else { | |
1719 // Handle only in-bounds elements accesses. | |
1720 if (receiver->HasFastSmiElements()) { | |
1721 if (value->IsHeapNumber()) { | |
1722 if (receiver->HasFastHoleyElements()) { | |
1723 return STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE; | |
1724 } else { | |
1725 return STORE_TRANSITION_SMI_TO_DOUBLE; | |
1726 } | |
1727 } else if (value->IsHeapObject()) { | |
1728 if (receiver->HasFastHoleyElements()) { | |
1729 return STORE_TRANSITION_HOLEY_SMI_TO_OBJECT; | |
1730 } else { | |
1731 return STORE_TRANSITION_SMI_TO_OBJECT; | |
1732 } | |
1733 } | |
1734 } else if (receiver->HasFastDoubleElements()) { | |
1735 if (!value->IsSmi() && !value->IsHeapNumber()) { | |
1736 if (receiver->HasFastHoleyElements()) { | |
1737 return STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT; | |
1738 } else { | |
1739 return STORE_TRANSITION_DOUBLE_TO_OBJECT; | |
1740 } | |
1741 } | |
1742 } | |
1743 if (!FLAG_trace_external_array_abuse && | |
1744 receiver->map()->has_external_array_elements() && oob_access) { | |
1745 return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS; | |
1746 } | |
1747 Heap* heap = receiver->GetHeap(); | |
1748 if (receiver->elements()->map() == heap->fixed_cow_array_map()) { | |
1749 return STORE_NO_TRANSITION_HANDLE_COW; | |
1750 } else { | |
1751 return STANDARD_STORE; | |
1752 } | |
1753 } | |
1754 } | |
1755 | |
1756 | |
1757 MaybeHandle<Object> KeyedStoreIC::Store(Handle<Object> object, | |
1758 Handle<Object> key, | |
1759 Handle<Object> value) { | |
1760 // TODO(verwaest): Let SetProperty do the migration, since storing a property | |
1761 // might deprecate the current map again, if value does not fit. | |
1762 if (MigrateDeprecated(object)) { | |
1763 Handle<Object> result; | |
1764 ASSIGN_RETURN_ON_EXCEPTION( | |
1765 isolate(), | |
1766 result, | |
1767 Runtime::SetObjectProperty( | |
1768 isolate(), object, key, value, strict_mode()), | |
1769 Object); | |
1770 return result; | |
1771 } | |
1772 | |
1773 // Check for non-string values that can be converted into an | |
1774 // internalized string directly or is representable as a smi. | |
1775 key = TryConvertKey(key, isolate()); | |
1776 | |
1777 Handle<Object> store_handle; | |
1778 Handle<Code> stub = generic_stub(); | |
1779 | |
1780 if (key->IsInternalizedString()) { | |
1781 ASSIGN_RETURN_ON_EXCEPTION( | |
1782 isolate(), | |
1783 store_handle, | |
1784 StoreIC::Store(object, | |
1785 Handle<String>::cast(key), | |
1786 value, | |
1787 JSReceiver::MAY_BE_STORE_FROM_KEYED), | |
1788 Object); | |
1789 TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic"); | |
1790 set_target(*stub); | |
1791 return store_handle; | |
1792 } | |
1793 | |
1794 bool use_ic = | |
1795 FLAG_use_ic && !object->IsStringWrapper() && | |
1796 !object->IsAccessCheckNeeded() && !object->IsJSGlobalProxy() && | |
1797 !(object->IsJSObject() && JSObject::cast(*object)->map()->is_observed()); | |
1798 if (use_ic && !object->IsSmi()) { | |
1799 // Don't use ICs for maps of the objects in Array's prototype chain. We | |
1800 // expect to be able to trap element sets to objects with those maps in | |
1801 // the runtime to enable optimization of element hole access. | |
1802 Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object); | |
1803 if (heap_object->map()->IsMapInArrayPrototypeChain()) use_ic = false; | |
1804 } | |
1805 | |
1806 if (use_ic) { | |
1807 DCHECK(!object->IsAccessCheckNeeded()); | |
1808 | |
1809 if (object->IsJSObject()) { | |
1810 Handle<JSObject> receiver = Handle<JSObject>::cast(object); | |
1811 bool key_is_smi_like = !Object::ToSmi(isolate(), key).is_null(); | |
1812 if (receiver->elements()->map() == | |
1813 isolate()->heap()->sloppy_arguments_elements_map()) { | |
1814 if (strict_mode() == SLOPPY) { | |
1815 stub = sloppy_arguments_stub(); | |
1816 } | |
1817 } else if (key_is_smi_like && | |
1818 !(target().is_identical_to(sloppy_arguments_stub()))) { | |
1819 // We should go generic if receiver isn't a dictionary, but our | |
1820 // prototype chain does have dictionary elements. This ensures that | |
1821 // other non-dictionary receivers in the polymorphic case benefit | |
1822 // from fast path keyed stores. | |
1823 if (!(receiver->map()->DictionaryElementsInPrototypeChainOnly())) { | |
1824 KeyedAccessStoreMode store_mode = GetStoreMode(receiver, key, value); | |
1825 stub = StoreElementStub(receiver, store_mode); | |
1826 } | |
1827 } | |
1828 } | |
1829 } | |
1830 | |
1831 if (store_handle.is_null()) { | |
1832 ASSIGN_RETURN_ON_EXCEPTION( | |
1833 isolate(), | |
1834 store_handle, | |
1835 Runtime::SetObjectProperty( | |
1836 isolate(), object, key, value, strict_mode()), | |
1837 Object); | |
1838 } | |
1839 | |
1840 DCHECK(!is_target_set()); | |
1841 Code* generic = *generic_stub(); | |
1842 if (*stub == generic) { | |
1843 TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic"); | |
1844 } | |
1845 DCHECK(!stub.is_null()); | |
1846 set_target(*stub); | |
1847 TRACE_IC("StoreIC", key); | |
1848 | |
1849 return store_handle; | |
1850 } | |
1851 | |
1852 | |
1853 CallIC::State::State(ExtraICState extra_ic_state) | |
1854 : argc_(ArgcBits::decode(extra_ic_state)), | |
1855 call_type_(CallTypeBits::decode(extra_ic_state)) { | |
1856 } | |
1857 | |
1858 | |
1859 ExtraICState CallIC::State::GetExtraICState() const { | |
1860 ExtraICState extra_ic_state = | |
1861 ArgcBits::encode(argc_) | | |
1862 CallTypeBits::encode(call_type_); | |
1863 return extra_ic_state; | |
1864 } | |
1865 | |
1866 | |
1867 bool CallIC::DoCustomHandler(Handle<Object> receiver, | |
1868 Handle<Object> function, | |
1869 Handle<FixedArray> vector, | |
1870 Handle<Smi> slot, | |
1871 const State& state) { | |
1872 DCHECK(FLAG_use_ic && function->IsJSFunction()); | |
1873 | |
1874 // Are we the array function? | |
1875 Handle<JSFunction> array_function = Handle<JSFunction>( | |
1876 isolate()->native_context()->array_function()); | |
1877 if (array_function.is_identical_to(Handle<JSFunction>::cast(function))) { | |
1878 // Alter the slot. | |
1879 IC::State old_state = FeedbackToState(vector, slot); | |
1880 Object* feedback = vector->get(slot->value()); | |
1881 if (!feedback->IsAllocationSite()) { | |
1882 Handle<AllocationSite> new_site = | |
1883 isolate()->factory()->NewAllocationSite(); | |
1884 vector->set(slot->value(), *new_site); | |
1885 } | |
1886 | |
1887 CallIC_ArrayStub stub(isolate(), state); | |
1888 set_target(*stub.GetCode()); | |
1889 Handle<String> name; | |
1890 if (array_function->shared()->name()->IsString()) { | |
1891 name = Handle<String>(String::cast(array_function->shared()->name()), | |
1892 isolate()); | |
1893 } | |
1894 | |
1895 IC::State new_state = FeedbackToState(vector, slot); | |
1896 OnTypeFeedbackChanged(isolate(), address(), old_state, new_state, true); | |
1897 TRACE_VECTOR_IC("CallIC (custom handler)", name, old_state, new_state); | |
1898 return true; | |
1899 } | |
1900 return false; | |
1901 } | |
1902 | |
1903 | |
1904 void CallIC::PatchMegamorphic(Handle<Object> function, | |
1905 Handle<FixedArray> vector, Handle<Smi> slot) { | |
1906 State state(target()->extra_ic_state()); | |
1907 IC::State old_state = FeedbackToState(vector, slot); | |
