OLD | NEW |
| (Empty) |
1 // Copyright 2005, Google Inc. | |
2 // All rights reserved. | |
3 // | |
4 // Redistribution and use in source and binary forms, with or without | |
5 // modification, are permitted provided that the following conditions are | |
6 // met: | |
7 // | |
8 // * Redistributions of source code must retain the above copyright | |
9 // notice, this list of conditions and the following disclaimer. | |
10 // * Redistributions in binary form must reproduce the above | |
11 // copyright notice, this list of conditions and the following disclaimer | |
12 // in the documentation and/or other materials provided with the | |
13 // distribution. | |
14 // * Neither the name of Google Inc. nor the names of its | |
15 // contributors may be used to endorse or promote products derived from | |
16 // this software without specific prior written permission. | |
17 // | |
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
29 // | |
30 // Author: wan@google.com (Zhanyong Wan) | |
31 // | |
32 // Tests for Google Test itself. This verifies that the basic constructs of | |
33 // Google Test work. | |
34 | |
35 #include "gtest/gtest.h" | |
36 #include <vector> | |
37 #include <ostream> | |
38 | |
39 // Verifies that the command line flag variables can be accessed | |
40 // in code once <gtest/gtest.h> has been #included. | |
41 // Do not move it after other #includes. | |
42 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) { | |
43 bool dummy = testing::GTEST_FLAG(also_run_disabled_tests) | |
44 || testing::GTEST_FLAG(break_on_failure) | |
45 || testing::GTEST_FLAG(catch_exceptions) | |
46 || testing::GTEST_FLAG(color) != "unknown" | |
47 || testing::GTEST_FLAG(filter) != "unknown" | |
48 || testing::GTEST_FLAG(list_tests) | |
49 || testing::GTEST_FLAG(output) != "unknown" | |
50 || testing::GTEST_FLAG(print_time) | |
51 || testing::GTEST_FLAG(random_seed) | |
52 || testing::GTEST_FLAG(repeat) > 0 | |
53 || testing::GTEST_FLAG(show_internal_stack_frames) | |
54 || testing::GTEST_FLAG(shuffle) | |
55 || testing::GTEST_FLAG(stack_trace_depth) > 0 | |
56 || testing::GTEST_FLAG(stream_result_to) != "unknown" | |
57 || testing::GTEST_FLAG(throw_on_failure); | |
58 EXPECT_TRUE(dummy || !dummy); // Suppresses warning that dummy is unused. | |
59 } | |
60 | |
61 #include "gtest/gtest-spi.h" | |
62 | |
63 // Indicates that this translation unit is part of Google Test's | |
64 // implementation. It must come before gtest-internal-inl.h is | |
65 // included, or there will be a compiler error. This trick is to | |
66 // prevent a user from accidentally including gtest-internal-inl.h in | |
67 // his code. | |
68 #define GTEST_IMPLEMENTATION_ 1 | |
69 #include "src/gtest-internal-inl.h" | |
70 #undef GTEST_IMPLEMENTATION_ | |
71 | |
72 #include <limits.h> // For INT_MAX. | |
73 #include <stdlib.h> | |
74 #include <time.h> | |
75 | |
76 #include <map> | |
77 | |
78 namespace testing { | |
79 namespace internal { | |
80 | |
81 // Provides access to otherwise private parts of the TestEventListeners class | |
82 // that are needed to test it. | |
83 class TestEventListenersAccessor { | |
84 public: | |
85 static TestEventListener* GetRepeater(TestEventListeners* listeners) { | |
86 return listeners->repeater(); | |
87 } | |
88 | |
89 static void SetDefaultResultPrinter(TestEventListeners* listeners, | |
90 TestEventListener* listener) { | |
91 listeners->SetDefaultResultPrinter(listener); | |
92 } | |
93 static void SetDefaultXmlGenerator(TestEventListeners* listeners, | |
94 TestEventListener* listener) { | |
95 listeners->SetDefaultXmlGenerator(listener); | |
96 } | |
97 | |
98 static bool EventForwardingEnabled(const TestEventListeners& listeners) { | |
99 return listeners.EventForwardingEnabled(); | |
100 } | |
101 | |
102 static void SuppressEventForwarding(TestEventListeners* listeners) { | |
103 listeners->SuppressEventForwarding(); | |
104 } | |
105 }; | |
106 | |
107 } // namespace internal | |
108 } // namespace testing | |
109 | |
110 using testing::AssertionFailure; | |
111 using testing::AssertionResult; | |
112 using testing::AssertionSuccess; | |
113 using testing::DoubleLE; | |
114 using testing::EmptyTestEventListener; | |
115 using testing::FloatLE; | |
116 using testing::GTEST_FLAG(also_run_disabled_tests); | |
117 using testing::GTEST_FLAG(break_on_failure); | |
118 using testing::GTEST_FLAG(catch_exceptions); | |
119 using testing::GTEST_FLAG(color); | |
120 using testing::GTEST_FLAG(death_test_use_fork); | |
121 using testing::GTEST_FLAG(filter); | |
122 using testing::GTEST_FLAG(list_tests); | |
123 using testing::GTEST_FLAG(output); | |
124 using testing::GTEST_FLAG(print_time); | |
125 using testing::GTEST_FLAG(random_seed); | |
126 using testing::GTEST_FLAG(repeat); | |
127 using testing::GTEST_FLAG(show_internal_stack_frames); | |
128 using testing::GTEST_FLAG(shuffle); | |
129 using testing::GTEST_FLAG(stack_trace_depth); | |
130 using testing::GTEST_FLAG(stream_result_to); | |
131 using testing::GTEST_FLAG(throw_on_failure); | |
132 using testing::IsNotSubstring; | |
133 using testing::IsSubstring; | |
134 using testing::Message; | |
135 using testing::ScopedFakeTestPartResultReporter; | |
136 using testing::StaticAssertTypeEq; | |
137 using testing::Test; | |
138 using testing::TestCase; | |
139 using testing::TestEventListeners; | |
140 using testing::TestPartResult; | |
141 using testing::TestPartResultArray; | |
142 using testing::TestProperty; | |
143 using testing::TestResult; | |
144 using testing::UnitTest; | |
145 using testing::kMaxStackTraceDepth; | |
146 using testing::internal::AddReference; | |
147 using testing::internal::AlwaysFalse; | |
148 using testing::internal::AlwaysTrue; | |
149 using testing::internal::AppendUserMessage; | |
150 using testing::internal::ArrayAwareFind; | |
151 using testing::internal::ArrayEq; | |
152 using testing::internal::CodePointToUtf8; | |
153 using testing::internal::CompileAssertTypesEqual; | |
154 using testing::internal::CopyArray; | |
155 using testing::internal::CountIf; | |
156 using testing::internal::EqFailure; | |
157 using testing::internal::FloatingPoint; | |
158 using testing::internal::ForEach; | |
159 using testing::internal::FormatTimeInMillisAsSeconds; | |
160 using testing::internal::GTestFlagSaver; | |
161 using testing::internal::GetCurrentOsStackTraceExceptTop; | |
162 using testing::internal::GetElementOr; | |
163 using testing::internal::GetNextRandomSeed; | |
164 using testing::internal::GetRandomSeedFromFlag; | |
165 using testing::internal::GetTestTypeId; | |
166 using testing::internal::GetTypeId; | |
167 using testing::internal::GetUnitTestImpl; | |
168 using testing::internal::ImplicitlyConvertible; | |
169 using testing::internal::Int32; | |
170 using testing::internal::Int32FromEnvOrDie; | |
171 using testing::internal::IsAProtocolMessage; | |
172 using testing::internal::IsContainer; | |
173 using testing::internal::IsContainerTest; | |
174 using testing::internal::IsNotContainer; | |
175 using testing::internal::NativeArray; | |
176 using testing::internal::ParseInt32Flag; | |
177 using testing::internal::RemoveConst; | |
178 using testing::internal::RemoveReference; | |
179 using testing::internal::ShouldRunTestOnShard; | |
180 using testing::internal::ShouldShard; | |
181 using testing::internal::ShouldUseColor; | |
182 using testing::internal::Shuffle; | |
183 using testing::internal::ShuffleRange; | |
184 using testing::internal::SkipPrefix; | |
185 using testing::internal::StreamableToString; | |
186 using testing::internal::String; | |
187 using testing::internal::TestEventListenersAccessor; | |
188 using testing::internal::TestResultAccessor; | |
189 using testing::internal::UInt32; | |
190 using testing::internal::WideStringToUtf8; | |
191 using testing::internal::kCopy; | |
192 using testing::internal::kMaxRandomSeed; | |
193 using testing::internal::kReference; | |
194 using testing::internal::kTestTypeIdInGoogleTest; | |
195 using testing::internal::scoped_ptr; | |
196 | |
197 #if GTEST_HAS_STREAM_REDIRECTION | |
198 using testing::internal::CaptureStdout; | |
199 using testing::internal::GetCapturedStdout; | |
200 #endif | |
201 | |
202 #if GTEST_IS_THREADSAFE | |
203 using testing::internal::ThreadWithParam; | |
204 #endif | |
205 | |
206 class TestingVector : public std::vector<int> { | |
207 }; | |
208 | |
209 ::std::ostream& operator<<(::std::ostream& os, | |
210 const TestingVector& vector) { | |
211 os << "{ "; | |
212 for (size_t i = 0; i < vector.size(); i++) { | |
213 os << vector[i] << " "; | |
214 } | |
215 os << "}"; | |
216 return os; | |
217 } | |
218 | |
219 // This line tests that we can define tests in an unnamed namespace. | |
220 namespace { | |
221 | |
222 TEST(GetRandomSeedFromFlagTest, HandlesZero) { | |
223 const int seed = GetRandomSeedFromFlag(0); | |
224 EXPECT_LE(1, seed); | |
225 EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed)); | |
226 } | |
227 | |
228 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) { | |
229 EXPECT_EQ(1, GetRandomSeedFromFlag(1)); | |
230 EXPECT_EQ(2, GetRandomSeedFromFlag(2)); | |
231 EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1)); | |
232 EXPECT_EQ(static_cast<int>(kMaxRandomSeed), | |
233 GetRandomSeedFromFlag(kMaxRandomSeed)); | |
234 } | |
235 | |
236 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) { | |
237 const int seed1 = GetRandomSeedFromFlag(-1); | |
238 EXPECT_LE(1, seed1); | |
239 EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed)); | |
240 | |
241 const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1); | |
242 EXPECT_LE(1, seed2); | |
243 EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed)); | |
244 } | |
245 | |
246 TEST(GetNextRandomSeedTest, WorksForValidInput) { | |
247 EXPECT_EQ(2, GetNextRandomSeed(1)); | |
248 EXPECT_EQ(3, GetNextRandomSeed(2)); | |
249 EXPECT_EQ(static_cast<int>(kMaxRandomSeed), | |
250 GetNextRandomSeed(kMaxRandomSeed - 1)); | |
251 EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed)); | |
252 | |
253 // We deliberately don't test GetNextRandomSeed() with invalid | |
254 // inputs, as that requires death tests, which are expensive. This | |
255 // is fine as GetNextRandomSeed() is internal and has a | |
256 // straightforward definition. | |
257 } | |
258 | |
259 static void ClearCurrentTestPartResults() { | |
260 TestResultAccessor::ClearTestPartResults( | |
261 GetUnitTestImpl()->current_test_result()); | |
262 } | |
263 | |
264 // Tests GetTypeId. | |
265 | |
266 TEST(GetTypeIdTest, ReturnsSameValueForSameType) { | |
267 EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>()); | |
268 EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>()); | |
269 } | |
270 | |
271 class SubClassOfTest : public Test {}; | |
272 class AnotherSubClassOfTest : public Test {}; | |
273 | |
274 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) { | |
275 EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>()); | |
276 EXPECT_NE(GetTypeId<int>(), GetTypeId<char>()); | |
277 EXPECT_NE(GetTypeId<int>(), GetTestTypeId()); | |
278 EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId()); | |
279 EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId()); | |
280 EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>()); | |
281 } | |
282 | |
283 // Verifies that GetTestTypeId() returns the same value, no matter it | |
284 // is called from inside Google Test or outside of it. | |
285 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) { | |
286 EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId()); | |
287 } | |
288 | |
289 // Tests FormatTimeInMillisAsSeconds(). | |
290 | |
291 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) { | |
292 EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0)); | |
293 } | |
294 | |
295 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) { | |
296 EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3)); | |
297 EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10)); | |
298 EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200)); | |
299 EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200)); | |
300 EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000)); | |
301 } | |
302 | |
303 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) { | |
304 EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3)); | |
305 EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10)); | |
306 EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200)); | |
307 EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200)); | |
308 EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000)); | |
309 } | |
310 | |
311 #if GTEST_CAN_COMPARE_NULL | |
312 | |
313 # ifdef __BORLANDC__ | |
314 // Silences warnings: "Condition is always true", "Unreachable code" | |
315 # pragma option push -w-ccc -w-rch | |
316 # endif | |
317 | |
318 // Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null | |
319 // pointer literal. | |
320 TEST(NullLiteralTest, IsTrueForNullLiterals) { | |
321 EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL)); | |
322 EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0)); | |
323 EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U)); | |
324 EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L)); | |
325 | |
326 # ifndef __BORLANDC__ | |
327 | |
328 // Some compilers may fail to detect some null pointer literals; | |
329 // as long as users of the framework don't use such literals, this | |
330 // is harmless. | |
331 EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(1 - 1)); | |
332 | |
333 # endif | |
334 } | |
335 | |
336 // Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null | |
337 // pointer literal. | |
338 TEST(NullLiteralTest, IsFalseForNonNullLiterals) { | |
339 EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1)); | |
340 EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0)); | |
341 EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a')); | |
342 EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL))); | |
343 } | |
344 | |
345 # ifdef __BORLANDC__ | |
346 // Restores warnings after previous "#pragma option push" suppressed them. | |
347 # pragma option pop | |
348 # endif | |
349 | |
350 #endif // GTEST_CAN_COMPARE_NULL | |
351 // | |
352 // Tests CodePointToUtf8(). | |
353 | |
354 // Tests that the NUL character L'\0' is encoded correctly. | |
355 TEST(CodePointToUtf8Test, CanEncodeNul) { | |
356 char buffer[32]; | |
357 EXPECT_STREQ("", CodePointToUtf8(L'\0', buffer)); | |
358 } | |
359 | |
360 // Tests that ASCII characters are encoded correctly. | |
361 TEST(CodePointToUtf8Test, CanEncodeAscii) { | |
362 char buffer[32]; | |
363 EXPECT_STREQ("a", CodePointToUtf8(L'a', buffer)); | |
364 EXPECT_STREQ("Z", CodePointToUtf8(L'Z', buffer)); | |
365 EXPECT_STREQ("&", CodePointToUtf8(L'&', buffer)); | |
366 EXPECT_STREQ("\x7F", CodePointToUtf8(L'\x7F', buffer)); | |
367 } | |
368 | |
369 // Tests that Unicode code-points that have 8 to 11 bits are encoded | |
370 // as 110xxxxx 10xxxxxx. | |
371 TEST(CodePointToUtf8Test, CanEncode8To11Bits) { | |
372 char buffer[32]; | |
373 // 000 1101 0011 => 110-00011 10-010011 | |
374 EXPECT_STREQ("\xC3\x93", CodePointToUtf8(L'\xD3', buffer)); | |
375 | |
376 // 101 0111 0110 => 110-10101 10-110110 | |
377 // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints | |
378 // in wide strings and wide chars. In order to accomodate them, we have to | |
379 // introduce such character constants as integers. | |
380 EXPECT_STREQ("\xD5\xB6", | |
381 CodePointToUtf8(static_cast<wchar_t>(0x576), buffer)); | |
382 } | |
383 | |
384 // Tests that Unicode code-points that have 12 to 16 bits are encoded | |
385 // as 1110xxxx 10xxxxxx 10xxxxxx. | |
386 TEST(CodePointToUtf8Test, CanEncode12To16Bits) { | |
387 char buffer[32]; | |
388 // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011 | |
389 EXPECT_STREQ("\xE0\xA3\x93", | |
390 CodePointToUtf8(static_cast<wchar_t>(0x8D3), buffer)); | |
391 | |
392 // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101 | |
393 EXPECT_STREQ("\xEC\x9D\x8D", | |
394 CodePointToUtf8(static_cast<wchar_t>(0xC74D), buffer)); | |
395 } | |
396 | |
397 #if !GTEST_WIDE_STRING_USES_UTF16_ | |
398 // Tests in this group require a wchar_t to hold > 16 bits, and thus | |
399 // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is | |
400 // 16-bit wide. This code may not compile on those systems. | |
401 | |
402 // Tests that Unicode code-points that have 17 to 21 bits are encoded | |
403 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. | |
404 TEST(CodePointToUtf8Test, CanEncode17To21Bits) { | |
405 char buffer[32]; | |
406 // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011 | |
407 EXPECT_STREQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3', buffer)); | |
408 | |
409 // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000 | |
410 EXPECT_STREQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400', buffer)); | |
411 | |
412 // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100 | |
413 EXPECT_STREQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634', buffer)); | |
414 } | |
415 | |
416 // Tests that encoding an invalid code-point generates the expected result. | |
417 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) { | |
418 char buffer[32]; | |
419 EXPECT_STREQ("(Invalid Unicode 0x1234ABCD)", | |
420 CodePointToUtf8(L'\x1234ABCD', buffer)); | |
421 } | |
422 | |
423 #endif // !GTEST_WIDE_STRING_USES_UTF16_ | |
424 | |
425 // Tests WideStringToUtf8(). | |
426 | |
427 // Tests that the NUL character L'\0' is encoded correctly. | |
428 TEST(WideStringToUtf8Test, CanEncodeNul) { | |
429 EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str()); | |
430 EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str()); | |
431 } | |
432 | |
433 // Tests that ASCII strings are encoded correctly. | |
434 TEST(WideStringToUtf8Test, CanEncodeAscii) { | |
435 EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str()); | |
436 EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str()); | |
437 EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str()); | |
438 EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str()); | |
439 } | |
440 | |
441 // Tests that Unicode code-points that have 8 to 11 bits are encoded | |
442 // as 110xxxxx 10xxxxxx. | |
443 TEST(WideStringToUtf8Test, CanEncode8To11Bits) { | |
444 // 000 1101 0011 => 110-00011 10-010011 | |
445 EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str()); | |
446 EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str()); | |
447 | |
448 // 101 0111 0110 => 110-10101 10-110110 | |
449 const wchar_t s[] = { 0x576, '\0' }; | |
450 EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str()); | |
451 EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str()); | |
452 } | |
453 | |
454 // Tests that Unicode code-points that have 12 to 16 bits are encoded | |
455 // as 1110xxxx 10xxxxxx 10xxxxxx. | |
456 TEST(WideStringToUtf8Test, CanEncode12To16Bits) { | |
457 // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011 | |
458 const wchar_t s1[] = { 0x8D3, '\0' }; | |
459 EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str()); | |
460 EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str()); | |
461 | |
462 // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101 | |
463 const wchar_t s2[] = { 0xC74D, '\0' }; | |
464 EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str()); | |
465 EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str()); | |
466 } | |
467 | |
468 // Tests that the conversion stops when the function encounters \0 character. | |
469 TEST(WideStringToUtf8Test, StopsOnNulCharacter) { | |
470 EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str()); | |
471 } | |
472 | |
473 // Tests that the conversion stops when the function reaches the limit | |
474 // specified by the 'length' parameter. | |
475 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) { | |
476 EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str()); | |
477 } | |
478 | |
479 #if !GTEST_WIDE_STRING_USES_UTF16_ | |
480 // Tests that Unicode code-points that have 17 to 21 bits are encoded | |
481 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile | |
482 // on the systems using UTF-16 encoding. | |
483 TEST(WideStringToUtf8Test, CanEncode17To21Bits) { | |
484 // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011 | |
485 EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str()); | |
486 EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str()); | |
487 | |
488 // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100 | |
489 EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str()); | |
