| OLD | NEW |
| (Empty) |
| 1 // Copyright 2012 the V8 project authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include "src/v8.h" | |
| 6 | |
| 7 #include "src/accessors.h" | |
| 8 #include "src/api.h" | |
| 9 #include "src/arguments.h" | |
| 10 #include "src/codegen.h" | |
| 11 #include "src/conversions.h" | |
| 12 #include "src/execution.h" | |
| 13 #include "src/ic-inl.h" | |
| 14 #include "src/prototype.h" | |
| 15 #include "src/runtime.h" | |
| 16 #include "src/stub-cache.h" | |
| 17 | |
| 18 namespace v8 { | |
| 19 namespace internal { | |
| 20 | |
| 21 char IC::TransitionMarkFromState(IC::State state) { | |
| 22 switch (state) { | |
| 23 case UNINITIALIZED: return '0'; | |
| 24 case PREMONOMORPHIC: return '.'; | |
| 25 case MONOMORPHIC: return '1'; | |
| 26 case PROTOTYPE_FAILURE: | |
| 27 return '^'; | |
| 28 case POLYMORPHIC: return 'P'; | |
| 29 case MEGAMORPHIC: return 'N'; | |
| 30 case GENERIC: return 'G'; | |
| 31 | |
| 32 // We never see the debugger states here, because the state is | |
| 33 // computed from the original code - not the patched code. Let | |
| 34 // these cases fall through to the unreachable code below. | |
| 35 case DEBUG_STUB: break; | |
| 36 // Type-vector-based ICs resolve state to one of the above. | |
| 37 case DEFAULT: | |
| 38 break; | |
| 39 } | |
| 40 UNREACHABLE(); | |
| 41 return 0; | |
| 42 } | |
| 43 | |
| 44 | |
| 45 const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) { | |
| 46 if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW"; | |
| 47 if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) { | |
| 48 return ".IGNORE_OOB"; | |
| 49 } | |
| 50 if (IsGrowStoreMode(mode)) return ".GROW"; | |
| 51 return ""; | |
| 52 } | |
| 53 | |
| 54 | |
| 55 #ifdef DEBUG | |
| 56 | |
| 57 #define TRACE_GENERIC_IC(isolate, type, reason) \ | |
| 58 do { \ | |
| 59 if (FLAG_trace_ic) { \ | |
| 60 PrintF("[%s patching generic stub in ", type); \ | |
| 61 JavaScriptFrame::PrintTop(isolate, stdout, false, true); \ | |
| 62 PrintF(" (%s)]\n", reason); \ | |
| 63 } \ | |
| 64 } while (false) | |
| 65 | |
| 66 #else | |
| 67 | |
| 68 #define TRACE_GENERIC_IC(isolate, type, reason) | |
| 69 | |
| 70 #endif // DEBUG | |
| 71 | |
| 72 | |
| 73 void IC::TraceIC(const char* type, Handle<Object> name) { | |
| 74 if (FLAG_trace_ic) { | |
| 75 Code* new_target = raw_target(); | |
| 76 State new_state = new_target->ic_state(); | |
| 77 TraceIC(type, name, state(), new_state); | |
| 78 } | |
| 79 } | |
| 80 | |
| 81 | |
| 82 void IC::TraceIC(const char* type, Handle<Object> name, State old_state, | |
| 83 State new_state) { | |
| 84 if (FLAG_trace_ic) { | |
| 85 Code* new_target = raw_target(); | |
| 86 PrintF("[%s%s in ", new_target->is_keyed_stub() ? "Keyed" : "", type); | |
| 87 | |
| 88 // TODO(jkummerow): Add support for "apply". The logic is roughly: | |
| 89 // marker = [fp_ + kMarkerOffset]; | |
| 90 // if marker is smi and marker.value == INTERNAL and | |
| 91 // the frame's code == builtin(Builtins::kFunctionApply): | |
| 92 // then print "apply from" and advance one frame | |
| 93 | |
| 94 Object* maybe_function = | |
| 95 Memory::Object_at(fp_ + JavaScriptFrameConstants::kFunctionOffset); | |
| 96 if (maybe_function->IsJSFunction()) { | |
| 97 JSFunction* function = JSFunction::cast(maybe_function); | |
| 98 JavaScriptFrame::PrintFunctionAndOffset(function, function->code(), pc(), | |
| 99 stdout, true); | |
| 100 } | |
| 101 | |
| 102 ExtraICState extra_state = new_target->extra_ic_state(); | |
| 103 const char* modifier = ""; | |
| 104 if (new_target->kind() == Code::KEYED_STORE_IC) { | |
| 105 modifier = GetTransitionMarkModifier( | |
| 106 KeyedStoreIC::GetKeyedAccessStoreMode(extra_state)); | |
| 107 } | |
| 108 PrintF(" (%c->%c%s)", TransitionMarkFromState(old_state), | |
| 109 TransitionMarkFromState(new_state), modifier); | |
| 110 #ifdef OBJECT_PRINT | |
| 111 OFStream os(stdout); | |
| 112 name->Print(os); | |
| 113 #else | |
| 114 name->ShortPrint(stdout); | |
| 115 #endif | |
| 116 PrintF("]\n"); | |
| 117 } | |
| 118 } | |
| 119 | |
| 120 #define TRACE_IC(type, name) TraceIC(type, name) | |
| 121 #define TRACE_VECTOR_IC(type, name, old_state, new_state) \ | |
| 122 TraceIC(type, name, old_state, new_state) | |
| 123 | |
| 124 IC::IC(FrameDepth depth, Isolate* isolate) | |
| 125 : isolate_(isolate), | |
| 126 target_set_(false), | |
| 127 target_maps_set_(false) { | |
| 128 // To improve the performance of the (much used) IC code, we unfold a few | |
| 129 // levels of the stack frame iteration code. This yields a ~35% speedup when | |
| 130 // running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag. | |
| 131 const Address entry = | |
| 132 Isolate::c_entry_fp(isolate->thread_local_top()); | |
| 133 Address constant_pool = NULL; | |
| 134 if (FLAG_enable_ool_constant_pool) { | |
| 135 constant_pool = Memory::Address_at( | |
| 136 entry + ExitFrameConstants::kConstantPoolOffset); | |
| 137 } | |
| 138 Address* pc_address = | |
| 139 reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset); | |
| 140 Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset); | |
| 141 // If there's another JavaScript frame on the stack or a | |
| 142 // StubFailureTrampoline, we need to look one frame further down the stack to | |
| 143 // find the frame pointer and the return address stack slot. | |
| 144 if (depth == EXTRA_CALL_FRAME) { | |
| 145 if (FLAG_enable_ool_constant_pool) { | |
| 146 constant_pool = Memory::Address_at( | |
| 147 fp + StandardFrameConstants::kConstantPoolOffset); | |
| 148 } | |
| 149 const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset; | |
| 150 pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset); | |
| 151 fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset); | |
| 152 } | |
| 153 #ifdef DEBUG | |
| 154 StackFrameIterator it(isolate); | |
| 155 for (int i = 0; i < depth + 1; i++) it.Advance(); | |
| 156 StackFrame* frame = it.frame(); | |
| 157 DCHECK(fp == frame->fp() && pc_address == frame->pc_address()); | |
| 158 #endif | |
| 159 fp_ = fp; | |
| 160 if (FLAG_enable_ool_constant_pool) { | |
| 161 raw_constant_pool_ = handle( | |
| 162 ConstantPoolArray::cast(reinterpret_cast<Object*>(constant_pool)), | |
| 163 isolate); | |
| 164 } | |
| 165 pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address); | |
| 166 target_ = handle(raw_target(), isolate); | |
| 167 state_ = target_->ic_state(); | |
| 168 kind_ = target_->kind(); | |
| 169 extra_ic_state_ = target_->extra_ic_state(); | |
| 170 } | |
| 171 | |
| 172 | |
| 173 SharedFunctionInfo* IC::GetSharedFunctionInfo() const { | |
| 174 // Compute the JavaScript frame for the frame pointer of this IC | |
| 175 // structure. We need this to be able to find the function | |
| 176 // corresponding to the frame. | |
| 177 StackFrameIterator it(isolate()); | |
| 178 while (it.frame()->fp() != this->fp()) it.Advance(); | |
| 179 JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame()); | |
| 180 // Find the function on the stack and both the active code for the | |
| 181 // function and the original code. | |
| 182 JSFunction* function = frame->function(); | |
| 183 return function->shared(); | |
| 184 } | |
| 185 | |
| 186 | |
| 187 Code* IC::GetCode() const { | |
| 188 HandleScope scope(isolate()); | |
| 189 Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate()); | |
| 190 Code* code = shared->code(); | |
| 191 return code; | |
| 192 } | |
| 193 | |
| 194 | |
| 195 Code* IC::GetOriginalCode() const { | |
| 196 HandleScope scope(isolate()); | |
| 197 Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate()); | |
| 198 DCHECK(Debug::HasDebugInfo(shared)); | |
| 199 Code* original_code = Debug::GetDebugInfo(shared)->original_code(); | |
| 200 DCHECK(original_code->IsCode()); | |
| 201 return original_code; | |
| 202 } | |
| 203 | |
| 204 | |
| 205 static void LookupForRead(LookupIterator* it) { | |
| 206 for (; it->IsFound(); it->Next()) { | |
| 207 switch (it->state()) { | |
| 208 case LookupIterator::NOT_FOUND: | |
| 209 case LookupIterator::TRANSITION: | |
| 210 UNREACHABLE(); | |
| 211 case LookupIterator::JSPROXY: | |
| 212 return; | |
| 213 case LookupIterator::INTERCEPTOR: { | |
| 214 // If there is a getter, return; otherwise loop to perform the lookup. | |
| 215 Handle<JSObject> holder = it->GetHolder<JSObject>(); | |
| 216 if (!holder->GetNamedInterceptor()->getter()->IsUndefined()) { | |
| 217 return; | |
| 218 } | |
| 219 break; | |
| 220 } | |
| 221 case LookupIterator::ACCESS_CHECK: | |
| 222 // PropertyHandlerCompiler::CheckPrototypes() knows how to emit | |
| 223 // access checks for global proxies. | |
| 224 if (it->GetHolder<JSObject>()->IsJSGlobalProxy() && | |
| 225 it->HasAccess(v8::ACCESS_GET)) { | |
| 226 break; | |
| 227 } | |
| 228 return; | |
| 229 case LookupIterator::PROPERTY: | |
| 230 if (it->HasProperty()) return; // Yay! | |
| 231 break; | |
| 232 } | |
| 233 } | |
| 234 } | |
| 235 | |
| 236 | |
| 237 bool IC::TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver, | |
| 238 Handle<String> name) { | |
| 239 if (!IsNameCompatibleWithPrototypeFailure(name)) return false; | |
| 240 Handle<Map> receiver_map = TypeToMap(*receiver_type(), isolate()); | |
| 241 maybe_handler_ = target()->FindHandlerForMap(*receiver_map); | |
| 242 | |
| 243 // The current map wasn't handled yet. There's no reason to stay monomorphic, | |
| 244 // *unless* we're moving from a deprecated map to its replacement, or | |
| 245 // to a more general elements kind. | |
| 246 // TODO(verwaest): Check if the current map is actually what the old map | |
| 247 // would transition to. | |
| 248 if (maybe_handler_.is_null()) { | |
| 249 if (!receiver_map->IsJSObjectMap()) return false; | |
| 250 Map* first_map = FirstTargetMap(); | |
| 251 if (first_map == NULL) return false; | |
| 252 Handle<Map> old_map(first_map); | |
| 253 if (old_map->is_deprecated()) return true; | |
| 254 if (IsMoreGeneralElementsKindTransition(old_map->elements_kind(), | |
| 255 receiver_map->elements_kind())) { | |
| 256 return true; | |
| 257 } | |
| 258 return false; | |
| 259 } | |
| 260 | |
| 261 CacheHolderFlag flag; | |
| 262 Handle<Map> ic_holder_map( | |
| 263 GetICCacheHolder(*receiver_type(), isolate(), &flag)); | |
| 264 | |
| 265 DCHECK(flag != kCacheOnReceiver || receiver->IsJSObject()); | |
| 266 DCHECK(flag != kCacheOnPrototype || !receiver->IsJSReceiver()); | |
| 267 DCHECK(flag != kCacheOnPrototypeReceiverIsDictionary); | |
| 268 | |
| 269 if (state() == MONOMORPHIC) { | |
| 270 int index = ic_holder_map->IndexInCodeCache(*name, *target()); | |
| 271 if (index >= 0) { | |
| 272 ic_holder_map->RemoveFromCodeCache(*name, *target(), index); | |
| 273 } | |
| 274 } | |
| 275 | |
| 276 if (receiver->IsGlobalObject()) { | |
| 277 Handle<GlobalObject> global = Handle<GlobalObject>::cast(receiver); | |
| 278 LookupIterator it(global, name, LookupIterator::CHECK_PROPERTY); | |
| 279 if (!it.IsFound() || !it.HasProperty()) return false; | |
| 280 Handle<PropertyCell> cell = it.GetPropertyCell(); | |
| 281 return cell->type()->IsConstant(); | |
| 282 } | |
| 283 | |
| 284 return true; | |
| 285 } | |
| 286 | |
| 287 | |
| 288 bool IC::IsNameCompatibleWithPrototypeFailure(Handle<Object> name) { | |
| 289 if (target()->is_keyed_stub()) { | |
| 290 // Determine whether the failure is due to a name failure. | |
| 291 if (!name->IsName()) return false; | |
| 292 Name* stub_name = target()->FindFirstName(); | |
| 293 if (*name != stub_name) return false; | |
| 294 } | |
| 295 | |
| 296 return true; | |
| 297 } | |
| 298 | |
| 299 | |
| 300 void IC::UpdateState(Handle<Object> receiver, Handle<Object> name) { | |
| 301 update_receiver_type(receiver); | |
| 302 if (!name->IsString()) return; | |
| 303 if (state() != MONOMORPHIC && state() != POLYMORPHIC) return; | |
| 304 if (receiver->IsUndefined() || receiver->IsNull()) return; | |
| 305 | |
| 306 // Remove the target from the code cache if it became invalid | |
| 307 // because of changes in the prototype chain to avoid hitting it | |
| 308 // again. | |
| 309 if (TryRemoveInvalidPrototypeDependentStub(receiver, | |
| 310 Handle<String>::cast(name))) { | |
| 311 MarkPrototypeFailure(name); | |
| 312 return; | |
| 313 } | |
| 314 | |
| 315 // The builtins object is special. It only changes when JavaScript | |
| 316 // builtins are loaded lazily. It is important to keep inline | |
| 317 // caches for the builtins object monomorphic. Therefore, if we get | |
| 318 // an inline cache miss for the builtins object after lazily loading | |
| 319 // JavaScript builtins, we return uninitialized as the state to | |
| 320 // force the inline cache back to monomorphic state. | |
| 321 if (receiver->IsJSBuiltinsObject()) state_ = UNINITIALIZED; | |
| 322 } | |
| 323 | |
| 324 | |
| 325 MaybeHandle<Object> IC::TypeError(const char* type, | |
| 326 Handle<Object> object, | |
| 327 Handle<Object> key) { | |
| 328 HandleScope scope(isolate()); | |
| 329 Handle<Object> args[2] = { key, object }; | |
| 330 Handle<Object> error = isolate()->factory()->NewTypeError( | |
| 331 type, HandleVector(args, 2)); | |
| 332 return isolate()->Throw<Object>(error); | |
| 333 } | |
| 334 | |
| 335 | |
| 336 MaybeHandle<Object> IC::ReferenceError(const char* type, Handle<Name> name) { | |
| 337 HandleScope scope(isolate()); | |
| 338 Handle<Object> error = isolate()->factory()->NewReferenceError( | |
| 339 type, HandleVector(&name, 1)); | |
| 340 return isolate()->Throw<Object>(error); | |
| 341 } | |
| 342 | |
| 343 | |
| 344 static void ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state, | |
| 345 int* polymorphic_delta, | |
| 346 int* generic_delta) { | |
| 347 switch (old_state) { | |
| 348 case UNINITIALIZED: | |
| 349 case PREMONOMORPHIC: | |
| 350 if (new_state == UNINITIALIZED || new_state == PREMONOMORPHIC) break; | |
| 351 if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) { | |
| 352 *polymorphic_delta = 1; | |
| 353 } else if (new_state == MEGAMORPHIC || new_state == GENERIC) { | |
| 354 *generic_delta = 1; | |
| 355 } | |
| 356 break; | |
| 357 case MONOMORPHIC: | |
| 358 case POLYMORPHIC: | |
| 359 if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) break; | |
| 360 *polymorphic_delta = -1; | |
| 361 if (new_state == MEGAMORPHIC || new_state == GENERIC) { | |
| 362 *generic_delta = 1; | |
| 363 } | |
| 364 break; | |
| 365 case MEGAMORPHIC: | |
| 366 case GENERIC: | |
| 367 if (new_state == MEGAMORPHIC || new_state == GENERIC) break; | |
| 368 *generic_delta = -1; | |
| 369 if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) { | |
| 370 *polymorphic_delta = 1; | |
| 371 } | |
| 372 break; | |
| 373 case PROTOTYPE_FAILURE: | |
| 374 case DEBUG_STUB: | |
| 375 case DEFAULT: | |
| 376 UNREACHABLE(); | |
| 377 } | |
| 378 } | |
| 379 | |
| 380 | |
| 381 void IC::OnTypeFeedbackChanged(Isolate* isolate, Address address, | |
| 382 State old_state, State new_state, | |
| 383 bool target_remains_ic_stub) { | |
| 384 Code* host = isolate-> | |
| 385 inner_pointer_to_code_cache()->GetCacheEntry(address)->code; | |
| 386 if (host->kind() != Code::FUNCTION) return; | |
| 387 | |
| 388 if (FLAG_type_info_threshold > 0 && target_remains_ic_stub && | |
| 389 // Not all Code objects have TypeFeedbackInfo. | |
| 390 host->type_feedback_info()->IsTypeFeedbackInfo()) { | |
| 391 int polymorphic_delta = 0; // "Polymorphic" here includes monomorphic. | |
| 392 int generic_delta = 0; // "Generic" here includes megamorphic. | |
| 393 ComputeTypeInfoCountDelta(old_state, new_state, &polymorphic_delta, | |
| 394 &generic_delta); | |
| 395 TypeFeedbackInfo* info = TypeFeedbackInfo::cast(host->type_feedback_info()); | |
| 396 info->change_ic_with_type_info_count(polymorphic_delta); | |
| 397 info->change_ic_generic_count(generic_delta); | |
| 398 } | |
| 399 if (host->type_feedback_info()->IsTypeFeedbackInfo()) { | |
| 400 TypeFeedbackInfo* info = | |
| 401 TypeFeedbackInfo::cast(host->type_feedback_info()); | |
| 402 info->change_own_type_change_checksum(); | |
| 403 } | |
| 404 host->set_profiler_ticks(0); | |
| 405 isolate->runtime_profiler()->NotifyICChanged(); | |
| 406 // TODO(2029): When an optimized function is patched, it would | |
| 407 // be nice to propagate the corresponding type information to its | |
| 408 // unoptimized version for the benefit of later inlining. | |
| 409 } | |
| 410 | |
| 411 | |
| 412 void IC::PostPatching(Address address, Code* target, Code* old_target) { | |
| 413 // Type vector based ICs update these statistics at a different time because | |