1908 | |
1909 // We are going generic. | |
1910 vector->set(slot->value(), | |
1911 *TypeFeedbackInfo::MegamorphicSentinel(isolate()), | |
1912 SKIP_WRITE_BARRIER); | |
1913 | |
1914 CallICStub stub(isolate(), state); | |
1915 Handle<Code> code = stub.GetCode(); | |
1916 set_target(*code); | |
1917 | |
1918 Handle<Object> name = isolate()->factory()->empty_string(); | |
1919 if (function->IsJSFunction()) { | |
1920 Handle<JSFunction> js_function = Handle<JSFunction>::cast(function); | |
1921 name = handle(js_function->shared()->name(), isolate()); | |
1922 } | |
1923 | |
1924 IC::State new_state = FeedbackToState(vector, slot); | |
1925 OnTypeFeedbackChanged(isolate(), address(), old_state, new_state, true); | |
1926 TRACE_VECTOR_IC("CallIC", name, old_state, new_state); | |
1927 } | |
1928 | |
1929 | |
1930 void CallIC::HandleMiss(Handle<Object> receiver, | |
1931 Handle<Object> function, | |
1932 Handle<FixedArray> vector, | |
1933 Handle<Smi> slot) { | |
1934 State state(target()->extra_ic_state()); | |
1935 IC::State old_state = FeedbackToState(vector, slot); | |
1936 Handle<Object> name = isolate()->factory()->empty_string(); | |
1937 Object* feedback = vector->get(slot->value()); | |
1938 | |
1939 // Hand-coded MISS handling is easier if CallIC slots don't contain smis. | |
1940 DCHECK(!feedback->IsSmi()); | |
1941 | |
1942 if (feedback->IsJSFunction() || !function->IsJSFunction()) { | |
1943 // We are going generic. | |
1944 vector->set(slot->value(), | |
1945 *TypeFeedbackInfo::MegamorphicSentinel(isolate()), | |
1946 SKIP_WRITE_BARRIER); | |
1947 } else { | |
1948 // The feedback is either uninitialized or an allocation site. | |
1949 // It might be an allocation site because if we re-compile the full code | |
1950 // to add deoptimization support, we call with the default call-ic, and | |
1951 // merely need to patch the target to match the feedback. | |
1952 // TODO(mvstanton): the better approach is to dispense with patching | |
1953 // altogether, which is in progress. | |
1954 DCHECK(feedback == *TypeFeedbackInfo::UninitializedSentinel(isolate()) || | |
1955 feedback->IsAllocationSite()); | |
1956 | |
1957 // Do we want to install a custom handler? | |
1958 if (FLAG_use_ic && | |
1959 DoCustomHandler(receiver, function, vector, slot, state)) { | |
1960 return; | |
1961 } | |
1962 | |
1963 vector->set(slot->value(), *function); | |
1964 } | |
1965 | |
1966 if (function->IsJSFunction()) { | |
1967 Handle<JSFunction> js_function = Handle<JSFunction>::cast(function); | |
1968 name = handle(js_function->shared()->name(), isolate()); | |
1969 } | |
1970 | |
1971 IC::State new_state = FeedbackToState(vector, slot); | |
1972 OnTypeFeedbackChanged(isolate(), address(), old_state, new_state, true); | |
1973 TRACE_VECTOR_IC("CallIC", name, old_state, new_state); | |
1974 } | |
1975 | |
1976 | |
1977 #undef TRACE_IC | |
1978 | |
1979 | |
1980 // ---------------------------------------------------------------------------- | |
1981 // Static IC stub generators. | |
1982 // | |
1983 | |
1984 // Used from ic-<arch>.cc. | |
1985 RUNTIME_FUNCTION(CallIC_Miss) { | |
1986 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
1987 HandleScope scope(isolate); | |
1988 DCHECK(args.length() == 4); | |
1989 CallIC ic(isolate); | |
1990 Handle<Object> receiver = args.at<Object>(0); | |
1991 Handle<Object> function = args.at<Object>(1); | |
1992 Handle<FixedArray> vector = args.at<FixedArray>(2); | |
1993 Handle<Smi> slot = args.at<Smi>(3); | |
1994 ic.HandleMiss(receiver, function, vector, slot); | |
1995 return *function; | |
1996 } | |
1997 | |
1998 | |
1999 RUNTIME_FUNCTION(CallIC_Customization_Miss) { | |
2000 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
2001 HandleScope scope(isolate); | |
2002 DCHECK(args.length() == 4); | |
2003 // A miss on a custom call ic always results in going megamorphic. | |
2004 CallIC ic(isolate); | |
2005 Handle<Object> function = args.at<Object>(1); | |
2006 Handle<FixedArray> vector = args.at<FixedArray>(2); | |
2007 Handle<Smi> slot = args.at<Smi>(3); | |
2008 ic.PatchMegamorphic(function, vector, slot); | |
2009 return *function; | |
2010 } | |
2011 | |
2012 | |
2013 // Used from ic-<arch>.cc. | |
2014 RUNTIME_FUNCTION(LoadIC_Miss) { | |
2015 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
2016 HandleScope scope(isolate); | |
2017 DCHECK(args.length() == 2); | |
2018 LoadIC ic(IC::NO_EXTRA_FRAME, isolate); | |
2019 Handle<Object> receiver = args.at<Object>(0); | |
2020 Handle<Name> key = args.at<Name>(1); | |
2021 ic.UpdateState(receiver, key); | |
2022 Handle<Object> result; | |
2023 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key)); | |
2024 return *result; | |
2025 } | |
2026 | |
2027 | |
2028 // Used from ic-<arch>.cc | |
2029 RUNTIME_FUNCTION(KeyedLoadIC_Miss) { | |
2030 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
2031 HandleScope scope(isolate); | |
2032 DCHECK(args.length() == 2); | |
2033 KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate); | |
2034 Handle<Object> receiver = args.at<Object>(0); | |
2035 Handle<Object> key = args.at<Object>(1); | |
2036 ic.UpdateState(receiver, key); | |
2037 Handle<Object> result; | |
2038 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key)); | |
2039 return *result; | |
2040 } | |
2041 | |
2042 | |
2043 RUNTIME_FUNCTION(KeyedLoadIC_MissFromStubFailure) { | |
2044 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
2045 HandleScope scope(isolate); | |
2046 DCHECK(args.length() == 2); | |
2047 KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate); | |
2048 Handle<Object> receiver = args.at<Object>(0); | |
2049 Handle<Object> key = args.at<Object>(1); | |
2050 ic.UpdateState(receiver, key); | |
2051 Handle<Object> result; | |
2052 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key)); | |
2053 return *result; | |
2054 } | |
2055 | |
2056 | |
2057 // Used from ic-<arch>.cc. | |
2058 RUNTIME_FUNCTION(StoreIC_Miss) { | |
2059 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
2060 HandleScope scope(isolate); | |
2061 DCHECK(args.length() == 3); | |
2062 StoreIC ic(IC::NO_EXTRA_FRAME, isolate); | |
2063 Handle<Object> receiver = args.at<Object>(0); | |
2064 Handle<String> key = args.at<String>(1); | |
2065 ic.UpdateState(receiver, key); | |
2066 Handle<Object> result; | |
2067 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2068 isolate, | |
2069 result, | |
2070 ic.Store(receiver, key, args.at<Object>(2))); | |
2071 return *result; | |
2072 } | |
2073 | |
2074 | |
2075 RUNTIME_FUNCTION(StoreIC_MissFromStubFailure) { | |
2076 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
2077 HandleScope scope(isolate); | |
2078 DCHECK(args.length() == 3); | |
2079 StoreIC ic(IC::EXTRA_CALL_FRAME, isolate); | |
2080 Handle<Object> receiver = args.at<Object>(0); | |
2081 Handle<String> key = args.at<String>(1); | |
2082 ic.UpdateState(receiver, key); | |
2083 Handle<Object> result; | |
2084 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2085 isolate, | |
2086 result, | |
2087 ic.Store(receiver, key, args.at<Object>(2))); | |
2088 return *result; | |
2089 } | |
2090 | |
2091 | |
2092 // Extend storage is called in a store inline cache when | |