490 EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str()); | |
491 } | |
492 | |
493 // Tests that encoding an invalid code-point generates the expected result. | |
494 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) { | |
495 EXPECT_STREQ("(Invalid Unicode 0xABCDFF)", | |
496 WideStringToUtf8(L"\xABCDFF", -1).c_str()); | |
497 } | |
498 #else // !GTEST_WIDE_STRING_USES_UTF16_ | |
499 // Tests that surrogate pairs are encoded correctly on the systems using | |
500 // UTF-16 encoding in the wide strings. | |
501 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) { | |
502 const wchar_t s[] = { 0xD801, 0xDC00, '\0' }; | |
503 EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str()); | |
504 } | |
505 | |
506 // Tests that encoding an invalid UTF-16 surrogate pair | |
507 // generates the expected result. | |
508 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) { | |
509 // Leading surrogate is at the end of the string. | |
510 const wchar_t s1[] = { 0xD800, '\0' }; | |
511 EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str()); | |
512 // Leading surrogate is not followed by the trailing surrogate. | |
513 const wchar_t s2[] = { 0xD800, 'M', '\0' }; | |
514 EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str()); | |
515 // Trailing surrogate appearas without a leading surrogate. | |
516 const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' }; | |
517 EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str()); | |
518 } | |
519 #endif // !GTEST_WIDE_STRING_USES_UTF16_ | |
520 | |
521 // Tests that codepoint concatenation works correctly. | |
522 #if !GTEST_WIDE_STRING_USES_UTF16_ | |
523 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) { | |
524 const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'}; | |
525 EXPECT_STREQ( | |
526 "\xF4\x88\x98\xB4" | |
527 "\xEC\x9D\x8D" | |
528 "\n" | |
529 "\xD5\xB6" | |
530 "\xE0\xA3\x93" | |
531 "\xF4\x88\x98\xB4", | |
532 WideStringToUtf8(s, -1).c_str()); | |
533 } | |
534 #else | |
535 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) { | |
536 const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'}; | |
537 EXPECT_STREQ( | |
538 "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93", | |
539 WideStringToUtf8(s, -1).c_str()); | |
540 } | |
541 #endif // !GTEST_WIDE_STRING_USES_UTF16_ | |
542 | |
543 // Tests the Random class. | |
544 | |
545 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) { | |
546 testing::internal::Random random(42); | |
547 EXPECT_DEATH_IF_SUPPORTED( | |
548 random.Generate(0), | |
549 "Cannot generate a number in the range \\[0, 0\\)"); | |
550 EXPECT_DEATH_IF_SUPPORTED( | |
551 random.Generate(testing::internal::Random::kMaxRange + 1), | |
552 "Generation of a number in \\[0, 2147483649\\) was requested, " | |
553 "but this can only generate numbers in \\[0, 2147483648\\)"); | |
554 } | |
555 | |
556 TEST(RandomTest, GeneratesNumbersWithinRange) { | |
557 const UInt32 kRange = 10000; | |
558 testing::internal::Random random(12345); | |
559 for (int i = 0; i < 10; i++) { | |
560 EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i; | |
561 } | |
562 | |
563 testing::internal::Random random2(testing::internal::Random::kMaxRange); | |
564 for (int i = 0; i < 10; i++) { | |
565 EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i; | |
566 } | |
567 } | |
568 | |
569 TEST(RandomTest, RepeatsWhenReseeded) { | |
570 const int kSeed = 123; | |
571 const int kArraySize = 10; | |
572 const UInt32 kRange = 10000; | |
573 UInt32 values[kArraySize]; | |
574 | |
575 testing::internal::Random random(kSeed); | |
576 for (int i = 0; i < kArraySize; i++) { | |
577 values[i] = random.Generate(kRange); | |
578 } | |
579 | |
580 random.Reseed(kSeed); | |
581 for (int i = 0; i < kArraySize; i++) { | |
582 EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i; | |
583 } | |
584 } | |
585 | |
586 // Tests STL container utilities. | |
587 | |
588 // Tests CountIf(). | |
589 | |
590 static bool IsPositive(int n) { return n > 0; } | |
591 | |
592 TEST(ContainerUtilityTest, CountIf) { | |
593 std::vector<int> v; | |
594 EXPECT_EQ(0, CountIf(v, IsPositive)); // Works for an empty container. | |
595 | |
596 v.push_back(-1); | |
597 v.push_back(0); | |
598 EXPECT_EQ(0, CountIf(v, IsPositive)); // Works when no value satisfies. | |
599 | |
600 v.push_back(2); | |
601 v.push_back(-10); | |
602 v.push_back(10); | |
603 EXPECT_EQ(2, CountIf(v, IsPositive)); | |
604 } | |
605 | |
606 // Tests ForEach(). | |
607 | |
608 static int g_sum = 0; | |
609 static void Accumulate(int n) { g_sum += n; } | |
610 | |
611 TEST(ContainerUtilityTest, ForEach) { | |
612 std::vector<int> v; | |
613 g_sum = 0; | |
614 ForEach(v, Accumulate); | |
615 EXPECT_EQ(0, g_sum); // Works for an empty container; | |
616 | |
617 g_sum = 0; | |
618 v.push_back(1); | |
619 ForEach(v, Accumulate); | |
620 EXPECT_EQ(1, g_sum); // Works for a container with one element. | |
621 | |
622 g_sum = 0; | |
623 v.push_back(20); | |
624 v.push_back(300); | |
625 ForEach(v, Accumulate); | |
626 EXPECT_EQ(321, g_sum); | |
627 } | |
628 | |
629 // Tests GetElementOr(). | |
630 TEST(ContainerUtilityTest, GetElementOr) { | |
631 std::vector<char> a; | |
632 EXPECT_EQ('x', GetElementOr(a, 0, 'x')); | |
633 | |
634 a.push_back('a'); | |
635 a.push_back('b'); | |
636 EXPECT_EQ('a', GetElementOr(a, 0, 'x')); | |
637 EXPECT_EQ('b', GetElementOr(a, 1, 'x')); | |
638 EXPECT_EQ('x', GetElementOr(a, -2, 'x')); | |
639 EXPECT_EQ('x', GetElementOr(a, 2, 'x')); | |
640 } | |
641 | |
642 TEST(ContainerUtilityDeathTest, ShuffleRange) { | |
643 std::vector<int> a; | |
644 a.push_back(0); | |
645 a.push_back(1); | |
646 a.push_back(2); | |
647 testing::internal::Random random(1); | |
648 | |
649 EXPECT_DEATH_IF_SUPPORTED( | |
650 ShuffleRange(&random, -1, 1, &a), | |
651 "Invalid shuffle range start -1: must be in range \\[0, 3\\]"); | |
652 EXPECT_DEATH_IF_SUPPORTED( | |
653 ShuffleRange(&random, 4, 4, &a), | |
654 "Invalid shuffle range start 4: must be in range \\[0, 3\\]"); | |
655 EXPECT_DEATH_IF_SUPPORTED( | |
656 ShuffleRange(&random, 3, 2, &a), | |
657 "Invalid shuffle range finish 2: must be in range \\[3, 3\\]"); | |
658 EXPECT_DEATH_IF_SUPPORTED( | |
659 ShuffleRange(&random, 3, 4, &a), | |
660 "Invalid shuffle range finish 4: must be in range \\[3, 3\\]"); | |
661 } | |
662 | |
663 class VectorShuffleTest : public Test { | |
664 protected: | |
665 static const int kVectorSize = 20; | |
666 | |
667 VectorShuffleTest() : random_(1) { | |
668 for (int i = 0; i < kVectorSize; i++) { | |
669 vector_.push_back(i); | |
670 } | |
671 } | |
672 | |
673 static bool VectorIsCorrupt(const TestingVector& vector) { | |
674 if (kVectorSize != static_cast<int>(vector.size())) { | |
675 return true; | |
676 } | |
677 | |
678 bool found_in_vector[kVectorSize] = { false }; | |
679 for (size_t i = 0; i < vector.size(); i++) { | |
680 const int e = vector[i]; | |
681 if (e < 0 || e >= kVectorSize || found_in_vector[e]) { | |
682 return true; | |
683 } | |
684 found_in_vector[e] = true; | |
685 } | |
686 | |
687 // Vector size is correct, elements' range is correct, no | |
688 // duplicate elements. Therefore no corruption has occurred. | |
689 return false; | |
690 } | |
691 | |
692 static bool VectorIsNotCorrupt(const TestingVector& vector) { | |
693 return !VectorIsCorrupt(vector); | |
694 } | |
695 | |
696 static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) { | |
697 for (int i = begin; i < end; i++) { | |
698 if (i != vector[i]) { | |
699 return true; | |
700 } | |
701 } | |
702 return false; | |
703 } | |
704 | |
705 static bool RangeIsUnshuffled( | |
706 const TestingVector& vector, int begin, int end) { | |
707 return !RangeIsShuffled(vector, begin, end); | |
708 } | |
709 | |
710 static bool VectorIsShuffled(const TestingVector& vector) { | |
711 return RangeIsShuffled(vector, 0, static_cast<int>(vector.size())); | |
712 } | |
713 | |
714 static bool VectorIsUnshuffled(const TestingVector& vector) { | |
715 return !VectorIsShuffled(vector); | |
716 } | |
717 | |
718 testing::internal::Random random_; | |
719 TestingVector vector_; | |
720 }; // class VectorShuffleTest | |
721 | |
722 const int VectorShuffleTest::kVectorSize; | |
723 | |
724 TEST_F(VectorShuffleTest, HandlesEmptyRange) { | |
725 // Tests an empty range at the beginning... | |
726 ShuffleRange(&random_, 0, 0, &vector_); | |
727 ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
728 ASSERT_PRED1(VectorIsUnshuffled, vector_); | |
729 | |
730 // ...in the middle... | |
731 ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_); | |
732 ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
733 ASSERT_PRED1(VectorIsUnshuffled, vector_); | |
734 | |
735 // ...at the end... | |
736 ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_); | |
737 ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
738 ASSERT_PRED1(VectorIsUnshuffled, vector_); | |
739 | |
740 // ...and past the end. | |
741 ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_); | |
742 ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
743 ASSERT_PRED1(VectorIsUnshuffled, vector_); | |
744 } | |
745 | |
746 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) { | |
747 // Tests a size one range at the beginning... | |
748 ShuffleRange(&random_, 0, 1, &vector_); | |
749 ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
750 ASSERT_PRED1(VectorIsUnshuffled, vector_); | |
751 | |
752 // ...in the middle... | |
753 ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_); | |
754 ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
755 ASSERT_PRED1(VectorIsUnshuffled, vector_); | |
756 | |
757 // ...and at the end. | |
758 ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_); | |
759 ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
760 ASSERT_PRED1(VectorIsUnshuffled, vector_); | |
761 } | |
762 | |
763 // Because we use our own random number generator and a fixed seed, | |
764 // we can guarantee that the following "random" tests will succeed. | |
765 | |
766 TEST_F(VectorShuffleTest, ShufflesEntireVector) { | |
767 Shuffle(&random_, &vector_); | |
768 ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
769 EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_; | |
770 | |
771 // Tests the first and last elements in particular to ensure that | |
772 // there are no off-by-one problems in our shuffle algorithm. | |
773 EXPECT_NE(0, vector_[0]); | |
774 EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]); | |
775 } | |
776 | |
777 TEST_F(VectorShuffleTest, ShufflesStartOfVector) { | |
778 const int kRangeSize = kVectorSize/2; | |
779 | |
780 ShuffleRange(&random_, 0, kRangeSize, &vector_); | |
781 | |
782 ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
783 EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize); | |
784 EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize); | |
785 } | |
786 | |
787 TEST_F(VectorShuffleTest, ShufflesEndOfVector) { | |
788 const int kRangeSize = kVectorSize / 2; | |
789 ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_); | |
790 | |
791 ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
792 EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize); | |
793 EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize); | |
794 } | |
795 | |
796 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) { | |
797 int kRangeSize = kVectorSize/3; | |
798 ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_); | |
799 | |
800 ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
801 EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize); | |
802 EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize); | |
803 EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize); | |
804 } | |
805 | |
806 TEST_F(VectorShuffleTest, ShufflesRepeatably) { | |
807 TestingVector vector2; | |
808 for (int i = 0; i < kVectorSize; i++) { | |
809 vector2.push_back(i); | |
810 } | |
811 | |
812 random_.Reseed(1234); | |
813 Shuffle(&random_, &vector_); | |
814 random_.Reseed(1234); | |
815 Shuffle(&random_, &vector2); | |
816 | |
817 ASSERT_PRED1(VectorIsNotCorrupt, vector_); | |
818 ASSERT_PRED1(VectorIsNotCorrupt, vector2); | |
819 | |
820 for (int i = 0; i < kVectorSize; i++) { | |
821 EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i; | |
822 } | |
823 } | |
824 | |
825 // Tests the size of the AssertHelper class. | |
826 | |
827 TEST(AssertHelperTest, AssertHelperIsSmall) { | |
828 // To avoid breaking clients that use lots of assertions in one | |
829 // function, we cannot grow the size of AssertHelper. | |
830 EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*)); | |
831 } | |
832 | |
833 // Tests the String class. | |
834 | |
835 // Tests String's constructors. | |
836 TEST(StringTest, Constructors) { | |
837 // Default ctor. | |
838 String s1; | |
839 // We aren't using EXPECT_EQ(NULL, s1.c_str()) because comparing | |
840 // pointers with NULL isn't supported on all platforms. | |
841 EXPECT_EQ(0U, s1.length()); | |
842 EXPECT_TRUE(NULL == s1.c_str()); | |
843 | |
844 // Implicitly constructs from a C-string. | |
845 String s2 = "Hi"; | |
846 EXPECT_EQ(2U, s2.length()); | |
847 EXPECT_STREQ("Hi", s2.c_str()); | |
848 | |
849 // Constructs from a C-string and a length. | |
850 String s3("hello", 3); | |
851 EXPECT_EQ(3U, s3.length()); | |
852 EXPECT_STREQ("hel", s3.c_str()); | |
853 | |
854 // The empty String should be created when String is constructed with | |
855 // a NULL pointer and length 0. | |
856 EXPECT_EQ(0U, String(NULL, 0).length()); | |
857 EXPECT_FALSE(String(NULL, 0).c_str() == NULL); | |
858 | |
859 // Constructs a String that contains '\0'. | |
860 String s4("a\0bcd", 4); | |
861 EXPECT_EQ(4U, s4.length()); | |
862 EXPECT_EQ('a', s4.c_str()[0]); | |
863 EXPECT_EQ('\0', s4.c_str()[1]); | |
864 EXPECT_EQ('b', s4.c_str()[2]); | |
865 EXPECT_EQ('c', s4.c_str()[3]); | |
866 | |
867 // Copy ctor where the source is NULL. | |
868 const String null_str; | |
869 String s5 = null_str; | |
870 EXPECT_TRUE(s5.c_str() == NULL); | |
871 | |
872 // Copy ctor where the source isn't NULL. | |
873 String s6 = s3; | |
874 EXPECT_EQ(3U, s6.length()); | |
875 EXPECT_STREQ("hel", s6.c_str()); | |
876 | |
877 // Copy ctor where the source contains '\0'. | |
878 String s7 = s4; | |
879 EXPECT_EQ(4U, s7.length()); | |
880 EXPECT_EQ('a', s7.c_str()[0]); | |
881 EXPECT_EQ('\0', s7.c_str()[1]); | |
882 EXPECT_EQ('b', s7.c_str()[2]); | |
883 EXPECT_EQ('c', s7.c_str()[3]); | |
884 } | |
885 | |
886 TEST(StringTest, ConvertsFromStdString) { | |
887 // An empty std::string. | |
888 const std::string src1(""); | |
889 const String dest1 = src1; | |
890 EXPECT_EQ(0U, dest1.length()); | |
891 EXPECT_STREQ("", dest1.c_str()); | |
892 | |
893 // A normal std::string. | |
894 const std::string src2("Hi"); | |
895 const String dest2 = src2; | |
896 EXPECT_EQ(2U, dest2.length()); | |
897 EXPECT_STREQ("Hi", dest2.c_str()); | |
898 | |
899 // An std::string with an embedded NUL character. | |
900 const char src3[] = "a\0b"; | |
901 const String dest3 = std::string(src3, sizeof(src3)); | |
902 EXPECT_EQ(sizeof(src3), dest3.length()); | |
903 EXPECT_EQ('a', dest3.c_str()[0]); | |
904 EXPECT_EQ('\0', dest3.c_str()[1]); | |
905 EXPECT_EQ('b', dest3.c_str()[2]); | |
906 } | |
907 | |
908 TEST(StringTest, ConvertsToStdString) { | |
909 // An empty String. | |
910 const String src1(""); | |
911 const std::string dest1 = src1; | |
912 EXPECT_EQ("", dest1); | |
913 | |
914 // A normal String. | |
915 const String src2("Hi"); | |
916 const std::string dest2 = src2; | |
917 EXPECT_EQ("Hi", dest2); | |
918 | |
919 // A String containing a '\0'. | |
920 const String src3("x\0y", 3); | |
921 const std::string dest3 = src3; | |
922 EXPECT_EQ(std::string("x\0y", 3), dest3); | |
923 } | |
924 | |
925 #if GTEST_HAS_GLOBAL_STRING | |
926 | |
927 TEST(StringTest, ConvertsFromGlobalString) { | |
928 // An empty ::string. | |
929 const ::string src1(""); | |
930 const String dest1 = src1; | |
931 EXPECT_EQ(0U, dest1.length()); | |
932 EXPECT_STREQ("", dest1.c_str()); | |
933 | |
934 // A normal ::string. | |
935 const ::string src2("Hi"); | |
936 const String dest2 = src2; | |
937 EXPECT_EQ(2U, dest2.length()); | |
938 EXPECT_STREQ("Hi", dest2.c_str()); | |
939 | |
940 // An ::string with an embedded NUL character. | |
941 const char src3[] = "x\0y"; | |
942 const String dest3 = ::string(src3, sizeof(src3)); | |
943 EXPECT_EQ(sizeof(src3), dest3.length()); | |
944 EXPECT_EQ('x', dest3.c_str()[0]); | |
945 EXPECT_EQ('\0', dest3.c_str()[1]); | |
946 EXPECT_EQ('y', dest3.c_str()[2]); | |
947 } | |
948 | |
949 TEST(StringTest, ConvertsToGlobalString) { | |
950 // An empty String. | |
951 const String src1(""); | |
952 const ::string dest1 = src1; | |
953 EXPECT_EQ("", dest1); | |
954 | |
955 // A normal String. | |
956 const String src2("Hi"); | |
957 const ::string dest2 = src2; | |
958 EXPECT_EQ("Hi", dest2); | |
959 | |
960 const String src3("x\0y", 3); | |
961 const ::string dest3 = src3; | |
962 EXPECT_EQ(::string("x\0y", 3), dest3); | |
963 } | |
964 | |
965 #endif // GTEST_HAS_GLOBAL_STRING | |
966 | |
967 // Tests String::ShowCStringQuoted(). | |
968 TEST(StringTest, ShowCStringQuoted) { | |
969 EXPECT_STREQ("(null)", | |
970 String::ShowCStringQuoted(NULL).c_str()); | |
971 EXPECT_STREQ("\"\"", | |
972 String::ShowCStringQuoted("").c_str()); | |
973 EXPECT_STREQ("\"foo\"", | |
974 String::ShowCStringQuoted("foo").c_str()); | |
975 } | |
976 | |
977 // Tests String::empty(). | |
978 TEST(StringTest, Empty) { | |
979 EXPECT_TRUE(String("").empty()); | |
980 EXPECT_FALSE(String().empty()); | |
981 EXPECT_FALSE(String(NULL).empty()); | |
982 EXPECT_FALSE(String("a").empty()); | |
983 EXPECT_FALSE(String("\0", 1).empty()); | |
984 } | |
985 | |
986 // Tests String::Compare(). | |
987 TEST(StringTest, Compare) { | |
988 // NULL vs NULL. | |
989 EXPECT_EQ(0, String().Compare(String())); | |
990 | |
991 // NULL vs non-NULL. | |
992 EXPECT_EQ(-1, String().Compare(String(""))); | |
993 | |
994 // Non-NULL vs NULL. | |
995 EXPECT_EQ(1, String("").Compare(String())); | |
996 | |
997 // The following covers non-NULL vs non-NULL. | |
998 | |
999 // "" vs "". | |
1000 EXPECT_EQ(0, String("").Compare(String(""))); | |
1001 | |
1002 // "" vs non-"". | |
1003 EXPECT_EQ(-1, String("").Compare(String("\0", 1))); | |
1004 EXPECT_EQ(-1, String("").Compare(" ")); | |
1005 | |
1006 // Non-"" vs "". | |
1007 EXPECT_EQ(1, String("a").Compare(String(""))); | |
1008 | |
1009 // The following covers non-"" vs non-"". | |
1010 | |
1011 // Same length and equal. | |
1012 EXPECT_EQ(0, String("a").Compare(String("a"))); | |
1013 | |
1014 // Same length and different. | |
1015 EXPECT_EQ(-1, String("a\0b", 3).Compare(String("a\0c", 3))); | |
1016 EXPECT_EQ(1, String("b").Compare(String("a"))); | |
1017 | |
1018 // Different lengths. | |
1019 EXPECT_EQ(-1, String("a").Compare(String("ab"))); | |
1020 EXPECT_EQ(-1, String("a").Compare(String("a\0", 2))); | |
1021 EXPECT_EQ(1, String("abc").Compare(String("aacd"))); | |
1022 } | |
1023 | |
1024 // Tests String::operator==(). | |
1025 TEST(StringTest, Equals) { | |
1026 const String null(NULL); | |
1027 EXPECT_TRUE(null == NULL); // NOLINT | |
1028 EXPECT_FALSE(null == ""); // NOLINT | |
1029 EXPECT_FALSE(null == "bar"); // NOLINT | |
1030 | |
1031 const String empty(""); | |
1032 EXPECT_FALSE(empty == NULL); // NOLINT | |
1033 EXPECT_TRUE(empty == ""); // NOLINT | |
1034 EXPECT_FALSE(empty == "bar"); // NOLINT | |
1035 | |
1036 const String foo("foo"); | |
1037 EXPECT_FALSE(foo == NULL); // NOLINT | |
1038 EXPECT_FALSE(foo == ""); // NOLINT | |
1039 EXPECT_FALSE(foo == "bar"); // NOLINT | |
1040 EXPECT_TRUE(foo == "foo"); // NOLINT | |
1041 | |
1042 const String bar("x\0y", 3); | |
1043 EXPECT_FALSE(bar == "x"); | |
1044 } | |
1045 | |
1046 // Tests String::operator!=(). | |
1047 TEST(StringTest, NotEquals) { | |
1048 const String null(NULL); | |
1049 EXPECT_FALSE(null != NULL); // NOLINT | |
1050 EXPECT_TRUE(null != ""); // NOLINT | |
1051 EXPECT_TRUE(null != "bar"); // NOLINT | |
1052 | |
1053 const String empty(""); | |
1054 EXPECT_TRUE(empty != NULL); // NOLINT | |
1055 EXPECT_FALSE(empty != ""); // NOLINT | |
1056 EXPECT_TRUE(empty != "bar"); // NOLINT | |
1057 | |
1058 const String foo("foo"); | |
1059 EXPECT_TRUE(foo != NULL); // NOLINT | |
1060 EXPECT_TRUE(foo != ""); // NOLINT | |
1061 EXPECT_TRUE(foo != "bar"); // NOLINT | |
1062 EXPECT_FALSE(foo != "foo"); // NOLINT | |
1063 | |
1064 const String bar("x\0y", 3); | |
1065 EXPECT_TRUE(bar != "x"); | |
1066 } | |
1067 | |
1068 // Tests String::length(). | |
1069 TEST(StringTest, Length) { | |
1070 EXPECT_EQ(0U, String().length()); | |