| 414 // they don't always patch on state change. | |
| 415 if (target->kind() == Code::CALL_IC) return; | |
| 416 | |
| 417 Isolate* isolate = target->GetHeap()->isolate(); | |
| 418 State old_state = UNINITIALIZED; | |
| 419 State new_state = UNINITIALIZED; | |
| 420 bool target_remains_ic_stub = false; | |
| 421 if (old_target->is_inline_cache_stub() && target->is_inline_cache_stub()) { | |
| 422 old_state = old_target->ic_state(); | |
| 423 new_state = target->ic_state(); | |
| 424 target_remains_ic_stub = true; | |
| 425 } | |
| 426 | |
| 427 OnTypeFeedbackChanged(isolate, address, old_state, new_state, | |
| 428 target_remains_ic_stub); | |
| 429 } | |
| 430 | |
| 431 | |
| 432 void IC::RegisterWeakMapDependency(Handle<Code> stub) { | |
| 433 if (FLAG_collect_maps && FLAG_weak_embedded_maps_in_ic && | |
| 434 stub->CanBeWeakStub()) { | |
| 435 DCHECK(!stub->is_weak_stub()); | |
| 436 MapHandleList maps; | |
| 437 stub->FindAllMaps(&maps); | |
| 438 if (maps.length() == 1 && stub->IsWeakObjectInIC(*maps.at(0))) { | |
| 439 Map::AddDependentIC(maps.at(0), stub); | |
| 440 stub->mark_as_weak_stub(); | |
| 441 if (FLAG_enable_ool_constant_pool) { | |
| 442 stub->constant_pool()->set_weak_object_state( | |
| 443 ConstantPoolArray::WEAK_OBJECTS_IN_IC); | |
| 444 } | |
| 445 } | |
| 446 } | |
| 447 } | |
| 448 | |
| 449 | |
| 450 void IC::InvalidateMaps(Code* stub) { | |
| 451 DCHECK(stub->is_weak_stub()); | |
| 452 stub->mark_as_invalidated_weak_stub(); | |
| 453 Isolate* isolate = stub->GetIsolate(); | |
| 454 Heap* heap = isolate->heap(); | |
| 455 Object* undefined = heap->undefined_value(); | |
| 456 int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); | |
| 457 for (RelocIterator it(stub, mode_mask); !it.done(); it.next()) { | |
| 458 RelocInfo::Mode mode = it.rinfo()->rmode(); | |
| 459 if (mode == RelocInfo::EMBEDDED_OBJECT && | |
| 460 it.rinfo()->target_object()->IsMap()) { | |
| 461 it.rinfo()->set_target_object(undefined, SKIP_WRITE_BARRIER); | |
| 462 } | |
| 463 } | |
| 464 CpuFeatures::FlushICache(stub->instruction_start(), stub->instruction_size()); | |
| 465 } | |
| 466 | |
| 467 | |
| 468 void IC::Clear(Isolate* isolate, Address address, | |
| 469 ConstantPoolArray* constant_pool) { | |
| 470 Code* target = GetTargetAtAddress(address, constant_pool); | |
| 471 | |
| 472 // Don't clear debug break inline cache as it will remove the break point. | |
| 473 if (target->is_debug_stub()) return; | |
| 474 | |
| 475 switch (target->kind()) { | |
| 476 case Code::LOAD_IC: | |
| 477 return LoadIC::Clear(isolate, address, target, constant_pool); | |
| 478 case Code::KEYED_LOAD_IC: | |
| 479 return KeyedLoadIC::Clear(isolate, address, target, constant_pool); | |
| 480 case Code::STORE_IC: | |
| 481 return StoreIC::Clear(isolate, address, target, constant_pool); | |
| 482 case Code::KEYED_STORE_IC: | |
| 483 return KeyedStoreIC::Clear(isolate, address, target, constant_pool); | |
| 484 case Code::CALL_IC: | |
| 485 return CallIC::Clear(isolate, address, target, constant_pool); | |
| 486 case Code::COMPARE_IC: | |
| 487 return CompareIC::Clear(isolate, address, target, constant_pool); | |
| 488 case Code::COMPARE_NIL_IC: | |
| 489 return CompareNilIC::Clear(address, target, constant_pool); | |
| 490 case Code::BINARY_OP_IC: | |
| 491 case Code::TO_BOOLEAN_IC: | |
| 492 // Clearing these is tricky and does not | |
| 493 // make any performance difference. | |
| 494 return; | |
| 495 default: UNREACHABLE(); | |
| 496 } | |
| 497 } | |
| 498 | |
| 499 | |
| 500 void KeyedLoadIC::Clear(Isolate* isolate, | |
| 501 Address address, | |
| 502 Code* target, | |
| 503 ConstantPoolArray* constant_pool) { | |
| 504 if (IsCleared(target)) return; | |
| 505 // Make sure to also clear the map used in inline fast cases. If we | |
| 506 // do not clear these maps, cached code can keep objects alive | |
| 507 // through the embedded maps. | |
| 508 SetTargetAtAddress(address, *pre_monomorphic_stub(isolate), constant_pool); | |
| 509 } | |
| 510 | |
| 511 | |
| 512 void CallIC::Clear(Isolate* isolate, | |
| 513 Address address, | |
| 514 Code* target, | |
| 515 ConstantPoolArray* constant_pool) { | |
| 516 // Currently, CallIC doesn't have state changes. | |
| 517 } | |
| 518 | |
| 519 | |
| 520 void LoadIC::Clear(Isolate* isolate, | |
| 521 Address address, | |
| 522 Code* target, | |
| 523 ConstantPoolArray* constant_pool) { | |
| 524 if (IsCleared(target)) return; | |
| 525 Code* code = PropertyICCompiler::FindPreMonomorphic(isolate, Code::LOAD_IC, | |
| 526 target->extra_ic_state()); | |
| 527 SetTargetAtAddress(address, code, constant_pool); | |
| 528 } | |
| 529 | |
| 530 | |
| 531 void StoreIC::Clear(Isolate* isolate, | |
| 532 Address address, | |
| 533 Code* target, | |
| 534 ConstantPoolArray* constant_pool) { | |
| 535 if (IsCleared(target)) return; | |
| 536 Code* code = PropertyICCompiler::FindPreMonomorphic(isolate, Code::STORE_IC, | |
| 537 target->extra_ic_state()); | |
| 538 SetTargetAtAddress(address, code, constant_pool); | |
| 539 } | |
| 540 | |
| 541 | |
| 542 void KeyedStoreIC::Clear(Isolate* isolate, | |
| 543 Address address, | |
| 544 Code* target, | |
| 545 ConstantPoolArray* constant_pool) { | |
| 546 if (IsCleared(target)) return; | |
| 547 SetTargetAtAddress(address, | |
| 548 *pre_monomorphic_stub( | |
| 549 isolate, StoreIC::GetStrictMode(target->extra_ic_state())), | |
| 550 constant_pool); | |
| 551 } | |
| 552 | |
| 553 | |
| 554 void CompareIC::Clear(Isolate* isolate, | |
| 555 Address address, | |
| 556 Code* target, | |
| 557 ConstantPoolArray* constant_pool) { | |
| 558 DCHECK(CodeStub::GetMajorKey(target) == CodeStub::CompareIC); | |
| 559 CompareIC::State handler_state; | |
| 560 Token::Value op; | |
| 561 ICCompareStub::DecodeKey(target->stub_key(), NULL, NULL, &handler_state, &op); | |
| 562 // Only clear CompareICs that can retain objects. | |
| 563 if (handler_state != KNOWN_OBJECT) return; | |
| 564 SetTargetAtAddress(address, GetRawUninitialized(isolate, op), constant_pool); | |
| 565 PatchInlinedSmiCode(address, DISABLE_INLINED_SMI_CHECK); | |
| 566 } | |
| 567 | |
| 568 | |
| 569 // static | |
| 570 Handle<Code> KeyedLoadIC::generic_stub(Isolate* isolate) { | |
| 571 if (FLAG_compiled_keyed_generic_loads) { | |
| 572 return KeyedLoadGenericStub(isolate).GetCode(); | |
| 573 } else { | |
| 574 return isolate->builtins()->KeyedLoadIC_Generic(); | |
| 575 } | |
| 576 } | |
| 577 | |
| 578 | |
| 579 static bool MigrateDeprecated(Handle<Object> object) { | |
| 580 if (!object->IsJSObject()) return false; | |
| 581 Handle<JSObject> receiver = Handle<JSObject>::cast(object); | |
| 582 if (!receiver->map()->is_deprecated()) return false; | |
| 583 JSObject::MigrateInstance(Handle<JSObject>::cast(object)); | |
| 584 return true; | |
| 585 } | |
| 586 | |
| 587 | |
| 588 MaybeHandle<Object> LoadIC::Load(Handle<Object> object, Handle<Name> name) { | |
| 589 // If the object is undefined or null it's illegal to try to get any | |
| 590 // of its properties; throw a TypeError in that case. | |
| 591 if (object->IsUndefined() || object->IsNull()) { | |
| 592 return TypeError("non_object_property_load", object, name); | |
| 593 } | |
| 594 | |
| 595 // Check if the name is trivially convertible to an index and get | |
| 596 // the element or char if so. | |
| 597 uint32_t index; | |
| 598 if (kind() == Code::KEYED_LOAD_IC && name->AsArrayIndex(&index)) { | |
| 599 // Rewrite to the generic keyed load stub. | |
| 600 if (FLAG_use_ic) { | |
| 601 set_target(*KeyedLoadIC::generic_stub(isolate())); | |
| 602 TRACE_IC("LoadIC", name); | |
| 603 TRACE_GENERIC_IC(isolate(), "LoadIC", "name as array index"); | |
| 604 } | |
| 605 Handle<Object> result; | |
| 606 ASSIGN_RETURN_ON_EXCEPTION( | |
| 607 isolate(), | |
| 608 result, | |
| 609 Runtime::GetElementOrCharAt(isolate(), object, index), | |
| 610 Object); | |
| 611 return result; | |
| 612 } | |
| 613 | |
| 614 bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic; | |
| 615 | |
| 616 // Named lookup in the object. | |
| 617 LookupIterator it(object, name); | |
| 618 LookupForRead(&it); | |
| 619 | |
| 620 if (it.IsFound() || !IsUndeclaredGlobal(object)) { | |
| 621 // Update inline cache and stub cache. | |
| 622 if (use_ic) UpdateCaches(&it); | |
| 623 | |
| 624 // Get the property. | |
| 625 Handle<Object> result; | |
| 626 ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Object::GetProperty(&it), | |
| 627 Object); | |
| 628 if (it.IsFound()) { | |
| 629 return result; | |
| 630 } else if (!IsUndeclaredGlobal(object)) { | |
| 631 LOG(isolate(), SuspectReadEvent(*name, *object)); | |
| 632 return result; | |
| 633 } | |
| 634 } | |
| 635 return ReferenceError("not_defined", name); | |
| 636 } | |
| 637 | |
| 638 | |
| 639 static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps, | |
| 640 Handle<Map> new_receiver_map) { | |
| 641 DCHECK(!new_receiver_map.is_null()); | |
| 642 for (int current = 0; current < receiver_maps->length(); ++current) { | |
| 643 if (!receiver_maps->at(current).is_null() && | |
| 644 receiver_maps->at(current).is_identical_to(new_receiver_map)) { | |
| 645 return false; | |
| 646 } | |
| 647 } | |
| 648 receiver_maps->Add(new_receiver_map); | |
| 649 return true; | |
| 650 } | |
| 651 | |
| 652 | |
| 653 bool IC::UpdatePolymorphicIC(Handle<Name> name, Handle<Code> code) { | |
| 654 if (!code->is_handler()) return false; | |
| 655 if (target()->is_keyed_stub() && state() != PROTOTYPE_FAILURE) return false; | |
| 656 Handle<HeapType> type = receiver_type(); | |
| 657 TypeHandleList types; | |
| 658 CodeHandleList handlers; | |
| 659 | |
| 660 TargetTypes(&types); | |
| 661 int number_of_types = types.length(); | |
| 662 int deprecated_types = 0; | |
| 663 int handler_to_overwrite = -1; | |
| 664 | |
| 665 for (int i = 0; i < number_of_types; i++) { | |
| 666 Handle<HeapType> current_type = types.at(i); | |
| 667 if (current_type->IsClass() && | |
| 668 current_type->AsClass()->Map()->is_deprecated()) { | |
| 669 // Filter out deprecated maps to ensure their instances get migrated. | |
| 670 ++deprecated_types; | |
| 671 } else if (type->NowIs(current_type)) { | |
| 672 // If the receiver type is already in the polymorphic IC, this indicates | |
| 673 // there was a prototoype chain failure. In that case, just overwrite the | |
| 674 // handler. | |
| 675 handler_to_overwrite = i; | |
| 676 } else if (handler_to_overwrite == -1 && | |
| 677 current_type->IsClass() && | |
| 678 type->IsClass() && | |
| 679 IsTransitionOfMonomorphicTarget(*current_type->AsClass()->Map(), | |
| 680 *type->AsClass()->Map())) { | |
| 681 handler_to_overwrite = i; | |
| 682 } | |
| 683 } | |
| 684 | |
| 685 int number_of_valid_types = | |
| 686 number_of_types - deprecated_types - (handler_to_overwrite != -1); | |
| 687 | |
| 688 if (number_of_valid_types >= 4) return false; | |
| 689 if (number_of_types == 0) return false; | |
| 690 if (!target()->FindHandlers(&handlers, types.length())) return false; | |
| 691 | |
| 692 number_of_valid_types++; | |
| 693 if (number_of_valid_types > 1 && target()->is_keyed_stub()) return false; | |
| 694 Handle<Code> ic; | |
| 695 if (number_of_valid_types == 1) { | |
| 696 ic = PropertyICCompiler::ComputeMonomorphic(kind(), name, type, code, | |
| 697 extra_ic_state()); | |
| 698 } else { | |
| 699 if (handler_to_overwrite >= 0) { | |
| 700 handlers.Set(handler_to_overwrite, code); | |
| 701 if (!type->NowIs(types.at(handler_to_overwrite))) { | |
| 702 types.Set(handler_to_overwrite, type); | |
| 703 } | |
| 704 } else { | |
| 705 types.Add(type); | |
| 706 handlers.Add(code); | |
| 707 } | |
| 708 ic = PropertyICCompiler::ComputePolymorphic(kind(), &types, &handlers, | |
| 709 number_of_valid_types, name, | |
| 710 extra_ic_state()); | |
| 711 } | |
| 712 set_target(*ic); | |
| 713 return true; | |
| 714 } | |
| 715 | |
| 716 | |
| 717 Handle<HeapType> IC::CurrentTypeOf(Handle<Object> object, Isolate* isolate) { | |
| 718 return object->IsJSGlobalObject() | |
| 719 ? HeapType::Constant(Handle<JSGlobalObject>::cast(object), isolate) | |
| 720 : HeapType::NowOf(object, isolate); | |
| 721 } | |
| 722 | |
| 723 | |
| 724 Handle<Map> IC::TypeToMap(HeapType* type, Isolate* isolate) { | |
| 725 if (type->Is(HeapType::Number())) | |
| 726 return isolate->factory()->heap_number_map(); | |
| 727 if (type->Is(HeapType::Boolean())) return isolate->factory()->boolean_map(); | |
| 728 if (type->IsConstant()) { | |
| 729 return handle( | |
| 730 Handle<JSGlobalObject>::cast(type->AsConstant()->Value())->map()); | |
| 731 } | |
| 732 DCHECK(type->IsClass()); | |
| 733 return type->AsClass()->Map(); | |
| 734 } | |
| 735 | |
| 736 | |
| 737 template <class T> | |
| 738 typename T::TypeHandle IC::MapToType(Handle<Map> map, | |
| 739 typename T::Region* region) { | |
| 740 if (map->instance_type() == HEAP_NUMBER_TYPE) { | |
| 741 return T::Number(region); | |
| 742 } else if (map->instance_type() == ODDBALL_TYPE) { | |
| 743 // The only oddballs that can be recorded in ICs are booleans. | |
| 744 return T::Boolean(region); | |
| 745 } else { | |
| 746 return T::Class(map, region); | |
| 747 } | |
| 748 } | |
| 749 | |
| 750 | |
| 751 template | |
| 752 Type* IC::MapToType<Type>(Handle<Map> map, Zone* zone); | |
| 753 | |
| 754 | |
| 755 template | |
| 756 Handle<HeapType> IC::MapToType<HeapType>(Handle<Map> map, Isolate* region); | |
| 757 | |
| 758 | |
| 759 void IC::UpdateMonomorphicIC(Handle<Code> handler, Handle<Name> name) { | |
| 760 DCHECK(handler->is_handler()); | |
| 761 Handle<Code> ic = PropertyICCompiler::ComputeMonomorphic( | |
| 762 kind(), name, receiver_type(), handler, extra_ic_state()); | |
| 763 set_target(*ic); | |
| 764 } | |
| 765 | |
| 766 | |
| 767 void IC::CopyICToMegamorphicCache(Handle<Name> name) { | |
| 768 TypeHandleList types; | |
| 769 CodeHandleList handlers; | |
| 770 TargetTypes(&types); | |
| 771 if (!target()->FindHandlers(&handlers, types.length())) return; | |
| 772 for (int i = 0; i < types.length(); i++) { | |
| 773 UpdateMegamorphicCache(*types.at(i), *name, *handlers.at(i)); | |
| 774 } | |
| 775 } | |
| 776 | |
| 777 | |
| 778 bool IC::IsTransitionOfMonomorphicTarget(Map* source_map, Map* target_map) { | |
| 779 if (source_map == NULL) return true; | |
| 780 if (target_map == NULL) return false; | |
| 781 ElementsKind target_elements_kind = target_map->elements_kind(); | |
| 782 bool more_general_transition = | |
| 783 IsMoreGeneralElementsKindTransition( | |
| 784 source_map->elements_kind(), target_elements_kind); | |
| 785 Map* transitioned_map = more_general_transition | |
| 786 ? source_map->LookupElementsTransitionMap(target_elements_kind) | |
| 787 : NULL; | |
| 788 | |
| 789 return transitioned_map == target_map; | |
| 790 } | |
| 791 | |
| 792 | |
| 793 void IC::PatchCache(Handle<Name> name, Handle<Code> code) { | |
| 794 switch (state()) { | |
| 795 case UNINITIALIZED: | |
| 796 case PREMONOMORPHIC: | |
| 797 UpdateMonomorphicIC(code, name); | |
| 798 break; | |
| 799 case PROTOTYPE_FAILURE: | |
| 800 case MONOMORPHIC: | |
| 801 case POLYMORPHIC: | |
| 802 if (!target()->is_keyed_stub() || state() == PROTOTYPE_FAILURE) { | |
| 803 if (UpdatePolymorphicIC(name, code)) break; | |
| 804 CopyICToMegamorphicCache(name); | |
| 805 } | |
| 806 set_target(*megamorphic_stub()); | |
| 807 // Fall through. | |
| 808 case MEGAMORPHIC: | |
| 809 UpdateMegamorphicCache(*receiver_type(), *name, *code); | |
| 810 break; | |
| 811 case DEBUG_STUB: | |
| 812 break; | |
| 813 case DEFAULT: | |
| 814 case GENERIC: | |
| 815 UNREACHABLE(); | |
| 816 break; | |
| 817 } | |
| 818 } | |
| 819 | |
| 820 | |
| 821 Handle<Code> LoadIC::initialize_stub(Isolate* isolate, | |
| 822 ExtraICState extra_state) { | |
| 823 return PropertyICCompiler::ComputeLoad(isolate, UNINITIALIZED, extra_state); | |
| 824 } | |
| 825 | |
| 826 | |
| 827 Handle<Code> LoadIC::megamorphic_stub() { | |
| 828 if (kind() == Code::LOAD_IC) { | |
| 829 return PropertyICCompiler::ComputeLoad(isolate(), MEGAMORPHIC, | |
| 830 extra_ic_state()); | |
| 831 } else { | |
| 832 DCHECK_EQ(Code::KEYED_LOAD_IC, kind()); | |
| 833 return KeyedLoadIC::generic_stub(isolate()); | |
| 834 } | |
| 835 } | |
| 836 | |
| 837 | |
| 838 Handle<Code> LoadIC::pre_monomorphic_stub(Isolate* isolate, | |
| 839 ExtraICState extra_state) { | |
| 840 return PropertyICCompiler::ComputeLoad(isolate, PREMONOMORPHIC, extra_state); | |
| 841 } | |
| 842 | |
| 843 | |
| 844 Handle<Code> KeyedLoadIC::pre_monomorphic_stub(Isolate* isolate) { | |
| 845 return isolate->builtins()->KeyedLoadIC_PreMonomorphic(); | |