2093 // it is necessary to extend the properties array of a | |
2094 // JSObject. | |
2095 RUNTIME_FUNCTION(SharedStoreIC_ExtendStorage) { | |
2096 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
2097 HandleScope shs(isolate); | |
2098 DCHECK(args.length() == 3); | |
2099 | |
2100 // Convert the parameters | |
2101 Handle<JSObject> object = args.at<JSObject>(0); | |
2102 Handle<Map> transition = args.at<Map>(1); | |
2103 Handle<Object> value = args.at<Object>(2); | |
2104 | |
2105 // Check the object has run out out property space. | |
2106 DCHECK(object->HasFastProperties()); | |
2107 DCHECK(object->map()->unused_property_fields() == 0); | |
2108 | |
2109 JSObject::MigrateToNewProperty(object, transition, value); | |
2110 | |
2111 // Return the stored value. | |
2112 return *value; | |
2113 } | |
2114 | |
2115 | |
2116 // Used from ic-<arch>.cc. | |
2117 RUNTIME_FUNCTION(KeyedStoreIC_Miss) { | |
2118 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
2119 HandleScope scope(isolate); | |
2120 DCHECK(args.length() == 3); | |
2121 KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate); | |
2122 Handle<Object> receiver = args.at<Object>(0); | |
2123 Handle<Object> key = args.at<Object>(1); | |
2124 ic.UpdateState(receiver, key); | |
2125 Handle<Object> result; | |
2126 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2127 isolate, | |
2128 result, | |
2129 ic.Store(receiver, key, args.at<Object>(2))); | |
2130 return *result; | |
2131 } | |
2132 | |
2133 | |
2134 RUNTIME_FUNCTION(KeyedStoreIC_MissFromStubFailure) { | |
2135 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
2136 HandleScope scope(isolate); | |
2137 DCHECK(args.length() == 3); | |
2138 KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate); | |
2139 Handle<Object> receiver = args.at<Object>(0); | |
2140 Handle<Object> key = args.at<Object>(1); | |
2141 ic.UpdateState(receiver, key); | |
2142 Handle<Object> result; | |
2143 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2144 isolate, | |
2145 result, | |
2146 ic.Store(receiver, key, args.at<Object>(2))); | |
2147 return *result; | |
2148 } | |
2149 | |
2150 | |
2151 RUNTIME_FUNCTION(StoreIC_Slow) { | |
2152 HandleScope scope(isolate); | |
2153 DCHECK(args.length() == 3); | |
2154 StoreIC ic(IC::NO_EXTRA_FRAME, isolate); | |
2155 Handle<Object> object = args.at<Object>(0); | |
2156 Handle<Object> key = args.at<Object>(1); | |
2157 Handle<Object> value = args.at<Object>(2); | |
2158 StrictMode strict_mode = ic.strict_mode(); | |
2159 Handle<Object> result; | |
2160 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2161 isolate, result, | |
2162 Runtime::SetObjectProperty( | |
2163 isolate, object, key, value, strict_mode)); | |
2164 return *result; | |
2165 } | |
2166 | |
2167 | |
2168 RUNTIME_FUNCTION(KeyedStoreIC_Slow) { | |
2169 HandleScope scope(isolate); | |
2170 DCHECK(args.length() == 3); | |
2171 KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate); | |
2172 Handle<Object> object = args.at<Object>(0); | |
2173 Handle<Object> key = args.at<Object>(1); | |
2174 Handle<Object> value = args.at<Object>(2); | |
2175 StrictMode strict_mode = ic.strict_mode(); | |
2176 Handle<Object> result; | |
2177 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2178 isolate, result, | |
2179 Runtime::SetObjectProperty( | |
2180 isolate, object, key, value, strict_mode)); | |
2181 return *result; | |
2182 } | |
2183 | |
2184 | |
2185 RUNTIME_FUNCTION(ElementsTransitionAndStoreIC_Miss) { | |
2186 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
2187 HandleScope scope(isolate); | |
2188 DCHECK(args.length() == 4); | |
2189 KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate); | |
2190 Handle<Object> value = args.at<Object>(0); | |
2191 Handle<Map> map = args.at<Map>(1); | |
2192 Handle<Object> key = args.at<Object>(2); | |
2193 Handle<Object> object = args.at<Object>(3); | |
2194 StrictMode strict_mode = ic.strict_mode(); | |
2195 if (object->IsJSObject()) { | |
2196 JSObject::TransitionElementsKind(Handle<JSObject>::cast(object), | |
2197 map->elements_kind()); | |
2198 } | |
2199 Handle<Object> result; | |
2200 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2201 isolate, result, | |
2202 Runtime::SetObjectProperty( | |
2203 isolate, object, key, value, strict_mode)); | |
2204 return *result; | |
2205 } | |
2206 | |
2207 | |
2208 BinaryOpIC::State::State(Isolate* isolate, ExtraICState extra_ic_state) | |
2209 : isolate_(isolate) { | |
2210 op_ = static_cast<Token::Value>( | |
2211 FIRST_TOKEN + OpField::decode(extra_ic_state)); | |
2212 mode_ = OverwriteModeField::decode(extra_ic_state); | |
2213 fixed_right_arg_ = Maybe<int>( | |
2214 HasFixedRightArgField::decode(extra_ic_state), | |
2215 1 << FixedRightArgValueField::decode(extra_ic_state)); | |
2216 left_kind_ = LeftKindField::decode(extra_ic_state); | |
2217 if (fixed_right_arg_.has_value) { | |
2218 right_kind_ = Smi::IsValid(fixed_right_arg_.value) ? SMI : INT32; | |
2219 } else { | |
2220 right_kind_ = RightKindField::decode(extra_ic_state); | |
2221 } | |
2222 result_kind_ = ResultKindField::decode(extra_ic_state); | |
2223 DCHECK_LE(FIRST_TOKEN, op_); | |
2224 DCHECK_LE(op_, LAST_TOKEN); | |
2225 } | |
2226 | |
2227 | |
2228 ExtraICState BinaryOpIC::State::GetExtraICState() const { | |
2229 ExtraICState extra_ic_state = | |
2230 OpField::encode(op_ - FIRST_TOKEN) | | |
2231 OverwriteModeField::encode(mode_) | | |
2232 LeftKindField::encode(left_kind_) | | |
2233 ResultKindField::encode(result_kind_) | | |
2234 HasFixedRightArgField::encode(fixed_right_arg_.has_value); | |
2235 if (fixed_right_arg_.has_value) { | |
2236 extra_ic_state = FixedRightArgValueField::update( | |
2237 extra_ic_state, WhichPowerOf2(fixed_right_arg_.value)); | |
2238 } else { | |
2239 extra_ic_state = RightKindField::update(extra_ic_state, right_kind_); | |
2240 } | |
2241 return extra_ic_state; | |
2242 } | |
2243 | |
2244 | |
2245 // static | |
2246 void BinaryOpIC::State::GenerateAheadOfTime( | |
2247 Isolate* isolate, void (*Generate)(Isolate*, const State&)) { | |
2248 // TODO(olivf) We should investigate why adding stubs to the snapshot is so | |
2249 // expensive at runtime. When solved we should be able to add most binops to | |
2250 // the snapshot instead of hand-picking them. | |
2251 // Generated list of commonly used stubs | |
2252 #define GENERATE(op, left_kind, right_kind, result_kind, mode) \ | |
2253 do { \ | |
2254 State state(isolate, op, mode); \ | |
2255 state.left_kind_ = left_kind; \ | |
2256 state.fixed_right_arg_.has_value = false; \ | |
2257 state.right_kind_ = right_kind; \ | |
2258 state.result_kind_ = result_kind; \ | |
2259 Generate(isolate, state); \ | |
2260 } while (false) | |
2261 GENERATE(Token::ADD, INT32, INT32, INT32, NO_OVERWRITE); | |
2262 GENERATE(Token::ADD, INT32, INT32, INT32, OVERWRITE_LEFT); | |
2263 GENERATE(Token::ADD, INT32, INT32, NUMBER, NO_OVERWRITE); | |
2264 GENERATE(Token::ADD, INT32, INT32, NUMBER, OVERWRITE_LEFT); | |
2265 GENERATE(Token::ADD, INT32, NUMBER, NUMBER, NO_OVERWRITE); | |
2266 GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_LEFT); | |
2267 GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT); | |