1071 EXPECT_EQ(0U, String("").length()); | |
1072 EXPECT_EQ(2U, String("ab").length()); | |
1073 EXPECT_EQ(3U, String("a\0b", 3).length()); | |
1074 } | |
1075 | |
1076 // Tests String::EndsWith(). | |
1077 TEST(StringTest, EndsWith) { | |
1078 EXPECT_TRUE(String("foobar").EndsWith("bar")); | |
1079 EXPECT_TRUE(String("foobar").EndsWith("")); | |
1080 EXPECT_TRUE(String("").EndsWith("")); | |
1081 | |
1082 EXPECT_FALSE(String("foobar").EndsWith("foo")); | |
1083 EXPECT_FALSE(String("").EndsWith("foo")); | |
1084 } | |
1085 | |
1086 // Tests String::EndsWithCaseInsensitive(). | |
1087 TEST(StringTest, EndsWithCaseInsensitive) { | |
1088 EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive("BAR")); | |
1089 EXPECT_TRUE(String("foobaR").EndsWithCaseInsensitive("bar")); | |
1090 EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive("")); | |
1091 EXPECT_TRUE(String("").EndsWithCaseInsensitive("")); | |
1092 | |
1093 EXPECT_FALSE(String("Foobar").EndsWithCaseInsensitive("foo")); | |
1094 EXPECT_FALSE(String("foobar").EndsWithCaseInsensitive("Foo")); | |
1095 EXPECT_FALSE(String("").EndsWithCaseInsensitive("foo")); | |
1096 } | |
1097 | |
1098 // C++Builder's preprocessor is buggy; it fails to expand macros that | |
1099 // appear in macro parameters after wide char literals. Provide an alias | |
1100 // for NULL as a workaround. | |
1101 static const wchar_t* const kNull = NULL; | |
1102 | |
1103 // Tests String::CaseInsensitiveWideCStringEquals | |
1104 TEST(StringTest, CaseInsensitiveWideCStringEquals) { | |
1105 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL)); | |
1106 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"")); | |
1107 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull)); | |
1108 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar")); | |
1109 EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull)); | |
1110 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar")); | |
1111 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR")); | |
1112 EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar")); | |
1113 } | |
1114 | |
1115 // Tests that NULL can be assigned to a String. | |
1116 TEST(StringTest, CanBeAssignedNULL) { | |
1117 const String src(NULL); | |
1118 String dest; | |
1119 | |
1120 dest = src; | |
1121 EXPECT_STREQ(NULL, dest.c_str()); | |
1122 } | |
1123 | |
1124 // Tests that the empty string "" can be assigned to a String. | |
1125 TEST(StringTest, CanBeAssignedEmpty) { | |
1126 const String src(""); | |
1127 String dest; | |
1128 | |
1129 dest = src; | |
1130 EXPECT_STREQ("", dest.c_str()); | |
1131 } | |
1132 | |
1133 // Tests that a non-empty string can be assigned to a String. | |
1134 TEST(StringTest, CanBeAssignedNonEmpty) { | |
1135 const String src("hello"); | |
1136 String dest; | |
1137 dest = src; | |
1138 EXPECT_EQ(5U, dest.length()); | |
1139 EXPECT_STREQ("hello", dest.c_str()); | |
1140 | |
1141 const String src2("x\0y", 3); | |
1142 String dest2; | |
1143 dest2 = src2; | |
1144 EXPECT_EQ(3U, dest2.length()); | |
1145 EXPECT_EQ('x', dest2.c_str()[0]); | |
1146 EXPECT_EQ('\0', dest2.c_str()[1]); | |
1147 EXPECT_EQ('y', dest2.c_str()[2]); | |
1148 } | |
1149 | |
1150 // Tests that a String can be assigned to itself. | |
1151 TEST(StringTest, CanBeAssignedSelf) { | |
1152 String dest("hello"); | |
1153 | |
1154 // Use explicit function call notation here to suppress self-assign warning. | |
1155 dest.operator=(dest); | |
1156 EXPECT_STREQ("hello", dest.c_str()); | |
1157 } | |
1158 | |
1159 // Sun Studio < 12 incorrectly rejects this code due to an overloading | |
1160 // ambiguity. | |
1161 #if !(defined(__SUNPRO_CC) && __SUNPRO_CC < 0x590) | |
1162 // Tests streaming a String. | |
1163 TEST(StringTest, Streams) { | |
1164 EXPECT_EQ(StreamableToString(String()), "(null)"); | |
1165 EXPECT_EQ(StreamableToString(String("")), ""); | |
1166 EXPECT_EQ(StreamableToString(String("a\0b", 3)), "a\\0b"); | |
1167 } | |
1168 #endif | |
1169 | |
1170 // Tests that String::Format() works. | |
1171 TEST(StringTest, FormatWorks) { | |
1172 // Normal case: the format spec is valid, the arguments match the | |
1173 // spec, and the result is < 4095 characters. | |
1174 EXPECT_STREQ("Hello, 42", String::Format("%s, %d", "Hello", 42).c_str()); | |
1175 | |
1176 // Edge case: the result is 4095 characters. | |
1177 char buffer[4096]; | |
1178 const size_t kSize = sizeof(buffer); | |
1179 memset(buffer, 'a', kSize - 1); | |
1180 buffer[kSize - 1] = '\0'; | |
1181 EXPECT_STREQ(buffer, String::Format("%s", buffer).c_str()); | |
1182 | |
1183 // The result needs to be 4096 characters, exceeding Format()'s limit. | |
1184 EXPECT_STREQ("<formatting error or buffer exceeded>", | |
1185 String::Format("x%s", buffer).c_str()); | |
1186 | |
1187 #if GTEST_OS_LINUX | |
1188 // On Linux, invalid format spec should lead to an error message. | |
1189 // In other environment (e.g. MSVC on Windows), String::Format() may | |
1190 // simply ignore a bad format spec, so this assertion is run on | |
1191 // Linux only. | |
1192 EXPECT_STREQ("<formatting error or buffer exceeded>", | |
1193 String::Format("%").c_str()); | |
1194 #endif | |
1195 } | |
1196 | |
1197 #if GTEST_OS_WINDOWS | |
1198 | |
1199 // Tests String::ShowWideCString(). | |
1200 TEST(StringTest, ShowWideCString) { | |
1201 EXPECT_STREQ("(null)", | |
1202 String::ShowWideCString(NULL).c_str()); | |
1203 EXPECT_STREQ("", String::ShowWideCString(L"").c_str()); | |
1204 EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str()); | |
1205 } | |
1206 | |
1207 // Tests String::ShowWideCStringQuoted(). | |
1208 TEST(StringTest, ShowWideCStringQuoted) { | |
1209 EXPECT_STREQ("(null)", | |
1210 String::ShowWideCStringQuoted(NULL).c_str()); | |
1211 EXPECT_STREQ("L\"\"", | |
1212 String::ShowWideCStringQuoted(L"").c_str()); | |
1213 EXPECT_STREQ("L\"foo\"", | |
1214 String::ShowWideCStringQuoted(L"foo").c_str()); | |
1215 } | |
1216 | |
1217 # if GTEST_OS_WINDOWS_MOBILE | |
1218 TEST(StringTest, AnsiAndUtf16Null) { | |
1219 EXPECT_EQ(NULL, String::AnsiToUtf16(NULL)); | |
1220 EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL)); | |
1221 } | |
1222 | |
1223 TEST(StringTest, AnsiAndUtf16ConvertBasic) { | |
1224 const char* ansi = String::Utf16ToAnsi(L"str"); | |
1225 EXPECT_STREQ("str", ansi); | |
1226 delete [] ansi; | |
1227 const WCHAR* utf16 = String::AnsiToUtf16("str"); | |
1228 EXPECT_EQ(0, wcsncmp(L"str", utf16, 3)); | |
1229 delete [] utf16; | |
1230 } | |
1231 | |
1232 TEST(StringTest, AnsiAndUtf16ConvertPathChars) { | |
1233 const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?"); | |
1234 EXPECT_STREQ(".:\\ \"*?", ansi); | |
1235 delete [] ansi; | |
1236 const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?"); | |
1237 EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3)); | |
1238 delete [] utf16; | |
1239 } | |
1240 # endif // GTEST_OS_WINDOWS_MOBILE | |
1241 | |
1242 #endif // GTEST_OS_WINDOWS | |
1243 | |
1244 // Tests TestProperty construction. | |
1245 TEST(TestPropertyTest, StringValue) { | |
1246 TestProperty property("key", "1"); | |
1247 EXPECT_STREQ("key", property.key()); | |
1248 EXPECT_STREQ("1", property.value()); | |
1249 } | |
1250 | |
1251 // Tests TestProperty replacing a value. | |
1252 TEST(TestPropertyTest, ReplaceStringValue) { | |
1253 TestProperty property("key", "1"); | |
1254 EXPECT_STREQ("1", property.value()); | |
1255 property.SetValue("2"); | |
1256 EXPECT_STREQ("2", property.value()); | |
1257 } | |
1258 | |
1259 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone | |
1260 // functions (i.e. their definitions cannot be inlined at the call | |
1261 // sites), or C++Builder won't compile the code. | |
1262 static void AddFatalFailure() { | |
1263 FAIL() << "Expected fatal failure."; | |
1264 } | |
1265 | |
1266 static void AddNonfatalFailure() { | |
1267 ADD_FAILURE() << "Expected non-fatal failure."; | |
1268 } | |
1269 | |
1270 class ScopedFakeTestPartResultReporterTest : public Test { | |
1271 public: // Must be public and not protected due to a bug in g++ 3.4.2. | |
1272 enum FailureMode { | |
1273 FATAL_FAILURE, | |
1274 NONFATAL_FAILURE | |
1275 }; | |
1276 static void AddFailure(FailureMode failure) { | |
1277 if (failure == FATAL_FAILURE) { | |
1278 AddFatalFailure(); | |
1279 } else { | |
1280 AddNonfatalFailure(); | |
1281 } | |
1282 } | |
1283 }; | |
1284 | |
1285 // Tests that ScopedFakeTestPartResultReporter intercepts test | |
1286 // failures. | |
1287 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) { | |
1288 TestPartResultArray results; | |
1289 { | |
1290 ScopedFakeTestPartResultReporter reporter( | |
1291 ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD, | |
1292 &results); | |
1293 AddFailure(NONFATAL_FAILURE); | |
1294 AddFailure(FATAL_FAILURE); | |
1295 } | |
1296 | |
1297 EXPECT_EQ(2, results.size()); | |
1298 EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed()); | |
1299 EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed()); | |
1300 } | |
1301 | |
1302 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) { | |
1303 TestPartResultArray results; | |
1304 { | |
1305 // Tests, that the deprecated constructor still works. | |
1306 ScopedFakeTestPartResultReporter reporter(&results); | |
1307 AddFailure(NONFATAL_FAILURE); | |
1308 } | |
1309 EXPECT_EQ(1, results.size()); | |
1310 } | |
1311 | |
1312 #if GTEST_IS_THREADSAFE | |
1313 | |
1314 class ScopedFakeTestPartResultReporterWithThreadsTest | |
1315 : public ScopedFakeTestPartResultReporterTest { | |
1316 protected: | |
1317 static void AddFailureInOtherThread(FailureMode failure) { | |
1318 ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL); | |
1319 thread.Join(); | |
1320 } | |
1321 }; | |
1322 | |
1323 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest, | |
1324 InterceptsTestFailuresInAllThreads) { | |
1325 TestPartResultArray results; | |
1326 { | |
1327 ScopedFakeTestPartResultReporter reporter( | |
1328 ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results); | |
1329 AddFailure(NONFATAL_FAILURE); | |
1330 AddFailure(FATAL_FAILURE); | |
1331 AddFailureInOtherThread(NONFATAL_FAILURE); | |
1332 AddFailureInOtherThread(FATAL_FAILURE); | |
1333 } | |
1334 | |
1335 EXPECT_EQ(4, results.size()); | |
1336 EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed()); | |
1337 EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed()); | |
1338 EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed()); | |
1339 EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed()); | |
1340 } | |
1341 | |
1342 #endif // GTEST_IS_THREADSAFE | |
1343 | |
1344 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}. Makes sure that they | |
1345 // work even if the failure is generated in a called function rather than | |
1346 // the current context. | |
1347 | |
1348 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest; | |
1349 | |
1350 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) { | |
1351 EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure."); | |
1352 } | |
1353 | |
1354 #if GTEST_HAS_GLOBAL_STRING | |
1355 TEST_F(ExpectFatalFailureTest, AcceptsStringObject) { | |
1356 EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure.")); | |
1357 } | |
1358 #endif | |
1359 | |
1360 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) { | |
1361 EXPECT_FATAL_FAILURE(AddFatalFailure(), | |
1362 ::std::string("Expected fatal failure.")); | |
1363 } | |
1364 | |
1365 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) { | |
1366 // We have another test below to verify that the macro catches fatal | |
1367 // failures generated on another thread. | |
1368 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(), | |
1369 "Expected fatal failure."); | |
1370 } | |
1371 | |
1372 #ifdef __BORLANDC__ | |
1373 // Silences warnings: "Condition is always true" | |
1374 # pragma option push -w-ccc | |
1375 #endif | |
1376 | |
1377 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void | |
1378 // function even when the statement in it contains ASSERT_*. | |
1379 | |
1380 int NonVoidFunction() { | |
1381 EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), ""); | |
1382 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), ""); | |
1383 return 0; | |
1384 } | |
1385 | |
1386 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) { | |
1387 NonVoidFunction(); | |
1388 } | |
1389 | |
1390 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the | |
1391 // current function even though 'statement' generates a fatal failure. | |
1392 | |
1393 void DoesNotAbortHelper(bool* aborted) { | |
1394 EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), ""); | |
1395 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), ""); | |
1396 | |
1397 *aborted = false; | |
1398 } | |
1399 | |
1400 #ifdef __BORLANDC__ | |
1401 // Restores warnings after previous "#pragma option push" suppressed them. | |
1402 # pragma option pop | |
1403 #endif | |
1404 | |
1405 TEST_F(ExpectFatalFailureTest, DoesNotAbort) { | |
1406 bool aborted = true; | |
1407 DoesNotAbortHelper(&aborted); | |
1408 EXPECT_FALSE(aborted); | |
1409 } | |
1410 | |
1411 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a | |
1412 // statement that contains a macro which expands to code containing an | |
1413 // unprotected comma. | |
1414 | |
1415 static int global_var = 0; | |
1416 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++ | |
1417 | |
1418 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) { | |
1419 #ifndef __BORLANDC__ | |
1420 // ICE's in C++Builder. | |
1421 EXPECT_FATAL_FAILURE({ | |
1422 GTEST_USE_UNPROTECTED_COMMA_; | |
1423 AddFatalFailure(); | |
1424 }, ""); | |
1425 #endif | |
1426 | |
1427 EXPECT_FATAL_FAILURE_ON_ALL_THREADS({ | |
1428 GTEST_USE_UNPROTECTED_COMMA_; | |
1429 AddFatalFailure(); | |
1430 }, ""); | |
1431 } | |
1432 | |
1433 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}. | |
1434 | |
1435 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest; | |
1436 | |
1437 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) { | |
1438 EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), | |
1439 "Expected non-fatal failure."); | |
1440 } | |
1441 | |
1442 #if GTEST_HAS_GLOBAL_STRING | |
1443 TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) { | |
1444 EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), | |
1445 ::string("Expected non-fatal failure.")); | |
1446 } | |
1447 #endif | |
1448 | |
1449 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) { | |
1450 EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(), | |
1451 ::std::string("Expected non-fatal failure.")); | |
1452 } | |
1453 | |
1454 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) { | |
1455 // We have another test below to verify that the macro catches | |
1456 // non-fatal failures generated on another thread. | |
1457 EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(), | |
1458 "Expected non-fatal failure."); | |
1459 } | |
1460 | |
1461 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a | |
1462 // statement that contains a macro which expands to code containing an | |
1463 // unprotected comma. | |
1464 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) { | |
1465 EXPECT_NONFATAL_FAILURE({ | |
1466 GTEST_USE_UNPROTECTED_COMMA_; | |
1467 AddNonfatalFailure(); | |
1468 }, ""); | |
1469 | |
1470 EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({ | |
1471 GTEST_USE_UNPROTECTED_COMMA_; | |
1472 AddNonfatalFailure(); | |
1473 }, ""); | |
1474 } | |
1475 | |
1476 #if GTEST_IS_THREADSAFE | |
1477 | |
1478 typedef ScopedFakeTestPartResultReporterWithThreadsTest | |
1479 ExpectFailureWithThreadsTest; | |
1480 | |
1481 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) { | |
1482 EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE), | |
1483 "Expected fatal failure."); | |
1484 } | |
1485 | |
1486 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) { | |
1487 EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS( | |
1488 AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure."); | |
1489 } | |
1490 | |
1491 #endif // GTEST_IS_THREADSAFE | |
1492 | |
1493 // Tests the TestProperty class. | |
1494 | |
1495 TEST(TestPropertyTest, ConstructorWorks) { | |
1496 const TestProperty property("key", "value"); | |
1497 EXPECT_STREQ("key", property.key()); | |
1498 EXPECT_STREQ("value", property.value()); | |
1499 } | |
1500 | |
1501 TEST(TestPropertyTest, SetValue) { | |
1502 TestProperty property("key", "value_1"); | |
1503 EXPECT_STREQ("key", property.key()); | |
1504 property.SetValue("value_2"); | |
1505 EXPECT_STREQ("key", property.key()); | |
1506 EXPECT_STREQ("value_2", property.value()); | |
1507 } | |
1508 | |
1509 // Tests the TestResult class | |
1510 | |
1511 // The test fixture for testing TestResult. | |
1512 class TestResultTest : public Test { | |
1513 protected: | |
1514 typedef std::vector<TestPartResult> TPRVector; | |
1515 | |
1516 // We make use of 2 TestPartResult objects, | |
1517 TestPartResult * pr1, * pr2; | |
1518 | |
1519 // ... and 3 TestResult objects. | |
1520 TestResult * r0, * r1, * r2; | |
1521 | |
1522 virtual void SetUp() { | |
1523 // pr1 is for success. | |
1524 pr1 = new TestPartResult(TestPartResult::kSuccess, | |
1525 "foo/bar.cc", | |
1526 10, | |
1527 "Success!"); | |
1528 | |
1529 // pr2 is for fatal failure. | |
1530 pr2 = new TestPartResult(TestPartResult::kFatalFailure, | |
1531 "foo/bar.cc", | |
1532 -1, // This line number means "unknown" | |
1533 "Failure!"); | |
1534 | |
1535 // Creates the TestResult objects. | |
1536 r0 = new TestResult(); | |
1537 r1 = new TestResult(); | |
1538 r2 = new TestResult(); | |
1539 | |
1540 // In order to test TestResult, we need to modify its internal | |
1541 // state, in particular the TestPartResult vector it holds. | |
1542 // test_part_results() returns a const reference to this vector. | |
1543 // We cast it to a non-const object s.t. it can be modified (yes, | |
1544 // this is a hack). | |
1545 TPRVector* results1 = const_cast<TPRVector*>( | |
1546 &TestResultAccessor::test_part_results(*r1)); | |
1547 TPRVector* results2 = const_cast<TPRVector*>( | |
1548 &TestResultAccessor::test_part_results(*r2)); | |
1549 | |
1550 // r0 is an empty TestResult. | |
1551 | |
1552 // r1 contains a single SUCCESS TestPartResult. | |
1553 results1->push_back(*pr1); | |
1554 | |
1555 // r2 contains a SUCCESS, and a FAILURE. | |
1556 results2->push_back(*pr1); | |
1557 results2->push_back(*pr2); | |
1558 } | |
1559 | |
1560 virtual void TearDown() { | |
1561 delete pr1; | |
1562 delete pr2; | |
1563 | |
1564 delete r0; | |
1565 delete r1; | |
1566 delete r2; | |
1567 } | |
1568 | |
1569 // Helper that compares two two TestPartResults. | |
1570 static void CompareTestPartResult(const TestPartResult& expected, | |
1571 const TestPartResult& actual) { | |
1572 EXPECT_EQ(expected.type(), actual.type()); | |
1573 EXPECT_STREQ(expected.file_name(), actual.file_name()); | |
1574 EXPECT_EQ(expected.line_number(), actual.line_number()); | |
1575 EXPECT_STREQ(expected.summary(), actual.summary()); | |
1576 EXPECT_STREQ(expected.message(), actual.message()); | |
1577 EXPECT_EQ(expected.passed(), actual.passed()); | |
1578 EXPECT_EQ(expected.failed(), actual.failed()); | |
1579 EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed()); | |
1580 EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed()); | |
1581 } | |
1582 }; | |
1583 | |
1584 // Tests TestResult::total_part_count(). | |
1585 TEST_F(TestResultTest, total_part_count) { | |
1586 ASSERT_EQ(0, r0->total_part_count()); | |
1587 ASSERT_EQ(1, r1->total_part_count()); | |
1588 ASSERT_EQ(2, r2->total_part_count()); | |
1589 } | |
1590 | |
1591 // Tests TestResult::Passed(). | |
1592 TEST_F(TestResultTest, Passed) { | |
1593 ASSERT_TRUE(r0->Passed()); | |
1594 ASSERT_TRUE(r1->Passed()); | |
1595 ASSERT_FALSE(r2->Passed()); | |
1596 } | |
1597 | |
1598 // Tests TestResult::Failed(). | |
1599 TEST_F(TestResultTest, Failed) { | |
1600 ASSERT_FALSE(r0->Failed()); | |
1601 ASSERT_FALSE(r1->Failed()); | |
1602 ASSERT_TRUE(r2->Failed()); | |
1603 } | |
1604 | |
1605 // Tests TestResult::GetTestPartResult(). | |
1606 | |
1607 typedef TestResultTest TestResultDeathTest; | |
1608 | |
1609 TEST_F(TestResultDeathTest, GetTestPartResult) { | |
1610 CompareTestPartResult(*pr1, r2->GetTestPartResult(0)); | |
1611 CompareTestPartResult(*pr2, r2->GetTestPartResult(1)); | |
1612 EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), ""); | |
1613 EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), ""); | |
1614 } | |
1615 | |
1616 // Tests TestResult has no properties when none are added. | |
1617 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) { | |