| 846 } | |
| 847 | |
| 848 | |
| 849 Handle<Code> LoadIC::pre_monomorphic_stub() const { | |
| 850 if (kind() == Code::LOAD_IC) { | |
| 851 return LoadIC::pre_monomorphic_stub(isolate(), extra_ic_state()); | |
| 852 } else { | |
| 853 DCHECK_EQ(Code::KEYED_LOAD_IC, kind()); | |
| 854 return KeyedLoadIC::pre_monomorphic_stub(isolate()); | |
| 855 } | |
| 856 } | |
| 857 | |
| 858 | |
| 859 Handle<Code> LoadIC::SimpleFieldLoad(FieldIndex index) { | |
| 860 LoadFieldStub stub(isolate(), index); | |
| 861 return stub.GetCode(); | |
| 862 } | |
| 863 | |
| 864 | |
| 865 void LoadIC::UpdateCaches(LookupIterator* lookup) { | |
| 866 if (state() == UNINITIALIZED) { | |
| 867 // This is the first time we execute this inline cache. Set the target to | |
| 868 // the pre monomorphic stub to delay setting the monomorphic state. | |
| 869 set_target(*pre_monomorphic_stub()); | |
| 870 TRACE_IC("LoadIC", lookup->name()); | |
| 871 return; | |
| 872 } | |
| 873 | |
| 874 Handle<Code> code; | |
| 875 if (lookup->state() == LookupIterator::JSPROXY || | |
| 876 lookup->state() == LookupIterator::ACCESS_CHECK) { | |
| 877 code = slow_stub(); | |
| 878 } else if (!lookup->IsFound()) { | |
| 879 if (kind() == Code::LOAD_IC) { | |
| 880 code = NamedLoadHandlerCompiler::ComputeLoadNonexistent(lookup->name(), | |
| 881 receiver_type()); | |
| 882 // TODO(jkummerow/verwaest): Introduce a builtin that handles this case. | |
| 883 if (code.is_null()) code = slow_stub(); | |
| 884 } else { | |
| 885 code = slow_stub(); | |
| 886 } | |
| 887 } else { | |
| 888 code = ComputeHandler(lookup); | |
| 889 } | |
| 890 | |
| 891 PatchCache(lookup->name(), code); | |
| 892 TRACE_IC("LoadIC", lookup->name()); | |
| 893 } | |
| 894 | |
| 895 | |
| 896 void IC::UpdateMegamorphicCache(HeapType* type, Name* name, Code* code) { | |
| 897 if (kind() == Code::KEYED_LOAD_IC || kind() == Code::KEYED_STORE_IC) return; | |
| 898 Map* map = *TypeToMap(type, isolate()); | |
| 899 isolate()->stub_cache()->Set(name, map, code); | |
| 900 } | |
| 901 | |
| 902 | |
| 903 Handle<Code> IC::ComputeHandler(LookupIterator* lookup, Handle<Object> value) { | |
| 904 bool receiver_is_holder = | |
| 905 lookup->GetReceiver().is_identical_to(lookup->GetHolder<JSObject>()); | |
| 906 CacheHolderFlag flag; | |
| 907 Handle<Map> stub_holder_map = IC::GetHandlerCacheHolder( | |
| 908 *receiver_type(), receiver_is_holder, isolate(), &flag); | |
| 909 | |
| 910 Handle<Code> code = PropertyHandlerCompiler::Find( | |
| 911 lookup->name(), stub_holder_map, kind(), flag, | |
| 912 lookup->holder_map()->is_dictionary_map() ? Code::NORMAL : Code::FAST); | |
| 913 // Use the cached value if it exists, and if it is different from the | |
| 914 // handler that just missed. | |
| 915 if (!code.is_null()) { | |
| 916 if (!maybe_handler_.is_null() && | |
| 917 !maybe_handler_.ToHandleChecked().is_identical_to(code)) { | |
| 918 return code; | |
| 919 } | |
| 920 if (maybe_handler_.is_null()) { | |
| 921 // maybe_handler_ is only populated for MONOMORPHIC and POLYMORPHIC ICs. | |
| 922 // In MEGAMORPHIC case, check if the handler in the megamorphic stub | |
| 923 // cache (which just missed) is different from the cached handler. | |
| 924 if (state() == MEGAMORPHIC && lookup->GetReceiver()->IsHeapObject()) { | |
| 925 Map* map = Handle<HeapObject>::cast(lookup->GetReceiver())->map(); | |
| 926 Code* megamorphic_cached_code = | |
| 927 isolate()->stub_cache()->Get(*lookup->name(), map, code->flags()); | |
| 928 if (megamorphic_cached_code != *code) return code; | |
| 929 } else { | |
| 930 return code; | |
| 931 } | |
| 932 } | |
| 933 } | |
| 934 | |
| 935 code = CompileHandler(lookup, value, flag); | |
| 936 DCHECK(code->is_handler()); | |
| 937 | |
| 938 if (code->type() != Code::NORMAL) { | |
| 939 Map::UpdateCodeCache(stub_holder_map, lookup->name(), code); | |
| 940 } | |
| 941 | |
| 942 return code; | |
| 943 } | |
| 944 | |
| 945 | |
| 946 Handle<Code> LoadIC::CompileHandler(LookupIterator* lookup, | |
| 947 Handle<Object> unused, | |
| 948 CacheHolderFlag cache_holder) { | |
| 949 Handle<Object> receiver = lookup->GetReceiver(); | |
| 950 if (receiver->IsString() && | |
| 951 Name::Equals(isolate()->factory()->length_string(), lookup->name())) { | |
| 952 FieldIndex index = FieldIndex::ForInObjectOffset(String::kLengthOffset); | |
| 953 return SimpleFieldLoad(index); | |
| 954 } | |
| 955 | |
| 956 if (receiver->IsStringWrapper() && | |
| 957 Name::Equals(isolate()->factory()->length_string(), lookup->name())) { | |
| 958 StringLengthStub string_length_stub(isolate()); | |
| 959 return string_length_stub.GetCode(); | |
| 960 } | |
| 961 | |
| 962 // Use specialized code for getting prototype of functions. | |
| 963 if (receiver->IsJSFunction() && | |
| 964 Name::Equals(isolate()->factory()->prototype_string(), lookup->name()) && | |
| 965 Handle<JSFunction>::cast(receiver)->should_have_prototype() && | |
| 966 !Handle<JSFunction>::cast(receiver) | |
| 967 ->map() | |
| 968 ->has_non_instance_prototype()) { | |
| 969 Handle<Code> stub; | |
| 970 FunctionPrototypeStub function_prototype_stub(isolate()); | |
| 971 return function_prototype_stub.GetCode(); | |
| 972 } | |
| 973 | |
| 974 Handle<HeapType> type = receiver_type(); | |
| 975 Handle<JSObject> holder = lookup->GetHolder<JSObject>(); | |
| 976 bool receiver_is_holder = receiver.is_identical_to(holder); | |
| 977 // -------------- Interceptors -------------- | |
| 978 if (lookup->state() == LookupIterator::INTERCEPTOR) { | |
| 979 DCHECK(!holder->GetNamedInterceptor()->getter()->IsUndefined()); | |
| 980 NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder, | |
| 981 cache_holder); | |
| 982 // Perform a lookup behind the interceptor. Copy the LookupIterator since | |
| 983 // the original iterator will be used to fetch the value. | |
| 984 LookupIterator it(lookup); | |
| 985 it.Next(); | |
| 986 LookupForRead(&it); | |
| 987 return compiler.CompileLoadInterceptor(&it); | |
| 988 } | |
| 989 | |
| 990 // -------------- Accessors -------------- | |
| 991 DCHECK(lookup->state() == LookupIterator::PROPERTY); | |
| 992 if (lookup->property_kind() == LookupIterator::ACCESSOR) { | |
| 993 // Use simple field loads for some well-known callback properties. | |
| 994 if (receiver_is_holder) { | |
| 995 DCHECK(receiver->IsJSObject()); | |
| 996 Handle<JSObject> js_receiver = Handle<JSObject>::cast(receiver); | |
| 997 int object_offset; | |
| 998 if (Accessors::IsJSObjectFieldAccessor<HeapType>(type, lookup->name(), | |
| 999 &object_offset)) { | |
| 1000 FieldIndex index = | |
| 1001 FieldIndex::ForInObjectOffset(object_offset, js_receiver->map()); | |
| 1002 return SimpleFieldLoad(index); | |
| 1003 } | |
| 1004 } | |
| 1005 | |
| 1006 Handle<Object> accessors = lookup->GetAccessors(); | |
| 1007 if (accessors->IsExecutableAccessorInfo()) { | |
| 1008 Handle<ExecutableAccessorInfo> info = | |
| 1009 Handle<ExecutableAccessorInfo>::cast(accessors); | |
| 1010 if (v8::ToCData<Address>(info->getter()) == 0) return slow_stub(); | |
| 1011 if (!ExecutableAccessorInfo::IsCompatibleReceiverType(isolate(), info, | |
| 1012 type)) { | |
| 1013 return slow_stub(); | |
| 1014 } | |
| 1015 if (!holder->HasFastProperties()) return slow_stub(); | |
| 1016 NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder, | |
| 1017 cache_holder); | |
| 1018 return compiler.CompileLoadCallback(lookup->name(), info); | |
| 1019 } | |
| 1020 if (accessors->IsAccessorPair()) { | |
| 1021 Handle<Object> getter(Handle<AccessorPair>::cast(accessors)->getter(), | |
| 1022 isolate()); | |
| 1023 if (!getter->IsJSFunction()) return slow_stub(); | |
| 1024 if (!holder->HasFastProperties()) return slow_stub(); | |
| 1025 Handle<JSFunction> function = Handle<JSFunction>::cast(getter); | |
| 1026 if (!receiver->IsJSObject() && !function->IsBuiltin() && | |
| 1027 function->shared()->strict_mode() == SLOPPY) { | |
| 1028 // Calling sloppy non-builtins with a value as the receiver | |
| 1029 // requires boxing. | |
| 1030 return slow_stub(); | |
| 1031 } | |
| 1032 CallOptimization call_optimization(function); | |
| 1033 NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder, | |
| 1034 cache_holder); | |
| 1035 if (call_optimization.is_simple_api_call() && | |
| 1036 call_optimization.IsCompatibleReceiver(receiver, holder)) { | |
| 1037 return compiler.CompileLoadCallback(lookup->name(), call_optimization); | |
| 1038 } | |
| 1039 return compiler.CompileLoadViaGetter(lookup->name(), function); | |
| 1040 } | |
| 1041 // TODO(dcarney): Handle correctly. | |
| 1042 DCHECK(accessors->IsDeclaredAccessorInfo()); | |
| 1043 return slow_stub(); | |
| 1044 } | |
| 1045 | |
| 1046 // -------------- Dictionary properties -------------- | |
| 1047 DCHECK(lookup->property_kind() == LookupIterator::DATA); | |
| 1048 if (lookup->property_encoding() == LookupIterator::DICTIONARY) { | |
| 1049 if (kind() != Code::LOAD_IC) return slow_stub(); | |
| 1050 if (holder->IsGlobalObject()) { | |
| 1051 NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder, | |
| 1052 cache_holder); | |
| 1053 Handle<PropertyCell> cell = lookup->GetPropertyCell(); | |
| 1054 Handle<Code> code = compiler.CompileLoadGlobal(cell, lookup->name(), | |
| 1055 lookup->IsConfigurable()); | |
| 1056 // TODO(verwaest): Move caching of these NORMAL stubs outside as well. | |
| 1057 CacheHolderFlag flag; | |
| 1058 Handle<Map> stub_holder_map = | |
| 1059 GetHandlerCacheHolder(*type, receiver_is_holder, isolate(), &flag); | |
| 1060 Map::UpdateCodeCache(stub_holder_map, lookup->name(), code); | |
| 1061 return code; | |
| 1062 } | |
| 1063 // There is only one shared stub for loading normalized | |
| 1064 // properties. It does not traverse the prototype chain, so the | |
| 1065 // property must be found in the object for the stub to be | |
| 1066 // applicable. | |
| 1067 if (!receiver_is_holder) return slow_stub(); | |
| 1068 return isolate()->builtins()->LoadIC_Normal(); | |
| 1069 } | |
| 1070 | |
| 1071 // -------------- Fields -------------- | |
| 1072 DCHECK(lookup->property_encoding() == LookupIterator::DESCRIPTOR); | |
| 1073 if (lookup->property_details().type() == FIELD) { | |
| 1074 FieldIndex field = lookup->GetFieldIndex(); | |
| 1075 if (receiver_is_holder) { | |
| 1076 return SimpleFieldLoad(field); | |
| 1077 } | |
| 1078 NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder, | |
| 1079 cache_holder); | |
| 1080 return compiler.CompileLoadField(lookup->name(), field); | |
| 1081 } | |
| 1082 | |
| 1083 // -------------- Constant properties -------------- | |
| 1084 DCHECK(lookup->property_details().type() == CONSTANT); | |
| 1085 if (receiver_is_holder) { | |
| 1086 LoadConstantStub stub(isolate(), lookup->GetConstantIndex()); | |
| 1087 return stub.GetCode(); | |
| 1088 } | |
| 1089 NamedLoadHandlerCompiler compiler(isolate(), receiver_type(), holder, | |
| 1090 cache_holder); | |
| 1091 return compiler.CompileLoadConstant(lookup->name(), | |
| 1092 lookup->GetConstantIndex()); | |
| 1093 } | |
| 1094 | |
| 1095 | |
| 1096 static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) { | |
| 1097 // This helper implements a few common fast cases for converting | |
| 1098 // non-smi keys of keyed loads/stores to a smi or a string. | |
| 1099 if (key->IsHeapNumber()) { | |
| 1100 double value = Handle<HeapNumber>::cast(key)->value(); | |
| 1101 if (std::isnan(value)) { | |
| 1102 key = isolate->factory()->nan_string(); | |
| 1103 } else { | |
| 1104 int int_value = FastD2I(value); | |
| 1105 if (value == int_value && Smi::IsValid(int_value)) { | |
| 1106 key = Handle<Smi>(Smi::FromInt(int_value), isolate); | |
| 1107 } | |
| 1108 } | |
| 1109 } else if (key->IsUndefined()) { | |
| 1110 key = isolate->factory()->undefined_string(); | |
| 1111 } | |
| 1112 return key; | |
| 1113 } | |
| 1114 | |
| 1115 | |
| 1116 Handle<Code> KeyedLoadIC::LoadElementStub(Handle<JSObject> receiver) { | |
| 1117 // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS | |
| 1118 // via megamorphic stubs, since they don't have a map in their relocation info | |
| 1119 // and so the stubs can't be harvested for the object needed for a map check. | |
| 1120 if (target()->type() != Code::NORMAL) { | |
| 1121 TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type"); | |
| 1122 return generic_stub(); | |
| 1123 } | |
| 1124 | |
| 1125 Handle<Map> receiver_map(receiver->map(), isolate()); | |
| 1126 MapHandleList target_receiver_maps; | |
| 1127 if (target().is_identical_to(string_stub())) { | |
| 1128 target_receiver_maps.Add(isolate()->factory()->string_map()); | |
| 1129 } else { | |
| 1130 TargetMaps(&target_receiver_maps); | |
| 1131 } | |
| 1132 if (target_receiver_maps.length() == 0) { | |
| 1133 return PropertyICCompiler::ComputeKeyedLoadMonomorphic(receiver_map); | |
| 1134 } | |
| 1135 | |
| 1136 // The first time a receiver is seen that is a transitioned version of the | |
| 1137 // previous monomorphic receiver type, assume the new ElementsKind is the | |
| 1138 // monomorphic type. This benefits global arrays that only transition | |
| 1139 // once, and all call sites accessing them are faster if they remain | |
| 1140 // monomorphic. If this optimistic assumption is not true, the IC will | |
| 1141 // miss again and it will become polymorphic and support both the | |
| 1142 // untransitioned and transitioned maps. | |
| 1143 if (state() == MONOMORPHIC && | |
| 1144 IsMoreGeneralElementsKindTransition( | |
| 1145 target_receiver_maps.at(0)->elements_kind(), | |
| 1146 receiver->GetElementsKind())) { | |
| 1147 return PropertyICCompiler::ComputeKeyedLoadMonomorphic(receiver_map); | |
| 1148 } | |
| 1149 | |
| 1150 DCHECK(state() != GENERIC); | |
| 1151 | |
| 1152 // Determine the list of receiver maps that this call site has seen, | |
| 1153 // adding the map that was just encountered. | |
| 1154 if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) { | |
| 1155 // If the miss wasn't due to an unseen map, a polymorphic stub | |
| 1156 // won't help, use the generic stub. | |
| 1157 TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice"); | |
| 1158 return generic_stub(); | |
| 1159 } | |
| 1160 | |
| 1161 // If the maximum number of receiver maps has been exceeded, use the generic | |
| 1162 // version of the IC. | |
| 1163 if (target_receiver_maps.length() > kMaxKeyedPolymorphism) { | |
| 1164 TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded"); | |
| 1165 return generic_stub(); | |
| 1166 } | |
| 1167 | |
| 1168 return PropertyICCompiler::ComputeKeyedLoadPolymorphic(&target_receiver_maps); | |
| 1169 } | |
| 1170 | |
| 1171 | |
| 1172 MaybeHandle<Object> KeyedLoadIC::Load(Handle<Object> object, | |
| 1173 Handle<Object> key) { | |
| 1174 if (MigrateDeprecated(object)) { | |
| 1175 Handle<Object> result; | |
| 1176 ASSIGN_RETURN_ON_EXCEPTION( | |
| 1177 isolate(), | |
| 1178 result, | |
| 1179 Runtime::GetObjectProperty(isolate(), object, key), | |
| 1180 Object); | |
| 1181 return result; | |
| 1182 } | |
| 1183 | |
| 1184 Handle<Object> load_handle; | |
| 1185 Handle<Code> stub = generic_stub(); | |
| 1186 | |
| 1187 // Check for non-string values that can be converted into an | |
| 1188 // internalized string directly or is representable as a smi. | |
| 1189 key = TryConvertKey(key, isolate()); | |
| 1190 | |
| 1191 if (key->IsInternalizedString() || key->IsSymbol()) { | |
| 1192 ASSIGN_RETURN_ON_EXCEPTION( | |
| 1193 isolate(), | |
| 1194 load_handle, | |
| 1195 LoadIC::Load(object, Handle<Name>::cast(key)), | |
| 1196 Object); | |
| 1197 } else if (FLAG_use_ic && !object->IsAccessCheckNeeded()) { | |
| 1198 if (object->IsString() && key->IsNumber()) { | |
| 1199 if (state() == UNINITIALIZED) stub = string_stub(); | |
| 1200 } else if (object->IsJSObject()) { | |
| 1201 Handle<JSObject> receiver = Handle<JSObject>::cast(object); | |
| 1202 if (receiver->elements()->map() == | |
| 1203 isolate()->heap()->sloppy_arguments_elements_map()) { | |
| 1204 stub = sloppy_arguments_stub(); | |
| 1205 } else if (receiver->HasIndexedInterceptor()) { | |
| 1206 stub = indexed_interceptor_stub(); | |
| 1207 } else if (!Object::ToSmi(isolate(), key).is_null() && | |
| 1208 (!target().is_identical_to(sloppy_arguments_stub()))) { | |
| 1209 stub = LoadElementStub(receiver); | |
| 1210 } | |
| 1211 } | |
| 1212 } | |
| 1213 | |
| 1214 if (!is_target_set()) { | |
| 1215 Code* generic = *generic_stub(); | |
| 1216 if (*stub == generic) { | |
| 1217 TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "set generic"); | |
| 1218 } | |
| 1219 set_target(*stub); | |