2268 GENERATE(Token::ADD, INT32, SMI, INT32, NO_OVERWRITE); | |
2269 GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_LEFT); | |
2270 GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_RIGHT); | |
2271 GENERATE(Token::ADD, NUMBER, INT32, NUMBER, NO_OVERWRITE); | |
2272 GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_LEFT); | |
2273 GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT); | |
2274 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, NO_OVERWRITE); | |
2275 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT); | |
2276 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT); | |
2277 GENERATE(Token::ADD, NUMBER, SMI, NUMBER, NO_OVERWRITE); | |
2278 GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT); | |
2279 GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT); | |
2280 GENERATE(Token::ADD, SMI, INT32, INT32, NO_OVERWRITE); | |
2281 GENERATE(Token::ADD, SMI, INT32, INT32, OVERWRITE_LEFT); | |
2282 GENERATE(Token::ADD, SMI, INT32, NUMBER, NO_OVERWRITE); | |
2283 GENERATE(Token::ADD, SMI, NUMBER, NUMBER, NO_OVERWRITE); | |
2284 GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_LEFT); | |
2285 GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT); | |
2286 GENERATE(Token::ADD, SMI, SMI, INT32, OVERWRITE_LEFT); | |
2287 GENERATE(Token::ADD, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
2288 GENERATE(Token::BIT_AND, INT32, INT32, INT32, NO_OVERWRITE); | |
2289 GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_LEFT); | |
2290 GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_RIGHT); | |
2291 GENERATE(Token::BIT_AND, INT32, INT32, SMI, NO_OVERWRITE); | |
2292 GENERATE(Token::BIT_AND, INT32, INT32, SMI, OVERWRITE_RIGHT); | |
2293 GENERATE(Token::BIT_AND, INT32, SMI, INT32, NO_OVERWRITE); | |
2294 GENERATE(Token::BIT_AND, INT32, SMI, INT32, OVERWRITE_RIGHT); | |
2295 GENERATE(Token::BIT_AND, INT32, SMI, SMI, NO_OVERWRITE); | |
2296 GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_LEFT); | |
2297 GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_RIGHT); | |
2298 GENERATE(Token::BIT_AND, NUMBER, INT32, INT32, OVERWRITE_RIGHT); | |
2299 GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, NO_OVERWRITE); | |
2300 GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, OVERWRITE_RIGHT); | |
2301 GENERATE(Token::BIT_AND, SMI, INT32, INT32, NO_OVERWRITE); | |
2302 GENERATE(Token::BIT_AND, SMI, INT32, SMI, OVERWRITE_RIGHT); | |
2303 GENERATE(Token::BIT_AND, SMI, NUMBER, SMI, OVERWRITE_RIGHT); | |
2304 GENERATE(Token::BIT_AND, SMI, SMI, SMI, NO_OVERWRITE); | |
2305 GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_LEFT); | |
2306 GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
2307 GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_LEFT); | |
2308 GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_RIGHT); | |
2309 GENERATE(Token::BIT_OR, INT32, INT32, SMI, OVERWRITE_LEFT); | |
2310 GENERATE(Token::BIT_OR, INT32, SMI, INT32, NO_OVERWRITE); | |
2311 GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_LEFT); | |
2312 GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_RIGHT); | |
2313 GENERATE(Token::BIT_OR, INT32, SMI, SMI, NO_OVERWRITE); | |
2314 GENERATE(Token::BIT_OR, INT32, SMI, SMI, OVERWRITE_RIGHT); | |
2315 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, NO_OVERWRITE); | |
2316 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_LEFT); | |
2317 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_RIGHT); | |
2318 GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, NO_OVERWRITE); | |
2319 GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, OVERWRITE_LEFT); | |
2320 GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_LEFT); | |
2321 GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_RIGHT); | |
2322 GENERATE(Token::BIT_OR, SMI, INT32, SMI, OVERWRITE_RIGHT); | |
2323 GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_LEFT); | |
2324 GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
2325 GENERATE(Token::BIT_XOR, INT32, INT32, INT32, NO_OVERWRITE); | |
2326 GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_LEFT); | |
2327 GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_RIGHT); | |
2328 GENERATE(Token::BIT_XOR, INT32, INT32, SMI, NO_OVERWRITE); | |
2329 GENERATE(Token::BIT_XOR, INT32, INT32, SMI, OVERWRITE_LEFT); | |
2330 GENERATE(Token::BIT_XOR, INT32, NUMBER, SMI, NO_OVERWRITE); | |
2331 GENERATE(Token::BIT_XOR, INT32, SMI, INT32, NO_OVERWRITE); | |
2332 GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_LEFT); | |
2333 GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_RIGHT); | |
2334 GENERATE(Token::BIT_XOR, NUMBER, INT32, INT32, NO_OVERWRITE); | |
2335 GENERATE(Token::BIT_XOR, NUMBER, SMI, INT32, NO_OVERWRITE); | |
2336 GENERATE(Token::BIT_XOR, NUMBER, SMI, SMI, NO_OVERWRITE); | |
2337 GENERATE(Token::BIT_XOR, SMI, INT32, INT32, NO_OVERWRITE); | |
2338 GENERATE(Token::BIT_XOR, SMI, INT32, INT32, OVERWRITE_LEFT); | |
2339 GENERATE(Token::BIT_XOR, SMI, INT32, SMI, OVERWRITE_LEFT); | |
2340 GENERATE(Token::BIT_XOR, SMI, SMI, SMI, NO_OVERWRITE); | |
2341 GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_LEFT); | |
2342 GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
2343 GENERATE(Token::DIV, INT32, INT32, INT32, NO_OVERWRITE); | |
2344 GENERATE(Token::DIV, INT32, INT32, NUMBER, NO_OVERWRITE); | |
2345 GENERATE(Token::DIV, INT32, NUMBER, NUMBER, NO_OVERWRITE); | |
2346 GENERATE(Token::DIV, INT32, NUMBER, NUMBER, OVERWRITE_LEFT); | |
2347 GENERATE(Token::DIV, INT32, SMI, INT32, NO_OVERWRITE); | |
2348 GENERATE(Token::DIV, INT32, SMI, NUMBER, NO_OVERWRITE); | |
2349 GENERATE(Token::DIV, NUMBER, INT32, NUMBER, NO_OVERWRITE); | |
2350 GENERATE(Token::DIV, NUMBER, INT32, NUMBER, OVERWRITE_LEFT); | |
2351 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, NO_OVERWRITE); | |
2352 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT); | |
2353 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT); | |
2354 GENERATE(Token::DIV, NUMBER, SMI, NUMBER, NO_OVERWRITE); | |
2355 GENERATE(Token::DIV, NUMBER, SMI, NUMBER, OVERWRITE_LEFT); | |
2356 GENERATE(Token::DIV, SMI, INT32, INT32, NO_OVERWRITE); | |
2357 GENERATE(Token::DIV, SMI, INT32, NUMBER, NO_OVERWRITE); | |
2358 GENERATE(Token::DIV, SMI, INT32, NUMBER, OVERWRITE_LEFT); | |
2359 GENERATE(Token::DIV, SMI, NUMBER, NUMBER, NO_OVERWRITE); | |
2360 GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_LEFT); | |
2361 GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT); | |
2362 GENERATE(Token::DIV, SMI, SMI, NUMBER, NO_OVERWRITE); | |
2363 GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_LEFT); | |
2364 GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_RIGHT); | |
2365 GENERATE(Token::DIV, SMI, SMI, SMI, NO_OVERWRITE); | |
2366 GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_LEFT); | |
2367 GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
2368 GENERATE(Token::MOD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT); | |
2369 GENERATE(Token::MOD, SMI, SMI, SMI, NO_OVERWRITE); | |
2370 GENERATE(Token::MOD, SMI, SMI, SMI, OVERWRITE_LEFT); | |
2371 GENERATE(Token::MUL, INT32, INT32, INT32, NO_OVERWRITE); | |
2372 GENERATE(Token::MUL, INT32, INT32, NUMBER, NO_OVERWRITE); | |