1618 TestResult test_result; | |
1619 ASSERT_EQ(0, test_result.test_property_count()); | |
1620 } | |
1621 | |
1622 // Tests TestResult has the expected property when added. | |
1623 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) { | |
1624 TestResult test_result; | |
1625 TestProperty property("key_1", "1"); | |
1626 TestResultAccessor::RecordProperty(&test_result, property); | |
1627 ASSERT_EQ(1, test_result.test_property_count()); | |
1628 const TestProperty& actual_property = test_result.GetTestProperty(0); | |
1629 EXPECT_STREQ("key_1", actual_property.key()); | |
1630 EXPECT_STREQ("1", actual_property.value()); | |
1631 } | |
1632 | |
1633 // Tests TestResult has multiple properties when added. | |
1634 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) { | |
1635 TestResult test_result; | |
1636 TestProperty property_1("key_1", "1"); | |
1637 TestProperty property_2("key_2", "2"); | |
1638 TestResultAccessor::RecordProperty(&test_result, property_1); | |
1639 TestResultAccessor::RecordProperty(&test_result, property_2); | |
1640 ASSERT_EQ(2, test_result.test_property_count()); | |
1641 const TestProperty& actual_property_1 = test_result.GetTestProperty(0); | |
1642 EXPECT_STREQ("key_1", actual_property_1.key()); | |
1643 EXPECT_STREQ("1", actual_property_1.value()); | |
1644 | |
1645 const TestProperty& actual_property_2 = test_result.GetTestProperty(1); | |
1646 EXPECT_STREQ("key_2", actual_property_2.key()); | |
1647 EXPECT_STREQ("2", actual_property_2.value()); | |
1648 } | |
1649 | |
1650 // Tests TestResult::RecordProperty() overrides values for duplicate keys. | |
1651 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) { | |
1652 TestResult test_result; | |
1653 TestProperty property_1_1("key_1", "1"); | |
1654 TestProperty property_2_1("key_2", "2"); | |
1655 TestProperty property_1_2("key_1", "12"); | |
1656 TestProperty property_2_2("key_2", "22"); | |
1657 TestResultAccessor::RecordProperty(&test_result, property_1_1); | |
1658 TestResultAccessor::RecordProperty(&test_result, property_2_1); | |
1659 TestResultAccessor::RecordProperty(&test_result, property_1_2); | |
1660 TestResultAccessor::RecordProperty(&test_result, property_2_2); | |
1661 | |
1662 ASSERT_EQ(2, test_result.test_property_count()); | |
1663 const TestProperty& actual_property_1 = test_result.GetTestProperty(0); | |
1664 EXPECT_STREQ("key_1", actual_property_1.key()); | |
1665 EXPECT_STREQ("12", actual_property_1.value()); | |
1666 | |
1667 const TestProperty& actual_property_2 = test_result.GetTestProperty(1); | |
1668 EXPECT_STREQ("key_2", actual_property_2.key()); | |
1669 EXPECT_STREQ("22", actual_property_2.value()); | |
1670 } | |
1671 | |
1672 // Tests TestResult::GetTestProperty(). | |
1673 TEST(TestResultPropertyDeathTest, GetTestProperty) { | |
1674 TestResult test_result; | |
1675 TestProperty property_1("key_1", "1"); | |
1676 TestProperty property_2("key_2", "2"); | |
1677 TestProperty property_3("key_3", "3"); | |
1678 TestResultAccessor::RecordProperty(&test_result, property_1); | |
1679 TestResultAccessor::RecordProperty(&test_result, property_2); | |
1680 TestResultAccessor::RecordProperty(&test_result, property_3); | |
1681 | |
1682 const TestProperty& fetched_property_1 = test_result.GetTestProperty(0); | |
1683 const TestProperty& fetched_property_2 = test_result.GetTestProperty(1); | |
1684 const TestProperty& fetched_property_3 = test_result.GetTestProperty(2); | |
1685 | |
1686 EXPECT_STREQ("key_1", fetched_property_1.key()); | |
1687 EXPECT_STREQ("1", fetched_property_1.value()); | |
1688 | |
1689 EXPECT_STREQ("key_2", fetched_property_2.key()); | |
1690 EXPECT_STREQ("2", fetched_property_2.value()); | |
1691 | |
1692 EXPECT_STREQ("key_3", fetched_property_3.key()); | |
1693 EXPECT_STREQ("3", fetched_property_3.value()); | |
1694 | |
1695 EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), ""); | |
1696 EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), ""); | |
1697 } | |
1698 | |
1699 // When a property using a reserved key is supplied to this function, it tests | |
1700 // that a non-fatal failure is added, a fatal failure is not added, and that the | |
1701 // property is not recorded. | |
1702 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(const char* key) { | |
1703 TestResult test_result; | |
1704 TestProperty property(key, "1"); | |
1705 EXPECT_NONFATAL_FAILURE( | |
1706 TestResultAccessor::RecordProperty(&test_result, property), | |
1707 "Reserved key"); | |
1708 ASSERT_EQ(0, test_result.test_property_count()) << "Not recorded"; | |
1709 } | |
1710 | |
1711 // Attempting to recording a property with the Reserved literal "name" | |
1712 // should add a non-fatal failure and the property should not be recorded. | |
1713 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledName) { | |
1714 ExpectNonFatalFailureRecordingPropertyWithReservedKey("name"); | |
1715 } | |
1716 | |
1717 // Attempting to recording a property with the Reserved literal "status" | |
1718 // should add a non-fatal failure and the property should not be recorded. | |
1719 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledStatus) { | |
1720 ExpectNonFatalFailureRecordingPropertyWithReservedKey("status"); | |
1721 } | |
1722 | |
1723 // Attempting to recording a property with the Reserved literal "time" | |
1724 // should add a non-fatal failure and the property should not be recorded. | |
1725 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledTime) { | |
1726 ExpectNonFatalFailureRecordingPropertyWithReservedKey("time"); | |
1727 } | |
1728 | |
1729 // Attempting to recording a property with the Reserved literal "classname" | |
1730 // should add a non-fatal failure and the property should not be recorded. | |
1731 TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledClassname) { | |
1732 ExpectNonFatalFailureRecordingPropertyWithReservedKey("classname"); | |
1733 } | |
1734 | |
1735 // Tests that GTestFlagSaver works on Windows and Mac. | |
1736 | |
1737 class GTestFlagSaverTest : public Test { | |
1738 protected: | |
1739 // Saves the Google Test flags such that we can restore them later, and | |
1740 // then sets them to their default values. This will be called | |
1741 // before the first test in this test case is run. | |
1742 static void SetUpTestCase() { | |
1743 saver_ = new GTestFlagSaver; | |
1744 | |
1745 GTEST_FLAG(also_run_disabled_tests) = false; | |
1746 GTEST_FLAG(break_on_failure) = false; | |
1747 GTEST_FLAG(catch_exceptions) = false; | |
1748 GTEST_FLAG(death_test_use_fork) = false; | |
1749 GTEST_FLAG(color) = "auto"; | |
1750 GTEST_FLAG(filter) = ""; | |
1751 GTEST_FLAG(list_tests) = false; | |
1752 GTEST_FLAG(output) = ""; | |
1753 GTEST_FLAG(print_time) = true; | |
1754 GTEST_FLAG(random_seed) = 0; | |
1755 GTEST_FLAG(repeat) = 1; | |
1756 GTEST_FLAG(shuffle) = false; | |
1757 GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth; | |
1758 GTEST_FLAG(stream_result_to) = ""; | |
1759 GTEST_FLAG(throw_on_failure) = false; | |
1760 } | |
1761 | |
1762 // Restores the Google Test flags that the tests have modified. This will | |
1763 // be called after the last test in this test case is run. | |
1764 static void TearDownTestCase() { | |
1765 delete saver_; | |
1766 saver_ = NULL; | |
1767 } | |
1768 | |
1769 // Verifies that the Google Test flags have their default values, and then | |
1770 // modifies each of them. | |
1771 void VerifyAndModifyFlags() { | |
1772 EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests)); | |
1773 EXPECT_FALSE(GTEST_FLAG(break_on_failure)); | |
1774 EXPECT_FALSE(GTEST_FLAG(catch_exceptions)); | |
1775 EXPECT_STREQ("auto", GTEST_FLAG(color).c_str()); | |
1776 EXPECT_FALSE(GTEST_FLAG(death_test_use_fork)); | |
1777 EXPECT_STREQ("", GTEST_FLAG(filter).c_str()); | |
1778 EXPECT_FALSE(GTEST_FLAG(list_tests)); | |
1779 EXPECT_STREQ("", GTEST_FLAG(output).c_str()); | |
1780 EXPECT_TRUE(GTEST_FLAG(print_time)); | |
1781 EXPECT_EQ(0, GTEST_FLAG(random_seed)); | |
1782 EXPECT_EQ(1, GTEST_FLAG(repeat)); | |
1783 EXPECT_FALSE(GTEST_FLAG(shuffle)); | |
1784 EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth)); | |
1785 EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str()); | |
1786 EXPECT_FALSE(GTEST_FLAG(throw_on_failure)); | |
1787 | |
1788 GTEST_FLAG(also_run_disabled_tests) = true; | |
1789 GTEST_FLAG(break_on_failure) = true; | |
1790 GTEST_FLAG(catch_exceptions) = true; | |
1791 GTEST_FLAG(color) = "no"; | |
1792 GTEST_FLAG(death_test_use_fork) = true; | |
1793 GTEST_FLAG(filter) = "abc"; | |
1794 GTEST_FLAG(list_tests) = true; | |
1795 GTEST_FLAG(output) = "xml:foo.xml"; | |
1796 GTEST_FLAG(print_time) = false; | |
1797 GTEST_FLAG(random_seed) = 1; | |
1798 GTEST_FLAG(repeat) = 100; | |
1799 GTEST_FLAG(shuffle) = true; | |
1800 GTEST_FLAG(stack_trace_depth) = 1; | |
1801 GTEST_FLAG(stream_result_to) = "localhost:1234"; | |
1802 GTEST_FLAG(throw_on_failure) = true; | |
1803 } | |
1804 private: | |
1805 // For saving Google Test flags during this test case. | |
1806 static GTestFlagSaver* saver_; | |
1807 }; | |
1808 | |
1809 GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL; | |
1810 | |
1811 // Google Test doesn't guarantee the order of tests. The following two | |
1812 // tests are designed to work regardless of their order. | |
1813 | |
1814 // Modifies the Google Test flags in the test body. | |
1815 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) { | |
1816 VerifyAndModifyFlags(); | |
1817 } | |
1818 | |
1819 // Verifies that the Google Test flags in the body of the previous test were | |
1820 // restored to their original values. | |
1821 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) { | |
1822 VerifyAndModifyFlags(); | |
1823 } | |
1824 | |
1825 // Sets an environment variable with the given name to the given | |
1826 // value. If the value argument is "", unsets the environment | |
1827 // variable. The caller must ensure that both arguments are not NULL. | |
1828 static void SetEnv(const char* name, const char* value) { | |
1829 #if GTEST_OS_WINDOWS_MOBILE | |
1830 // Environment variables are not supported on Windows CE. | |
1831 return; | |
1832 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9) | |
1833 // C++Builder's putenv only stores a pointer to its parameter; we have to | |
1834 // ensure that the string remains valid as long as it might be needed. | |
1835 // We use an std::map to do so. | |
1836 static std::map<String, String*> added_env; | |
1837 | |
1838 // Because putenv stores a pointer to the string buffer, we can't delete the | |
1839 // previous string (if present) until after it's replaced. | |
1840 String *prev_env = NULL; | |
1841 if (added_env.find(name) != added_env.end()) { | |
1842 prev_env = added_env[name]; | |
1843 } | |
1844 added_env[name] = new String((Message() << name << "=" << value).GetString()); | |
1845 | |
1846 // The standard signature of putenv accepts a 'char*' argument. Other | |
1847 // implementations, like C++Builder's, accept a 'const char*'. | |
1848 // We cast away the 'const' since that would work for both variants. | |
1849 putenv(const_cast<char*>(added_env[name]->c_str())); | |
1850 delete prev_env; | |
1851 #elif GTEST_OS_WINDOWS // If we are on Windows proper. | |
1852 _putenv((Message() << name << "=" << value).GetString().c_str()); | |
1853 #else | |
1854 if (*value == '\0') { | |
1855 unsetenv(name); | |
1856 } else { | |
1857 setenv(name, value, 1); | |
1858 } | |
1859 #endif // GTEST_OS_WINDOWS_MOBILE | |
1860 } | |
1861 | |
1862 #if !GTEST_OS_WINDOWS_MOBILE | |
1863 // Environment variables are not supported on Windows CE. | |
1864 | |
1865 using testing::internal::Int32FromGTestEnv; | |
1866 | |
1867 // Tests Int32FromGTestEnv(). | |
1868 | |
1869 // Tests that Int32FromGTestEnv() returns the default value when the | |
1870 // environment variable is not set. | |
1871 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) { | |
1872 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", ""); | |
1873 EXPECT_EQ(10, Int32FromGTestEnv("temp", 10)); | |
1874 } | |
1875 | |
1876 // Tests that Int32FromGTestEnv() returns the default value when the | |
1877 // environment variable overflows as an Int32. | |
1878 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) { | |
1879 printf("(expecting 2 warnings)\n"); | |
1880 | |
1881 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321"); | |
1882 EXPECT_EQ(20, Int32FromGTestEnv("temp", 20)); | |
1883 | |
1884 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321"); | |
1885 EXPECT_EQ(30, Int32FromGTestEnv("temp", 30)); | |
1886 } | |
1887 | |
1888 // Tests that Int32FromGTestEnv() returns the default value when the | |
1889 // environment variable does not represent a valid decimal integer. | |
1890 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) { | |
1891 printf("(expecting 2 warnings)\n"); | |
1892 | |
1893 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1"); | |
1894 EXPECT_EQ(40, Int32FromGTestEnv("temp", 40)); | |
1895 | |
1896 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X"); | |
1897 EXPECT_EQ(50, Int32FromGTestEnv("temp", 50)); | |
1898 } | |
1899 | |
1900 // Tests that Int32FromGTestEnv() parses and returns the value of the | |
1901 // environment variable when it represents a valid decimal integer in | |
1902 // the range of an Int32. | |
1903 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) { | |
1904 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123"); | |
1905 EXPECT_EQ(123, Int32FromGTestEnv("temp", 0)); | |
1906 | |
1907 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321"); | |
1908 EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0)); | |
1909 } | |
1910 #endif // !GTEST_OS_WINDOWS_MOBILE | |
1911 | |
1912 // Tests ParseInt32Flag(). | |
1913 | |
1914 // Tests that ParseInt32Flag() returns false and doesn't change the | |
1915 // output value when the flag has wrong format | |
1916 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) { | |
1917 Int32 value = 123; | |
1918 EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value)); | |
1919 EXPECT_EQ(123, value); | |
1920 | |
1921 EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value)); | |
1922 EXPECT_EQ(123, value); | |
1923 } | |
1924 | |
1925 // Tests that ParseInt32Flag() returns false and doesn't change the | |
1926 // output value when the flag overflows as an Int32. | |
1927 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) { | |
1928 printf("(expecting 2 warnings)\n"); | |
1929 | |
1930 Int32 value = 123; | |
1931 EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value)); | |
1932 EXPECT_EQ(123, value); | |
1933 | |
1934 EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value)); | |
1935 EXPECT_EQ(123, value); | |
1936 } | |
1937 | |
1938 // Tests that ParseInt32Flag() returns false and doesn't change the | |
1939 // output value when the flag does not represent a valid decimal | |
1940 // integer. | |
1941 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) { | |
1942 printf("(expecting 2 warnings)\n"); | |
1943 | |
1944 Int32 value = 123; | |
1945 EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value)); | |
1946 EXPECT_EQ(123, value); | |
1947 | |
1948 EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value)); | |
1949 EXPECT_EQ(123, value); | |
1950 } | |
1951 | |
1952 // Tests that ParseInt32Flag() parses the value of the flag and | |
1953 // returns true when the flag represents a valid decimal integer in | |
1954 // the range of an Int32. | |
1955 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) { | |
1956 Int32 value = 123; | |
1957 EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value)); | |
1958 EXPECT_EQ(456, value); | |
1959 | |
1960 EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789", | |
1961 "abc", &value)); | |
1962 EXPECT_EQ(-789, value); | |
1963 } | |
1964 | |
1965 // Tests that Int32FromEnvOrDie() parses the value of the var or | |
1966 // returns the correct default. | |
1967 // Environment variables are not supported on Windows CE. | |
1968 #if !GTEST_OS_WINDOWS_MOBILE | |
1969 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) { | |
1970 EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333)); | |
1971 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123"); | |
1972 EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333)); | |
1973 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123"); | |
1974 EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333)); | |
1975 } | |
1976 #endif // !GTEST_OS_WINDOWS_MOBILE | |
1977 | |
1978 // Tests that Int32FromEnvOrDie() aborts with an error message | |
1979 // if the variable is not an Int32. | |
1980 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) { | |
1981 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx"); | |
1982 EXPECT_DEATH_IF_SUPPORTED( | |
1983 Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), | |
1984 ".*"); | |
1985 } | |
1986 | |
1987 // Tests that Int32FromEnvOrDie() aborts with an error message | |
1988 // if the variable cannot be represnted by an Int32. | |
1989 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) { | |
1990 SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234"); | |
1991 EXPECT_DEATH_IF_SUPPORTED( | |
1992 Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123), | |
1993 ".*"); | |
1994 } | |
1995 | |
1996 // Tests that ShouldRunTestOnShard() selects all tests | |
1997 // where there is 1 shard. | |
1998 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) { | |
1999 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0)); | |
2000 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1)); | |
2001 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2)); | |
2002 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3)); | |
2003 EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4)); | |
2004 } | |
2005 | |
2006 class ShouldShardTest : public testing::Test { | |
2007 protected: | |
2008 virtual void SetUp() { | |
2009 index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX"; | |
2010 total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL"; | |
2011 } | |
2012 | |
2013 virtual void TearDown() { | |
2014 SetEnv(index_var_, ""); | |
2015 SetEnv(total_var_, ""); | |
2016 } | |
2017 | |
2018 const char* index_var_; | |
2019 const char* total_var_; | |
2020 }; | |
2021 | |
2022 // Tests that sharding is disabled if neither of the environment variables | |
2023 // are set. | |
2024 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) { | |
2025 SetEnv(index_var_, ""); | |
2026 SetEnv(total_var_, ""); | |
2027 | |
2028 EXPECT_FALSE(ShouldShard(total_var_, index_var_, false)); | |
2029 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); | |
2030 } | |
2031 | |
2032 // Tests that sharding is not enabled if total_shards == 1. | |
2033 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) { | |
2034 SetEnv(index_var_, "0"); | |
2035 SetEnv(total_var_, "1"); | |
2036 EXPECT_FALSE(ShouldShard(total_var_, index_var_, false)); | |
2037 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); | |
2038 } | |
2039 | |
2040 // Tests that sharding is enabled if total_shards > 1 and | |
2041 // we are not in a death test subprocess. | |
2042 // Environment variables are not supported on Windows CE. | |
2043 #if !GTEST_OS_WINDOWS_MOBILE | |
2044 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) { | |
2045 SetEnv(index_var_, "4"); | |
2046 SetEnv(total_var_, "22"); | |
2047 EXPECT_TRUE(ShouldShard(total_var_, index_var_, false)); | |
2048 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); | |
2049 | |
2050 SetEnv(index_var_, "8"); | |
2051 SetEnv(total_var_, "9"); | |
2052 EXPECT_TRUE(ShouldShard(total_var_, index_var_, false)); | |
2053 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); | |
2054 | |
2055 SetEnv(index_var_, "0"); | |
2056 SetEnv(total_var_, "9"); | |
2057 EXPECT_TRUE(ShouldShard(total_var_, index_var_, false)); | |
2058 EXPECT_FALSE(ShouldShard(total_var_, index_var_, true)); | |
2059 } | |
2060 #endif // !GTEST_OS_WINDOWS_MOBILE | |
2061 | |
2062 // Tests that we exit in error if the sharding values are not valid. | |
2063 | |
2064 typedef ShouldShardTest ShouldShardDeathTest; | |
2065 | |
2066 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) { | |
2067 SetEnv(index_var_, "4"); | |
2068 SetEnv(total_var_, "4"); | |
2069 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*"); | |
2070 | |
2071 SetEnv(index_var_, "4"); | |
2072 SetEnv(total_var_, "-2"); | |
2073 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*"); | |
2074 | |
2075 SetEnv(index_var_, "5"); | |
2076 SetEnv(total_var_, ""); | |
2077 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*"); | |