| 1220 TRACE_IC("LoadIC", key); | |
| 1221 } | |
| 1222 | |
| 1223 if (!load_handle.is_null()) return load_handle; | |
| 1224 Handle<Object> result; | |
| 1225 ASSIGN_RETURN_ON_EXCEPTION( | |
| 1226 isolate(), | |
| 1227 result, | |
| 1228 Runtime::GetObjectProperty(isolate(), object, key), | |
| 1229 Object); | |
| 1230 return result; | |
| 1231 } | |
| 1232 | |
| 1233 | |
| 1234 bool StoreIC::LookupForWrite(LookupIterator* it, Handle<Object> value, | |
| 1235 JSReceiver::StoreFromKeyed store_mode) { | |
| 1236 // Disable ICs for non-JSObjects for now. | |
| 1237 if (!it->GetReceiver()->IsJSObject()) return false; | |
| 1238 Handle<JSObject> receiver = Handle<JSObject>::cast(it->GetReceiver()); | |
| 1239 DCHECK(!receiver->map()->is_deprecated()); | |
| 1240 | |
| 1241 for (; it->IsFound(); it->Next()) { | |
| 1242 switch (it->state()) { | |
| 1243 case LookupIterator::NOT_FOUND: | |
| 1244 case LookupIterator::TRANSITION: | |
| 1245 UNREACHABLE(); | |
| 1246 case LookupIterator::JSPROXY: | |
| 1247 return false; | |
| 1248 case LookupIterator::INTERCEPTOR: { | |
| 1249 Handle<JSObject> holder = it->GetHolder<JSObject>(); | |
| 1250 InterceptorInfo* info = holder->GetNamedInterceptor(); | |
| 1251 if (it->HolderIsReceiverOrHiddenPrototype()) { | |
| 1252 if (!info->setter()->IsUndefined()) return true; | |
| 1253 } else if (!info->getter()->IsUndefined() || | |
| 1254 !info->query()->IsUndefined()) { | |
| 1255 return false; | |
| 1256 } | |
| 1257 break; | |
| 1258 } | |
| 1259 case LookupIterator::ACCESS_CHECK: | |
| 1260 if (it->GetHolder<JSObject>()->IsAccessCheckNeeded()) return false; | |
| 1261 break; | |
| 1262 case LookupIterator::PROPERTY: | |
| 1263 if (!it->HasProperty()) break; | |
| 1264 if (it->IsReadOnly()) return false; | |
| 1265 if (it->property_kind() == LookupIterator::ACCESSOR) return true; | |
| 1266 if (it->GetHolder<JSObject>().is_identical_to(receiver)) { | |
| 1267 it->PrepareForDataProperty(value); | |
| 1268 // The previous receiver map might just have been deprecated, | |
| 1269 // so reload it. | |
| 1270 update_receiver_type(receiver); | |
| 1271 return true; | |
| 1272 } | |
| 1273 | |
| 1274 // Receiver != holder. | |
| 1275 if (receiver->IsJSGlobalProxy()) { | |
| 1276 PrototypeIterator iter(it->isolate(), receiver); | |
| 1277 return it->GetHolder<Object>().is_identical_to( | |
| 1278 PrototypeIterator::GetCurrent(iter)); | |
| 1279 } | |
| 1280 | |
| 1281 it->PrepareTransitionToDataProperty(value, NONE, store_mode); | |
| 1282 return it->IsCacheableTransition(); | |
| 1283 } | |
| 1284 } | |
| 1285 | |
| 1286 it->PrepareTransitionToDataProperty(value, NONE, store_mode); | |
| 1287 return it->IsCacheableTransition(); | |
| 1288 } | |
| 1289 | |
| 1290 | |
| 1291 MaybeHandle<Object> StoreIC::Store(Handle<Object> object, | |
| 1292 Handle<Name> name, | |
| 1293 Handle<Object> value, | |
| 1294 JSReceiver::StoreFromKeyed store_mode) { | |
| 1295 // TODO(verwaest): Let SetProperty do the migration, since storing a property | |
| 1296 // might deprecate the current map again, if value does not fit. | |
| 1297 if (MigrateDeprecated(object) || object->IsJSProxy()) { | |
| 1298 Handle<Object> result; | |
| 1299 ASSIGN_RETURN_ON_EXCEPTION( | |
| 1300 isolate(), result, | |
| 1301 Object::SetProperty(object, name, value, strict_mode()), Object); | |
| 1302 return result; | |
| 1303 } | |
| 1304 | |
| 1305 // If the object is undefined or null it's illegal to try to set any | |
| 1306 // properties on it; throw a TypeError in that case. | |
| 1307 if (object->IsUndefined() || object->IsNull()) { | |
| 1308 return TypeError("non_object_property_store", object, name); | |
| 1309 } | |
| 1310 | |
| 1311 // Check if the given name is an array index. | |
| 1312 uint32_t index; | |
| 1313 if (name->AsArrayIndex(&index)) { | |
| 1314 // Ignore other stores where the receiver is not a JSObject. | |
| 1315 // TODO(1475): Must check prototype chains of object wrappers. | |
| 1316 if (!object->IsJSObject()) return value; | |
| 1317 Handle<JSObject> receiver = Handle<JSObject>::cast(object); | |
| 1318 | |
| 1319 Handle<Object> result; | |
| 1320 ASSIGN_RETURN_ON_EXCEPTION( | |
| 1321 isolate(), | |
| 1322 result, | |
| 1323 JSObject::SetElement(receiver, index, value, NONE, strict_mode()), | |
| 1324 Object); | |
| 1325 return value; | |
| 1326 } | |
| 1327 | |
| 1328 // Observed objects are always modified through the runtime. | |
| 1329 if (object->IsHeapObject() && | |
| 1330 Handle<HeapObject>::cast(object)->map()->is_observed()) { | |
| 1331 Handle<Object> result; | |
| 1332 ASSIGN_RETURN_ON_EXCEPTION( | |
| 1333 isolate(), result, | |
| 1334 Object::SetProperty(object, name, value, strict_mode(), store_mode), | |
| 1335 Object); | |
| 1336 return result; | |
| 1337 } | |
| 1338 | |
| 1339 LookupIterator it(object, name); | |
| 1340 if (FLAG_use_ic) UpdateCaches(&it, value, store_mode); | |
| 1341 | |
| 1342 // Set the property. | |
| 1343 Handle<Object> result; | |
| 1344 ASSIGN_RETURN_ON_EXCEPTION( | |
| 1345 isolate(), result, | |
| 1346 Object::SetProperty(&it, value, strict_mode(), store_mode), Object); | |
| 1347 return result; | |
| 1348 } | |
| 1349 | |
| 1350 | |
| 1351 OStream& operator<<(OStream& os, const CallIC::State& s) { | |
| 1352 return os << "(args(" << s.arg_count() << "), " | |
| 1353 << (s.call_type() == CallIC::METHOD ? "METHOD" : "FUNCTION") | |
| 1354 << ", "; | |
| 1355 } | |
| 1356 | |
| 1357 | |
| 1358 Handle<Code> CallIC::initialize_stub(Isolate* isolate, | |
| 1359 int argc, | |
| 1360 CallType call_type) { | |
| 1361 CallICStub stub(isolate, State(argc, call_type)); | |
| 1362 Handle<Code> code = stub.GetCode(); | |
| 1363 return code; | |
| 1364 } | |
| 1365 | |
| 1366 | |
| 1367 Handle<Code> StoreIC::initialize_stub(Isolate* isolate, | |
| 1368 StrictMode strict_mode) { | |
| 1369 ExtraICState extra_state = ComputeExtraICState(strict_mode); | |
| 1370 Handle<Code> ic = | |
| 1371 PropertyICCompiler::ComputeStore(isolate, UNINITIALIZED, extra_state); | |
| 1372 return ic; | |
| 1373 } | |
| 1374 | |
| 1375 | |
| 1376 Handle<Code> StoreIC::megamorphic_stub() { | |
| 1377 return PropertyICCompiler::ComputeStore(isolate(), MEGAMORPHIC, | |
| 1378 extra_ic_state()); | |
| 1379 } | |
| 1380 | |
| 1381 | |
| 1382 Handle<Code> StoreIC::generic_stub() const { | |
| 1383 return PropertyICCompiler::ComputeStore(isolate(), GENERIC, extra_ic_state()); | |
| 1384 } | |
| 1385 | |
| 1386 | |
| 1387 Handle<Code> StoreIC::pre_monomorphic_stub(Isolate* isolate, | |
| 1388 StrictMode strict_mode) { | |
| 1389 ExtraICState state = ComputeExtraICState(strict_mode); | |
| 1390 return PropertyICCompiler::ComputeStore(isolate, PREMONOMORPHIC, state); | |
| 1391 } | |
| 1392 | |
| 1393 | |
| 1394 void StoreIC::UpdateCaches(LookupIterator* lookup, Handle<Object> value, | |
| 1395 JSReceiver::StoreFromKeyed store_mode) { | |
| 1396 if (state() == UNINITIALIZED) { | |
| 1397 // This is the first time we execute this inline cache. Set the target to | |
| 1398 // the pre monomorphic stub to delay setting the monomorphic state. | |
| 1399 set_target(*pre_monomorphic_stub()); | |
| 1400 TRACE_IC("StoreIC", lookup->name()); | |
| 1401 return; | |
| 1402 } | |
| 1403 | |
| 1404 Handle<Code> code = LookupForWrite(lookup, value, store_mode) | |
| 1405 ? ComputeHandler(lookup, value) | |
| 1406 : slow_stub(); | |
| 1407 | |
| 1408 PatchCache(lookup->name(), code); | |
| 1409 TRACE_IC("StoreIC", lookup->name()); | |
| 1410 } | |
| 1411 | |
| 1412 | |
| 1413 Handle<Code> StoreIC::CompileHandler(LookupIterator* lookup, | |
| 1414 Handle<Object> value, | |
| 1415 CacheHolderFlag cache_holder) { | |
| 1416 DCHECK_NE(LookupIterator::JSPROXY, lookup->state()); | |
| 1417 | |
| 1418 // This is currently guaranteed by checks in StoreIC::Store. | |
| 1419 Handle<JSObject> receiver = Handle<JSObject>::cast(lookup->GetReceiver()); | |
| 1420 Handle<JSObject> holder = lookup->GetHolder<JSObject>(); | |
| 1421 DCHECK(!receiver->IsAccessCheckNeeded()); | |
| 1422 | |
| 1423 // -------------- Transition -------------- | |
| 1424 if (lookup->state() == LookupIterator::TRANSITION) { | |
| 1425 Handle<Map> transition = lookup->transition_map(); | |
| 1426 // Currently not handled by CompileStoreTransition. | |
| 1427 if (!holder->HasFastProperties()) return slow_stub(); | |
| 1428 | |
| 1429 DCHECK(lookup->IsCacheableTransition()); | |
| 1430 NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder); | |
| 1431 return compiler.CompileStoreTransition(transition, lookup->name()); | |
| 1432 } | |
| 1433 | |
| 1434 // -------------- Interceptors -------------- | |
| 1435 if (lookup->state() == LookupIterator::INTERCEPTOR) { | |
| 1436 DCHECK(!holder->GetNamedInterceptor()->setter()->IsUndefined()); | |
| 1437 NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder); | |
| 1438 return compiler.CompileStoreInterceptor(lookup->name()); | |
| 1439 } | |
| 1440 | |
| 1441 // -------------- Accessors -------------- | |
| 1442 DCHECK(lookup->state() == LookupIterator::PROPERTY); | |
| 1443 if (lookup->property_kind() == LookupIterator::ACCESSOR) { | |
| 1444 if (!holder->HasFastProperties()) return slow_stub(); | |
| 1445 Handle<Object> accessors = lookup->GetAccessors(); | |
| 1446 if (accessors->IsExecutableAccessorInfo()) { | |
| 1447 Handle<ExecutableAccessorInfo> info = | |
| 1448 Handle<ExecutableAccessorInfo>::cast(accessors); | |
| 1449 if (v8::ToCData<Address>(info->setter()) == 0) return slow_stub(); | |
| 1450 if (!ExecutableAccessorInfo::IsCompatibleReceiverType(isolate(), info, | |
| 1451 receiver_type())) { | |
| 1452 return slow_stub(); | |
| 1453 } | |
| 1454 NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder); | |
| 1455 return compiler.CompileStoreCallback(receiver, lookup->name(), info); | |
| 1456 } else if (accessors->IsAccessorPair()) { | |
| 1457 Handle<Object> setter(Handle<AccessorPair>::cast(accessors)->setter(), | |
| 1458 isolate()); | |
| 1459 if (!setter->IsJSFunction()) return slow_stub(); | |
| 1460 Handle<JSFunction> function = Handle<JSFunction>::cast(setter); | |
| 1461 CallOptimization call_optimization(function); | |
| 1462 NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder); | |
| 1463 if (call_optimization.is_simple_api_call() && | |
| 1464 call_optimization.IsCompatibleReceiver(receiver, holder)) { | |
| 1465 return compiler.CompileStoreCallback(receiver, lookup->name(), | |
| 1466 call_optimization); | |
| 1467 } | |
| 1468 return compiler.CompileStoreViaSetter(receiver, lookup->name(), | |
| 1469 Handle<JSFunction>::cast(setter)); | |
| 1470 } | |
| 1471 // TODO(dcarney): Handle correctly. | |
| 1472 DCHECK(accessors->IsDeclaredAccessorInfo()); | |
| 1473 return slow_stub(); | |
| 1474 } | |
| 1475 | |
| 1476 // -------------- Dictionary properties -------------- | |
| 1477 DCHECK(lookup->property_kind() == LookupIterator::DATA); | |
| 1478 if (lookup->property_encoding() == LookupIterator::DICTIONARY) { | |
| 1479 if (holder->IsGlobalObject()) { | |
| 1480 Handle<PropertyCell> cell = lookup->GetPropertyCell(); | |
| 1481 Handle<HeapType> union_type = PropertyCell::UpdatedType(cell, value); | |
| 1482 StoreGlobalStub stub(isolate(), union_type->IsConstant(), | |
| 1483 receiver->IsJSGlobalProxy()); | |
| 1484 Handle<Code> code = stub.GetCodeCopyFromTemplate( | |
| 1485 Handle<GlobalObject>::cast(holder), cell); | |
| 1486 // TODO(verwaest): Move caching of these NORMAL stubs outside as well. | |
| 1487 HeapObject::UpdateMapCodeCache(receiver, lookup->name(), code); | |
| 1488 return code; | |
| 1489 } | |
| 1490 DCHECK(holder.is_identical_to(receiver)); | |
| 1491 return isolate()->builtins()->StoreIC_Normal(); | |
| 1492 } | |
| 1493 | |
| 1494 // -------------- Fields -------------- | |
| 1495 DCHECK(lookup->property_encoding() == LookupIterator::DESCRIPTOR); | |
| 1496 if (lookup->property_details().type() == FIELD) { | |
| 1497 bool use_stub = true; | |
| 1498 if (lookup->representation().IsHeapObject()) { | |
| 1499 // Only use a generic stub if no types need to be tracked. | |
| 1500 Handle<HeapType> field_type = lookup->GetFieldType(); | |
| 1501 HeapType::Iterator<Map> it = field_type->Classes(); | |
| 1502 use_stub = it.Done(); | |
| 1503 } | |
| 1504 if (use_stub) { | |
| 1505 StoreFieldStub stub(isolate(), lookup->GetFieldIndex(), | |
| 1506 lookup->representation()); | |
| 1507 return stub.GetCode(); | |
| 1508 } | |
| 1509 NamedStoreHandlerCompiler compiler(isolate(), receiver_type(), holder); | |
| 1510 return compiler.CompileStoreField(lookup); | |
| 1511 } | |
| 1512 | |
| 1513 // -------------- Constant properties -------------- | |
| 1514 DCHECK(lookup->property_details().type() == CONSTANT); | |
| 1515 return slow_stub(); | |
| 1516 } | |
| 1517 | |
| 1518 | |
| 1519 Handle<Code> KeyedStoreIC::StoreElementStub(Handle<JSObject> receiver, | |
| 1520 KeyedAccessStoreMode store_mode) { | |
| 1521 // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS | |
| 1522 // via megamorphic stubs, since they don't have a map in their relocation info | |
| 1523 // and so the stubs can't be harvested for the object needed for a map check. | |
| 1524 if (target()->type() != Code::NORMAL) { | |
| 1525 TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type"); | |
| 1526 return generic_stub(); | |
| 1527 } | |
| 1528 | |
| 1529 Handle<Map> receiver_map(receiver->map(), isolate()); | |
| 1530 MapHandleList target_receiver_maps; | |
| 1531 TargetMaps(&target_receiver_maps); | |
| 1532 if (target_receiver_maps.length() == 0) { | |
| 1533 Handle<Map> monomorphic_map = | |
| 1534 ComputeTransitionedMap(receiver_map, store_mode); | |
| 1535 store_mode = GetNonTransitioningStoreMode(store_mode); | |
| 1536 return PropertyICCompiler::ComputeKeyedStoreMonomorphic( | |
| 1537 monomorphic_map, strict_mode(), store_mode); | |
| 1538 } | |
| 1539 | |
| 1540 // There are several special cases where an IC that is MONOMORPHIC can still | |
| 1541 // transition to a different GetNonTransitioningStoreMode IC that handles a | |
| 1542 // superset of the original IC. Handle those here if the receiver map hasn't | |
| 1543 // changed or it has transitioned to a more general kind. | |
| 1544 KeyedAccessStoreMode old_store_mode = | |
| 1545 KeyedStoreIC::GetKeyedAccessStoreMode(target()->extra_ic_state()); | |
| 1546 Handle<Map> previous_receiver_map = target_receiver_maps.at(0); | |
| 1547 if (state() == MONOMORPHIC) { | |
| 1548 Handle<Map> transitioned_receiver_map = receiver_map; | |
| 1549 if (IsTransitionStoreMode(store_mode)) { | |
| 1550 transitioned_receiver_map = | |
| 1551 ComputeTransitionedMap(receiver_map, store_mode); | |
| 1552 } | |
| 1553 if ((receiver_map.is_identical_to(previous_receiver_map) && | |
| 1554 IsTransitionStoreMode(store_mode)) || | |
| 1555 IsTransitionOfMonomorphicTarget(*previous_receiver_map, | |
| 1556 *transitioned_receiver_map)) { | |
| 1557 // If the "old" and "new" maps are in the same elements map family, or | |
| 1558 // if they at least come from the same origin for a transitioning store, | |
| 1559 // stay MONOMORPHIC and use the map for the most generic ElementsKind. | |
| 1560 store_mode = GetNonTransitioningStoreMode(store_mode); | |
| 1561 return PropertyICCompiler::ComputeKeyedStoreMonomorphic( | |
| 1562 transitioned_receiver_map, strict_mode(), store_mode); | |
| 1563 } else if (*previous_receiver_map == receiver->map() && | |
| 1564 old_store_mode == STANDARD_STORE && | |
| 1565 (store_mode == STORE_AND_GROW_NO_TRANSITION || | |
| 1566 store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS || | |
| 1567 store_mode == STORE_NO_TRANSITION_HANDLE_COW)) { | |
| 1568 // A "normal" IC that handles stores can switch to a version that can | |
| 1569 // grow at the end of the array, handle OOB accesses or copy COW arrays | |
| 1570 // and still stay MONOMORPHIC. | |
| 1571 return PropertyICCompiler::ComputeKeyedStoreMonomorphic( | |
| 1572 receiver_map, strict_mode(), store_mode); | |
| 1573 } | |
| 1574 } | |
| 1575 | |
| 1576 DCHECK(state() != GENERIC); | |
| 1577 | |
| 1578 bool map_added = | |
| 1579 AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map); | |
| 1580 | |
| 1581 if (IsTransitionStoreMode(store_mode)) { | |
| 1582 Handle<Map> transitioned_receiver_map = | |
| 1583 ComputeTransitionedMap(receiver_map, store_mode); | |
| 1584 map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps, | |
| 1585 transitioned_receiver_map); | |
| 1586 } | |
| 1587 | |
| 1588 if (!map_added) { | |
| 1589 // If the miss wasn't due to an unseen map, a polymorphic stub | |