2373 GENERATE(Token::MUL, INT32, NUMBER, NUMBER, NO_OVERWRITE); | |
2374 GENERATE(Token::MUL, INT32, NUMBER, NUMBER, OVERWRITE_LEFT); | |
2375 GENERATE(Token::MUL, INT32, SMI, INT32, NO_OVERWRITE); | |
2376 GENERATE(Token::MUL, INT32, SMI, INT32, OVERWRITE_LEFT); | |
2377 GENERATE(Token::MUL, INT32, SMI, NUMBER, NO_OVERWRITE); | |
2378 GENERATE(Token::MUL, NUMBER, INT32, NUMBER, NO_OVERWRITE); | |
2379 GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_LEFT); | |
2380 GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT); | |
2381 GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, NO_OVERWRITE); | |
2382 GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT); | |
2383 GENERATE(Token::MUL, NUMBER, SMI, NUMBER, NO_OVERWRITE); | |
2384 GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_LEFT); | |
2385 GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT); | |
2386 GENERATE(Token::MUL, SMI, INT32, INT32, NO_OVERWRITE); | |
2387 GENERATE(Token::MUL, SMI, INT32, INT32, OVERWRITE_LEFT); | |
2388 GENERATE(Token::MUL, SMI, INT32, NUMBER, NO_OVERWRITE); | |
2389 GENERATE(Token::MUL, SMI, NUMBER, NUMBER, NO_OVERWRITE); | |
2390 GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_LEFT); | |
2391 GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT); | |
2392 GENERATE(Token::MUL, SMI, SMI, INT32, NO_OVERWRITE); | |
2393 GENERATE(Token::MUL, SMI, SMI, NUMBER, NO_OVERWRITE); | |
2394 GENERATE(Token::MUL, SMI, SMI, NUMBER, OVERWRITE_LEFT); | |
2395 GENERATE(Token::MUL, SMI, SMI, SMI, NO_OVERWRITE); | |
2396 GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_LEFT); | |
2397 GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
2398 GENERATE(Token::SAR, INT32, SMI, INT32, OVERWRITE_RIGHT); | |
2399 GENERATE(Token::SAR, INT32, SMI, SMI, NO_OVERWRITE); | |
2400 GENERATE(Token::SAR, INT32, SMI, SMI, OVERWRITE_RIGHT); | |
2401 GENERATE(Token::SAR, NUMBER, SMI, SMI, NO_OVERWRITE); | |
2402 GENERATE(Token::SAR, NUMBER, SMI, SMI, OVERWRITE_RIGHT); | |
2403 GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_LEFT); | |
2404 GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
2405 GENERATE(Token::SHL, INT32, SMI, INT32, NO_OVERWRITE); | |
2406 GENERATE(Token::SHL, INT32, SMI, INT32, OVERWRITE_RIGHT); | |
2407 GENERATE(Token::SHL, INT32, SMI, SMI, NO_OVERWRITE); | |
2408 GENERATE(Token::SHL, INT32, SMI, SMI, OVERWRITE_RIGHT); | |
2409 GENERATE(Token::SHL, NUMBER, SMI, SMI, OVERWRITE_RIGHT); | |
2410 GENERATE(Token::SHL, SMI, SMI, INT32, NO_OVERWRITE); | |
2411 GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_LEFT); | |
2412 GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_RIGHT); | |
2413 GENERATE(Token::SHL, SMI, SMI, SMI, NO_OVERWRITE); | |
2414 GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_LEFT); | |
2415 GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
2416 GENERATE(Token::SHR, INT32, SMI, SMI, NO_OVERWRITE); | |
2417 GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_LEFT); | |
2418 GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_RIGHT); | |
2419 GENERATE(Token::SHR, NUMBER, SMI, SMI, NO_OVERWRITE); | |
2420 GENERATE(Token::SHR, NUMBER, SMI, SMI, OVERWRITE_LEFT); | |
2421 GENERATE(Token::SHR, NUMBER, SMI, INT32, OVERWRITE_RIGHT); | |
2422 GENERATE(Token::SHR, SMI, SMI, SMI, NO_OVERWRITE); | |
2423 GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_LEFT); | |
2424 GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
2425 GENERATE(Token::SUB, INT32, INT32, INT32, NO_OVERWRITE); | |
2426 GENERATE(Token::SUB, INT32, INT32, INT32, OVERWRITE_LEFT); | |
2427 GENERATE(Token::SUB, INT32, NUMBER, NUMBER, NO_OVERWRITE); | |
2428 GENERATE(Token::SUB, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT); | |
2429 GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_LEFT); | |
2430 GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_RIGHT); | |
2431 GENERATE(Token::SUB, NUMBER, INT32, NUMBER, NO_OVERWRITE); | |
2432 GENERATE(Token::SUB, NUMBER, INT32, NUMBER, OVERWRITE_LEFT); | |
2433 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, NO_OVERWRITE); | |
2434 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT); | |
2435 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT); | |
2436 GENERATE(Token::SUB, NUMBER, SMI, NUMBER, NO_OVERWRITE); | |
2437 GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_LEFT); | |
2438 GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT); | |
2439 GENERATE(Token::SUB, SMI, INT32, INT32, NO_OVERWRITE); | |
2440 GENERATE(Token::SUB, SMI, NUMBER, NUMBER, NO_OVERWRITE); | |
2441 GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_LEFT); | |
2442 GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT); | |
2443 GENERATE(Token::SUB, SMI, SMI, SMI, NO_OVERWRITE); | |
2444 GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_LEFT); | |
2445 GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
2446 #undef GENERATE | |
2447 #define GENERATE(op, left_kind, fixed_right_arg_value, result_kind, mode) \ | |
2448 do { \ | |
2449 State state(isolate, op, mode); \ | |
2450 state.left_kind_ = left_kind; \ | |
2451 state.fixed_right_arg_.has_value = true; \ | |
2452 state.fixed_right_arg_.value = fixed_right_arg_value; \ | |
2453 state.right_kind_ = SMI; \ | |
2454 state.result_kind_ = result_kind; \ | |
2455 Generate(isolate, state); \ | |
2456 } while (false) | |
2457 GENERATE(Token::MOD, SMI, 2, SMI, NO_OVERWRITE); | |
2458 GENERATE(Token::MOD, SMI, 4, SMI, NO_OVERWRITE); | |
2459 GENERATE(Token::MOD, SMI, 4, SMI, OVERWRITE_LEFT); | |
2460 GENERATE(Token::MOD, SMI, 8, SMI, NO_OVERWRITE); | |
2461 GENERATE(Token::MOD, SMI, 16, SMI, OVERWRITE_LEFT); | |
2462 GENERATE(Token::MOD, SMI, 32, SMI, NO_OVERWRITE); | |
2463 GENERATE(Token::MOD, SMI, 2048, SMI, NO_OVERWRITE); | |
2464 #undef GENERATE | |
2465 } | |
2466 | |
2467 | |
2468 Type* BinaryOpIC::State::GetResultType(Zone* zone) const { | |
2469 Kind result_kind = result_kind_; | |
2470 if (HasSideEffects()) { | |
2471 result_kind = NONE; | |
2472 } else if (result_kind == GENERIC && op_ == Token::ADD) { | |
2473 return Type::Union(Type::Number(zone), Type::String(zone), zone); | |
2474 } else if (result_kind == NUMBER && op_ == Token::SHR) { | |
2475 return Type::Unsigned32(zone); | |
2476 } | |
2477 DCHECK_NE(GENERIC, result_kind); | |
2478 return KindToType(result_kind, zone); | |
2479 } | |
2480 | |
2481 | |
2482 OStream& operator<<(OStream& os, const BinaryOpIC::State& s) { | |
2483 os << "(" << Token::Name(s.op_); | |
2484 if (s.mode_ == OVERWRITE_LEFT) | |
2485 os << "_ReuseLeft"; | |
2486 else if (s.mode_ == OVERWRITE_RIGHT) | |
2487 os << "_ReuseRight"; | |
2488 if (s.CouldCreateAllocationMementos()) os << "_CreateAllocationMementos"; | |
2489 os << ":" << BinaryOpIC::State::KindToString(s.left_kind_) << "*"; | |
2490 if (s.fixed_right_arg_.has_value) { | |
2491 os << s.fixed_right_arg_.value; | |
2492 } else { | |
2493 os << BinaryOpIC::State::KindToString(s.right_kind_); | |
2494 } | |
2495 return os << "->" << BinaryOpIC::State::KindToString(s.result_kind_) << ")"; | |
2496 } | |
2497 | |
2498 | |
2499 void BinaryOpIC::State::Update(Handle<Object> left, | |
2500 Handle<Object> right, | |
2501 Handle<Object> result) { | |