2078 | |
2079 SetEnv(index_var_, ""); | |
2080 SetEnv(total_var_, "5"); | |
2081 EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*"); | |
2082 } | |
2083 | |
2084 // Tests that ShouldRunTestOnShard is a partition when 5 | |
2085 // shards are used. | |
2086 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) { | |
2087 // Choose an arbitrary number of tests and shards. | |
2088 const int num_tests = 17; | |
2089 const int num_shards = 5; | |
2090 | |
2091 // Check partitioning: each test should be on exactly 1 shard. | |
2092 for (int test_id = 0; test_id < num_tests; test_id++) { | |
2093 int prev_selected_shard_index = -1; | |
2094 for (int shard_index = 0; shard_index < num_shards; shard_index++) { | |
2095 if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) { | |
2096 if (prev_selected_shard_index < 0) { | |
2097 prev_selected_shard_index = shard_index; | |
2098 } else { | |
2099 ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and " | |
2100 << shard_index << " are both selected to run test " << test_id; | |
2101 } | |
2102 } | |
2103 } | |
2104 } | |
2105 | |
2106 // Check balance: This is not required by the sharding protocol, but is a | |
2107 // desirable property for performance. | |
2108 for (int shard_index = 0; shard_index < num_shards; shard_index++) { | |
2109 int num_tests_on_shard = 0; | |
2110 for (int test_id = 0; test_id < num_tests; test_id++) { | |
2111 num_tests_on_shard += | |
2112 ShouldRunTestOnShard(num_shards, shard_index, test_id); | |
2113 } | |
2114 EXPECT_GE(num_tests_on_shard, num_tests / num_shards); | |
2115 } | |
2116 } | |
2117 | |
2118 // For the same reason we are not explicitly testing everything in the | |
2119 // Test class, there are no separate tests for the following classes | |
2120 // (except for some trivial cases): | |
2121 // | |
2122 // TestCase, UnitTest, UnitTestResultPrinter. | |
2123 // | |
2124 // Similarly, there are no separate tests for the following macros: | |
2125 // | |
2126 // TEST, TEST_F, RUN_ALL_TESTS | |
2127 | |
2128 TEST(UnitTestTest, CanGetOriginalWorkingDir) { | |
2129 ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL); | |
2130 EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), ""); | |
2131 } | |
2132 | |
2133 // This group of tests is for predicate assertions (ASSERT_PRED*, etc) | |
2134 // of various arities. They do not attempt to be exhaustive. Rather, | |
2135 // view them as smoke tests that can be easily reviewed and verified. | |
2136 // A more complete set of tests for predicate assertions can be found | |
2137 // in gtest_pred_impl_unittest.cc. | |
2138 | |
2139 // First, some predicates and predicate-formatters needed by the tests. | |
2140 | |
2141 // Returns true iff the argument is an even number. | |
2142 bool IsEven(int n) { | |
2143 return (n % 2) == 0; | |
2144 } | |
2145 | |
2146 // A functor that returns true iff the argument is an even number. | |
2147 struct IsEvenFunctor { | |
2148 bool operator()(int n) { return IsEven(n); } | |
2149 }; | |
2150 | |
2151 // A predicate-formatter function that asserts the argument is an even | |
2152 // number. | |
2153 AssertionResult AssertIsEven(const char* expr, int n) { | |
2154 if (IsEven(n)) { | |
2155 return AssertionSuccess(); | |
2156 } | |
2157 | |
2158 Message msg; | |
2159 msg << expr << " evaluates to " << n << ", which is not even."; | |
2160 return AssertionFailure(msg); | |
2161 } | |
2162 | |
2163 // A predicate function that returns AssertionResult for use in | |
2164 // EXPECT/ASSERT_TRUE/FALSE. | |
2165 AssertionResult ResultIsEven(int n) { | |
2166 if (IsEven(n)) | |
2167 return AssertionSuccess() << n << " is even"; | |
2168 else | |
2169 return AssertionFailure() << n << " is odd"; | |
2170 } | |
2171 | |
2172 // A predicate function that returns AssertionResult but gives no | |
2173 // explanation why it succeeds. Needed for testing that | |
2174 // EXPECT/ASSERT_FALSE handles such functions correctly. | |
2175 AssertionResult ResultIsEvenNoExplanation(int n) { | |
2176 if (IsEven(n)) | |
2177 return AssertionSuccess(); | |
2178 else | |
2179 return AssertionFailure() << n << " is odd"; | |
2180 } | |
2181 | |
2182 // A predicate-formatter functor that asserts the argument is an even | |
2183 // number. | |
2184 struct AssertIsEvenFunctor { | |
2185 AssertionResult operator()(const char* expr, int n) { | |
2186 return AssertIsEven(expr, n); | |
2187 } | |
2188 }; | |
2189 | |
2190 // Returns true iff the sum of the arguments is an even number. | |
2191 bool SumIsEven2(int n1, int n2) { | |
2192 return IsEven(n1 + n2); | |
2193 } | |
2194 | |
2195 // A functor that returns true iff the sum of the arguments is an even | |
2196 // number. | |
2197 struct SumIsEven3Functor { | |
2198 bool operator()(int n1, int n2, int n3) { | |
2199 return IsEven(n1 + n2 + n3); | |
2200 } | |
2201 }; | |
2202 | |
2203 // A predicate-formatter function that asserts the sum of the | |
2204 // arguments is an even number. | |
2205 AssertionResult AssertSumIsEven4( | |
2206 const char* e1, const char* e2, const char* e3, const char* e4, | |
2207 int n1, int n2, int n3, int n4) { | |
2208 const int sum = n1 + n2 + n3 + n4; | |
2209 if (IsEven(sum)) { | |
2210 return AssertionSuccess(); | |
2211 } | |
2212 | |
2213 Message msg; | |
2214 msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 | |
2215 << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4 | |
2216 << ") evaluates to " << sum << ", which is not even."; | |
2217 return AssertionFailure(msg); | |
2218 } | |
2219 | |
2220 // A predicate-formatter functor that asserts the sum of the arguments | |
2221 // is an even number. | |
2222 struct AssertSumIsEven5Functor { | |
2223 AssertionResult operator()( | |
2224 const char* e1, const char* e2, const char* e3, const char* e4, | |
2225 const char* e5, int n1, int n2, int n3, int n4, int n5) { | |
2226 const int sum = n1 + n2 + n3 + n4 + n5; | |
2227 if (IsEven(sum)) { | |
2228 return AssertionSuccess(); | |
2229 } | |
2230 | |
2231 Message msg; | |
2232 msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5 | |
2233 << " (" | |
2234 << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5 | |
2235 << ") evaluates to " << sum << ", which is not even."; | |
2236 return AssertionFailure(msg); | |
2237 } | |
2238 }; | |
2239 | |
2240 | |
2241 // Tests unary predicate assertions. | |
2242 | |
2243 // Tests unary predicate assertions that don't use a custom formatter. | |
2244 TEST(Pred1Test, WithoutFormat) { | |
2245 // Success cases. | |
2246 EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!"; | |
2247 ASSERT_PRED1(IsEven, 4); | |
2248 | |
2249 // Failure cases. | |
2250 EXPECT_NONFATAL_FAILURE({ // NOLINT | |
2251 EXPECT_PRED1(IsEven, 5) << "This failure is expected."; | |
2252 }, "This failure is expected."); | |
2253 EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5), | |
2254 "evaluates to false"); | |
2255 } | |
2256 | |
2257 // Tests unary predicate assertions that use a custom formatter. | |
2258 TEST(Pred1Test, WithFormat) { | |
2259 // Success cases. | |
2260 EXPECT_PRED_FORMAT1(AssertIsEven, 2); | |
2261 ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4) | |
2262 << "This failure is UNEXPECTED!"; | |
2263 | |
2264 // Failure cases. | |
2265 const int n = 5; | |
2266 EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n), | |
2267 "n evaluates to 5, which is not even."); | |
2268 EXPECT_FATAL_FAILURE({ // NOLINT | |
2269 ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected."; | |
2270 }, "This failure is expected."); | |
2271 } | |
2272 | |
2273 // Tests that unary predicate assertions evaluates their arguments | |
2274 // exactly once. | |
2275 TEST(Pred1Test, SingleEvaluationOnFailure) { | |
2276 // A success case. | |
2277 static int n = 0; | |
2278 EXPECT_PRED1(IsEven, n++); | |
2279 EXPECT_EQ(1, n) << "The argument is not evaluated exactly once."; | |
2280 | |
2281 // A failure case. | |
2282 EXPECT_FATAL_FAILURE({ // NOLINT | |
2283 ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++) | |
2284 << "This failure is expected."; | |
2285 }, "This failure is expected."); | |
2286 EXPECT_EQ(2, n) << "The argument is not evaluated exactly once."; | |
2287 } | |
2288 | |
2289 | |
2290 // Tests predicate assertions whose arity is >= 2. | |
2291 | |
2292 // Tests predicate assertions that don't use a custom formatter. | |
2293 TEST(PredTest, WithoutFormat) { | |
2294 // Success cases. | |
2295 ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!"; | |
2296 EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8); | |
2297 | |
2298 // Failure cases. | |
2299 const int n1 = 1; | |
2300 const int n2 = 2; | |
2301 EXPECT_NONFATAL_FAILURE({ // NOLINT | |
2302 EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected."; | |
2303 }, "This failure is expected."); | |
2304 EXPECT_FATAL_FAILURE({ // NOLINT | |
2305 ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4); | |
2306 }, "evaluates to false"); | |
2307 } | |
2308 | |
2309 // Tests predicate assertions that use a custom formatter. | |
2310 TEST(PredTest, WithFormat) { | |
2311 // Success cases. | |
2312 ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) << | |
2313 "This failure is UNEXPECTED!"; | |
2314 EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10); | |
2315 | |
2316 // Failure cases. | |
2317 const int n1 = 1; | |
2318 const int n2 = 2; | |
2319 const int n3 = 4; | |
2320 const int n4 = 6; | |
2321 EXPECT_NONFATAL_FAILURE({ // NOLINT | |
2322 EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4); | |
2323 }, "evaluates to 13, which is not even."); | |
2324 EXPECT_FATAL_FAILURE({ // NOLINT | |
2325 ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8) | |
2326 << "This failure is expected."; | |
2327 }, "This failure is expected."); | |
2328 } | |
2329 | |
2330 // Tests that predicate assertions evaluates their arguments | |
2331 // exactly once. | |
2332 TEST(PredTest, SingleEvaluationOnFailure) { | |
2333 // A success case. | |
2334 int n1 = 0; | |
2335 int n2 = 0; | |
2336 EXPECT_PRED2(SumIsEven2, n1++, n2++); | |
2337 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; | |
2338 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; | |
2339 | |
2340 // Another success case. | |
2341 n1 = n2 = 0; | |
2342 int n3 = 0; | |
2343 int n4 = 0; | |
2344 int n5 = 0; | |
2345 ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), | |
2346 n1++, n2++, n3++, n4++, n5++) | |
2347 << "This failure is UNEXPECTED!"; | |
2348 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; | |
2349 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; | |
2350 EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once."; | |
2351 EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once."; | |
2352 EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once."; | |
2353 | |
2354 // A failure case. | |
2355 n1 = n2 = n3 = 0; | |
2356 EXPECT_NONFATAL_FAILURE({ // NOLINT | |
2357 EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++) | |
2358 << "This failure is expected."; | |
2359 }, "This failure is expected."); | |
2360 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; | |
2361 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; | |
2362 EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once."; | |
2363 | |
2364 // Another failure case. | |
2365 n1 = n2 = n3 = n4 = 0; | |
2366 EXPECT_NONFATAL_FAILURE({ // NOLINT | |
2367 EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++); | |
2368 }, "evaluates to 1, which is not even."); | |
2369 EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once."; | |
2370 EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once."; | |
2371 EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once."; | |
2372 EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once."; | |
2373 } | |
2374 | |
2375 | |
2376 // Some helper functions for testing using overloaded/template | |
2377 // functions with ASSERT_PREDn and EXPECT_PREDn. | |
2378 | |
2379 bool IsPositive(double x) { | |
2380 return x > 0; | |
2381 } | |
2382 | |
2383 template <typename T> | |
2384 bool IsNegative(T x) { | |
2385 return x < 0; | |
2386 } | |
2387 | |
2388 template <typename T1, typename T2> | |
2389 bool GreaterThan(T1 x1, T2 x2) { | |
2390 return x1 > x2; | |
2391 } | |
2392 | |
2393 // Tests that overloaded functions can be used in *_PRED* as long as | |
2394 // their types are explicitly specified. | |
2395 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) { | |
2396 // C++Builder requires C-style casts rather than static_cast. | |
2397 EXPECT_PRED1((bool (*)(int))(IsPositive), 5); // NOLINT | |
2398 ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0); // NOLINT | |
2399 } | |
2400 | |
2401 // Tests that template functions can be used in *_PRED* as long as | |
2402 // their types are explicitly specified. | |
2403 TEST(PredicateAssertionTest, AcceptsTemplateFunction) { | |
2404 EXPECT_PRED1(IsNegative<int>, -5); | |
2405 // Makes sure that we can handle templates with more than one | |
2406 // parameter. | |
2407 ASSERT_PRED2((GreaterThan<int, int>), 5, 0); | |
2408 } | |
2409 | |
2410 | |
2411 // Some helper functions for testing using overloaded/template | |
2412 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn. | |
2413 | |
2414 AssertionResult IsPositiveFormat(const char* /* expr */, int n) { | |
2415 return n > 0 ? AssertionSuccess() : | |
2416 AssertionFailure(Message() << "Failure"); | |
2417 } | |
2418 | |
2419 AssertionResult IsPositiveFormat(const char* /* expr */, double x) { | |
2420 return x > 0 ? AssertionSuccess() : | |
2421 AssertionFailure(Message() << "Failure"); | |
2422 } | |
2423 | |
2424 template <typename T> | |
2425 AssertionResult IsNegativeFormat(const char* /* expr */, T x) { | |
2426 return x < 0 ? AssertionSuccess() : | |
2427 AssertionFailure(Message() << "Failure"); | |
2428 } | |
2429 | |
2430 template <typename T1, typename T2> | |
2431 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */, | |
2432 const T1& x1, const T2& x2) { | |
2433 return x1 == x2 ? AssertionSuccess() : | |
2434 AssertionFailure(Message() << "Failure"); | |
2435 } | |
2436 | |
2437 // Tests that overloaded functions can be used in *_PRED_FORMAT* | |
2438 // without explicitly specifying their types. | |
2439 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) { | |
2440 EXPECT_PRED_FORMAT1(IsPositiveFormat, 5); | |
2441 ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0); | |
2442 } | |
2443 | |
2444 // Tests that template functions can be used in *_PRED_FORMAT* without | |
2445 // explicitly specifying their types. | |
2446 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) { | |
2447 EXPECT_PRED_FORMAT1(IsNegativeFormat, -5); | |
2448 ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3); | |
2449 } | |
2450 | |
2451 | |
2452 // Tests string assertions. | |
2453 | |
2454 // Tests ASSERT_STREQ with non-NULL arguments. | |
2455 TEST(StringAssertionTest, ASSERT_STREQ) { | |
2456 const char * const p1 = "good"; | |
2457 ASSERT_STREQ(p1, p1); | |
2458 | |
2459 // Let p2 have the same content as p1, but be at a different address. | |
2460 const char p2[] = "good"; | |
2461 ASSERT_STREQ(p1, p2); | |
2462 | |
2463 EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"), | |
2464 "Expected: \"bad\""); | |
2465 } | |
2466 | |
2467 // Tests ASSERT_STREQ with NULL arguments. | |
2468 TEST(StringAssertionTest, ASSERT_STREQ_Null) { | |
2469 ASSERT_STREQ(static_cast<const char *>(NULL), NULL); | |
2470 EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"), | |
2471 "non-null"); | |
2472 } | |
2473 | |
2474 // Tests ASSERT_STREQ with NULL arguments. | |
2475 TEST(StringAssertionTest, ASSERT_STREQ_Null2) { | |
2476 EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL), | |
2477 "non-null"); | |
2478 } | |
2479 | |
2480 // Tests ASSERT_STRNE. | |
2481 TEST(StringAssertionTest, ASSERT_STRNE) { | |
2482 ASSERT_STRNE("hi", "Hi"); | |
2483 ASSERT_STRNE("Hi", NULL); | |
2484 ASSERT_STRNE(NULL, "Hi"); | |
2485 ASSERT_STRNE("", NULL); | |
2486 ASSERT_STRNE(NULL, ""); | |
2487 ASSERT_STRNE("", "Hi"); | |
2488 ASSERT_STRNE("Hi", ""); | |
2489 EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"), | |
2490 "\"Hi\" vs \"Hi\""); | |
2491 } | |
2492 | |
2493 // Tests ASSERT_STRCASEEQ. | |
2494 TEST(StringAssertionTest, ASSERT_STRCASEEQ) { | |
2495 ASSERT_STRCASEEQ("hi", "Hi"); | |
2496 ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL); | |
2497 | |
2498 ASSERT_STRCASEEQ("", ""); | |
2499 EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"), | |
2500 "(ignoring case)"); | |
2501 } | |
2502 | |
2503 // Tests ASSERT_STRCASENE. | |
2504 TEST(StringAssertionTest, ASSERT_STRCASENE) { | |
2505 ASSERT_STRCASENE("hi1", "Hi2"); | |
2506 ASSERT_STRCASENE("Hi", NULL); | |
2507 ASSERT_STRCASENE(NULL, "Hi"); | |
2508 ASSERT_STRCASENE("", NULL); | |
2509 ASSERT_STRCASENE(NULL, ""); | |
2510 ASSERT_STRCASENE("", "Hi"); | |
2511 ASSERT_STRCASENE("Hi", ""); | |
2512 EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"), | |
2513 "(ignoring case)"); | |
2514 } | |
2515 | |
2516 // Tests *_STREQ on wide strings. | |
2517 TEST(StringAssertionTest, STREQ_Wide) { | |
2518 // NULL strings. | |
2519 ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL); | |
2520 | |
2521 // Empty strings. | |
2522 ASSERT_STREQ(L"", L""); | |
2523 | |
2524 // Non-null vs NULL. | |
2525 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL), | |
2526 "non-null"); | |
2527 | |
2528 // Equal strings. | |
2529 EXPECT_STREQ(L"Hi", L"Hi"); | |
2530 | |
2531 // Unequal strings. | |
2532 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"), | |
2533 "Abc"); | |
2534 | |
2535 // Strings containing wide characters. | |
2536 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"), | |
2537 "abc"); | |
2538 } | |
2539 | |
2540 // Tests *_STRNE on wide strings. | |
2541 TEST(StringAssertionTest, STRNE_Wide) { | |
2542 // NULL strings. | |
2543 EXPECT_NONFATAL_FAILURE({ // NOLINT | |
2544 EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL); | |
2545 }, ""); | |
2546 | |
2547 // Empty strings. | |
2548 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""), | |
2549 "L\"\""); | |
2550 | |
2551 // Non-null vs NULL. | |
2552 ASSERT_STRNE(L"non-null", NULL); | |
2553 | |
2554 // Equal strings. | |
2555 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"), | |
2556 "L\"Hi\""); | |
2557 | |
2558 // Unequal strings. | |
2559 EXPECT_STRNE(L"abc", L"Abc"); | |
2560 | |
2561 // Strings containing wide characters. | |
2562 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"), | |
2563 "abc"); | |
2564 } | |
2565 | |
2566 // Tests for ::testing::IsSubstring(). | |
2567 | |
2568 // Tests that IsSubstring() returns the correct result when the input | |
2569 // argument type is const char*. | |
2570 TEST(IsSubstringTest, ReturnsCorrectResultForCString) { | |
2571 EXPECT_FALSE(IsSubstring("", "", NULL, "a")); | |
2572 EXPECT_FALSE(IsSubstring("", "", "b", NULL)); | |
2573 EXPECT_FALSE(IsSubstring("", "", "needle", "haystack")); | |
2574 | |
2575 EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL)); | |
2576 EXPECT_TRUE(IsSubstring("", "", "needle", "two needles")); | |
2577 } | |
2578 | |
2579 // Tests that IsSubstring() returns the correct result when the input | |
2580 // argument type is const wchar_t*. | |
2581 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) { | |
2582 EXPECT_FALSE(IsSubstring("", "", kNull, L"a")); | |
2583 EXPECT_FALSE(IsSubstring("", "", L"b", kNull)); | |
2584 EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack")); | |
2585 | |
2586 EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL)); | |
2587 EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles")); | |
2588 } | |
2589 | |
2590 // Tests that IsSubstring() generates the correct message when the input | |
2591 // argument type is const char*. | |
2592 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) { | |
2593 EXPECT_STREQ("Value of: needle_expr\n" | |
2594 " Actual: \"needle\"\n" | |
2595 "Expected: a substring of haystack_expr\n" | |
2596 "Which is: \"haystack\"", | |
2597 IsSubstring("needle_expr", "haystack_expr", | |
2598 "needle", "haystack").failure_message()); | |
2599 } | |
2600 | |
2601 // Tests that IsSubstring returns the correct result when the input | |
2602 // argument type is ::std::string. | |
2603 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) { | |
2604 EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob")); | |
2605 EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world"))); | |
2606 } | |
2607 | |
2608 #if GTEST_HAS_STD_WSTRING | |
2609 // Tests that IsSubstring returns the correct result when the input | |