| 1590 // won't help, use the generic stub. | |
| 1591 TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice"); | |
| 1592 return generic_stub(); | |
| 1593 } | |
| 1594 | |
| 1595 // If the maximum number of receiver maps has been exceeded, use the generic | |
| 1596 // version of the IC. | |
| 1597 if (target_receiver_maps.length() > kMaxKeyedPolymorphism) { | |
| 1598 TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded"); | |
| 1599 return generic_stub(); | |
| 1600 } | |
| 1601 | |
| 1602 // Make sure all polymorphic handlers have the same store mode, otherwise the | |
| 1603 // generic stub must be used. | |
| 1604 store_mode = GetNonTransitioningStoreMode(store_mode); | |
| 1605 if (old_store_mode != STANDARD_STORE) { | |
| 1606 if (store_mode == STANDARD_STORE) { | |
| 1607 store_mode = old_store_mode; | |
| 1608 } else if (store_mode != old_store_mode) { | |
| 1609 TRACE_GENERIC_IC(isolate(), "KeyedIC", "store mode mismatch"); | |
| 1610 return generic_stub(); | |
| 1611 } | |
| 1612 } | |
| 1613 | |
| 1614 // If the store mode isn't the standard mode, make sure that all polymorphic | |
| 1615 // receivers are either external arrays, or all "normal" arrays. Otherwise, | |
| 1616 // use the generic stub. | |
| 1617 if (store_mode != STANDARD_STORE) { | |
| 1618 int external_arrays = 0; | |
| 1619 for (int i = 0; i < target_receiver_maps.length(); ++i) { | |
| 1620 if (target_receiver_maps[i]->has_external_array_elements() || | |
| 1621 target_receiver_maps[i]->has_fixed_typed_array_elements()) { | |
| 1622 external_arrays++; | |
| 1623 } | |
| 1624 } | |
| 1625 if (external_arrays != 0 && | |
| 1626 external_arrays != target_receiver_maps.length()) { | |
| 1627 TRACE_GENERIC_IC(isolate(), "KeyedIC", | |
| 1628 "unsupported combination of external and normal arrays"); | |
| 1629 return generic_stub(); | |
| 1630 } | |
| 1631 } | |
| 1632 | |
| 1633 return PropertyICCompiler::ComputeKeyedStorePolymorphic( | |
| 1634 &target_receiver_maps, store_mode, strict_mode()); | |
| 1635 } | |
| 1636 | |
| 1637 | |
| 1638 Handle<Map> KeyedStoreIC::ComputeTransitionedMap( | |
| 1639 Handle<Map> map, | |
| 1640 KeyedAccessStoreMode store_mode) { | |
| 1641 switch (store_mode) { | |
| 1642 case STORE_TRANSITION_SMI_TO_OBJECT: | |
| 1643 case STORE_TRANSITION_DOUBLE_TO_OBJECT: | |
| 1644 case STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT: | |
| 1645 case STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT: | |
| 1646 return Map::TransitionElementsTo(map, FAST_ELEMENTS); | |
| 1647 case STORE_TRANSITION_SMI_TO_DOUBLE: | |
| 1648 case STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE: | |
| 1649 return Map::TransitionElementsTo(map, FAST_DOUBLE_ELEMENTS); | |
| 1650 case STORE_TRANSITION_HOLEY_SMI_TO_OBJECT: | |
| 1651 case STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT: | |
| 1652 case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT: | |
| 1653 case STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT: | |
| 1654 return Map::TransitionElementsTo(map, FAST_HOLEY_ELEMENTS); | |
| 1655 case STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE: | |
| 1656 case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE: | |
| 1657 return Map::TransitionElementsTo(map, FAST_HOLEY_DOUBLE_ELEMENTS); | |
| 1658 case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS: | |
| 1659 DCHECK(map->has_external_array_elements()); | |
| 1660 // Fall through | |
| 1661 case STORE_NO_TRANSITION_HANDLE_COW: | |
| 1662 case STANDARD_STORE: | |
| 1663 case STORE_AND_GROW_NO_TRANSITION: | |
| 1664 return map; | |
| 1665 } | |
| 1666 UNREACHABLE(); | |
| 1667 return MaybeHandle<Map>().ToHandleChecked(); | |
| 1668 } | |
| 1669 | |
| 1670 | |
| 1671 bool IsOutOfBoundsAccess(Handle<JSObject> receiver, | |
| 1672 int index) { | |
| 1673 if (receiver->IsJSArray()) { | |
| 1674 return JSArray::cast(*receiver)->length()->IsSmi() && | |
| 1675 index >= Smi::cast(JSArray::cast(*receiver)->length())->value(); | |
| 1676 } | |
| 1677 return index >= receiver->elements()->length(); | |
| 1678 } | |
| 1679 | |
| 1680 | |
| 1681 KeyedAccessStoreMode KeyedStoreIC::GetStoreMode(Handle<JSObject> receiver, | |
| 1682 Handle<Object> key, | |
| 1683 Handle<Object> value) { | |
| 1684 Handle<Smi> smi_key = Object::ToSmi(isolate(), key).ToHandleChecked(); | |
| 1685 int index = smi_key->value(); | |
| 1686 bool oob_access = IsOutOfBoundsAccess(receiver, index); | |
| 1687 // Don't consider this a growing store if the store would send the receiver to | |
| 1688 // dictionary mode. | |
| 1689 bool allow_growth = receiver->IsJSArray() && oob_access && | |
| 1690 !receiver->WouldConvertToSlowElements(key); | |
| 1691 if (allow_growth) { | |
| 1692 // Handle growing array in stub if necessary. | |
| 1693 if (receiver->HasFastSmiElements()) { | |
| 1694 if (value->IsHeapNumber()) { | |
| 1695 if (receiver->HasFastHoleyElements()) { | |
| 1696 return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE; | |
| 1697 } else { | |
| 1698 return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE; | |
| 1699 } | |
| 1700 } | |
| 1701 if (value->IsHeapObject()) { | |
| 1702 if (receiver->HasFastHoleyElements()) { | |
| 1703 return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT; | |
| 1704 } else { | |
| 1705 return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT; | |
| 1706 } | |
| 1707 } | |
| 1708 } else if (receiver->HasFastDoubleElements()) { | |
| 1709 if (!value->IsSmi() && !value->IsHeapNumber()) { | |
| 1710 if (receiver->HasFastHoleyElements()) { | |
| 1711 return STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT; | |
| 1712 } else { | |
| 1713 return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT; | |
| 1714 } | |
| 1715 } | |
| 1716 } | |
| 1717 return STORE_AND_GROW_NO_TRANSITION; | |
| 1718 } else { | |
| 1719 // Handle only in-bounds elements accesses. | |
| 1720 if (receiver->HasFastSmiElements()) { | |
| 1721 if (value->IsHeapNumber()) { | |
| 1722 if (receiver->HasFastHoleyElements()) { | |
| 1723 return STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE; | |
| 1724 } else { | |
| 1725 return STORE_TRANSITION_SMI_TO_DOUBLE; | |
| 1726 } | |
| 1727 } else if (value->IsHeapObject()) { | |
| 1728 if (receiver->HasFastHoleyElements()) { | |
| 1729 return STORE_TRANSITION_HOLEY_SMI_TO_OBJECT; | |
| 1730 } else { | |
| 1731 return STORE_TRANSITION_SMI_TO_OBJECT; | |
| 1732 } | |
| 1733 } | |
| 1734 } else if (receiver->HasFastDoubleElements()) { | |
| 1735 if (!value->IsSmi() && !value->IsHeapNumber()) { | |
| 1736 if (receiver->HasFastHoleyElements()) { | |
| 1737 return STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT; | |
| 1738 } else { | |
| 1739 return STORE_TRANSITION_DOUBLE_TO_OBJECT; | |
| 1740 } | |
| 1741 } | |
| 1742 } | |
| 1743 if (!FLAG_trace_external_array_abuse && | |
| 1744 receiver->map()->has_external_array_elements() && oob_access) { | |
| 1745 return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS; | |
| 1746 } | |
| 1747 Heap* heap = receiver->GetHeap(); | |
| 1748 if (receiver->elements()->map() == heap->fixed_cow_array_map()) { | |
| 1749 return STORE_NO_TRANSITION_HANDLE_COW; | |
| 1750 } else { | |
| 1751 return STANDARD_STORE; | |
| 1752 } | |
| 1753 } | |
| 1754 } | |
| 1755 | |
| 1756 | |
| 1757 MaybeHandle<Object> KeyedStoreIC::Store(Handle<Object> object, | |
| 1758 Handle<Object> key, | |
| 1759 Handle<Object> value) { | |
| 1760 // TODO(verwaest): Let SetProperty do the migration, since storing a property | |
| 1761 // might deprecate the current map again, if value does not fit. | |
| 1762 if (MigrateDeprecated(object)) { | |
| 1763 Handle<Object> result; | |
| 1764 ASSIGN_RETURN_ON_EXCEPTION( | |
| 1765 isolate(), | |
| 1766 result, | |
| 1767 Runtime::SetObjectProperty( | |
| 1768 isolate(), object, key, value, strict_mode()), | |
| 1769 Object); | |
| 1770 return result; | |
| 1771 } | |
| 1772 | |
| 1773 // Check for non-string values that can be converted into an | |
| 1774 // internalized string directly or is representable as a smi. | |
| 1775 key = TryConvertKey(key, isolate()); | |
| 1776 | |
| 1777 Handle<Object> store_handle; | |
| 1778 Handle<Code> stub = generic_stub(); | |
| 1779 | |
| 1780 if (key->IsInternalizedString()) { | |
| 1781 ASSIGN_RETURN_ON_EXCEPTION( | |
| 1782 isolate(), | |
| 1783 store_handle, | |
| 1784 StoreIC::Store(object, | |
| 1785 Handle<String>::cast(key), | |
| 1786 value, | |
| 1787 JSReceiver::MAY_BE_STORE_FROM_KEYED), | |
| 1788 Object); | |
| 1789 TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic"); | |
| 1790 set_target(*stub); | |
| 1791 return store_handle; | |
| 1792 } | |
| 1793 | |
| 1794 bool use_ic = | |
| 1795 FLAG_use_ic && !object->IsStringWrapper() && | |
| 1796 !object->IsAccessCheckNeeded() && !object->IsJSGlobalProxy() && | |
| 1797 !(object->IsJSObject() && JSObject::cast(*object)->map()->is_observed()); | |
| 1798 if (use_ic && !object->IsSmi()) { | |
| 1799 // Don't use ICs for maps of the objects in Array's prototype chain. We | |
| 1800 // expect to be able to trap element sets to objects with those maps in | |
| 1801 // the runtime to enable optimization of element hole access. | |
| 1802 Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object); | |
| 1803 if (heap_object->map()->IsMapInArrayPrototypeChain()) use_ic = false; | |
| 1804 } | |
| 1805 | |
| 1806 if (use_ic) { | |
| 1807 DCHECK(!object->IsAccessCheckNeeded()); | |
| 1808 | |
| 1809 if (object->IsJSObject()) { | |
| 1810 Handle<JSObject> receiver = Handle<JSObject>::cast(object); | |
| 1811 bool key_is_smi_like = !Object::ToSmi(isolate(), key).is_null(); | |
| 1812 if (receiver->elements()->map() == | |
| 1813 isolate()->heap()->sloppy_arguments_elements_map()) { | |
| 1814 if (strict_mode() == SLOPPY) { | |
| 1815 stub = sloppy_arguments_stub(); | |
| 1816 } | |
| 1817 } else if (key_is_smi_like && | |
| 1818 !(target().is_identical_to(sloppy_arguments_stub()))) { | |
| 1819 // We should go generic if receiver isn't a dictionary, but our | |
| 1820 // prototype chain does have dictionary elements. This ensures that | |
| 1821 // other non-dictionary receivers in the polymorphic case benefit | |
| 1822 // from fast path keyed stores. | |
| 1823 if (!(receiver->map()->DictionaryElementsInPrototypeChainOnly())) { | |
| 1824 KeyedAccessStoreMode store_mode = GetStoreMode(receiver, key, value); | |
| 1825 stub = StoreElementStub(receiver, store_mode); | |
| 1826 } | |
| 1827 } | |
| 1828 } | |
| 1829 } | |
| 1830 | |
| 1831 if (store_handle.is_null()) { | |
| 1832 ASSIGN_RETURN_ON_EXCEPTION( | |
| 1833 isolate(), | |
| 1834 store_handle, | |
| 1835 Runtime::SetObjectProperty( | |
| 1836 isolate(), object, key, value, strict_mode()), | |
| 1837 Object); | |
| 1838 } | |
| 1839 | |
| 1840 DCHECK(!is_target_set()); | |
| 1841 Code* generic = *generic_stub(); | |
| 1842 if (*stub == generic) { | |
| 1843 TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic"); | |
| 1844 } | |
| 1845 DCHECK(!stub.is_null()); | |
| 1846 set_target(*stub); | |
| 1847 TRACE_IC("StoreIC", key); | |
| 1848 | |
| 1849 return store_handle; | |
| 1850 } | |
| 1851 | |
| 1852 | |
| 1853 CallIC::State::State(ExtraICState extra_ic_state) | |
| 1854 : argc_(ArgcBits::decode(extra_ic_state)), | |
| 1855 call_type_(CallTypeBits::decode(extra_ic_state)) { | |
| 1856 } | |
| 1857 | |
| 1858 | |
| 1859 ExtraICState CallIC::State::GetExtraICState() const { | |
| 1860 ExtraICState extra_ic_state = | |
| 1861 ArgcBits::encode(argc_) | | |
| 1862 CallTypeBits::encode(call_type_); | |
| 1863 return extra_ic_state; | |
| 1864 } | |
| 1865 | |
| 1866 | |
| 1867 bool CallIC::DoCustomHandler(Handle<Object> receiver, | |
| 1868 Handle<Object> function, | |
| 1869 Handle<FixedArray> vector, | |
| 1870 Handle<Smi> slot, | |
| 1871 const State& state) { | |
| 1872 DCHECK(FLAG_use_ic && function->IsJSFunction()); | |
| 1873 | |
| 1874 // Are we the array function? | |
| 1875 Handle<JSFunction> array_function = Handle<JSFunction>( | |
| 1876 isolate()->native_context()->array_function()); | |
| 1877 if (array_function.is_identical_to(Handle<JSFunction>::cast(function))) { | |
| 1878 // Alter the slot. | |
| 1879 IC::State old_state = FeedbackToState(vector, slot); | |
| 1880 Object* feedback = vector->get(slot->value()); | |
| 1881 if (!feedback->IsAllocationSite()) { | |
| 1882 Handle<AllocationSite> new_site = | |
| 1883 isolate()->factory()->NewAllocationSite(); | |
| 1884 vector->set(slot->value(), *new_site); | |
| 1885 } | |
| 1886 | |
| 1887 CallIC_ArrayStub stub(isolate(), state); | |
| 1888 set_target(*stub.GetCode()); | |
| 1889 Handle<String> name; | |
| 1890 if (array_function->shared()->name()->IsString()) { | |
| 1891 name = Handle<String>(String::cast(array_function->shared()->name()), | |
| 1892 isolate()); | |
| 1893 } | |
| 1894 | |
| 1895 IC::State new_state = FeedbackToState(vector, slot); | |
| 1896 OnTypeFeedbackChanged(isolate(), address(), old_state, new_state, true); | |
| 1897 TRACE_VECTOR_IC("CallIC (custom handler)", name, old_state, new_state); | |
| 1898 return true; | |
| 1899 } | |
| 1900 return false; | |
| 1901 } | |
| 1902 | |
| 1903 | |
| 1904 void CallIC::PatchMegamorphic(Handle<Object> function, | |
| 1905 Handle<FixedArray> vector, Handle<Smi> slot) { | |
| 1906 State state(target()->extra_ic_state()); | |
| 1907 IC::State old_state = FeedbackToState(vector, slot); | |
| 1908 | |
| 1909 // We are going generic. | |
| 1910 vector->set(slot->value(), | |
| 1911 *TypeFeedbackInfo::MegamorphicSentinel(isolate()), | |
| 1912 SKIP_WRITE_BARRIER); | |
| 1913 | |
| 1914 CallICStub stub(isolate(), state); | |
| 1915 Handle<Code> code = stub.GetCode(); | |
| 1916 set_target(*code); | |
| 1917 | |
| 1918 Handle<Object> name = isolate()->factory()->empty_string(); | |
| 1919 if (function->IsJSFunction()) { | |
| 1920 Handle<JSFunction> js_function = Handle<JSFunction>::cast(function); | |
| 1921 name = handle(js_function->shared()->name(), isolate()); | |
| 1922 } | |
| 1923 | |
| 1924 IC::State new_state = FeedbackToState(vector, slot); | |
| 1925 OnTypeFeedbackChanged(isolate(), address(), old_state, new_state, true); | |
| 1926 TRACE_VECTOR_IC("CallIC", name, old_state, new_state); | |
| 1927 } | |
| 1928 | |
| 1929 | |
| 1930 void CallIC::HandleMiss(Handle<Object> receiver, | |
| 1931 Handle<Object> function, | |
| 1932 Handle<FixedArray> vector, | |
| 1933 Handle<Smi> slot) { | |
| 1934 State state(target()->extra_ic_state()); | |
| 1935 IC::State old_state = FeedbackToState(vector, slot); | |
| 1936 Handle<Object> name = isolate()->factory()->empty_string(); | |
| 1937 Object* feedback = vector->get(slot->value()); | |
| 1938 | |
| 1939 // Hand-coded MISS handling is easier if CallIC slots don't contain smis. | |
| 1940 DCHECK(!feedback->IsSmi()); | |
| 1941 | |
| 1942 if (feedback->IsJSFunction() || !function->IsJSFunction()) { | |
| 1943 // We are going generic. | |
| 1944 vector->set(slot->value(), | |
| 1945 *TypeFeedbackInfo::MegamorphicSentinel(isolate()), | |
| 1946 SKIP_WRITE_BARRIER); | |
| 1947 } else { | |
| 1948 // The feedback is either uninitialized or an allocation site. | |
| 1949 // It might be an allocation site because if we re-compile the full code | |
| 1950 // to add deoptimization support, we call with the default call-ic, and | |
| 1951 // merely need to patch the target to match the feedback. | |
| 1952 // TODO(mvstanton): the better approach is to dispense with patching | |
| 1953 // altogether, which is in progress. | |
| 1954 DCHECK(feedback == *TypeFeedbackInfo::UninitializedSentinel(isolate()) || | |
| 1955 feedback->IsAllocationSite()); | |
| 1956 | |
| 1957 // Do we want to install a custom handler? | |
| 1958 if (FLAG_use_ic && | |
| 1959 DoCustomHandler(receiver, function, vector, slot, state)) { | |
| 1960 return; | |
| 1961 } | |
| 1962 | |
| 1963 vector->set(slot->value(), *function); | |
| 1964 } | |
| 1965 | |
| 1966 if (function->IsJSFunction()) { | |
| 1967 Handle<JSFunction> js_function = Handle<JSFunction>::cast(function); | |
| 1968 name = handle(js_function->shared()->name(), isolate()); | |
| 1969 } | |
| 1970 | |
| 1971 IC::State new_state = FeedbackToState(vector, slot); | |
| 1972 OnTypeFeedbackChanged(isolate(), address(), old_state, new_state, true); | |
| 1973 TRACE_VECTOR_IC("CallIC", name, old_state, new_state); | |
| 1974 } | |
| 1975 | |
| 1976 | |
| 1977 #undef TRACE_IC | |
| 1978 | |
| 1979 | |
| 1980 // ---------------------------------------------------------------------------- | |
| 1981 // Static IC stub generators. | |