2502 ExtraICState old_extra_ic_state = GetExtraICState(); | |
2503 | |
2504 left_kind_ = UpdateKind(left, left_kind_); | |
2505 right_kind_ = UpdateKind(right, right_kind_); | |
2506 | |
2507 int32_t fixed_right_arg_value = 0; | |
2508 bool has_fixed_right_arg = | |
2509 op_ == Token::MOD && | |
2510 right->ToInt32(&fixed_right_arg_value) && | |
2511 fixed_right_arg_value > 0 && | |
2512 IsPowerOf2(fixed_right_arg_value) && | |
2513 FixedRightArgValueField::is_valid(WhichPowerOf2(fixed_right_arg_value)) && | |
2514 (left_kind_ == SMI || left_kind_ == INT32) && | |
2515 (result_kind_ == NONE || !fixed_right_arg_.has_value); | |
2516 fixed_right_arg_ = Maybe<int32_t>(has_fixed_right_arg, | |
2517 fixed_right_arg_value); | |
2518 | |
2519 result_kind_ = UpdateKind(result, result_kind_); | |
2520 | |
2521 if (!Token::IsTruncatingBinaryOp(op_)) { | |
2522 Kind input_kind = Max(left_kind_, right_kind_); | |
2523 if (result_kind_ < input_kind && input_kind <= NUMBER) { | |
2524 result_kind_ = input_kind; | |
2525 } | |
2526 } | |
2527 | |
2528 // We don't want to distinguish INT32 and NUMBER for string add (because | |
2529 // NumberToString can't make use of this anyway). | |
2530 if (left_kind_ == STRING && right_kind_ == INT32) { | |
2531 DCHECK_EQ(STRING, result_kind_); | |
2532 DCHECK_EQ(Token::ADD, op_); | |
2533 right_kind_ = NUMBER; | |
2534 } else if (right_kind_ == STRING && left_kind_ == INT32) { | |
2535 DCHECK_EQ(STRING, result_kind_); | |
2536 DCHECK_EQ(Token::ADD, op_); | |
2537 left_kind_ = NUMBER; | |
2538 } | |
2539 | |
2540 // Reset overwrite mode unless we can actually make use of it, or may be able | |
2541 // to make use of it at some point in the future. | |
2542 if ((mode_ == OVERWRITE_LEFT && left_kind_ > NUMBER) || | |
2543 (mode_ == OVERWRITE_RIGHT && right_kind_ > NUMBER) || | |
2544 result_kind_ > NUMBER) { | |
2545 mode_ = NO_OVERWRITE; | |
2546 } | |
2547 | |
2548 if (old_extra_ic_state == GetExtraICState()) { | |
2549 // Tagged operations can lead to non-truncating HChanges | |
2550 if (left->IsUndefined() || left->IsBoolean()) { | |
2551 left_kind_ = GENERIC; | |
2552 } else { | |
2553 DCHECK(right->IsUndefined() || right->IsBoolean()); | |
2554 right_kind_ = GENERIC; | |
2555 } | |
2556 } | |
2557 } | |
2558 | |
2559 | |
2560 BinaryOpIC::State::Kind BinaryOpIC::State::UpdateKind(Handle<Object> object, | |
2561 Kind kind) const { | |
2562 Kind new_kind = GENERIC; | |
2563 bool is_truncating = Token::IsTruncatingBinaryOp(op()); | |
2564 if (object->IsBoolean() && is_truncating) { | |
2565 // Booleans will be automatically truncated by HChange. | |
2566 new_kind = INT32; | |
2567 } else if (object->IsUndefined()) { | |
2568 // Undefined will be automatically truncated by HChange. | |
2569 new_kind = is_truncating ? INT32 : NUMBER; | |
2570 } else if (object->IsSmi()) { | |
2571 new_kind = SMI; | |
2572 } else if (object->IsHeapNumber()) { | |
2573 double value = Handle<HeapNumber>::cast(object)->value(); | |
2574 new_kind = IsInt32Double(value) ? INT32 : NUMBER; | |
2575 } else if (object->IsString() && op() == Token::ADD) { | |
2576 new_kind = STRING; | |
2577 } | |
2578 if (new_kind == INT32 && SmiValuesAre32Bits()) { | |
2579 new_kind = NUMBER; | |
2580 } | |
2581 if (kind != NONE && | |
2582 ((new_kind <= NUMBER && kind > NUMBER) || | |
2583 (new_kind > NUMBER && kind <= NUMBER))) { | |
2584 new_kind = GENERIC; | |
2585 } | |
2586 return Max(kind, new_kind); | |
2587 } | |
2588 | |
2589 | |
2590 // static | |
2591 const char* BinaryOpIC::State::KindToString(Kind kind) { | |
2592 switch (kind) { | |
2593 case NONE: return "None"; | |
2594 case SMI: return "Smi"; | |
2595 case INT32: return "Int32"; | |
2596 case NUMBER: return "Number"; | |
2597 case STRING: return "String"; | |
2598 case GENERIC: return "Generic"; | |
2599 } | |
2600 UNREACHABLE(); | |
2601 return NULL; | |
2602 } | |
2603 | |
2604 | |
2605 // static | |
2606 Type* BinaryOpIC::State::KindToType(Kind kind, Zone* zone) { | |
2607 switch (kind) { | |
2608 case NONE: return Type::None(zone); | |
2609 case SMI: return Type::SignedSmall(zone); | |
2610 case INT32: return Type::Signed32(zone); | |
2611 case NUMBER: return Type::Number(zone); | |
2612 case STRING: return Type::String(zone); | |
2613 case GENERIC: return Type::Any(zone); | |
2614 } | |
2615 UNREACHABLE(); | |
2616 return NULL; | |
2617 } | |
2618 | |
2619 | |
2620 MaybeHandle<Object> BinaryOpIC::Transition( | |
2621 Handle<AllocationSite> allocation_site, | |
2622 Handle<Object> left, | |
2623 Handle<Object> right) { | |
2624 State state(isolate(), target()->extra_ic_state()); | |
2625 | |
2626 // Compute the actual result using the builtin for the binary operation. | |
2627 Object* builtin = isolate()->js_builtins_object()->javascript_builtin( | |
2628 TokenToJSBuiltin(state.op())); | |
2629 Handle<JSFunction> function = handle(JSFunction::cast(builtin), isolate()); | |
2630 Handle<Object> result; | |
2631 ASSIGN_RETURN_ON_EXCEPTION( | |
2632 isolate(), | |
2633 result, | |
2634 Execution::Call(isolate(), function, left, 1, &right), | |
2635 Object); | |
2636 | |
2637 // Execution::Call can execute arbitrary JavaScript, hence potentially | |
2638 // update the state of this very IC, so we must update the stored state. | |
2639 UpdateTarget(); | |
2640 // Compute the new state. | |
2641 State old_state(isolate(), target()->extra_ic_state()); | |
2642 state.Update(left, right, result); | |
2643 | |
2644 // Check if we have a string operation here. | |
2645 Handle<Code> target; | |
2646 if (!allocation_site.is_null() || state.ShouldCreateAllocationMementos()) { | |
2647 // Setup the allocation site on-demand. | |
2648 if (allocation_site.is_null()) { | |
2649 allocation_site = isolate()->factory()->NewAllocationSite(); | |
2650 } | |
2651 | |
2652 // Install the stub with an allocation site. | |
2653 BinaryOpICWithAllocationSiteStub stub(isolate(), state); | |
2654 target = stub.GetCodeCopyFromTemplate(allocation_site); | |
2655 | |
2656 // Sanity check the trampoline stub. | |
2657 DCHECK_EQ(*allocation_site, target->FindFirstAllocationSite()); | |
2658 } else { | |
2659 // Install the generic stub. | |
2660 BinaryOpICStub stub(isolate(), state); | |
2661 target = stub.GetCode(); | |
2662 | |
2663 // Sanity check the generic stub. | |
2664 DCHECK_EQ(NULL, target->FindFirstAllocationSite()); | |
2665 } | |
2666 set_target(*target); | |
2667 | |
2668 if (FLAG_trace_ic) { | |
2669 OFStream os(stdout); | |
2670 os << "[BinaryOpIC" << old_state << " => " << state << " @ " | |
2671 << static_cast<void*>(*target) << " <- "; | |
2672 JavaScriptFrame::PrintTop(isolate(), stdout, false, true); | |
2673 if (!allocation_site.is_null()) { | |
2674 os << " using allocation site " << static_cast<void*>(*allocation_site); | |
2675 } | |
2676 os << "]" << endl; | |
2677 } | |
2678 | |
2679 // Patch the inlined smi code as necessary. | |
2680 if (!old_state.UseInlinedSmiCode() && state.UseInlinedSmiCode()) { | |
2681 PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK); | |
2682 } else if (old_state.UseInlinedSmiCode() && !state.UseInlinedSmiCode()) { | |
2683 PatchInlinedSmiCode(address(), DISABLE_INLINED_SMI_CHECK); | |
2684 } | |
2685 | |