2610 // argument type is ::std::wstring. | |
2611 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) { | |
2612 EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles")); | |
2613 EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack"))); | |
2614 } | |
2615 | |
2616 // Tests that IsSubstring() generates the correct message when the input | |
2617 // argument type is ::std::wstring. | |
2618 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) { | |
2619 EXPECT_STREQ("Value of: needle_expr\n" | |
2620 " Actual: L\"needle\"\n" | |
2621 "Expected: a substring of haystack_expr\n" | |
2622 "Which is: L\"haystack\"", | |
2623 IsSubstring( | |
2624 "needle_expr", "haystack_expr", | |
2625 ::std::wstring(L"needle"), L"haystack").failure_message()); | |
2626 } | |
2627 | |
2628 #endif // GTEST_HAS_STD_WSTRING | |
2629 | |
2630 // Tests for ::testing::IsNotSubstring(). | |
2631 | |
2632 // Tests that IsNotSubstring() returns the correct result when the input | |
2633 // argument type is const char*. | |
2634 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) { | |
2635 EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack")); | |
2636 EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles")); | |
2637 } | |
2638 | |
2639 // Tests that IsNotSubstring() returns the correct result when the input | |
2640 // argument type is const wchar_t*. | |
2641 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) { | |
2642 EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack")); | |
2643 EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles")); | |
2644 } | |
2645 | |
2646 // Tests that IsNotSubstring() generates the correct message when the input | |
2647 // argument type is const wchar_t*. | |
2648 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) { | |
2649 EXPECT_STREQ("Value of: needle_expr\n" | |
2650 " Actual: L\"needle\"\n" | |
2651 "Expected: not a substring of haystack_expr\n" | |
2652 "Which is: L\"two needles\"", | |
2653 IsNotSubstring( | |
2654 "needle_expr", "haystack_expr", | |
2655 L"needle", L"two needles").failure_message()); | |
2656 } | |
2657 | |
2658 // Tests that IsNotSubstring returns the correct result when the input | |
2659 // argument type is ::std::string. | |
2660 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) { | |
2661 EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob")); | |
2662 EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world"))); | |
2663 } | |
2664 | |
2665 // Tests that IsNotSubstring() generates the correct message when the input | |
2666 // argument type is ::std::string. | |
2667 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) { | |
2668 EXPECT_STREQ("Value of: needle_expr\n" | |
2669 " Actual: \"needle\"\n" | |
2670 "Expected: not a substring of haystack_expr\n" | |
2671 "Which is: \"two needles\"", | |
2672 IsNotSubstring( | |
2673 "needle_expr", "haystack_expr", | |
2674 ::std::string("needle"), "two needles").failure_message()); | |
2675 } | |
2676 | |
2677 #if GTEST_HAS_STD_WSTRING | |
2678 | |
2679 // Tests that IsNotSubstring returns the correct result when the input | |
2680 // argument type is ::std::wstring. | |
2681 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) { | |
2682 EXPECT_FALSE( | |
2683 IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles")); | |
2684 EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack"))); | |
2685 } | |
2686 | |
2687 #endif // GTEST_HAS_STD_WSTRING | |
2688 | |
2689 // Tests floating-point assertions. | |
2690 | |
2691 template <typename RawType> | |
2692 class FloatingPointTest : public Test { | |
2693 protected: | |
2694 | |
2695 // Pre-calculated numbers to be used by the tests. | |
2696 struct TestValues { | |
2697 RawType close_to_positive_zero; | |
2698 RawType close_to_negative_zero; | |
2699 RawType further_from_negative_zero; | |
2700 | |
2701 RawType close_to_one; | |
2702 RawType further_from_one; | |
2703 | |
2704 RawType infinity; | |
2705 RawType close_to_infinity; | |
2706 RawType further_from_infinity; | |
2707 | |
2708 RawType nan1; | |
2709 RawType nan2; | |
2710 }; | |
2711 | |
2712 typedef typename testing::internal::FloatingPoint<RawType> Floating; | |
2713 typedef typename Floating::Bits Bits; | |
2714 | |
2715 virtual void SetUp() { | |
2716 const size_t max_ulps = Floating::kMaxUlps; | |
2717 | |
2718 // The bits that represent 0.0. | |
2719 const Bits zero_bits = Floating(0).bits(); | |
2720 | |
2721 // Makes some numbers close to 0.0. | |
2722 values_.close_to_positive_zero = Floating::ReinterpretBits( | |
2723 zero_bits + max_ulps/2); | |
2724 values_.close_to_negative_zero = -Floating::ReinterpretBits( | |
2725 zero_bits + max_ulps - max_ulps/2); | |
2726 values_.further_from_negative_zero = -Floating::ReinterpretBits( | |
2727 zero_bits + max_ulps + 1 - max_ulps/2); | |
2728 | |
2729 // The bits that represent 1.0. | |
2730 const Bits one_bits = Floating(1).bits(); | |
2731 | |
2732 // Makes some numbers close to 1.0. | |
2733 values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps); | |
2734 values_.further_from_one = Floating::ReinterpretBits( | |
2735 one_bits + max_ulps + 1); | |
2736 | |
2737 // +infinity. | |
2738 values_.infinity = Floating::Infinity(); | |
2739 | |
2740 // The bits that represent +infinity. | |
2741 const Bits infinity_bits = Floating(values_.infinity).bits(); | |
2742 | |
2743 // Makes some numbers close to infinity. | |
2744 values_.close_to_infinity = Floating::ReinterpretBits( | |
2745 infinity_bits - max_ulps); | |
2746 values_.further_from_infinity = Floating::ReinterpretBits( | |
2747 infinity_bits - max_ulps - 1); | |
2748 | |
2749 // Makes some NAN's. Sets the most significant bit of the fraction so that | |
2750 // our NaN's are quiet; trying to process a signaling NaN would raise an | |
2751 // exception if our environment enables floating point exceptions. | |
2752 values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask | |
2753 | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1); | |
2754 values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask | |
2755 | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200); | |
2756 } | |
2757 | |
2758 void TestSize() { | |
2759 EXPECT_EQ(sizeof(RawType), sizeof(Bits)); | |
2760 } | |
2761 | |
2762 static TestValues values_; | |
2763 }; | |
2764 | |
2765 template <typename RawType> | |
2766 typename FloatingPointTest<RawType>::TestValues | |
2767 FloatingPointTest<RawType>::values_; | |
2768 | |
2769 // Instantiates FloatingPointTest for testing *_FLOAT_EQ. | |
2770 typedef FloatingPointTest<float> FloatTest; | |
2771 | |
2772 // Tests that the size of Float::Bits matches the size of float. | |
2773 TEST_F(FloatTest, Size) { | |
2774 TestSize(); | |
2775 } | |
2776 | |
2777 // Tests comparing with +0 and -0. | |
2778 TEST_F(FloatTest, Zeros) { | |
2779 EXPECT_FLOAT_EQ(0.0, -0.0); | |
2780 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0), | |
2781 "1.0"); | |
2782 EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5), | |
2783 "1.5"); | |
2784 } | |
2785 | |
2786 // Tests comparing numbers close to 0. | |
2787 // | |
2788 // This ensures that *_FLOAT_EQ handles the sign correctly and no | |
2789 // overflow occurs when comparing numbers whose absolute value is very | |
2790 // small. | |
2791 TEST_F(FloatTest, AlmostZeros) { | |
2792 // In C++Builder, names within local classes (such as used by | |
2793 // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the | |
2794 // scoping class. Use a static local alias as a workaround. | |
2795 // We use the assignment syntax since some compilers, like Sun Studio, | |
2796 // don't allow initializing references using construction syntax | |
2797 // (parentheses). | |
2798 static const FloatTest::TestValues& v = this->values_; | |
2799 | |
2800 EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero); | |
2801 EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero); | |
2802 EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero); | |
2803 | |
2804 EXPECT_FATAL_FAILURE({ // NOLINT | |
2805 ASSERT_FLOAT_EQ(v.close_to_positive_zero, | |
2806 v.further_from_negative_zero); | |
2807 }, "v.further_from_negative_zero"); | |
2808 } | |
2809 | |
2810 // Tests comparing numbers close to each other. | |
2811 TEST_F(FloatTest, SmallDiff) { | |
2812 EXPECT_FLOAT_EQ(1.0, values_.close_to_one); | |
2813 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one), | |
2814 "values_.further_from_one"); | |
2815 } | |
2816 | |
2817 // Tests comparing numbers far apart. | |
2818 TEST_F(FloatTest, LargeDiff) { | |
2819 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0), | |
2820 "3.0"); | |
2821 } | |
2822 | |
2823 // Tests comparing with infinity. | |
2824 // | |
2825 // This ensures that no overflow occurs when comparing numbers whose | |
2826 // absolute value is very large. | |
2827 TEST_F(FloatTest, Infinity) { | |
2828 EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity); | |
2829 EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity); | |
2830 #if !GTEST_OS_SYMBIAN | |
2831 // Nokia's STLport crashes if we try to output infinity or NaN. | |
2832 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity), | |
2833 "-values_.infinity"); | |
2834 | |
2835 // This is interesting as the representations of infinity and nan1 | |
2836 // are only 1 DLP apart. | |
2837 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1), | |
2838 "values_.nan1"); | |
2839 #endif // !GTEST_OS_SYMBIAN | |
2840 } | |
2841 | |
2842 // Tests that comparing with NAN always returns false. | |
2843 TEST_F(FloatTest, NaN) { | |
2844 #if !GTEST_OS_SYMBIAN | |
2845 // Nokia's STLport crashes if we try to output infinity or NaN. | |
2846 | |
2847 // In C++Builder, names within local classes (such as used by | |
2848 // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the | |
2849 // scoping class. Use a static local alias as a workaround. | |
2850 // We use the assignment syntax since some compilers, like Sun Studio, | |
2851 // don't allow initializing references using construction syntax | |
2852 // (parentheses). | |
2853 static const FloatTest::TestValues& v = this->values_; | |
2854 | |
2855 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1), | |
2856 "v.nan1"); | |
2857 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2), | |
2858 "v.nan2"); | |
2859 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1), | |
2860 "v.nan1"); | |
2861 | |
2862 EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity), | |
2863 "v.infinity"); | |
2864 #endif // !GTEST_OS_SYMBIAN | |
2865 } | |
2866 | |
2867 // Tests that *_FLOAT_EQ are reflexive. | |
2868 TEST_F(FloatTest, Reflexive) { | |
2869 EXPECT_FLOAT_EQ(0.0, 0.0); | |
2870 EXPECT_FLOAT_EQ(1.0, 1.0); | |
2871 ASSERT_FLOAT_EQ(values_.infinity, values_.infinity); | |
2872 } | |
2873 | |
2874 // Tests that *_FLOAT_EQ are commutative. | |
2875 TEST_F(FloatTest, Commutative) { | |
2876 // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one). | |
2877 EXPECT_FLOAT_EQ(values_.close_to_one, 1.0); | |
2878 | |
2879 // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one). | |
2880 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0), | |
2881 "1.0"); | |
2882 } | |
2883 | |
2884 // Tests EXPECT_NEAR. | |
2885 TEST_F(FloatTest, EXPECT_NEAR) { | |
2886 EXPECT_NEAR(-1.0f, -1.1f, 0.2f); | |
2887 EXPECT_NEAR(2.0f, 3.0f, 1.0f); | |
2888 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f), // NOLINT | |
2889 "The difference between 1.0f and 1.5f is 0.5, " | |
2890 "which exceeds 0.25f"); | |
2891 // To work around a bug in gcc 2.95.0, there is intentionally no | |
2892 // space after the first comma in the previous line. | |
2893 } | |
2894 | |
2895 // Tests ASSERT_NEAR. | |
2896 TEST_F(FloatTest, ASSERT_NEAR) { | |
2897 ASSERT_NEAR(-1.0f, -1.1f, 0.2f); | |
2898 ASSERT_NEAR(2.0f, 3.0f, 1.0f); | |
2899 EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f), // NOLINT | |
2900 "The difference between 1.0f and 1.5f is 0.5, " | |
2901 "which exceeds 0.25f"); | |
2902 // To work around a bug in gcc 2.95.0, there is intentionally no | |
2903 // space after the first comma in the previous line. | |
2904 } | |
2905 | |
2906 // Tests the cases where FloatLE() should succeed. | |
2907 TEST_F(FloatTest, FloatLESucceeds) { | |
2908 EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f); // When val1 < val2, | |
2909 ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f); // val1 == val2, | |
2910 | |
2911 // or when val1 is greater than, but almost equals to, val2. | |
2912 EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f); | |
2913 } | |
2914 | |
2915 // Tests the cases where FloatLE() should fail. | |
2916 TEST_F(FloatTest, FloatLEFails) { | |
2917 // When val1 is greater than val2 by a large margin, | |
2918 EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f), | |
2919 "(2.0f) <= (1.0f)"); | |
2920 | |
2921 // or by a small yet non-negligible margin, | |
2922 EXPECT_NONFATAL_FAILURE({ // NOLINT | |
2923 EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f); | |
2924 }, "(values_.further_from_one) <= (1.0f)"); | |
2925 | |
2926 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__) | |
2927 // Nokia's STLport crashes if we try to output infinity or NaN. | |
2928 // C++Builder gives bad results for ordered comparisons involving NaNs | |
2929 // due to compiler bugs. | |
2930 EXPECT_NONFATAL_FAILURE({ // NOLINT | |
2931 EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity); | |
2932 }, "(values_.nan1) <= (values_.infinity)"); | |
2933 EXPECT_NONFATAL_FAILURE({ // NOLINT | |
2934 EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1); | |
2935 }, "(-values_.infinity) <= (values_.nan1)"); | |
2936 EXPECT_FATAL_FAILURE({ // NOLINT | |
2937 ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1); | |
2938 }, "(values_.nan1) <= (values_.nan1)"); | |
2939 #endif // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__) | |
2940 } | |
2941 | |
2942 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ. | |
2943 typedef FloatingPointTest<double> DoubleTest; | |
2944 | |
2945 // Tests that the size of Double::Bits matches the size of double. | |
2946 TEST_F(DoubleTest, Size) { | |
2947 TestSize(); | |
2948 } | |
2949 | |
2950 // Tests comparing with +0 and -0. | |
2951 TEST_F(DoubleTest, Zeros) { | |
2952 EXPECT_DOUBLE_EQ(0.0, -0.0); | |
2953 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0), | |
2954 "1.0"); | |
2955 EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0), | |
2956 "1.0"); | |
2957 } | |
2958 | |
2959 // Tests comparing numbers close to 0. | |
2960 // | |
2961 // This ensures that *_DOUBLE_EQ handles the sign correctly and no | |
2962 // overflow occurs when comparing numbers whose absolute value is very | |
2963 // small. | |
2964 TEST_F(DoubleTest, AlmostZeros) { | |
2965 // In C++Builder, names within local classes (such as used by | |
2966 // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the | |
2967 // scoping class. Use a static local alias as a workaround. | |
2968 // We use the assignment syntax since some compilers, like Sun Studio, | |
2969 // don't allow initializing references using construction syntax | |
2970 // (parentheses). | |
2971 static const DoubleTest::TestValues& v = this->values_; | |
2972 | |
2973 EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero); | |
2974 EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero); | |
2975 EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero); | |
2976 | |
2977 EXPECT_FATAL_FAILURE({ // NOLINT | |
2978 ASSERT_DOUBLE_EQ(v.close_to_positive_zero, | |
2979 v.further_from_negative_zero); | |
2980 }, "v.further_from_negative_zero"); | |
2981 } | |
2982 | |
2983 // Tests comparing numbers close to each other. | |
2984 TEST_F(DoubleTest, SmallDiff) { | |
2985 EXPECT_DOUBLE_EQ(1.0, values_.close_to_one); | |
2986 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one), | |
2987 "values_.further_from_one"); | |
2988 } | |
2989 | |
2990 // Tests comparing numbers far apart. | |
2991 TEST_F(DoubleTest, LargeDiff) { | |
2992 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0), | |
2993 "3.0"); | |
2994 } | |
2995 | |
2996 // Tests comparing with infinity. | |
2997 // | |
2998 // This ensures that no overflow occurs when comparing numbers whose | |
2999 // absolute value is very large. | |
3000 TEST_F(DoubleTest, Infinity) { | |
3001 EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity); | |
3002 EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity); | |
3003 #if !GTEST_OS_SYMBIAN | |
3004 // Nokia's STLport crashes if we try to output infinity or NaN. | |
3005 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity), | |
3006 "-values_.infinity"); | |
3007 | |
3008 // This is interesting as the representations of infinity_ and nan1_ | |
3009 // are only 1 DLP apart. | |
3010 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1), | |
3011 "values_.nan1"); | |
3012 #endif // !GTEST_OS_SYMBIAN | |
3013 } | |
3014 | |
3015 // Tests that comparing with NAN always returns false. | |
3016 TEST_F(DoubleTest, NaN) { | |
3017 #if !GTEST_OS_SYMBIAN | |
3018 // In C++Builder, names within local classes (such as used by | |
3019 // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the | |
3020 // scoping class. Use a static local alias as a workaround. | |
3021 // We use the assignment syntax since some compilers, like Sun Studio, | |
3022 // don't allow initializing references using construction syntax | |
3023 // (parentheses). | |
3024 static const DoubleTest::TestValues& v = this->values_; | |
3025 | |
3026 // Nokia's STLport crashes if we try to output infinity or NaN. | |
3027 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1), | |
3028 "v.nan1"); | |
3029 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2"); | |
3030 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1"); | |
3031 EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity), | |
3032 "v.infinity"); | |
3033 #endif // !GTEST_OS_SYMBIAN | |
3034 } | |
3035 | |
3036 // Tests that *_DOUBLE_EQ are reflexive. | |
3037 TEST_F(DoubleTest, Reflexive) { | |
3038 EXPECT_DOUBLE_EQ(0.0, 0.0); | |
3039 EXPECT_DOUBLE_EQ(1.0, 1.0); | |
3040 #if !GTEST_OS_SYMBIAN | |
3041 // Nokia's STLport crashes if we try to output infinity or NaN. | |
3042 ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity); | |
3043 #endif // !GTEST_OS_SYMBIAN | |
3044 } | |
3045 | |
3046 // Tests that *_DOUBLE_EQ are commutative. | |
3047 TEST_F(DoubleTest, Commutative) { | |
3048 // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one). | |
3049 EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0); | |
3050 | |
3051 // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one). | |
3052 EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0), | |
3053 "1.0"); | |
3054 } | |
3055 | |
3056 // Tests EXPECT_NEAR. | |
3057 TEST_F(DoubleTest, EXPECT_NEAR) { | |
3058 EXPECT_NEAR(-1.0, -1.1, 0.2); | |
3059 EXPECT_NEAR(2.0, 3.0, 1.0); | |
3060 EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25), // NOLINT | |
3061 "The difference between 1.0 and 1.5 is 0.5, " | |
3062 "which exceeds 0.25"); | |
3063 // To work around a bug in gcc 2.95.0, there is intentionally no | |
3064 // space after the first comma in the previous statement. | |
3065 } | |
3066 | |
3067 // Tests ASSERT_NEAR. | |
3068 TEST_F(DoubleTest, ASSERT_NEAR) { | |
3069 ASSERT_NEAR(-1.0, -1.1, 0.2); | |
3070 ASSERT_NEAR(2.0, 3.0, 1.0); | |
3071 EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25), // NOLINT | |
3072 "The difference between 1.0 and 1.5 is 0.5, " | |
3073 "which exceeds 0.25"); | |
3074 // To work around a bug in gcc 2.95.0, there is intentionally no | |
3075 // space after the first comma in the previous statement. | |
3076 } | |
3077 | |
3078 // Tests the cases where DoubleLE() should succeed. | |
3079 TEST_F(DoubleTest, DoubleLESucceeds) { | |
3080 EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0); // When val1 < val2, | |
3081 ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0); // val1 == val2, | |
3082 | |
3083 // or when val1 is greater than, but almost equals to, val2. | |
3084 EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0); | |
3085 } | |
3086 | |
3087 // Tests the cases where DoubleLE() should fail. | |
3088 TEST_F(DoubleTest, DoubleLEFails) { | |
3089 // When val1 is greater than val2 by a large margin, | |
3090 EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0), | |
3091 "(2.0) <= (1.0)"); | |
3092 | |
3093 // or by a small yet non-negligible margin, | |
3094 EXPECT_NONFATAL_FAILURE({ // NOLINT | |
3095 EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0); | |
3096 }, "(values_.further_from_one) <= (1.0)"); | |
3097 | |