| 1982 // | |
| 1983 | |
| 1984 // Used from ic-<arch>.cc. | |
| 1985 RUNTIME_FUNCTION(CallIC_Miss) { | |
| 1986 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
| 1987 HandleScope scope(isolate); | |
| 1988 DCHECK(args.length() == 4); | |
| 1989 CallIC ic(isolate); | |
| 1990 Handle<Object> receiver = args.at<Object>(0); | |
| 1991 Handle<Object> function = args.at<Object>(1); | |
| 1992 Handle<FixedArray> vector = args.at<FixedArray>(2); | |
| 1993 Handle<Smi> slot = args.at<Smi>(3); | |
| 1994 ic.HandleMiss(receiver, function, vector, slot); | |
| 1995 return *function; | |
| 1996 } | |
| 1997 | |
| 1998 | |
| 1999 RUNTIME_FUNCTION(CallIC_Customization_Miss) { | |
| 2000 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
| 2001 HandleScope scope(isolate); | |
| 2002 DCHECK(args.length() == 4); | |
| 2003 // A miss on a custom call ic always results in going megamorphic. | |
| 2004 CallIC ic(isolate); | |
| 2005 Handle<Object> function = args.at<Object>(1); | |
| 2006 Handle<FixedArray> vector = args.at<FixedArray>(2); | |
| 2007 Handle<Smi> slot = args.at<Smi>(3); | |
| 2008 ic.PatchMegamorphic(function, vector, slot); | |
| 2009 return *function; | |
| 2010 } | |
| 2011 | |
| 2012 | |
| 2013 // Used from ic-<arch>.cc. | |
| 2014 RUNTIME_FUNCTION(LoadIC_Miss) { | |
| 2015 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
| 2016 HandleScope scope(isolate); | |
| 2017 DCHECK(args.length() == 2); | |
| 2018 LoadIC ic(IC::NO_EXTRA_FRAME, isolate); | |
| 2019 Handle<Object> receiver = args.at<Object>(0); | |
| 2020 Handle<Name> key = args.at<Name>(1); | |
| 2021 ic.UpdateState(receiver, key); | |
| 2022 Handle<Object> result; | |
| 2023 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key)); | |
| 2024 return *result; | |
| 2025 } | |
| 2026 | |
| 2027 | |
| 2028 // Used from ic-<arch>.cc | |
| 2029 RUNTIME_FUNCTION(KeyedLoadIC_Miss) { | |
| 2030 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
| 2031 HandleScope scope(isolate); | |
| 2032 DCHECK(args.length() == 2); | |
| 2033 KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate); | |
| 2034 Handle<Object> receiver = args.at<Object>(0); | |
| 2035 Handle<Object> key = args.at<Object>(1); | |
| 2036 ic.UpdateState(receiver, key); | |
| 2037 Handle<Object> result; | |
| 2038 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key)); | |
| 2039 return *result; | |
| 2040 } | |
| 2041 | |
| 2042 | |
| 2043 RUNTIME_FUNCTION(KeyedLoadIC_MissFromStubFailure) { | |
| 2044 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
| 2045 HandleScope scope(isolate); | |
| 2046 DCHECK(args.length() == 2); | |
| 2047 KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate); | |
| 2048 Handle<Object> receiver = args.at<Object>(0); | |
| 2049 Handle<Object> key = args.at<Object>(1); | |
| 2050 ic.UpdateState(receiver, key); | |
| 2051 Handle<Object> result; | |
| 2052 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key)); | |
| 2053 return *result; | |
| 2054 } | |
| 2055 | |
| 2056 | |
| 2057 // Used from ic-<arch>.cc. | |
| 2058 RUNTIME_FUNCTION(StoreIC_Miss) { | |
| 2059 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
| 2060 HandleScope scope(isolate); | |
| 2061 DCHECK(args.length() == 3); | |
| 2062 StoreIC ic(IC::NO_EXTRA_FRAME, isolate); | |
| 2063 Handle<Object> receiver = args.at<Object>(0); | |
| 2064 Handle<String> key = args.at<String>(1); | |
| 2065 ic.UpdateState(receiver, key); | |
| 2066 Handle<Object> result; | |
| 2067 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
| 2068 isolate, | |
| 2069 result, | |
| 2070 ic.Store(receiver, key, args.at<Object>(2))); | |
| 2071 return *result; | |
| 2072 } | |
| 2073 | |
| 2074 | |
| 2075 RUNTIME_FUNCTION(StoreIC_MissFromStubFailure) { | |
| 2076 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
| 2077 HandleScope scope(isolate); | |
| 2078 DCHECK(args.length() == 3); | |
| 2079 StoreIC ic(IC::EXTRA_CALL_FRAME, isolate); | |
| 2080 Handle<Object> receiver = args.at<Object>(0); | |
| 2081 Handle<String> key = args.at<String>(1); | |
| 2082 ic.UpdateState(receiver, key); | |
| 2083 Handle<Object> result; | |
| 2084 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
| 2085 isolate, | |
| 2086 result, | |
| 2087 ic.Store(receiver, key, args.at<Object>(2))); | |
| 2088 return *result; | |
| 2089 } | |
| 2090 | |
| 2091 | |
| 2092 // Extend storage is called in a store inline cache when | |
| 2093 // it is necessary to extend the properties array of a | |
| 2094 // JSObject. | |
| 2095 RUNTIME_FUNCTION(SharedStoreIC_ExtendStorage) { | |
| 2096 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
| 2097 HandleScope shs(isolate); | |
| 2098 DCHECK(args.length() == 3); | |
| 2099 | |
| 2100 // Convert the parameters | |
| 2101 Handle<JSObject> object = args.at<JSObject>(0); | |
| 2102 Handle<Map> transition = args.at<Map>(1); | |
| 2103 Handle<Object> value = args.at<Object>(2); | |
| 2104 | |
| 2105 // Check the object has run out out property space. | |
| 2106 DCHECK(object->HasFastProperties()); | |
| 2107 DCHECK(object->map()->unused_property_fields() == 0); | |
| 2108 | |
| 2109 JSObject::MigrateToNewProperty(object, transition, value); | |
| 2110 | |
| 2111 // Return the stored value. | |
| 2112 return *value; | |
| 2113 } | |
| 2114 | |
| 2115 | |
| 2116 // Used from ic-<arch>.cc. | |
| 2117 RUNTIME_FUNCTION(KeyedStoreIC_Miss) { | |
| 2118 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
| 2119 HandleScope scope(isolate); | |
| 2120 DCHECK(args.length() == 3); | |
| 2121 KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate); | |
| 2122 Handle<Object> receiver = args.at<Object>(0); | |
| 2123 Handle<Object> key = args.at<Object>(1); | |
| 2124 ic.UpdateState(receiver, key); | |
| 2125 Handle<Object> result; | |
| 2126 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
| 2127 isolate, | |
| 2128 result, | |
| 2129 ic.Store(receiver, key, args.at<Object>(2))); | |
| 2130 return *result; | |
| 2131 } | |
| 2132 | |
| 2133 | |
| 2134 RUNTIME_FUNCTION(KeyedStoreIC_MissFromStubFailure) { | |
| 2135 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
| 2136 HandleScope scope(isolate); | |
| 2137 DCHECK(args.length() == 3); | |
| 2138 KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate); | |
| 2139 Handle<Object> receiver = args.at<Object>(0); | |
| 2140 Handle<Object> key = args.at<Object>(1); | |
| 2141 ic.UpdateState(receiver, key); | |
| 2142 Handle<Object> result; | |
| 2143 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
| 2144 isolate, | |
| 2145 result, | |
| 2146 ic.Store(receiver, key, args.at<Object>(2))); | |
| 2147 return *result; | |
| 2148 } | |
| 2149 | |
| 2150 | |
| 2151 RUNTIME_FUNCTION(StoreIC_Slow) { | |
| 2152 HandleScope scope(isolate); | |
| 2153 DCHECK(args.length() == 3); | |
| 2154 StoreIC ic(IC::NO_EXTRA_FRAME, isolate); | |
| 2155 Handle<Object> object = args.at<Object>(0); | |
| 2156 Handle<Object> key = args.at<Object>(1); | |
| 2157 Handle<Object> value = args.at<Object>(2); | |
| 2158 StrictMode strict_mode = ic.strict_mode(); | |
| 2159 Handle<Object> result; | |
| 2160 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
| 2161 isolate, result, | |
| 2162 Runtime::SetObjectProperty( | |
| 2163 isolate, object, key, value, strict_mode)); | |
| 2164 return *result; | |
| 2165 } | |
| 2166 | |
| 2167 | |
| 2168 RUNTIME_FUNCTION(KeyedStoreIC_Slow) { | |
| 2169 HandleScope scope(isolate); | |
| 2170 DCHECK(args.length() == 3); | |
| 2171 KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate); | |
| 2172 Handle<Object> object = args.at<Object>(0); | |
| 2173 Handle<Object> key = args.at<Object>(1); | |
| 2174 Handle<Object> value = args.at<Object>(2); | |
| 2175 StrictMode strict_mode = ic.strict_mode(); | |
| 2176 Handle<Object> result; | |
| 2177 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
| 2178 isolate, result, | |
| 2179 Runtime::SetObjectProperty( | |
| 2180 isolate, object, key, value, strict_mode)); | |
| 2181 return *result; | |
| 2182 } | |
| 2183 | |
| 2184 | |
| 2185 RUNTIME_FUNCTION(ElementsTransitionAndStoreIC_Miss) { | |
| 2186 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
| 2187 HandleScope scope(isolate); | |
| 2188 DCHECK(args.length() == 4); | |
| 2189 KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate); | |
| 2190 Handle<Object> value = args.at<Object>(0); | |
| 2191 Handle<Map> map = args.at<Map>(1); | |
| 2192 Handle<Object> key = args.at<Object>(2); | |
| 2193 Handle<Object> object = args.at<Object>(3); | |
| 2194 StrictMode strict_mode = ic.strict_mode(); | |
| 2195 if (object->IsJSObject()) { | |
| 2196 JSObject::TransitionElementsKind(Handle<JSObject>::cast(object), | |
| 2197 map->elements_kind()); | |
| 2198 } | |
| 2199 Handle<Object> result; | |
| 2200 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
| 2201 isolate, result, | |
| 2202 Runtime::SetObjectProperty( | |
| 2203 isolate, object, key, value, strict_mode)); | |
| 2204 return *result; | |
| 2205 } | |
| 2206 | |
| 2207 | |
| 2208 BinaryOpIC::State::State(Isolate* isolate, ExtraICState extra_ic_state) | |
| 2209 : isolate_(isolate) { | |
| 2210 op_ = static_cast<Token::Value>( | |
| 2211 FIRST_TOKEN + OpField::decode(extra_ic_state)); | |
| 2212 mode_ = OverwriteModeField::decode(extra_ic_state); | |
| 2213 fixed_right_arg_ = Maybe<int>( | |
| 2214 HasFixedRightArgField::decode(extra_ic_state), | |
| 2215 1 << FixedRightArgValueField::decode(extra_ic_state)); | |
| 2216 left_kind_ = LeftKindField::decode(extra_ic_state); | |
| 2217 if (fixed_right_arg_.has_value) { | |
| 2218 right_kind_ = Smi::IsValid(fixed_right_arg_.value) ? SMI : INT32; | |
| 2219 } else { | |
| 2220 right_kind_ = RightKindField::decode(extra_ic_state); | |
| 2221 } | |
| 2222 result_kind_ = ResultKindField::decode(extra_ic_state); | |
| 2223 DCHECK_LE(FIRST_TOKEN, op_); | |
| 2224 DCHECK_LE(op_, LAST_TOKEN); | |
| 2225 } | |
| 2226 | |
| 2227 | |
| 2228 ExtraICState BinaryOpIC::State::GetExtraICState() const { | |
| 2229 ExtraICState extra_ic_state = | |
| 2230 OpField::encode(op_ - FIRST_TOKEN) | | |
| 2231 OverwriteModeField::encode(mode_) | | |
| 2232 LeftKindField::encode(left_kind_) | | |
| 2233 ResultKindField::encode(result_kind_) | | |
| 2234 HasFixedRightArgField::encode(fixed_right_arg_.has_value); | |
| 2235 if (fixed_right_arg_.has_value) { | |
| 2236 extra_ic_state = FixedRightArgValueField::update( | |
| 2237 extra_ic_state, WhichPowerOf2(fixed_right_arg_.value)); | |
| 2238 } else { | |
| 2239 extra_ic_state = RightKindField::update(extra_ic_state, right_kind_); | |
| 2240 } | |
| 2241 return extra_ic_state; | |
| 2242 } | |
| 2243 | |
| 2244 | |
| 2245 // static | |
| 2246 void BinaryOpIC::State::GenerateAheadOfTime( | |
| 2247 Isolate* isolate, void (*Generate)(Isolate*, const State&)) { | |
| 2248 // TODO(olivf) We should investigate why adding stubs to the snapshot is so | |
| 2249 // expensive at runtime. When solved we should be able to add most binops to | |
| 2250 // the snapshot instead of hand-picking them. | |
| 2251 // Generated list of commonly used stubs | |
| 2252 #define GENERATE(op, left_kind, right_kind, result_kind, mode) \ | |
| 2253 do { \ | |
| 2254 State state(isolate, op, mode); \ | |
| 2255 state.left_kind_ = left_kind; \ | |
| 2256 state.fixed_right_arg_.has_value = false; \ | |
| 2257 state.right_kind_ = right_kind; \ | |
| 2258 state.result_kind_ = result_kind; \ | |
| 2259 Generate(isolate, state); \ | |
| 2260 } while (false) | |
| 2261 GENERATE(Token::ADD, INT32, INT32, INT32, NO_OVERWRITE); | |
| 2262 GENERATE(Token::ADD, INT32, INT32, INT32, OVERWRITE_LEFT); | |
| 2263 GENERATE(Token::ADD, INT32, INT32, NUMBER, NO_OVERWRITE); | |
| 2264 GENERATE(Token::ADD, INT32, INT32, NUMBER, OVERWRITE_LEFT); | |
| 2265 GENERATE(Token::ADD, INT32, NUMBER, NUMBER, NO_OVERWRITE); | |
| 2266 GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_LEFT); | |
| 2267 GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT); | |
| 2268 GENERATE(Token::ADD, INT32, SMI, INT32, NO_OVERWRITE); | |
| 2269 GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_LEFT); | |
| 2270 GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_RIGHT); | |
| 2271 GENERATE(Token::ADD, NUMBER, INT32, NUMBER, NO_OVERWRITE); | |
| 2272 GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_LEFT); | |
| 2273 GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT); | |
| 2274 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, NO_OVERWRITE); | |
| 2275 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT); | |
| 2276 GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT); | |
| 2277 GENERATE(Token::ADD, NUMBER, SMI, NUMBER, NO_OVERWRITE); | |
| 2278 GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT); | |
| 2279 GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT); | |
| 2280 GENERATE(Token::ADD, SMI, INT32, INT32, NO_OVERWRITE); | |
| 2281 GENERATE(Token::ADD, SMI, INT32, INT32, OVERWRITE_LEFT); | |
| 2282 GENERATE(Token::ADD, SMI, INT32, NUMBER, NO_OVERWRITE); | |
| 2283 GENERATE(Token::ADD, SMI, NUMBER, NUMBER, NO_OVERWRITE); | |
| 2284 GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_LEFT); | |
| 2285 GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT); | |
| 2286 GENERATE(Token::ADD, SMI, SMI, INT32, OVERWRITE_LEFT); | |
| 2287 GENERATE(Token::ADD, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
| 2288 GENERATE(Token::BIT_AND, INT32, INT32, INT32, NO_OVERWRITE); | |
| 2289 GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_LEFT); | |
| 2290 GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_RIGHT); | |
| 2291 GENERATE(Token::BIT_AND, INT32, INT32, SMI, NO_OVERWRITE); | |
| 2292 GENERATE(Token::BIT_AND, INT32, INT32, SMI, OVERWRITE_RIGHT); | |
| 2293 GENERATE(Token::BIT_AND, INT32, SMI, INT32, NO_OVERWRITE); | |
| 2294 GENERATE(Token::BIT_AND, INT32, SMI, INT32, OVERWRITE_RIGHT); | |
| 2295 GENERATE(Token::BIT_AND, INT32, SMI, SMI, NO_OVERWRITE); | |
| 2296 GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_LEFT); | |
| 2297 GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_RIGHT); | |
| 2298 GENERATE(Token::BIT_AND, NUMBER, INT32, INT32, OVERWRITE_RIGHT); | |
| 2299 GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, NO_OVERWRITE); | |
| 2300 GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, OVERWRITE_RIGHT); | |
| 2301 GENERATE(Token::BIT_AND, SMI, INT32, INT32, NO_OVERWRITE); | |
| 2302 GENERATE(Token::BIT_AND, SMI, INT32, SMI, OVERWRITE_RIGHT); | |
| 2303 GENERATE(Token::BIT_AND, SMI, NUMBER, SMI, OVERWRITE_RIGHT); | |
| 2304 GENERATE(Token::BIT_AND, SMI, SMI, SMI, NO_OVERWRITE); | |
| 2305 GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_LEFT); | |
| 2306 GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
| 2307 GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_LEFT); | |
| 2308 GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_RIGHT); | |
| 2309 GENERATE(Token::BIT_OR, INT32, INT32, SMI, OVERWRITE_LEFT); | |
| 2310 GENERATE(Token::BIT_OR, INT32, SMI, INT32, NO_OVERWRITE); | |
| 2311 GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_LEFT); | |
| 2312 GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_RIGHT); | |
| 2313 GENERATE(Token::BIT_OR, INT32, SMI, SMI, NO_OVERWRITE); | |
| 2314 GENERATE(Token::BIT_OR, INT32, SMI, SMI, OVERWRITE_RIGHT); | |
| 2315 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, NO_OVERWRITE); | |
| 2316 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_LEFT); | |
| 2317 GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_RIGHT); | |
| 2318 GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, NO_OVERWRITE); | |
| 2319 GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, OVERWRITE_LEFT); | |
| 2320 GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_LEFT); | |
| 2321 GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_RIGHT); | |
| 2322 GENERATE(Token::BIT_OR, SMI, INT32, SMI, OVERWRITE_RIGHT); | |
| 2323 GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_LEFT); | |
| 2324 GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
| 2325 GENERATE(Token::BIT_XOR, INT32, INT32, INT32, NO_OVERWRITE); | |
| 2326 GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_LEFT); | |
| 2327 GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_RIGHT); | |
| 2328 GENERATE(Token::BIT_XOR, INT32, INT32, SMI, NO_OVERWRITE); | |
| 2329 GENERATE(Token::BIT_XOR, INT32, INT32, SMI, OVERWRITE_LEFT); | |
| 2330 GENERATE(Token::BIT_XOR, INT32, NUMBER, SMI, NO_OVERWRITE); | |
| 2331 GENERATE(Token::BIT_XOR, INT32, SMI, INT32, NO_OVERWRITE); | |