2686 return result; | |
2687 } | |
2688 | |
2689 | |
2690 RUNTIME_FUNCTION(BinaryOpIC_Miss) { | |
2691 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
2692 HandleScope scope(isolate); | |
2693 DCHECK_EQ(2, args.length()); | |
2694 Handle<Object> left = args.at<Object>(BinaryOpICStub::kLeft); | |
2695 Handle<Object> right = args.at<Object>(BinaryOpICStub::kRight); | |
2696 BinaryOpIC ic(isolate); | |
2697 Handle<Object> result; | |
2698 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2699 isolate, | |
2700 result, | |
2701 ic.Transition(Handle<AllocationSite>::null(), left, right)); | |
2702 return *result; | |
2703 } | |
2704 | |
2705 | |
2706 RUNTIME_FUNCTION(BinaryOpIC_MissWithAllocationSite) { | |
2707 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
2708 HandleScope scope(isolate); | |
2709 DCHECK_EQ(3, args.length()); | |
2710 Handle<AllocationSite> allocation_site = args.at<AllocationSite>( | |
2711 BinaryOpWithAllocationSiteStub::kAllocationSite); | |
2712 Handle<Object> left = args.at<Object>( | |
2713 BinaryOpWithAllocationSiteStub::kLeft); | |
2714 Handle<Object> right = args.at<Object>( | |
2715 BinaryOpWithAllocationSiteStub::kRight); | |
2716 BinaryOpIC ic(isolate); | |
2717 Handle<Object> result; | |
2718 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
2719 isolate, | |
2720 result, | |
2721 ic.Transition(allocation_site, left, right)); | |
2722 return *result; | |
2723 } | |
2724 | |
2725 | |
2726 Code* CompareIC::GetRawUninitialized(Isolate* isolate, Token::Value op) { | |
2727 ICCompareStub stub(isolate, op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED); | |
2728 Code* code = NULL; | |
2729 CHECK(stub.FindCodeInCache(&code)); | |
2730 return code; | |
2731 } | |
2732 | |
2733 | |
2734 Handle<Code> CompareIC::GetUninitialized(Isolate* isolate, Token::Value op) { | |
2735 ICCompareStub stub(isolate, op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED); | |
2736 return stub.GetCode(); | |
2737 } | |
2738 | |
2739 | |
2740 const char* CompareIC::GetStateName(State state) { | |
2741 switch (state) { | |
2742 case UNINITIALIZED: return "UNINITIALIZED"; | |
2743 case SMI: return "SMI"; | |
2744 case NUMBER: return "NUMBER"; | |
2745 case INTERNALIZED_STRING: return "INTERNALIZED_STRING"; | |
2746 case STRING: return "STRING"; | |
2747 case UNIQUE_NAME: return "UNIQUE_NAME"; | |
2748 case OBJECT: return "OBJECT"; | |
2749 case KNOWN_OBJECT: return "KNOWN_OBJECT"; | |
2750 case GENERIC: return "GENERIC"; | |
2751 } | |
2752 UNREACHABLE(); | |
2753 return NULL; | |
2754 } | |
2755 | |
2756 | |
2757 Type* CompareIC::StateToType( | |
2758 Zone* zone, | |
2759 CompareIC::State state, | |
2760 Handle<Map> map) { | |
2761 switch (state) { | |
2762 case CompareIC::UNINITIALIZED: return Type::None(zone); | |
2763 case CompareIC::SMI: return Type::SignedSmall(zone); | |
2764 case CompareIC::NUMBER: return Type::Number(zone); | |
2765 case CompareIC::STRING: return Type::String(zone); | |
2766 case CompareIC::INTERNALIZED_STRING: return Type::InternalizedString(zone); | |
2767 case CompareIC::UNIQUE_NAME: return Type::UniqueName(zone); | |
2768 case CompareIC::OBJECT: return Type::Receiver(zone); | |
2769 case CompareIC::KNOWN_OBJECT: | |
2770 return map.is_null() ? Type::Receiver(zone) : Type::Class(map, zone); | |
2771 case CompareIC::GENERIC: return Type::Any(zone); | |
2772 } | |
2773 UNREACHABLE(); | |
2774 return NULL; | |
2775 } | |
2776 | |
2777 | |
2778 void CompareIC::StubInfoToType(uint32_t stub_key, Type** left_type, | |
2779 Type** right_type, Type** overall_type, | |
2780 Handle<Map> map, Zone* zone) { | |
2781 State left_state, right_state, handler_state; | |
2782 ICCompareStub::DecodeKey(stub_key, &left_state, &right_state, &handler_state, | |
2783 NULL); | |
2784 *left_type = StateToType(zone, left_state); | |
2785 *right_type = StateToType(zone, right_state); | |
2786 *overall_type = StateToType(zone, handler_state, map); | |
2787 } | |
2788 | |
2789 | |
2790 CompareIC::State CompareIC::NewInputState(State old_state, | |
2791 Handle<Object> value) { | |
2792 switch (old_state) { | |
2793 case UNINITIALIZED: | |
2794 if (value->IsSmi()) return SMI; | |
2795 if (value->IsHeapNumber()) return NUMBER; | |
2796 if (value->IsInternalizedString()) return INTERNALIZED_STRING; | |
2797 if (value->IsString()) return STRING; | |
2798 if (value->IsSymbol()) return UNIQUE_NAME; | |
2799 if (value->IsJSObject()) return OBJECT; | |
2800 break; | |
2801 case SMI: | |
2802 if (value->IsSmi()) return SMI; | |
2803 if (value->IsHeapNumber()) return NUMBER; | |
2804 break; | |
2805 case NUMBER: | |
2806 if (value->IsNumber()) return NUMBER; | |
2807 break; | |
2808 case INTERNALIZED_STRING: | |
2809 if (value->IsInternalizedString()) return INTERNALIZED_STRING; | |
2810 if (value->IsString()) return STRING; | |
2811 if (value->IsSymbol()) return UNIQUE_NAME; | |
2812 break; | |
2813 case STRING: | |
2814 if (value->IsString()) return STRING; | |
2815 break; | |
2816 case UNIQUE_NAME: | |
2817 if (value->IsUniqueName()) return UNIQUE_NAME; | |
2818 break; | |
2819 case OBJECT: | |
2820 if (value->IsJSObject()) return OBJECT; | |
2821 break; | |
2822 case GENERIC: | |
2823 break; | |
2824 case KNOWN_OBJECT: | |
2825 UNREACHABLE(); | |
2826 break; | |
2827 } | |
2828 return GENERIC; | |
2829 } | |
2830 | |
2831 | |
2832 CompareIC::State CompareIC::TargetState(State old_state, | |
2833 State old_left, | |
2834 State old_right, | |
2835 bool has_inlined_smi_code, | |
2836 Handle<Object> x, | |
2837 Handle<Object> y) { | |
2838 switch (old_state) { | |
2839 case UNINITIALIZED: | |
2840 if (x->IsSmi() && y->IsSmi()) return SMI; | |
2841 if (x->IsNumber() && y->IsNumber()) return NUMBER; | |
2842 if (Token::IsOrderedRelationalCompareOp(op_)) { | |
2843 // Ordered comparisons treat undefined as NaN, so the | |
2844 // NUMBER stub will do the right thing. | |
2845 if ((x->IsNumber() && y->IsUndefined()) || | |
2846 (y->IsNumber() && x->IsUndefined())) { | |
2847 return NUMBER; | |
2848 } | |
2849 } | |
2850 if (x->IsInternalizedString() && y->IsInternalizedString()) { | |
2851 // We compare internalized strings as plain ones if we need to determine | |
2852 // the order in a non-equality compare. | |
2853 return Token::IsEqualityOp(op_) ? INTERNALIZED_STRING : STRING; | |
2854 } | |
2855 if (x->IsString() && y->IsString()) return STRING; | |
2856 if (!Token::IsEqualityOp(op_)) return GENERIC; | |
2857 if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME; | |
2858 if (x->IsJSObject() && y->IsJSObject()) { | |
2859 if (Handle<JSObject>::cast(x)->map() == | |
2860 Handle<JSObject>::cast(y)->map()) { | |
2861 return KNOWN_OBJECT; | |
2862 } else { | |
2863 return OBJECT; | |
2864 } | |
2865 } | |
2866 return GENERIC; | |
2867 case SMI: | |
2868 return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC; | |
2869 case INTERNALIZED_STRING: | |
2870 DCHECK(Token::IsEqualityOp(op_)); | |
2871 if (x->IsString() && y->IsString()) return STRING; | |
2872 if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME; | |
2873 return GENERIC; | |
2874 case NUMBER: | |
2875 // If the failure was due to one side changing from smi to heap number, | |