3098 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__) | |
3099 // Nokia's STLport crashes if we try to output infinity or NaN. | |
3100 // C++Builder gives bad results for ordered comparisons involving NaNs | |
3101 // due to compiler bugs. | |
3102 EXPECT_NONFATAL_FAILURE({ // NOLINT | |
3103 EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity); | |
3104 }, "(values_.nan1) <= (values_.infinity)"); | |
3105 EXPECT_NONFATAL_FAILURE({ // NOLINT | |
3106 EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1); | |
3107 }, " (-values_.infinity) <= (values_.nan1)"); | |
3108 EXPECT_FATAL_FAILURE({ // NOLINT | |
3109 ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1); | |
3110 }, "(values_.nan1) <= (values_.nan1)"); | |
3111 #endif // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__) | |
3112 } | |
3113 | |
3114 | |
3115 // Verifies that a test or test case whose name starts with DISABLED_ is | |
3116 // not run. | |
3117 | |
3118 // A test whose name starts with DISABLED_. | |
3119 // Should not run. | |
3120 TEST(DisabledTest, DISABLED_TestShouldNotRun) { | |
3121 FAIL() << "Unexpected failure: Disabled test should not be run."; | |
3122 } | |
3123 | |
3124 // A test whose name does not start with DISABLED_. | |
3125 // Should run. | |
3126 TEST(DisabledTest, NotDISABLED_TestShouldRun) { | |
3127 EXPECT_EQ(1, 1); | |
3128 } | |
3129 | |
3130 // A test case whose name starts with DISABLED_. | |
3131 // Should not run. | |
3132 TEST(DISABLED_TestCase, TestShouldNotRun) { | |
3133 FAIL() << "Unexpected failure: Test in disabled test case should not be run."; | |
3134 } | |
3135 | |
3136 // A test case and test whose names start with DISABLED_. | |
3137 // Should not run. | |
3138 TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) { | |
3139 FAIL() << "Unexpected failure: Test in disabled test case should not be run."; | |
3140 } | |
3141 | |
3142 // Check that when all tests in a test case are disabled, SetupTestCase() and | |
3143 // TearDownTestCase() are not called. | |
3144 class DisabledTestsTest : public Test { | |
3145 protected: | |
3146 static void SetUpTestCase() { | |
3147 FAIL() << "Unexpected failure: All tests disabled in test case. " | |
3148 "SetupTestCase() should not be called."; | |
3149 } | |
3150 | |
3151 static void TearDownTestCase() { | |
3152 FAIL() << "Unexpected failure: All tests disabled in test case. " | |
3153 "TearDownTestCase() should not be called."; | |
3154 } | |
3155 }; | |
3156 | |
3157 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) { | |
3158 FAIL() << "Unexpected failure: Disabled test should not be run."; | |
3159 } | |
3160 | |
3161 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) { | |
3162 FAIL() << "Unexpected failure: Disabled test should not be run."; | |
3163 } | |
3164 | |
3165 // Tests that disabled typed tests aren't run. | |
3166 | |
3167 #if GTEST_HAS_TYPED_TEST | |
3168 | |
3169 template <typename T> | |
3170 class TypedTest : public Test { | |
3171 }; | |
3172 | |
3173 typedef testing::Types<int, double> NumericTypes; | |
3174 TYPED_TEST_CASE(TypedTest, NumericTypes); | |
3175 | |
3176 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) { | |
3177 FAIL() << "Unexpected failure: Disabled typed test should not run."; | |
3178 } | |
3179 | |
3180 template <typename T> | |
3181 class DISABLED_TypedTest : public Test { | |
3182 }; | |
3183 | |
3184 TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes); | |
3185 | |
3186 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) { | |
3187 FAIL() << "Unexpected failure: Disabled typed test should not run."; | |
3188 } | |
3189 | |
3190 #endif // GTEST_HAS_TYPED_TEST | |
3191 | |
3192 // Tests that disabled type-parameterized tests aren't run. | |
3193 | |
3194 #if GTEST_HAS_TYPED_TEST_P | |
3195 | |
3196 template <typename T> | |
3197 class TypedTestP : public Test { | |
3198 }; | |
3199 | |
3200 TYPED_TEST_CASE_P(TypedTestP); | |
3201 | |
3202 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) { | |
3203 FAIL() << "Unexpected failure: " | |
3204 << "Disabled type-parameterized test should not run."; | |
3205 } | |
3206 | |
3207 REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun); | |
3208 | |
3209 INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes); | |
3210 | |
3211 template <typename T> | |
3212 class DISABLED_TypedTestP : public Test { | |
3213 }; | |
3214 | |
3215 TYPED_TEST_CASE_P(DISABLED_TypedTestP); | |
3216 | |
3217 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) { | |
3218 FAIL() << "Unexpected failure: " | |
3219 << "Disabled type-parameterized test should not run."; | |
3220 } | |
3221 | |
3222 REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun); | |
3223 | |
3224 INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes); | |
3225 | |
3226 #endif // GTEST_HAS_TYPED_TEST_P | |
3227 | |
3228 // Tests that assertion macros evaluate their arguments exactly once. | |
3229 | |
3230 class SingleEvaluationTest : public Test { | |
3231 public: // Must be public and not protected due to a bug in g++ 3.4.2. | |
3232 // This helper function is needed by the FailedASSERT_STREQ test | |
3233 // below. It's public to work around C++Builder's bug with scoping local | |
3234 // classes. | |
3235 static void CompareAndIncrementCharPtrs() { | |
3236 ASSERT_STREQ(p1_++, p2_++); | |
3237 } | |
3238 | |
3239 // This helper function is needed by the FailedASSERT_NE test below. It's | |
3240 // public to work around C++Builder's bug with scoping local classes. | |
3241 static void CompareAndIncrementInts() { | |
3242 ASSERT_NE(a_++, b_++); | |
3243 } | |
3244 | |
3245 protected: | |
3246 SingleEvaluationTest() { | |
3247 p1_ = s1_; | |
3248 p2_ = s2_; | |
3249 a_ = 0; | |
3250 b_ = 0; | |
3251 } | |
3252 | |
3253 static const char* const s1_; | |
3254 static const char* const s2_; | |
3255 static const char* p1_; | |
3256 static const char* p2_; | |
3257 | |
3258 static int a_; | |
3259 static int b_; | |
3260 }; | |
3261 | |
3262 const char* const SingleEvaluationTest::s1_ = "01234"; | |
3263 const char* const SingleEvaluationTest::s2_ = "abcde"; | |
3264 const char* SingleEvaluationTest::p1_; | |
3265 const char* SingleEvaluationTest::p2_; | |
3266 int SingleEvaluationTest::a_; | |
3267 int SingleEvaluationTest::b_; | |
3268 | |
3269 // Tests that when ASSERT_STREQ fails, it evaluates its arguments | |
3270 // exactly once. | |
3271 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) { | |
3272 EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(), | |
3273 "p2_++"); | |
3274 EXPECT_EQ(s1_ + 1, p1_); | |
3275 EXPECT_EQ(s2_ + 1, p2_); | |
3276 } | |
3277 | |
3278 // Tests that string assertion arguments are evaluated exactly once. | |
3279 TEST_F(SingleEvaluationTest, ASSERT_STR) { | |
3280 // successful EXPECT_STRNE | |
3281 EXPECT_STRNE(p1_++, p2_++); | |
3282 EXPECT_EQ(s1_ + 1, p1_); | |
3283 EXPECT_EQ(s2_ + 1, p2_); | |
3284 | |
3285 // failed EXPECT_STRCASEEQ | |
3286 EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++), | |
3287 "ignoring case"); | |
3288 EXPECT_EQ(s1_ + 2, p1_); | |
3289 EXPECT_EQ(s2_ + 2, p2_); | |
3290 } | |
3291 | |
3292 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly | |
3293 // once. | |
3294 TEST_F(SingleEvaluationTest, FailedASSERT_NE) { | |
3295 EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(), | |
3296 "(a_++) != (b_++)"); | |
3297 EXPECT_EQ(1, a_); | |
3298 EXPECT_EQ(1, b_); | |
3299 } | |
3300 | |
3301 // Tests that assertion arguments are evaluated exactly once. | |
3302 TEST_F(SingleEvaluationTest, OtherCases) { | |
3303 // successful EXPECT_TRUE | |
3304 EXPECT_TRUE(0 == a_++); // NOLINT | |
3305 EXPECT_EQ(1, a_); | |
3306 | |
3307 // failed EXPECT_TRUE | |
3308 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++"); | |
3309 EXPECT_EQ(2, a_); | |
3310 | |
3311 // successful EXPECT_GT | |
3312 EXPECT_GT(a_++, b_++); | |
3313 EXPECT_EQ(3, a_); | |
3314 EXPECT_EQ(1, b_); | |
3315 | |
3316 // failed EXPECT_LT | |
3317 EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)"); | |
3318 EXPECT_EQ(4, a_); | |
3319 EXPECT_EQ(2, b_); | |
3320 | |
3321 // successful ASSERT_TRUE | |
3322 ASSERT_TRUE(0 < a_++); // NOLINT | |
3323 EXPECT_EQ(5, a_); | |
3324 | |
3325 // successful ASSERT_GT | |
3326 ASSERT_GT(a_++, b_++); | |
3327 EXPECT_EQ(6, a_); | |
3328 EXPECT_EQ(3, b_); | |
3329 } | |
3330 | |
3331 #if GTEST_HAS_EXCEPTIONS | |
3332 | |
3333 void ThrowAnInteger() { | |
3334 throw 1; | |
3335 } | |
3336 | |
3337 // Tests that assertion arguments are evaluated exactly once. | |
3338 TEST_F(SingleEvaluationTest, ExceptionTests) { | |
3339 // successful EXPECT_THROW | |
3340 EXPECT_THROW({ // NOLINT | |
3341 a_++; | |
3342 ThrowAnInteger(); | |
3343 }, int); | |
3344 EXPECT_EQ(1, a_); | |
3345 | |
3346 // failed EXPECT_THROW, throws different | |
3347 EXPECT_NONFATAL_FAILURE(EXPECT_THROW({ // NOLINT | |
3348 a_++; | |
3349 ThrowAnInteger(); | |
3350 }, bool), "throws a different type"); | |
3351 EXPECT_EQ(2, a_); | |
3352 | |
3353 // failed EXPECT_THROW, throws nothing | |
3354 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing"); | |
3355 EXPECT_EQ(3, a_); | |
3356 | |
3357 // successful EXPECT_NO_THROW | |
3358 EXPECT_NO_THROW(a_++); | |
3359 EXPECT_EQ(4, a_); | |
3360 | |
3361 // failed EXPECT_NO_THROW | |
3362 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({ // NOLINT | |
3363 a_++; | |
3364 ThrowAnInteger(); | |
3365 }), "it throws"); | |
3366 EXPECT_EQ(5, a_); | |
3367 | |
3368 // successful EXPECT_ANY_THROW | |
3369 EXPECT_ANY_THROW({ // NOLINT | |
3370 a_++; | |
3371 ThrowAnInteger(); | |
3372 }); | |
3373 EXPECT_EQ(6, a_); | |
3374 | |
3375 // failed EXPECT_ANY_THROW | |
3376 EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't"); | |
3377 EXPECT_EQ(7, a_); | |
3378 } | |
3379 | |
3380 #endif // GTEST_HAS_EXCEPTIONS | |
3381 | |
3382 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE. | |
3383 class NoFatalFailureTest : public Test { | |
3384 protected: | |
3385 void Succeeds() {} | |
3386 void FailsNonFatal() { | |
3387 ADD_FAILURE() << "some non-fatal failure"; | |
3388 } | |
3389 void Fails() { | |
3390 FAIL() << "some fatal failure"; | |
3391 } | |
3392 | |
3393 void DoAssertNoFatalFailureOnFails() { | |
3394 ASSERT_NO_FATAL_FAILURE(Fails()); | |
3395 ADD_FAILURE() << "shold not reach here."; | |
3396 } | |
3397 | |
3398 void DoExpectNoFatalFailureOnFails() { | |
3399 EXPECT_NO_FATAL_FAILURE(Fails()); | |
3400 ADD_FAILURE() << "other failure"; | |
3401 } | |
3402 }; | |
3403 | |
3404 TEST_F(NoFatalFailureTest, NoFailure) { | |
3405 EXPECT_NO_FATAL_FAILURE(Succeeds()); | |
3406 ASSERT_NO_FATAL_FAILURE(Succeeds()); | |
3407 } | |
3408 | |
3409 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) { | |
3410 EXPECT_NONFATAL_FAILURE( | |
3411 EXPECT_NO_FATAL_FAILURE(FailsNonFatal()), | |
3412 "some non-fatal failure"); | |
3413 EXPECT_NONFATAL_FAILURE( | |
3414 ASSERT_NO_FATAL_FAILURE(FailsNonFatal()), | |
3415 "some non-fatal failure"); | |
3416 } | |
3417 | |
3418 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) { | |
3419 TestPartResultArray gtest_failures; | |
3420 { | |
3421 ScopedFakeTestPartResultReporter gtest_reporter(>est_failures); | |
3422 DoAssertNoFatalFailureOnFails(); | |
3423 } | |
3424 ASSERT_EQ(2, gtest_failures.size()); | |
3425 EXPECT_EQ(TestPartResult::kFatalFailure, | |
3426 gtest_failures.GetTestPartResult(0).type()); | |
3427 EXPECT_EQ(TestPartResult::kFatalFailure, | |
3428 gtest_failures.GetTestPartResult(1).type()); | |
3429 EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure", | |
3430 gtest_failures.GetTestPartResult(0).message()); | |
3431 EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does", | |
3432 gtest_failures.GetTestPartResult(1).message()); | |
3433 } | |
3434 | |
3435 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) { | |
3436 TestPartResultArray gtest_failures; | |
3437 { | |
3438 ScopedFakeTestPartResultReporter gtest_reporter(>est_failures); | |
3439 DoExpectNoFatalFailureOnFails(); | |
3440 } | |
3441 ASSERT_EQ(3, gtest_failures.size()); | |
3442 EXPECT_EQ(TestPartResult::kFatalFailure, | |
3443 gtest_failures.GetTestPartResult(0).type()); | |
3444 EXPECT_EQ(TestPartResult::kNonFatalFailure, | |
3445 gtest_failures.GetTestPartResult(1).type()); | |
3446 EXPECT_EQ(TestPartResult::kNonFatalFailure, | |
3447 gtest_failures.GetTestPartResult(2).type()); | |
3448 EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure", | |
3449 gtest_failures.GetTestPartResult(0).message()); | |
3450 EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does", | |
3451 gtest_failures.GetTestPartResult(1).message()); | |
3452 EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure", | |
3453 gtest_failures.GetTestPartResult(2).message()); | |
3454 } | |
3455 | |
3456 TEST_F(NoFatalFailureTest, MessageIsStreamable) { | |
3457 TestPartResultArray gtest_failures; | |
3458 { | |
3459 ScopedFakeTestPartResultReporter gtest_reporter(>est_failures); | |
3460 EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message"; | |
3461 } | |
3462 ASSERT_EQ(2, gtest_failures.size()); | |
3463 EXPECT_EQ(TestPartResult::kNonFatalFailure, | |
3464 gtest_failures.GetTestPartResult(0).type()); | |
3465 EXPECT_EQ(TestPartResult::kNonFatalFailure, | |
3466 gtest_failures.GetTestPartResult(1).type()); | |
3467 EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo", | |
3468 gtest_failures.GetTestPartResult(0).message()); | |
3469 EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message", | |
3470 gtest_failures.GetTestPartResult(1).message()); | |
3471 } | |
3472 | |
3473 // Tests non-string assertions. | |
3474 | |
3475 // Tests EqFailure(), used for implementing *EQ* assertions. | |
3476 TEST(AssertionTest, EqFailure) { | |
3477 const String foo_val("5"), bar_val("6"); | |
3478 const String msg1( | |
3479 EqFailure("foo", "bar", foo_val, bar_val, false) | |
3480 .failure_message()); | |
3481 EXPECT_STREQ( | |
3482 "Value of: bar\n" | |
3483 " Actual: 6\n" | |
3484 "Expected: foo\n" | |
3485 "Which is: 5", | |
3486 msg1.c_str()); | |
3487 | |
3488 const String msg2( | |
3489 EqFailure("foo", "6", foo_val, bar_val, false) | |
3490 .failure_message()); | |
3491 EXPECT_STREQ( | |
3492 "Value of: 6\n" | |
3493 "Expected: foo\n" | |
3494 "Which is: 5", | |
3495 msg2.c_str()); | |
3496 | |
3497 const String msg3( | |
3498 EqFailure("5", "bar", foo_val, bar_val, false) | |
3499 .failure_message()); | |
3500 EXPECT_STREQ( | |
3501 "Value of: bar\n" | |
3502 " Actual: 6\n" | |
3503 "Expected: 5", | |
3504 msg3.c_str()); | |
3505 | |
3506 const String msg4( | |
3507 EqFailure("5", "6", foo_val, bar_val, false).failure_message()); | |
3508 EXPECT_STREQ( | |
3509 "Value of: 6\n" | |
3510 "Expected: 5", | |
3511 msg4.c_str()); | |
3512 | |
3513 const String msg5( | |
3514 EqFailure("foo", "bar", | |
3515 String("\"x\""), String("\"y\""), | |
3516 true).failure_message()); | |
3517 EXPECT_STREQ( | |
3518 "Value of: bar\n" | |
3519 " Actual: \"y\"\n" | |
3520 "Expected: foo (ignoring case)\n" | |
3521 "Which is: \"x\"", | |
3522 msg5.c_str()); | |
3523 } | |
3524 | |
3525 // Tests AppendUserMessage(), used for implementing the *EQ* macros. | |
3526 TEST(AssertionTest, AppendUserMessage) { | |
3527 const String foo("foo"); | |
3528 | |
3529 Message msg; | |
3530 EXPECT_STREQ("foo", | |
3531 AppendUserMessage(foo, msg).c_str()); | |
3532 | |
3533 msg << "bar"; | |
3534 EXPECT_STREQ("foo\nbar", | |
3535 AppendUserMessage(foo, msg).c_str()); | |
3536 } | |
3537 | |
3538 #ifdef __BORLANDC__ | |
3539 // Silences warnings: "Condition is always true", "Unreachable code" | |
3540 # pragma option push -w-ccc -w-rch | |
3541 #endif | |
3542 | |
3543 // Tests ASSERT_TRUE. | |
3544 TEST(AssertionTest, ASSERT_TRUE) { | |
3545 ASSERT_TRUE(2 > 1); // NOLINT | |
3546 EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1), | |
3547 "2 < 1"); | |
3548 } | |
3549 | |
3550 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult. | |
3551 TEST(AssertionTest, AssertTrueWithAssertionResult) { | |
3552 ASSERT_TRUE(ResultIsEven(2)); | |
3553 #ifndef __BORLANDC__ | |
3554 // ICE's in C++Builder. | |
3555 EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)), | |
3556 "Value of: ResultIsEven(3)\n" | |
3557 " Actual: false (3 is odd)\n" | |
3558 "Expected: true"); | |
3559 #endif | |
3560 ASSERT_TRUE(ResultIsEvenNoExplanation(2)); | |
3561 EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)), | |
3562 "Value of: ResultIsEvenNoExplanation(3)\n" | |
3563 " Actual: false (3 is odd)\n" | |
3564 "Expected: true"); | |
3565 } | |
3566 | |
3567 // Tests ASSERT_FALSE. | |
3568 TEST(AssertionTest, ASSERT_FALSE) { | |
3569 ASSERT_FALSE(2 < 1); // NOLINT | |
3570 EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1), | |
3571 "Value of: 2 > 1\n" | |
3572 " Actual: true\n" | |
3573 "Expected: false"); | |
3574 } | |
3575 | |
3576 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult. | |
3577 TEST(AssertionTest, AssertFalseWithAssertionResult) { | |
3578 ASSERT_FALSE(ResultIsEven(3)); | |
3579 #ifndef __BORLANDC__ | |
3580 // ICE's in C++Builder. | |
3581 EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)), | |
3582 "Value of: ResultIsEven(2)\n" | |
3583 " Actual: true (2 is even)\n" | |
3584 "Expected: false"); | |
3585 #endif | |
3586 ASSERT_FALSE(ResultIsEvenNoExplanation(3)); | |
3587 EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)), | |
3588 "Value of: ResultIsEvenNoExplanation(2)\n" | |
3589 " Actual: true\n" | |
3590 "Expected: false"); | |
3591 } | |
3592 | |
3593 #ifdef __BORLANDC__ | |
3594 // Restores warnings after previous "#pragma option push" supressed them | |
3595 # pragma option pop | |
3596 #endif | |
3597 | |
3598 // Tests using ASSERT_EQ on double values. The purpose is to make | |
3599 // sure that the specialization we did for integer and anonymous enums | |
3600 // isn't used for double arguments. | |
3601 TEST(ExpectTest, ASSERT_EQ_Double) { | |
3602 // A success. | |
3603 ASSERT_EQ(5.6, 5.6); | |
3604 | |
3605 // A failure. | |
3606 EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2), | |
3607 "5.1"); | |
3608 } | |
3609 | |
3610 // Tests ASSERT_EQ. | |
3611 TEST(AssertionTest, ASSERT_EQ) { | |
3612 ASSERT_EQ(5, 2 + 3); | |
3613 EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3), | |
3614 "Value of: 2*3\n" | |
3615 " Actual: 6\n" | |
3616 "Expected: 5"); | |
3617 } | |
3618 | |
3619 // Tests ASSERT_EQ(NULL, pointer). | |
3620 #if GTEST_CAN_COMPARE_NULL | |
3621 TEST(AssertionTest, ASSERT_EQ_NULL) { | |
3622 // A success. | |
3623 const char* p = NULL; | |
3624 // Some older GCC versions may issue a spurious waring in this or the next | |
3625 // assertion statement. This warning should not be suppressed with | |
3626 // static_cast since the test verifies the ability to use bare NULL as the | |
3627 // expected parameter to the macro. | |
3628 ASSERT_EQ(NULL, p); | |
3629 | |
3630 // A failure. | |
3631 static int n = 0; | |
3632 EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n), | |
3633 "Value of: &n\n"); | |
3634 } | |
3635 #endif // GTEST_CAN_COMPARE_NULL | |
3636 | |
3637 // Tests ASSERT_EQ(0, non_pointer). Since the literal 0 can be | |
3638 // treated as a null pointer by the compiler, we need to make sure | |
3639 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as | |
3640 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer). | |
3641 TEST(ExpectTest, ASSERT_EQ_0) { | |
3642 int n = 0; | |
3643 | |
3644 // A success. | |
3645 ASSERT_EQ(0, n); | |
3646 | |
3647 // A failure. | |
3648 EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6), | |
3649 "Expected: 0"); | |
3650 } | |
3651 | |
3652 // Tests ASSERT_NE. | |
3653 TEST(AssertionTest, ASSERT_NE) { | |
3654 ASSERT_NE(6, 7); | |
3655 EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'), | |
3656 "Expected: ('a') != ('a'), " | |
3657 "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)"); | |
3658 } | |
3659 | |
3660 // Tests ASSERT_LE. | |
3661 TEST(AssertionTest, ASSERT_LE) { | |
3662 ASSERT_LE(2, 3); | |
3663 ASSERT_LE(2, 2); | |
3664 EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0), | |
3665 "Expected: (2) <= (0), actual: 2 vs 0"); | |
3666 } | |
3667 | |
3668 // Tests ASSERT_LT. | |
3669 TEST(AssertionTest, ASSERT_LT) { | |
3670 ASSERT_LT(2, 3); | |
3671 EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2), | |
3672 "Expected: (2) < (2), actual: 2 vs 2"); | |
3673 } | |
3674 | |
3675 // Tests ASSERT_GE. | |
3676 TEST(AssertionTest, ASSERT_GE) { | |
3677 ASSERT_GE(2, 1); | |
3678 ASSERT_GE(2, 2); | |
3679 EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3), | |
3680 "Expected: (2) >= (3), actual: 2 vs 3"); | |
3681 } | |
3682 | |
3683 // Tests ASSERT_GT. | |