| 2332 GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_LEFT); | |
| 2333 GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_RIGHT); | |
| 2334 GENERATE(Token::BIT_XOR, NUMBER, INT32, INT32, NO_OVERWRITE); | |
| 2335 GENERATE(Token::BIT_XOR, NUMBER, SMI, INT32, NO_OVERWRITE); | |
| 2336 GENERATE(Token::BIT_XOR, NUMBER, SMI, SMI, NO_OVERWRITE); | |
| 2337 GENERATE(Token::BIT_XOR, SMI, INT32, INT32, NO_OVERWRITE); | |
| 2338 GENERATE(Token::BIT_XOR, SMI, INT32, INT32, OVERWRITE_LEFT); | |
| 2339 GENERATE(Token::BIT_XOR, SMI, INT32, SMI, OVERWRITE_LEFT); | |
| 2340 GENERATE(Token::BIT_XOR, SMI, SMI, SMI, NO_OVERWRITE); | |
| 2341 GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_LEFT); | |
| 2342 GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
| 2343 GENERATE(Token::DIV, INT32, INT32, INT32, NO_OVERWRITE); | |
| 2344 GENERATE(Token::DIV, INT32, INT32, NUMBER, NO_OVERWRITE); | |
| 2345 GENERATE(Token::DIV, INT32, NUMBER, NUMBER, NO_OVERWRITE); | |
| 2346 GENERATE(Token::DIV, INT32, NUMBER, NUMBER, OVERWRITE_LEFT); | |
| 2347 GENERATE(Token::DIV, INT32, SMI, INT32, NO_OVERWRITE); | |
| 2348 GENERATE(Token::DIV, INT32, SMI, NUMBER, NO_OVERWRITE); | |
| 2349 GENERATE(Token::DIV, NUMBER, INT32, NUMBER, NO_OVERWRITE); | |
| 2350 GENERATE(Token::DIV, NUMBER, INT32, NUMBER, OVERWRITE_LEFT); | |
| 2351 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, NO_OVERWRITE); | |
| 2352 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT); | |
| 2353 GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT); | |
| 2354 GENERATE(Token::DIV, NUMBER, SMI, NUMBER, NO_OVERWRITE); | |
| 2355 GENERATE(Token::DIV, NUMBER, SMI, NUMBER, OVERWRITE_LEFT); | |
| 2356 GENERATE(Token::DIV, SMI, INT32, INT32, NO_OVERWRITE); | |
| 2357 GENERATE(Token::DIV, SMI, INT32, NUMBER, NO_OVERWRITE); | |
| 2358 GENERATE(Token::DIV, SMI, INT32, NUMBER, OVERWRITE_LEFT); | |
| 2359 GENERATE(Token::DIV, SMI, NUMBER, NUMBER, NO_OVERWRITE); | |
| 2360 GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_LEFT); | |
| 2361 GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT); | |
| 2362 GENERATE(Token::DIV, SMI, SMI, NUMBER, NO_OVERWRITE); | |
| 2363 GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_LEFT); | |
| 2364 GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_RIGHT); | |
| 2365 GENERATE(Token::DIV, SMI, SMI, SMI, NO_OVERWRITE); | |
| 2366 GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_LEFT); | |
| 2367 GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
| 2368 GENERATE(Token::MOD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT); | |
| 2369 GENERATE(Token::MOD, SMI, SMI, SMI, NO_OVERWRITE); | |
| 2370 GENERATE(Token::MOD, SMI, SMI, SMI, OVERWRITE_LEFT); | |
| 2371 GENERATE(Token::MUL, INT32, INT32, INT32, NO_OVERWRITE); | |
| 2372 GENERATE(Token::MUL, INT32, INT32, NUMBER, NO_OVERWRITE); | |
| 2373 GENERATE(Token::MUL, INT32, NUMBER, NUMBER, NO_OVERWRITE); | |
| 2374 GENERATE(Token::MUL, INT32, NUMBER, NUMBER, OVERWRITE_LEFT); | |
| 2375 GENERATE(Token::MUL, INT32, SMI, INT32, NO_OVERWRITE); | |
| 2376 GENERATE(Token::MUL, INT32, SMI, INT32, OVERWRITE_LEFT); | |
| 2377 GENERATE(Token::MUL, INT32, SMI, NUMBER, NO_OVERWRITE); | |
| 2378 GENERATE(Token::MUL, NUMBER, INT32, NUMBER, NO_OVERWRITE); | |
| 2379 GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_LEFT); | |
| 2380 GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT); | |
| 2381 GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, NO_OVERWRITE); | |
| 2382 GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT); | |
| 2383 GENERATE(Token::MUL, NUMBER, SMI, NUMBER, NO_OVERWRITE); | |
| 2384 GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_LEFT); | |
| 2385 GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT); | |
| 2386 GENERATE(Token::MUL, SMI, INT32, INT32, NO_OVERWRITE); | |
| 2387 GENERATE(Token::MUL, SMI, INT32, INT32, OVERWRITE_LEFT); | |
| 2388 GENERATE(Token::MUL, SMI, INT32, NUMBER, NO_OVERWRITE); | |
| 2389 GENERATE(Token::MUL, SMI, NUMBER, NUMBER, NO_OVERWRITE); | |
| 2390 GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_LEFT); | |
| 2391 GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT); | |
| 2392 GENERATE(Token::MUL, SMI, SMI, INT32, NO_OVERWRITE); | |
| 2393 GENERATE(Token::MUL, SMI, SMI, NUMBER, NO_OVERWRITE); | |
| 2394 GENERATE(Token::MUL, SMI, SMI, NUMBER, OVERWRITE_LEFT); | |
| 2395 GENERATE(Token::MUL, SMI, SMI, SMI, NO_OVERWRITE); | |
| 2396 GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_LEFT); | |
| 2397 GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
| 2398 GENERATE(Token::SAR, INT32, SMI, INT32, OVERWRITE_RIGHT); | |
| 2399 GENERATE(Token::SAR, INT32, SMI, SMI, NO_OVERWRITE); | |
| 2400 GENERATE(Token::SAR, INT32, SMI, SMI, OVERWRITE_RIGHT); | |
| 2401 GENERATE(Token::SAR, NUMBER, SMI, SMI, NO_OVERWRITE); | |
| 2402 GENERATE(Token::SAR, NUMBER, SMI, SMI, OVERWRITE_RIGHT); | |
| 2403 GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_LEFT); | |
| 2404 GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
| 2405 GENERATE(Token::SHL, INT32, SMI, INT32, NO_OVERWRITE); | |
| 2406 GENERATE(Token::SHL, INT32, SMI, INT32, OVERWRITE_RIGHT); | |
| 2407 GENERATE(Token::SHL, INT32, SMI, SMI, NO_OVERWRITE); | |
| 2408 GENERATE(Token::SHL, INT32, SMI, SMI, OVERWRITE_RIGHT); | |
| 2409 GENERATE(Token::SHL, NUMBER, SMI, SMI, OVERWRITE_RIGHT); | |
| 2410 GENERATE(Token::SHL, SMI, SMI, INT32, NO_OVERWRITE); | |
| 2411 GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_LEFT); | |
| 2412 GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_RIGHT); | |
| 2413 GENERATE(Token::SHL, SMI, SMI, SMI, NO_OVERWRITE); | |
| 2414 GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_LEFT); | |
| 2415 GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
| 2416 GENERATE(Token::SHR, INT32, SMI, SMI, NO_OVERWRITE); | |
| 2417 GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_LEFT); | |
| 2418 GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_RIGHT); | |
| 2419 GENERATE(Token::SHR, NUMBER, SMI, SMI, NO_OVERWRITE); | |
| 2420 GENERATE(Token::SHR, NUMBER, SMI, SMI, OVERWRITE_LEFT); | |
| 2421 GENERATE(Token::SHR, NUMBER, SMI, INT32, OVERWRITE_RIGHT); | |
| 2422 GENERATE(Token::SHR, SMI, SMI, SMI, NO_OVERWRITE); | |
| 2423 GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_LEFT); | |
| 2424 GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
| 2425 GENERATE(Token::SUB, INT32, INT32, INT32, NO_OVERWRITE); | |
| 2426 GENERATE(Token::SUB, INT32, INT32, INT32, OVERWRITE_LEFT); | |
| 2427 GENERATE(Token::SUB, INT32, NUMBER, NUMBER, NO_OVERWRITE); | |
| 2428 GENERATE(Token::SUB, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT); | |
| 2429 GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_LEFT); | |
| 2430 GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_RIGHT); | |
| 2431 GENERATE(Token::SUB, NUMBER, INT32, NUMBER, NO_OVERWRITE); | |
| 2432 GENERATE(Token::SUB, NUMBER, INT32, NUMBER, OVERWRITE_LEFT); | |
| 2433 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, NO_OVERWRITE); | |
| 2434 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT); | |
| 2435 GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT); | |
| 2436 GENERATE(Token::SUB, NUMBER, SMI, NUMBER, NO_OVERWRITE); | |
| 2437 GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_LEFT); | |
| 2438 GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT); | |
| 2439 GENERATE(Token::SUB, SMI, INT32, INT32, NO_OVERWRITE); | |
| 2440 GENERATE(Token::SUB, SMI, NUMBER, NUMBER, NO_OVERWRITE); | |
| 2441 GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_LEFT); | |
| 2442 GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT); | |
| 2443 GENERATE(Token::SUB, SMI, SMI, SMI, NO_OVERWRITE); | |
| 2444 GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_LEFT); | |
| 2445 GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_RIGHT); | |
| 2446 #undef GENERATE | |
| 2447 #define GENERATE(op, left_kind, fixed_right_arg_value, result_kind, mode) \ | |
| 2448 do { \ | |
| 2449 State state(isolate, op, mode); \ | |
| 2450 state.left_kind_ = left_kind; \ | |
| 2451 state.fixed_right_arg_.has_value = true; \ | |
| 2452 state.fixed_right_arg_.value = fixed_right_arg_value; \ | |
| 2453 state.right_kind_ = SMI; \ | |
| 2454 state.result_kind_ = result_kind; \ | |
| 2455 Generate(isolate, state); \ | |
| 2456 } while (false) | |
| 2457 GENERATE(Token::MOD, SMI, 2, SMI, NO_OVERWRITE); | |
| 2458 GENERATE(Token::MOD, SMI, 4, SMI, NO_OVERWRITE); | |
| 2459 GENERATE(Token::MOD, SMI, 4, SMI, OVERWRITE_LEFT); | |
| 2460 GENERATE(Token::MOD, SMI, 8, SMI, NO_OVERWRITE); | |
| 2461 GENERATE(Token::MOD, SMI, 16, SMI, OVERWRITE_LEFT); | |
| 2462 GENERATE(Token::MOD, SMI, 32, SMI, NO_OVERWRITE); | |
| 2463 GENERATE(Token::MOD, SMI, 2048, SMI, NO_OVERWRITE); | |
| 2464 #undef GENERATE | |
| 2465 } | |
| 2466 | |
| 2467 | |
| 2468 Type* BinaryOpIC::State::GetResultType(Zone* zone) const { | |
| 2469 Kind result_kind = result_kind_; | |
| 2470 if (HasSideEffects()) { | |
| 2471 result_kind = NONE; | |
| 2472 } else if (result_kind == GENERIC && op_ == Token::ADD) { | |
| 2473 return Type::Union(Type::Number(zone), Type::String(zone), zone); | |
| 2474 } else if (result_kind == NUMBER && op_ == Token::SHR) { | |
| 2475 return Type::Unsigned32(zone); | |
| 2476 } | |
| 2477 DCHECK_NE(GENERIC, result_kind); | |
| 2478 return KindToType(result_kind, zone); | |
| 2479 } | |
| 2480 | |
| 2481 | |
| 2482 OStream& operator<<(OStream& os, const BinaryOpIC::State& s) { | |
| 2483 os << "(" << Token::Name(s.op_); | |
| 2484 if (s.mode_ == OVERWRITE_LEFT) | |
| 2485 os << "_ReuseLeft"; | |
| 2486 else if (s.mode_ == OVERWRITE_RIGHT) | |
| 2487 os << "_ReuseRight"; | |
| 2488 if (s.CouldCreateAllocationMementos()) os << "_CreateAllocationMementos"; | |
| 2489 os << ":" << BinaryOpIC::State::KindToString(s.left_kind_) << "*"; | |
| 2490 if (s.fixed_right_arg_.has_value) { | |
| 2491 os << s.fixed_right_arg_.value; | |
| 2492 } else { | |
| 2493 os << BinaryOpIC::State::KindToString(s.right_kind_); | |
| 2494 } | |
| 2495 return os << "->" << BinaryOpIC::State::KindToString(s.result_kind_) << ")"; | |
| 2496 } | |
| 2497 | |
| 2498 | |
| 2499 void BinaryOpIC::State::Update(Handle<Object> left, | |
| 2500 Handle<Object> right, | |
| 2501 Handle<Object> result) { | |
| 2502 ExtraICState old_extra_ic_state = GetExtraICState(); | |
| 2503 | |
| 2504 left_kind_ = UpdateKind(left, left_kind_); | |
| 2505 right_kind_ = UpdateKind(right, right_kind_); | |
| 2506 | |
| 2507 int32_t fixed_right_arg_value = 0; | |
| 2508 bool has_fixed_right_arg = | |
| 2509 op_ == Token::MOD && | |
| 2510 right->ToInt32(&fixed_right_arg_value) && | |
| 2511 fixed_right_arg_value > 0 && | |
| 2512 IsPowerOf2(fixed_right_arg_value) && | |
| 2513 FixedRightArgValueField::is_valid(WhichPowerOf2(fixed_right_arg_value)) && | |
| 2514 (left_kind_ == SMI || left_kind_ == INT32) && | |
| 2515 (result_kind_ == NONE || !fixed_right_arg_.has_value); | |
| 2516 fixed_right_arg_ = Maybe<int32_t>(has_fixed_right_arg, | |
| 2517 fixed_right_arg_value); | |
| 2518 | |
| 2519 result_kind_ = UpdateKind(result, result_kind_); | |
| 2520 | |
| 2521 if (!Token::IsTruncatingBinaryOp(op_)) { | |
| 2522 Kind input_kind = Max(left_kind_, right_kind_); | |
| 2523 if (result_kind_ < input_kind && input_kind <= NUMBER) { | |
| 2524 result_kind_ = input_kind; | |
| 2525 } | |
| 2526 } | |
| 2527 | |
| 2528 // We don't want to distinguish INT32 and NUMBER for string add (because | |
| 2529 // NumberToString can't make use of this anyway). | |
| 2530 if (left_kind_ == STRING && right_kind_ == INT32) { | |
| 2531 DCHECK_EQ(STRING, result_kind_); | |
| 2532 DCHECK_EQ(Token::ADD, op_); | |
| 2533 right_kind_ = NUMBER; | |
| 2534 } else if (right_kind_ == STRING && left_kind_ == INT32) { | |
| 2535 DCHECK_EQ(STRING, result_kind_); | |
| 2536 DCHECK_EQ(Token::ADD, op_); | |
| 2537 left_kind_ = NUMBER; | |
| 2538 } | |
| 2539 | |
| 2540 // Reset overwrite mode unless we can actually make use of it, or may be able | |
| 2541 // to make use of it at some point in the future. | |
| 2542 if ((mode_ == OVERWRITE_LEFT && left_kind_ > NUMBER) || | |
| 2543 (mode_ == OVERWRITE_RIGHT && right_kind_ > NUMBER) || | |
| 2544 result_kind_ > NUMBER) { | |
| 2545 mode_ = NO_OVERWRITE; | |
| 2546 } | |
| 2547 | |
| 2548 if (old_extra_ic_state == GetExtraICState()) { | |
| 2549 // Tagged operations can lead to non-truncating HChanges | |
| 2550 if (left->IsUndefined() || left->IsBoolean()) { | |
| 2551 left_kind_ = GENERIC; | |
| 2552 } else { | |
| 2553 DCHECK(right->IsUndefined() || right->IsBoolean()); | |
| 2554 right_kind_ = GENERIC; | |
| 2555 } | |
| 2556 } | |
| 2557 } | |
| 2558 | |
| 2559 | |
| 2560 BinaryOpIC::State::Kind BinaryOpIC::State::UpdateKind(Handle<Object> object, | |
| 2561 Kind kind) const { | |
| 2562 Kind new_kind = GENERIC; | |
| 2563 bool is_truncating = Token::IsTruncatingBinaryOp(op()); | |
| 2564 if (object->IsBoolean() && is_truncating) { | |
| 2565 // Booleans will be automatically truncated by HChange. | |
| 2566 new_kind = INT32; | |
| 2567 } else if (object->IsUndefined()) { | |
| 2568 // Undefined will be automatically truncated by HChange. | |
| 2569 new_kind = is_truncating ? INT32 : NUMBER; | |
| 2570 } else if (object->IsSmi()) { | |
| 2571 new_kind = SMI; | |
| 2572 } else if (object->IsHeapNumber()) { | |
| 2573 double value = Handle<HeapNumber>::cast(object)->value(); | |
| 2574 new_kind = IsInt32Double(value) ? INT32 : NUMBER; | |
| 2575 } else if (object->IsString() && op() == Token::ADD) { | |
| 2576 new_kind = STRING; | |
| 2577 } | |
| 2578 if (new_kind == INT32 && SmiValuesAre32Bits()) { | |
| 2579 new_kind = NUMBER; | |
| 2580 } | |
| 2581 if (kind != NONE && | |
| 2582 ((new_kind <= NUMBER && kind > NUMBER) || | |
| 2583 (new_kind > NUMBER && kind <= NUMBER))) { | |
| 2584 new_kind = GENERIC; | |
| 2585 } | |
| 2586 return Max(kind, new_kind); | |
| 2587 } | |
| 2588 | |
| 2589 | |
| 2590 // static | |
| 2591 const char* BinaryOpIC::State::KindToString(Kind kind) { | |
| 2592 switch (kind) { | |
| 2593 case NONE: return "None"; | |
| 2594 case SMI: return "Smi"; | |
| 2595 case INT32: return "Int32"; | |
| 2596 case NUMBER: return "Number"; | |
| 2597 case STRING: return "String"; | |
| 2598 case GENERIC: return "Generic"; | |
| 2599 } | |
| 2600 UNREACHABLE(); | |
| 2601 return NULL; | |
| 2602 } | |
| 2603 | |
| 2604 | |
| 2605 // static | |
| 2606 Type* BinaryOpIC::State::KindToType(Kind kind, Zone* zone) { | |
| 2607 switch (kind) { | |
| 2608 case NONE: return Type::None(zone); | |
| 2609 case SMI: return Type::SignedSmall(zone); | |
| 2610 case INT32: return Type::Signed32(zone); | |
| 2611 case NUMBER: return Type::Number(zone); | |
| 2612 case STRING: return Type::String(zone); | |
| 2613 case GENERIC: return Type::Any(zone); | |
| 2614 } | |
| 2615 UNREACHABLE(); | |
| 2616 return NULL; | |
| 2617 } | |
| 2618 | |
| 2619 | |
| 2620 MaybeHandle<Object> BinaryOpIC::Transition( | |
| 2621 Handle<AllocationSite> allocation_site, | |
| 2622 Handle<Object> left, | |
| 2623 Handle<Object> right) { | |
| 2624 State state(isolate(), target()->extra_ic_state()); | |
| 2625 | |
| 2626 // Compute the actual result using the builtin for the binary operation. | |
| 2627 Object* builtin = isolate()->js_builtins_object()->javascript_builtin( | |
| 2628 TokenToJSBuiltin(state.op())); | |
| 2629 Handle<JSFunction> function = handle(JSFunction::cast(builtin), isolate()); | |
| 2630 Handle<Object> result; | |
| 2631 ASSIGN_RETURN_ON_EXCEPTION( | |
| 2632 isolate(), | |
| 2633 result, | |
| 2634 Execution::Call(isolate(), function, left, 1, &right), | |
| 2635 Object); | |
| 2636 | |
| 2637 // Execution::Call can execute arbitrary JavaScript, hence potentially | |
| 2638 // update the state of this very IC, so we must update the stored state. | |
| 2639 UpdateTarget(); | |
| 2640 // Compute the new state. | |
| 2641 State old_state(isolate(), target()->extra_ic_state()); | |
| 2642 state.Update(left, right, result); | |
| 2643 | |
| 2644 // Check if we have a string operation here. | |
| 2645 Handle<Code> target; | |
| 2646 if (!allocation_site.is_null() || state.ShouldCreateAllocationMementos()) { | |
| 2647 // Setup the allocation site on-demand. | |
| 2648 if (allocation_site.is_null()) { | |
| 2649 allocation_site = isolate()->factory()->NewAllocationSite(); | |
| 2650 } | |
| 2651 | |
| 2652 // Install the stub with an allocation site. | |
| 2653 BinaryOpICWithAllocationSiteStub stub(isolate(), state); | |