2876 // then keep the state (if other changed at the same time, we will get | |
2877 // a second miss and then go to generic). | |
2878 if (old_left == SMI && x->IsHeapNumber()) return NUMBER; | |
2879 if (old_right == SMI && y->IsHeapNumber()) return NUMBER; | |
2880 return GENERIC; | |
2881 case KNOWN_OBJECT: | |
2882 DCHECK(Token::IsEqualityOp(op_)); | |
2883 if (x->IsJSObject() && y->IsJSObject()) return OBJECT; | |
2884 return GENERIC; | |
2885 case STRING: | |
2886 case UNIQUE_NAME: | |
2887 case OBJECT: | |
2888 case GENERIC: | |
2889 return GENERIC; | |
2890 } | |
2891 UNREACHABLE(); | |
2892 return GENERIC; // Make the compiler happy. | |
2893 } | |
2894 | |
2895 | |
2896 Code* CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) { | |
2897 HandleScope scope(isolate()); | |
2898 State previous_left, previous_right, previous_state; | |
2899 ICCompareStub::DecodeKey(target()->stub_key(), &previous_left, | |
2900 &previous_right, &previous_state, NULL); | |
2901 State new_left = NewInputState(previous_left, x); | |
2902 State new_right = NewInputState(previous_right, y); | |
2903 State state = TargetState(previous_state, previous_left, previous_right, | |
2904 HasInlinedSmiCode(address()), x, y); | |
2905 ICCompareStub stub(isolate(), op_, new_left, new_right, state); | |
2906 if (state == KNOWN_OBJECT) { | |
2907 stub.set_known_map( | |
2908 Handle<Map>(Handle<JSObject>::cast(x)->map(), isolate())); | |
2909 } | |
2910 Handle<Code> new_target = stub.GetCode(); | |
2911 set_target(*new_target); | |
2912 | |
2913 if (FLAG_trace_ic) { | |
2914 PrintF("[CompareIC in "); | |
2915 JavaScriptFrame::PrintTop(isolate(), stdout, false, true); | |
2916 PrintF(" ((%s+%s=%s)->(%s+%s=%s))#%s @ %p]\n", | |
2917 GetStateName(previous_left), | |
2918 GetStateName(previous_right), | |
2919 GetStateName(previous_state), | |
2920 GetStateName(new_left), | |
2921 GetStateName(new_right), | |
2922 GetStateName(state), | |
2923 Token::Name(op_), | |
2924 static_cast<void*>(*stub.GetCode())); | |
2925 } | |
2926 | |
2927 // Activate inlined smi code. | |
2928 if (previous_state == UNINITIALIZED) { | |
2929 PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK); | |
2930 } | |
2931 | |
2932 return *new_target; | |
2933 } | |
2934 | |
2935 | |
2936 // Used from ICCompareStub::GenerateMiss in code-stubs-<arch>.cc. | |
2937 RUNTIME_FUNCTION(CompareIC_Miss) { | |
2938 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
2939 HandleScope scope(isolate); | |
2940 DCHECK(args.length() == 3); | |
2941 CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2))); | |
2942 return ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1)); | |
2943 } | |
2944 | |
2945 | |
2946 void CompareNilIC::Clear(Address address, | |
2947 Code* target, | |
2948 ConstantPoolArray* constant_pool) { | |
2949 if (IsCleared(target)) return; | |
2950 ExtraICState state = target->extra_ic_state(); | |
2951 | |
2952 CompareNilICStub stub(target->GetIsolate(), | |
2953 state, | |
2954 HydrogenCodeStub::UNINITIALIZED); | |
2955 stub.ClearState(); | |
2956 | |
2957 Code* code = NULL; | |
2958 CHECK(stub.FindCodeInCache(&code)); | |
2959 | |
2960 SetTargetAtAddress(address, code, constant_pool); | |
2961 } | |
2962 | |
2963 | |
2964 Handle<Object> CompareNilIC::DoCompareNilSlow(Isolate* isolate, | |
2965 NilValue nil, | |
2966 Handle<Object> object) { | |
2967 if (object->IsNull() || object->IsUndefined()) { | |
2968 return handle(Smi::FromInt(true), isolate); | |
2969 } | |
2970 return handle(Smi::FromInt(object->IsUndetectableObject()), isolate); | |
2971 } | |
2972 | |
2973 | |
2974 Handle<Object> CompareNilIC::CompareNil(Handle<Object> object) { | |
2975 ExtraICState extra_ic_state = target()->extra_ic_state(); | |
2976 | |
2977 CompareNilICStub stub(isolate(), extra_ic_state); | |
2978 | |
2979 // Extract the current supported types from the patched IC and calculate what | |
2980 // types must be supported as a result of the miss. | |
2981 bool already_monomorphic = stub.IsMonomorphic(); | |
2982 | |
2983 stub.UpdateStatus(object); | |
2984 | |
2985 NilValue nil = stub.GetNilValue(); | |
2986 | |
2987 // Find or create the specialized stub to support the new set of types. | |
2988 Handle<Code> code; | |
2989 if (stub.IsMonomorphic()) { | |
2990 Handle<Map> monomorphic_map(already_monomorphic && FirstTargetMap() != NULL | |
2991 ? FirstTargetMap() | |
2992 : HeapObject::cast(*object)->map()); | |
2993 code = PropertyICCompiler::ComputeCompareNil(monomorphic_map, &stub); | |
2994 } else { | |
2995 code = stub.GetCode(); | |
2996 } | |
2997 set_target(*code); | |
2998 return DoCompareNilSlow(isolate(), nil, object); | |
2999 } | |
3000 | |
3001 | |
3002 RUNTIME_FUNCTION(CompareNilIC_Miss) { | |
3003 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
3004 HandleScope scope(isolate); | |
3005 Handle<Object> object = args.at<Object>(0); | |
3006 CompareNilIC ic(isolate); | |
3007 return *ic.CompareNil(object); | |
3008 } | |
3009 | |
3010 | |
3011 RUNTIME_FUNCTION(Unreachable) { | |
3012 UNREACHABLE(); | |
3013 CHECK(false); | |
3014 return isolate->heap()->undefined_value(); | |
3015 } | |
3016 | |
3017 | |
3018 Builtins::JavaScript BinaryOpIC::TokenToJSBuiltin(Token::Value op) { | |
3019 switch (op) { | |
3020 default: | |
3021 UNREACHABLE(); | |
3022 case Token::ADD: | |
3023 return Builtins::ADD; | |
3024 break; | |
3025 case Token::SUB: | |
3026 return Builtins::SUB; | |
3027 break; | |
3028 case Token::MUL: | |
3029 return Builtins::MUL; | |
3030 break; | |
3031 case Token::DIV: | |
3032 return Builtins::DIV; | |
3033 break; | |
3034 case Token::MOD: | |
3035 return Builtins::MOD; | |
3036 break; | |
3037 case Token::BIT_OR: | |
3038 return Builtins::BIT_OR; | |
3039 break; | |
3040 case Token::BIT_AND: | |
3041 return Builtins::BIT_AND; | |
3042 break; | |
3043 case Token::BIT_XOR: | |
3044 return Builtins::BIT_XOR; | |
3045 break; | |
3046 case Token::SAR: | |
3047 return Builtins::SAR; | |
3048 break; | |
3049 case Token::SHR: | |
3050 return Builtins::SHR; | |
3051 break; | |
3052 case Token::SHL: | |
3053 return Builtins::SHL; | |
3054 break; | |
3055 } | |
3056 } | |
3057 | |
3058 | |
3059 Handle<Object> ToBooleanIC::ToBoolean(Handle<Object> object) { | |
3060 ToBooleanStub stub(isolate(), target()->extra_ic_state()); | |
3061 bool to_boolean_value = stub.UpdateStatus(object); | |
3062 Handle<Code> code = stub.GetCode(); | |
3063 set_target(*code); | |
3064 return handle(Smi::FromInt(to_boolean_value ? 1 : 0), isolate()); | |
3065 } | |
3066 | |
3067 | |
3068 RUNTIME_FUNCTION(ToBooleanIC_Miss) { | |
3069 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
3070 DCHECK(args.length() == 1); | |
3071 HandleScope scope(isolate); | |
3072 Handle<Object> object = args.at<Object>(0); | |
3073 ToBooleanIC ic(isolate); | |
3074 return *ic.ToBoolean(object); | |
3075 } | |
3076 | |
3077 | |
3078 static const Address IC_utilities[] = { | |
3079 #define ADDR(name) FUNCTION_ADDR(name), | |
3080 IC_UTIL_LIST(ADDR) | |
3081 NULL | |
3082 #undef ADDR | |
3083 }; | |
3084 | |
3085 | |
3086 Address IC::AddressFromUtilityId(IC::UtilityId id) { | |
3087 return IC_utilities[id]; | |
3088 } | |
3089 | |
3090 | |
3091 } } // namespace v8::internal | |
OLD | NEW |