| 2654 target = stub.GetCodeCopyFromTemplate(allocation_site); | |
| 2655 | |
| 2656 // Sanity check the trampoline stub. | |
| 2657 DCHECK_EQ(*allocation_site, target->FindFirstAllocationSite()); | |
| 2658 } else { | |
| 2659 // Install the generic stub. | |
| 2660 BinaryOpICStub stub(isolate(), state); | |
| 2661 target = stub.GetCode(); | |
| 2662 | |
| 2663 // Sanity check the generic stub. | |
| 2664 DCHECK_EQ(NULL, target->FindFirstAllocationSite()); | |
| 2665 } | |
| 2666 set_target(*target); | |
| 2667 | |
| 2668 if (FLAG_trace_ic) { | |
| 2669 OFStream os(stdout); | |
| 2670 os << "[BinaryOpIC" << old_state << " => " << state << " @ " | |
| 2671 << static_cast<void*>(*target) << " <- "; | |
| 2672 JavaScriptFrame::PrintTop(isolate(), stdout, false, true); | |
| 2673 if (!allocation_site.is_null()) { | |
| 2674 os << " using allocation site " << static_cast<void*>(*allocation_site); | |
| 2675 } | |
| 2676 os << "]" << endl; | |
| 2677 } | |
| 2678 | |
| 2679 // Patch the inlined smi code as necessary. | |
| 2680 if (!old_state.UseInlinedSmiCode() && state.UseInlinedSmiCode()) { | |
| 2681 PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK); | |
| 2682 } else if (old_state.UseInlinedSmiCode() && !state.UseInlinedSmiCode()) { | |
| 2683 PatchInlinedSmiCode(address(), DISABLE_INLINED_SMI_CHECK); | |
| 2684 } | |
| 2685 | |
| 2686 return result; | |
| 2687 } | |
| 2688 | |
| 2689 | |
| 2690 RUNTIME_FUNCTION(BinaryOpIC_Miss) { | |
| 2691 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
| 2692 HandleScope scope(isolate); | |
| 2693 DCHECK_EQ(2, args.length()); | |
| 2694 Handle<Object> left = args.at<Object>(BinaryOpICStub::kLeft); | |
| 2695 Handle<Object> right = args.at<Object>(BinaryOpICStub::kRight); | |
| 2696 BinaryOpIC ic(isolate); | |
| 2697 Handle<Object> result; | |
| 2698 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
| 2699 isolate, | |
| 2700 result, | |
| 2701 ic.Transition(Handle<AllocationSite>::null(), left, right)); | |
| 2702 return *result; | |
| 2703 } | |
| 2704 | |
| 2705 | |
| 2706 RUNTIME_FUNCTION(BinaryOpIC_MissWithAllocationSite) { | |
| 2707 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
| 2708 HandleScope scope(isolate); | |
| 2709 DCHECK_EQ(3, args.length()); | |
| 2710 Handle<AllocationSite> allocation_site = args.at<AllocationSite>( | |
| 2711 BinaryOpWithAllocationSiteStub::kAllocationSite); | |
| 2712 Handle<Object> left = args.at<Object>( | |
| 2713 BinaryOpWithAllocationSiteStub::kLeft); | |
| 2714 Handle<Object> right = args.at<Object>( | |
| 2715 BinaryOpWithAllocationSiteStub::kRight); | |
| 2716 BinaryOpIC ic(isolate); | |
| 2717 Handle<Object> result; | |
| 2718 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
| 2719 isolate, | |
| 2720 result, | |
| 2721 ic.Transition(allocation_site, left, right)); | |
| 2722 return *result; | |
| 2723 } | |
| 2724 | |
| 2725 | |
| 2726 Code* CompareIC::GetRawUninitialized(Isolate* isolate, Token::Value op) { | |
| 2727 ICCompareStub stub(isolate, op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED); | |
| 2728 Code* code = NULL; | |
| 2729 CHECK(stub.FindCodeInCache(&code)); | |
| 2730 return code; | |
| 2731 } | |
| 2732 | |
| 2733 | |
| 2734 Handle<Code> CompareIC::GetUninitialized(Isolate* isolate, Token::Value op) { | |
| 2735 ICCompareStub stub(isolate, op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED); | |
| 2736 return stub.GetCode(); | |
| 2737 } | |
| 2738 | |
| 2739 | |
| 2740 const char* CompareIC::GetStateName(State state) { | |
| 2741 switch (state) { | |
| 2742 case UNINITIALIZED: return "UNINITIALIZED"; | |
| 2743 case SMI: return "SMI"; | |
| 2744 case NUMBER: return "NUMBER"; | |
| 2745 case INTERNALIZED_STRING: return "INTERNALIZED_STRING"; | |
| 2746 case STRING: return "STRING"; | |
| 2747 case UNIQUE_NAME: return "UNIQUE_NAME"; | |
| 2748 case OBJECT: return "OBJECT"; | |
| 2749 case KNOWN_OBJECT: return "KNOWN_OBJECT"; | |
| 2750 case GENERIC: return "GENERIC"; | |
| 2751 } | |
| 2752 UNREACHABLE(); | |
| 2753 return NULL; | |
| 2754 } | |
| 2755 | |
| 2756 | |
| 2757 Type* CompareIC::StateToType( | |
| 2758 Zone* zone, | |
| 2759 CompareIC::State state, | |
| 2760 Handle<Map> map) { | |
| 2761 switch (state) { | |
| 2762 case CompareIC::UNINITIALIZED: return Type::None(zone); | |
| 2763 case CompareIC::SMI: return Type::SignedSmall(zone); | |
| 2764 case CompareIC::NUMBER: return Type::Number(zone); | |
| 2765 case CompareIC::STRING: return Type::String(zone); | |
| 2766 case CompareIC::INTERNALIZED_STRING: return Type::InternalizedString(zone); | |
| 2767 case CompareIC::UNIQUE_NAME: return Type::UniqueName(zone); | |
| 2768 case CompareIC::OBJECT: return Type::Receiver(zone); | |
| 2769 case CompareIC::KNOWN_OBJECT: | |
| 2770 return map.is_null() ? Type::Receiver(zone) : Type::Class(map, zone); | |
| 2771 case CompareIC::GENERIC: return Type::Any(zone); | |
| 2772 } | |
| 2773 UNREACHABLE(); | |
| 2774 return NULL; | |
| 2775 } | |
| 2776 | |
| 2777 | |
| 2778 void CompareIC::StubInfoToType(uint32_t stub_key, Type** left_type, | |
| 2779 Type** right_type, Type** overall_type, | |
| 2780 Handle<Map> map, Zone* zone) { | |
| 2781 State left_state, right_state, handler_state; | |
| 2782 ICCompareStub::DecodeKey(stub_key, &left_state, &right_state, &handler_state, | |
| 2783 NULL); | |
| 2784 *left_type = StateToType(zone, left_state); | |
| 2785 *right_type = StateToType(zone, right_state); | |
| 2786 *overall_type = StateToType(zone, handler_state, map); | |
| 2787 } | |
| 2788 | |
| 2789 | |
| 2790 CompareIC::State CompareIC::NewInputState(State old_state, | |
| 2791 Handle<Object> value) { | |
| 2792 switch (old_state) { | |
| 2793 case UNINITIALIZED: | |
| 2794 if (value->IsSmi()) return SMI; | |
| 2795 if (value->IsHeapNumber()) return NUMBER; | |
| 2796 if (value->IsInternalizedString()) return INTERNALIZED_STRING; | |
| 2797 if (value->IsString()) return STRING; | |
| 2798 if (value->IsSymbol()) return UNIQUE_NAME; | |
| 2799 if (value->IsJSObject()) return OBJECT; | |
| 2800 break; | |
| 2801 case SMI: | |
| 2802 if (value->IsSmi()) return SMI; | |
| 2803 if (value->IsHeapNumber()) return NUMBER; | |
| 2804 break; | |
| 2805 case NUMBER: | |
| 2806 if (value->IsNumber()) return NUMBER; | |
| 2807 break; | |
| 2808 case INTERNALIZED_STRING: | |
| 2809 if (value->IsInternalizedString()) return INTERNALIZED_STRING; | |
| 2810 if (value->IsString()) return STRING; | |
| 2811 if (value->IsSymbol()) return UNIQUE_NAME; | |
| 2812 break; | |
| 2813 case STRING: | |
| 2814 if (value->IsString()) return STRING; | |
| 2815 break; | |
| 2816 case UNIQUE_NAME: | |
| 2817 if (value->IsUniqueName()) return UNIQUE_NAME; | |
| 2818 break; | |
| 2819 case OBJECT: | |
| 2820 if (value->IsJSObject()) return OBJECT; | |
| 2821 break; | |
| 2822 case GENERIC: | |
| 2823 break; | |
| 2824 case KNOWN_OBJECT: | |
| 2825 UNREACHABLE(); | |
| 2826 break; | |
| 2827 } | |
| 2828 return GENERIC; | |
| 2829 } | |
| 2830 | |
| 2831 | |
| 2832 CompareIC::State CompareIC::TargetState(State old_state, | |
| 2833 State old_left, | |
| 2834 State old_right, | |
| 2835 bool has_inlined_smi_code, | |
| 2836 Handle<Object> x, | |
| 2837 Handle<Object> y) { | |
| 2838 switch (old_state) { | |
| 2839 case UNINITIALIZED: | |
| 2840 if (x->IsSmi() && y->IsSmi()) return SMI; | |
| 2841 if (x->IsNumber() && y->IsNumber()) return NUMBER; | |
| 2842 if (Token::IsOrderedRelationalCompareOp(op_)) { | |
| 2843 // Ordered comparisons treat undefined as NaN, so the | |
| 2844 // NUMBER stub will do the right thing. | |
| 2845 if ((x->IsNumber() && y->IsUndefined()) || | |
| 2846 (y->IsNumber() && x->IsUndefined())) { | |
| 2847 return NUMBER; | |
| 2848 } | |
| 2849 } | |
| 2850 if (x->IsInternalizedString() && y->IsInternalizedString()) { | |
| 2851 // We compare internalized strings as plain ones if we need to determine | |
| 2852 // the order in a non-equality compare. | |
| 2853 return Token::IsEqualityOp(op_) ? INTERNALIZED_STRING : STRING; | |
| 2854 } | |
| 2855 if (x->IsString() && y->IsString()) return STRING; | |
| 2856 if (!Token::IsEqualityOp(op_)) return GENERIC; | |
| 2857 if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME; | |
| 2858 if (x->IsJSObject() && y->IsJSObject()) { | |
| 2859 if (Handle<JSObject>::cast(x)->map() == | |
| 2860 Handle<JSObject>::cast(y)->map()) { | |
| 2861 return KNOWN_OBJECT; | |
| 2862 } else { | |
| 2863 return OBJECT; | |
| 2864 } | |
| 2865 } | |
| 2866 return GENERIC; | |
| 2867 case SMI: | |
| 2868 return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC; | |
| 2869 case INTERNALIZED_STRING: | |
| 2870 DCHECK(Token::IsEqualityOp(op_)); | |
| 2871 if (x->IsString() && y->IsString()) return STRING; | |
| 2872 if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME; | |
| 2873 return GENERIC; | |
| 2874 case NUMBER: | |
| 2875 // If the failure was due to one side changing from smi to heap number, | |
| 2876 // then keep the state (if other changed at the same time, we will get | |
| 2877 // a second miss and then go to generic). | |
| 2878 if (old_left == SMI && x->IsHeapNumber()) return NUMBER; | |
| 2879 if (old_right == SMI && y->IsHeapNumber()) return NUMBER; | |
| 2880 return GENERIC; | |
| 2881 case KNOWN_OBJECT: | |
| 2882 DCHECK(Token::IsEqualityOp(op_)); | |
| 2883 if (x->IsJSObject() && y->IsJSObject()) return OBJECT; | |
| 2884 return GENERIC; | |
| 2885 case STRING: | |
| 2886 case UNIQUE_NAME: | |
| 2887 case OBJECT: | |
| 2888 case GENERIC: | |
| 2889 return GENERIC; | |
| 2890 } | |
| 2891 UNREACHABLE(); | |
| 2892 return GENERIC; // Make the compiler happy. | |
| 2893 } | |
| 2894 | |
| 2895 | |
| 2896 Code* CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) { | |
| 2897 HandleScope scope(isolate()); | |
| 2898 State previous_left, previous_right, previous_state; | |
| 2899 ICCompareStub::DecodeKey(target()->stub_key(), &previous_left, | |
| 2900 &previous_right, &previous_state, NULL); | |
| 2901 State new_left = NewInputState(previous_left, x); | |
| 2902 State new_right = NewInputState(previous_right, y); | |
| 2903 State state = TargetState(previous_state, previous_left, previous_right, | |
| 2904 HasInlinedSmiCode(address()), x, y); | |
| 2905 ICCompareStub stub(isolate(), op_, new_left, new_right, state); | |
| 2906 if (state == KNOWN_OBJECT) { | |
| 2907 stub.set_known_map( | |
| 2908 Handle<Map>(Handle<JSObject>::cast(x)->map(), isolate())); | |
| 2909 } | |
| 2910 Handle<Code> new_target = stub.GetCode(); | |
| 2911 set_target(*new_target); | |
| 2912 | |
| 2913 if (FLAG_trace_ic) { | |
| 2914 PrintF("[CompareIC in "); | |
| 2915 JavaScriptFrame::PrintTop(isolate(), stdout, false, true); | |
| 2916 PrintF(" ((%s+%s=%s)->(%s+%s=%s))#%s @ %p]\n", | |
| 2917 GetStateName(previous_left), | |
| 2918 GetStateName(previous_right), | |
| 2919 GetStateName(previous_state), | |
| 2920 GetStateName(new_left), | |
| 2921 GetStateName(new_right), | |
| 2922 GetStateName(state), | |
| 2923 Token::Name(op_), | |
| 2924 static_cast<void*>(*stub.GetCode())); | |
| 2925 } | |
| 2926 | |
| 2927 // Activate inlined smi code. | |
| 2928 if (previous_state == UNINITIALIZED) { | |
| 2929 PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK); | |
| 2930 } | |
| 2931 | |
| 2932 return *new_target; | |
| 2933 } | |
| 2934 | |
| 2935 | |
| 2936 // Used from ICCompareStub::GenerateMiss in code-stubs-<arch>.cc. | |
| 2937 RUNTIME_FUNCTION(CompareIC_Miss) { | |
| 2938 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
| 2939 HandleScope scope(isolate); | |
| 2940 DCHECK(args.length() == 3); | |
| 2941 CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2))); | |
| 2942 return ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1)); | |
| 2943 } | |
| 2944 | |
| 2945 | |
| 2946 void CompareNilIC::Clear(Address address, | |
| 2947 Code* target, | |
| 2948 ConstantPoolArray* constant_pool) { | |
| 2949 if (IsCleared(target)) return; | |
| 2950 ExtraICState state = target->extra_ic_state(); | |
| 2951 | |
| 2952 CompareNilICStub stub(target->GetIsolate(), | |
| 2953 state, | |
| 2954 HydrogenCodeStub::UNINITIALIZED); | |
| 2955 stub.ClearState(); | |
| 2956 | |
| 2957 Code* code = NULL; | |
| 2958 CHECK(stub.FindCodeInCache(&code)); | |
| 2959 | |
| 2960 SetTargetAtAddress(address, code, constant_pool); | |
| 2961 } | |
| 2962 | |
| 2963 | |
| 2964 Handle<Object> CompareNilIC::DoCompareNilSlow(Isolate* isolate, | |
| 2965 NilValue nil, | |
| 2966 Handle<Object> object) { | |
| 2967 if (object->IsNull() || object->IsUndefined()) { | |
| 2968 return handle(Smi::FromInt(true), isolate); | |
| 2969 } | |
| 2970 return handle(Smi::FromInt(object->IsUndetectableObject()), isolate); | |
| 2971 } | |
| 2972 | |
| 2973 | |
| 2974 Handle<Object> CompareNilIC::CompareNil(Handle<Object> object) { | |
| 2975 ExtraICState extra_ic_state = target()->extra_ic_state(); | |
| 2976 | |
| 2977 CompareNilICStub stub(isolate(), extra_ic_state); | |
| 2978 | |
| 2979 // Extract the current supported types from the patched IC and calculate what | |
| 2980 // types must be supported as a result of the miss. | |
| 2981 bool already_monomorphic = stub.IsMonomorphic(); | |
| 2982 | |
| 2983 stub.UpdateStatus(object); | |
| 2984 | |
| 2985 NilValue nil = stub.GetNilValue(); | |
| 2986 | |
| 2987 // Find or create the specialized stub to support the new set of types. | |
| 2988 Handle<Code> code; | |
| 2989 if (stub.IsMonomorphic()) { | |
| 2990 Handle<Map> monomorphic_map(already_monomorphic && FirstTargetMap() != NULL | |
| 2991 ? FirstTargetMap() | |
| 2992 : HeapObject::cast(*object)->map()); | |
| 2993 code = PropertyICCompiler::ComputeCompareNil(monomorphic_map, &stub); | |
| 2994 } else { | |
| 2995 code = stub.GetCode(); | |
| 2996 } | |
| 2997 set_target(*code); | |
| 2998 return DoCompareNilSlow(isolate(), nil, object); | |
| 2999 } | |
| 3000 | |
| 3001 | |
| 3002 RUNTIME_FUNCTION(CompareNilIC_Miss) { | |
| 3003 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
| 3004 HandleScope scope(isolate); | |
| 3005 Handle<Object> object = args.at<Object>(0); | |
| 3006 CompareNilIC ic(isolate); | |
| 3007 return *ic.CompareNil(object); | |
| 3008 } | |
| 3009 | |
| 3010 | |
| 3011 RUNTIME_FUNCTION(Unreachable) { | |
| 3012 UNREACHABLE(); | |
| 3013 CHECK(false); | |
| 3014 return isolate->heap()->undefined_value(); | |
| 3015 } | |
| 3016 | |
| 3017 | |
| 3018 Builtins::JavaScript BinaryOpIC::TokenToJSBuiltin(Token::Value op) { | |
| 3019 switch (op) { | |
| 3020 default: | |
| 3021 UNREACHABLE(); | |
| 3022 case Token::ADD: | |
| 3023 return Builtins::ADD; | |
| 3024 break; | |
| 3025 case Token::SUB: | |
| 3026 return Builtins::SUB; | |
| 3027 break; | |
| 3028 case Token::MUL: | |
| 3029 return Builtins::MUL; | |
| 3030 break; | |
| 3031 case Token::DIV: | |
| 3032 return Builtins::DIV; | |
| 3033 break; | |
| 3034 case Token::MOD: | |
| 3035 return Builtins::MOD; | |
| 3036 break; | |
| 3037 case Token::BIT_OR: | |
| 3038 return Builtins::BIT_OR; | |
| 3039 break; | |
| 3040 case Token::BIT_AND: | |
| 3041 return Builtins::BIT_AND; | |
| 3042 break; | |
| 3043 case Token::BIT_XOR: | |
| 3044 return Builtins::BIT_XOR; | |
| 3045 break; | |
| 3046 case Token::SAR: | |
| 3047 return Builtins::SAR; | |
| 3048 break; | |
| 3049 case Token::SHR: | |
| 3050 return Builtins::SHR; | |
| 3051 break; | |
| 3052 case Token::SHL: | |
| 3053 return Builtins::SHL; | |
| 3054 break; | |
| 3055 } | |
| 3056 } | |
| 3057 | |
| 3058 | |
| 3059 Handle<Object> ToBooleanIC::ToBoolean(Handle<Object> object) { | |
| 3060 ToBooleanStub stub(isolate(), target()->extra_ic_state()); | |
| 3061 bool to_boolean_value = stub.UpdateStatus(object); | |
| 3062 Handle<Code> code = stub.GetCode(); | |
| 3063 set_target(*code); | |
| 3064 return handle(Smi::FromInt(to_boolean_value ? 1 : 0), isolate()); | |
| 3065 } | |
| 3066 | |
| 3067 | |
| 3068 RUNTIME_FUNCTION(ToBooleanIC_Miss) { | |
| 3069 TimerEventScope<TimerEventIcMiss> timer(isolate); | |
| 3070 DCHECK(args.length() == 1); | |
| 3071 HandleScope scope(isolate); | |
| 3072 Handle<Object> object = args.at<Object>(0); | |
| 3073 ToBooleanIC ic(isolate); | |
| 3074 return *ic.ToBoolean(object); | |
| 3075 } | |
| 3076 | |
| 3077 | |
| 3078 static const Address IC_utilities[] = { | |
| 3079 #define ADDR(name) FUNCTION_ADDR(name), | |
| 3080 IC_UTIL_LIST(ADDR) | |
| 3081 NULL | |
| 3082 #undef ADDR | |
| 3083 }; | |
| 3084 | |
| 3085 | |
| 3086 Address IC::AddressFromUtilityId(IC::UtilityId id) { | |
| 3087 return IC_utilities[id]; | |
| 3088 } | |
| 3089 | |
| 3090 | |
| 3091 } } // namespace v8::internal | |
| OLD | NEW |