3684 TEST(AssertionTest, ASSERT_GT) { | |
3685 ASSERT_GT(2, 1); | |
3686 EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2), | |
3687 "Expected: (2) > (2), actual: 2 vs 2"); | |
3688 } | |
3689 | |
3690 #if GTEST_HAS_EXCEPTIONS | |
3691 | |
3692 void ThrowNothing() {} | |
3693 | |
3694 // Tests ASSERT_THROW. | |
3695 TEST(AssertionTest, ASSERT_THROW) { | |
3696 ASSERT_THROW(ThrowAnInteger(), int); | |
3697 | |
3698 # ifndef __BORLANDC__ | |
3699 | |
3700 // ICE's in C++Builder 2007 and 2009. | |
3701 EXPECT_FATAL_FAILURE( | |
3702 ASSERT_THROW(ThrowAnInteger(), bool), | |
3703 "Expected: ThrowAnInteger() throws an exception of type bool.\n" | |
3704 " Actual: it throws a different type."); | |
3705 # endif | |
3706 | |
3707 EXPECT_FATAL_FAILURE( | |
3708 ASSERT_THROW(ThrowNothing(), bool), | |
3709 "Expected: ThrowNothing() throws an exception of type bool.\n" | |
3710 " Actual: it throws nothing."); | |
3711 } | |
3712 | |
3713 // Tests ASSERT_NO_THROW. | |
3714 TEST(AssertionTest, ASSERT_NO_THROW) { | |
3715 ASSERT_NO_THROW(ThrowNothing()); | |
3716 EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()), | |
3717 "Expected: ThrowAnInteger() doesn't throw an exception." | |
3718 "\n Actual: it throws."); | |
3719 } | |
3720 | |
3721 // Tests ASSERT_ANY_THROW. | |
3722 TEST(AssertionTest, ASSERT_ANY_THROW) { | |
3723 ASSERT_ANY_THROW(ThrowAnInteger()); | |
3724 EXPECT_FATAL_FAILURE( | |
3725 ASSERT_ANY_THROW(ThrowNothing()), | |
3726 "Expected: ThrowNothing() throws an exception.\n" | |
3727 " Actual: it doesn't."); | |
3728 } | |
3729 | |
3730 #endif // GTEST_HAS_EXCEPTIONS | |
3731 | |
3732 // Makes sure we deal with the precedence of <<. This test should | |
3733 // compile. | |
3734 TEST(AssertionTest, AssertPrecedence) { | |
3735 ASSERT_EQ(1 < 2, true); | |
3736 bool false_value = false; | |
3737 ASSERT_EQ(true && false_value, false); | |
3738 } | |
3739 | |
3740 // A subroutine used by the following test. | |
3741 void TestEq1(int x) { | |
3742 ASSERT_EQ(1, x); | |
3743 } | |
3744 | |
3745 // Tests calling a test subroutine that's not part of a fixture. | |
3746 TEST(AssertionTest, NonFixtureSubroutine) { | |
3747 EXPECT_FATAL_FAILURE(TestEq1(2), | |
3748 "Value of: x"); | |
3749 } | |
3750 | |
3751 // An uncopyable class. | |
3752 class Uncopyable { | |
3753 public: | |
3754 explicit Uncopyable(int a_value) : value_(a_value) {} | |
3755 | |
3756 int value() const { return value_; } | |
3757 bool operator==(const Uncopyable& rhs) const { | |
3758 return value() == rhs.value(); | |
3759 } | |
3760 private: | |
3761 // This constructor deliberately has no implementation, as we don't | |
3762 // want this class to be copyable. | |
3763 Uncopyable(const Uncopyable&); // NOLINT | |
3764 | |
3765 int value_; | |
3766 }; | |
3767 | |
3768 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) { | |
3769 return os << value.value(); | |
3770 } | |
3771 | |
3772 | |
3773 bool IsPositiveUncopyable(const Uncopyable& x) { | |
3774 return x.value() > 0; | |
3775 } | |
3776 | |
3777 // A subroutine used by the following test. | |
3778 void TestAssertNonPositive() { | |
3779 Uncopyable y(-1); | |
3780 ASSERT_PRED1(IsPositiveUncopyable, y); | |
3781 } | |
3782 // A subroutine used by the following test. | |
3783 void TestAssertEqualsUncopyable() { | |
3784 Uncopyable x(5); | |
3785 Uncopyable y(-1); | |
3786 ASSERT_EQ(x, y); | |
3787 } | |
3788 | |
3789 // Tests that uncopyable objects can be used in assertions. | |
3790 TEST(AssertionTest, AssertWorksWithUncopyableObject) { | |
3791 Uncopyable x(5); | |
3792 ASSERT_PRED1(IsPositiveUncopyable, x); | |
3793 ASSERT_EQ(x, x); | |
3794 EXPECT_FATAL_FAILURE(TestAssertNonPositive(), | |
3795 "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1"); | |
3796 EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(), | |
3797 "Value of: y\n Actual: -1\nExpected: x\nWhich is: 5"); | |
3798 } | |
3799 | |
3800 // Tests that uncopyable objects can be used in expects. | |
3801 TEST(AssertionTest, ExpectWorksWithUncopyableObject) { | |
3802 Uncopyable x(5); | |
3803 EXPECT_PRED1(IsPositiveUncopyable, x); | |
3804 Uncopyable y(-1); | |
3805 EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y), | |
3806 "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1"); | |
3807 EXPECT_EQ(x, x); | |
3808 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), | |
3809 "Value of: y\n Actual: -1\nExpected: x\nWhich is: 5"); | |
3810 } | |
3811 | |
3812 enum NamedEnum { | |
3813 kE1 = 0, | |
3814 kE2 = 1 | |
3815 }; | |
3816 | |
3817 TEST(AssertionTest, NamedEnum) { | |
3818 EXPECT_EQ(kE1, kE1); | |
3819 EXPECT_LT(kE1, kE2); | |
3820 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0"); | |
3821 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Actual: 1"); | |
3822 } | |
3823 | |
3824 // The version of gcc used in XCode 2.2 has a bug and doesn't allow | |
3825 // anonymous enums in assertions. Therefore the following test is not | |
3826 // done on Mac. | |
3827 // Sun Studio and HP aCC also reject this code. | |
3828 #if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC) | |
3829 | |
3830 // Tests using assertions with anonymous enums. | |
3831 enum { | |
3832 kCaseA = -1, | |
3833 | |
3834 # if GTEST_OS_LINUX | |
3835 | |
3836 // We want to test the case where the size of the anonymous enum is | |
3837 // larger than sizeof(int), to make sure our implementation of the | |
3838 // assertions doesn't truncate the enums. However, MSVC | |
3839 // (incorrectly) doesn't allow an enum value to exceed the range of | |
3840 // an int, so this has to be conditionally compiled. | |
3841 // | |
3842 // On Linux, kCaseB and kCaseA have the same value when truncated to | |
3843 // int size. We want to test whether this will confuse the | |
3844 // assertions. | |
3845 kCaseB = testing::internal::kMaxBiggestInt, | |
3846 | |
3847 # else | |
3848 | |
3849 kCaseB = INT_MAX, | |
3850 | |
3851 # endif // GTEST_OS_LINUX | |
3852 | |
3853 kCaseC = 42 | |
3854 }; | |
3855 | |
3856 TEST(AssertionTest, AnonymousEnum) { | |
3857 # if GTEST_OS_LINUX | |
3858 | |
3859 EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB)); | |
3860 | |
3861 # endif // GTEST_OS_LINUX | |
3862 | |
3863 EXPECT_EQ(kCaseA, kCaseA); | |
3864 EXPECT_NE(kCaseA, kCaseB); | |
3865 EXPECT_LT(kCaseA, kCaseB); | |
3866 EXPECT_LE(kCaseA, kCaseB); | |
3867 EXPECT_GT(kCaseB, kCaseA); | |
3868 EXPECT_GE(kCaseA, kCaseA); | |
3869 EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB), | |
3870 "(kCaseA) >= (kCaseB)"); | |
3871 EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC), | |
3872 "-1 vs 42"); | |
3873 | |
3874 ASSERT_EQ(kCaseA, kCaseA); | |
3875 ASSERT_NE(kCaseA, kCaseB); | |
3876 ASSERT_LT(kCaseA, kCaseB); | |
3877 ASSERT_LE(kCaseA, kCaseB); | |
3878 ASSERT_GT(kCaseB, kCaseA); | |
3879 ASSERT_GE(kCaseA, kCaseA); | |
3880 | |
3881 # ifndef __BORLANDC__ | |
3882 | |
3883 // ICE's in C++Builder. | |
3884 EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB), | |
3885 "Value of: kCaseB"); | |
3886 EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), | |
3887 "Actual: 42"); | |
3888 # endif | |
3889 | |
3890 EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC), | |
3891 "Which is: -1"); | |
3892 } | |
3893 | |
3894 #endif // !GTEST_OS_MAC && !defined(__SUNPRO_CC) | |
3895 | |
3896 #if GTEST_OS_WINDOWS | |
3897 | |
3898 static HRESULT UnexpectedHRESULTFailure() { | |
3899 return E_UNEXPECTED; | |
3900 } | |
3901 | |
3902 static HRESULT OkHRESULTSuccess() { | |
3903 return S_OK; | |
3904 } | |
3905 | |
3906 static HRESULT FalseHRESULTSuccess() { | |
3907 return S_FALSE; | |
3908 } | |
3909 | |
3910 // HRESULT assertion tests test both zero and non-zero | |
3911 // success codes as well as failure message for each. | |
3912 // | |
3913 // Windows CE doesn't support message texts. | |
3914 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) { | |
3915 EXPECT_HRESULT_SUCCEEDED(S_OK); | |
3916 EXPECT_HRESULT_SUCCEEDED(S_FALSE); | |
3917 | |
3918 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()), | |
3919 "Expected: (UnexpectedHRESULTFailure()) succeeds.\n" | |
3920 " Actual: 0x8000FFFF"); | |
3921 } | |
3922 | |
3923 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) { | |
3924 ASSERT_HRESULT_SUCCEEDED(S_OK); | |
3925 ASSERT_HRESULT_SUCCEEDED(S_FALSE); | |
3926 | |
3927 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()), | |
3928 "Expected: (UnexpectedHRESULTFailure()) succeeds.\n" | |
3929 " Actual: 0x8000FFFF"); | |
3930 } | |
3931 | |
3932 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) { | |
3933 EXPECT_HRESULT_FAILED(E_UNEXPECTED); | |
3934 | |
3935 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()), | |
3936 "Expected: (OkHRESULTSuccess()) fails.\n" | |
3937 " Actual: 0x00000000"); | |
3938 EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()), | |
3939 "Expected: (FalseHRESULTSuccess()) fails.\n" | |
3940 " Actual: 0x00000001"); | |
3941 } | |
3942 | |
3943 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) { | |
3944 ASSERT_HRESULT_FAILED(E_UNEXPECTED); | |
3945 | |
3946 # ifndef __BORLANDC__ | |
3947 | |
3948 // ICE's in C++Builder 2007 and 2009. | |
3949 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()), | |
3950 "Expected: (OkHRESULTSuccess()) fails.\n" | |
3951 " Actual: 0x00000000"); | |
3952 # endif | |
3953 | |
3954 EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()), | |
3955 "Expected: (FalseHRESULTSuccess()) fails.\n" | |
3956 " Actual: 0x00000001"); | |
3957 } | |
3958 | |
3959 // Tests that streaming to the HRESULT macros works. | |
3960 TEST(HRESULTAssertionTest, Streaming) { | |
3961 EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure"; | |
3962 ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure"; | |
3963 EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure"; | |
3964 ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure"; | |
3965 | |
3966 EXPECT_NONFATAL_FAILURE( | |
3967 EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure", | |
3968 "expected failure"); | |
3969 | |
3970 # ifndef __BORLANDC__ | |
3971 | |
3972 // ICE's in C++Builder 2007 and 2009. | |
3973 EXPECT_FATAL_FAILURE( | |
3974 ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure", | |
3975 "expected failure"); | |
3976 # endif | |
3977 | |
3978 EXPECT_NONFATAL_FAILURE( | |
3979 EXPECT_HRESULT_FAILED(S_OK) << "expected failure", | |
3980 "expected failure"); | |
3981 | |
3982 EXPECT_FATAL_FAILURE( | |
3983 ASSERT_HRESULT_FAILED(S_OK) << "expected failure", | |
3984 "expected failure"); | |
3985 } | |
3986 | |
3987 #endif // GTEST_OS_WINDOWS | |
3988 | |
3989 #ifdef __BORLANDC__ | |
3990 // Silences warnings: "Condition is always true", "Unreachable code" | |
3991 # pragma option push -w-ccc -w-rch | |
3992 #endif | |
3993 | |
3994 // Tests that the assertion macros behave like single statements. | |
3995 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) { | |
3996 if (AlwaysFalse()) | |
3997 ASSERT_TRUE(false) << "This should never be executed; " | |
3998 "It's a compilation test only."; | |
3999 | |
4000 if (AlwaysTrue()) | |
4001 EXPECT_FALSE(false); | |
4002 else | |
4003 ; // NOLINT | |
4004 | |
4005 if (AlwaysFalse()) | |
4006 ASSERT_LT(1, 3); | |
4007 | |
4008 if (AlwaysFalse()) | |
4009 ; // NOLINT | |
4010 else | |
4011 EXPECT_GT(3, 2) << ""; | |
4012 } | |
4013 | |
4014 #if GTEST_HAS_EXCEPTIONS | |
4015 // Tests that the compiler will not complain about unreachable code in the | |
4016 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros. | |
4017 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) { | |
4018 int n = 0; | |
4019 | |
4020 EXPECT_THROW(throw 1, int); | |
4021 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), ""); | |
4022 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), ""); | |
4023 EXPECT_NO_THROW(n++); | |
4024 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), ""); | |
4025 EXPECT_ANY_THROW(throw 1); | |
4026 EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), ""); | |
4027 } | |
4028 | |
4029 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) { | |
4030 if (AlwaysFalse()) | |
4031 EXPECT_THROW(ThrowNothing(), bool); | |
4032 | |
4033 if (AlwaysTrue()) | |
4034 EXPECT_THROW(ThrowAnInteger(), int); | |
4035 else | |
4036 ; // NOLINT | |
4037 | |
4038 if (AlwaysFalse()) | |
4039 EXPECT_NO_THROW(ThrowAnInteger()); | |
4040 | |
4041 if (AlwaysTrue()) | |
4042 EXPECT_NO_THROW(ThrowNothing()); | |
4043 else | |
4044 ; // NOLINT | |
4045 | |
4046 if (AlwaysFalse()) | |
4047 EXPECT_ANY_THROW(ThrowNothing()); | |
4048 | |
4049 if (AlwaysTrue()) | |
4050 EXPECT_ANY_THROW(ThrowAnInteger()); | |
4051 else | |
4052 ; // NOLINT | |
4053 } | |
4054 #endif // GTEST_HAS_EXCEPTIONS | |
4055 | |
4056 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) { | |
4057 if (AlwaysFalse()) | |
4058 EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. " | |
4059 << "It's a compilation test only."; | |
4060 else | |
4061 ; // NOLINT | |
4062 | |
4063 if (AlwaysFalse()) | |
4064 ASSERT_NO_FATAL_FAILURE(FAIL()) << ""; | |
4065 else | |
4066 ; // NOLINT | |
4067 | |
4068 if (AlwaysTrue()) | |
4069 EXPECT_NO_FATAL_FAILURE(SUCCEED()); | |
4070 else | |
4071 ; // NOLINT | |
4072 | |
4073 if (AlwaysFalse()) | |
4074 ; // NOLINT | |
4075 else | |
4076 ASSERT_NO_FATAL_FAILURE(SUCCEED()); | |
4077 } | |
4078 | |
4079 // Tests that the assertion macros work well with switch statements. | |
4080 TEST(AssertionSyntaxTest, WorksWithSwitch) { | |
4081 switch (0) { | |
4082 case 1: | |
4083 break; | |
4084 default: | |
4085 ASSERT_TRUE(true); | |
4086 } | |
4087 | |
4088 switch (0) | |
4089 case 0: | |
4090 EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case"; | |
4091 | |
4092 // Binary assertions are implemented using a different code path | |
4093 // than the Boolean assertions. Hence we test them separately. | |
4094 switch (0) { | |
4095 case 1: | |
4096 default: | |
4097 ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler"; | |
4098 } | |
4099 | |
4100 switch (0) | |
4101 case 0: | |
4102 EXPECT_NE(1, 2); | |
4103 } | |
4104 | |
4105 #if GTEST_HAS_EXCEPTIONS | |
4106 | |
4107 void ThrowAString() { | |
4108 throw "String"; | |
4109 } | |
4110 | |
4111 // Test that the exception assertion macros compile and work with const | |
4112 // type qualifier. | |
4113 TEST(AssertionSyntaxTest, WorksWithConst) { | |
4114 ASSERT_THROW(ThrowAString(), const char*); | |
4115 | |
4116 EXPECT_THROW(ThrowAString(), const char*); | |
4117 } | |
4118 | |
4119 #endif // GTEST_HAS_EXCEPTIONS | |
4120 | |
4121 } // namespace | |
4122 | |
4123 namespace testing { | |
4124 | |
4125 // Tests that Google Test tracks SUCCEED*. | |
4126 TEST(SuccessfulAssertionTest, SUCCEED) { | |
4127 SUCCEED(); | |
4128 SUCCEED() << "OK"; | |
4129 EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count()); | |
4130 } | |
4131 | |
4132 // Tests that Google Test doesn't track successful EXPECT_*. | |
4133 TEST(SuccessfulAssertionTest, EXPECT) { | |
4134 EXPECT_TRUE(true); | |
4135 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); | |
4136 } | |
4137 | |
4138 // Tests that Google Test doesn't track successful EXPECT_STR*. | |
4139 TEST(SuccessfulAssertionTest, EXPECT_STR) { | |
4140 EXPECT_STREQ("", ""); | |
4141 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); | |
4142 } | |
4143 | |
4144 // Tests that Google Test doesn't track successful ASSERT_*. | |
4145 TEST(SuccessfulAssertionTest, ASSERT) { | |
4146 ASSERT_TRUE(true); | |
4147 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); | |
4148 } | |
4149 | |
4150 // Tests that Google Test doesn't track successful ASSERT_STR*. | |
4151 TEST(SuccessfulAssertionTest, ASSERT_STR) { | |
4152 ASSERT_STREQ("", ""); | |
4153 EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count()); | |
4154 } | |
4155 | |
4156 } // namespace testing | |
4157 | |
4158 namespace { | |
4159 | |
4160 // Tests EXPECT_TRUE. | |
4161 TEST(ExpectTest, EXPECT_TRUE) { | |
4162 EXPECT_TRUE(2 > 1); // NOLINT | |
4163 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1), | |
4164 "Value of: 2 < 1\n" | |
4165 " Actual: false\n" | |
4166 "Expected: true"); | |
4167 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3), | |
4168 "2 > 3"); | |
4169 } | |
4170 | |
4171 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult. | |
4172 TEST(ExpectTest, ExpectTrueWithAssertionResult) { | |
4173 EXPECT_TRUE(ResultIsEven(2)); | |
4174 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)), | |
4175 "Value of: ResultIsEven(3)\n" | |
4176 " Actual: false (3 is odd)\n" | |
4177 "Expected: true"); | |
4178 EXPECT_TRUE(ResultIsEvenNoExplanation(2)); | |
4179 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)), | |
4180 "Value of: ResultIsEvenNoExplanation(3)\n" | |
4181 " Actual: false (3 is odd)\n" | |
4182 "Expected: true"); | |
4183 } | |
4184 | |
4185 // Tests EXPECT_FALSE. | |
4186 TEST(ExpectTest, EXPECT_FALSE) { | |
4187 EXPECT_FALSE(2 < 1); // NOLINT | |
4188 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1), | |
4189 "Value of: 2 > 1\n" | |
4190 " Actual: true\n" | |
4191 "Expected: false"); | |
4192 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3), | |
4193 "2 < 3"); | |
4194 } | |
4195 | |
4196 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult. | |
4197 TEST(ExpectTest, ExpectFalseWithAssertionResult) { | |
4198 EXPECT_FALSE(ResultIsEven(3)); | |
4199 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)), | |
4200 "Value of: ResultIsEven(2)\n" | |
4201 " Actual: true (2 is even)\n" | |
4202 "Expected: false"); | |
4203 EXPECT_FALSE(ResultIsEvenNoExplanation(3)); | |
4204 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)), | |
4205 "Value of: ResultIsEvenNoExplanation(2)\n" | |
4206 " Actual: true\n" | |
4207 "Expected: false"); | |
4208 } | |
4209 | |
4210 #ifdef __BORLANDC__ | |
4211 // Restores warnings after previous "#pragma option push" supressed them | |
4212 # pragma option pop | |
4213 #endif | |
4214 | |
4215 // Tests EXPECT_EQ. | |
4216 TEST(ExpectTest, EXPECT_EQ) { | |
4217 EXPECT_EQ(5, 2 + 3); | |
4218 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3), | |
4219 "Value of: 2*3\n" | |
4220 " Actual: 6\n" | |
4221 "Expected: 5"); | |
4222 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3), | |
4223 "2 - 3"); | |
4224 } | |
4225 | |
4226 // Tests using EXPECT_EQ on double values. The purpose is to make | |
4227 // sure that the specialization we did for integer and anonymous enums | |
4228 // isn't used for double arguments. | |
4229 TEST(ExpectTest, EXPECT_EQ_Double) { | |
4230 // A success. | |
4231 EXPECT_EQ(5.6, 5.6); | |
4232 | |
4233 // A failure. | |
4234 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2), | |
4235 "5.1"); | |
4236 } | |
4237 | |
4238 #if GTEST_CAN_COMPARE_NULL | |
4239 // Tests EXPECT_EQ(NULL, pointer). | |
4240 TEST(ExpectTest, EXPECT_EQ_NULL) { | |
4241 // A success. | |
4242 const char* p = NULL; | |
4243 // Some older GCC versions may issue a spurious warning in this or the next | |
4244 // assertion statement. This warning should not be suppressed with | |
4245 // static_cast since the test verifies the ability to use bare NULL as the | |
4246 // expected parameter to the macro. | |
4247 EXPECT_EQ(NULL, p); | |
4248 | |
4249 // A failure. | |
4250 int n = 0; | |
4251 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n), | |
4252 "Value of: &n\n"); | |
4253 } | |
4254 #endif // GTEST_CAN_COMPARE_NULL | |
4255 | |
4256 // Tests EXPECT_EQ(0, non_pointer). Since the literal 0 can be | |
4257 // treated as a null pointer by the compiler, we need to make sure | |
4258 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as | |
4259 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer). | |
4260 TEST(ExpectTest, EXPECT_EQ_0) { | |
4261 int n = 0; | |
4262 | |
4263 // A success. | |
4264 EXPECT_EQ(0, n); | |
4265 | |
4266 // A failure. | |
4267 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6), | |
4268 "Expected: 0"); | |
4269 } | |
4270 | |
4271 // Tests EXPECT_NE. | |
4272 TEST(ExpectTest, EXPECT_NE) { | |
4273 EXPECT_NE(6, 7); | |
4274 | |
4275 EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'), | |
4276 "Expected: ('a') != ('a'), " | |
4277 "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)"); | |
4278 EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2), | |
4279 "2"); | |
4280 char* const p0 = NULL; | |
4281 EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0), | |
4282 "p0"); | |
4283 // Only way to get the Nokia compiler to compile the cast | |
4284 // is to have a separate void* variable first. Putting | |
4285 // the two casts on the same line doesn't work, neither does | |
4286 // a direct C-style to char*. | |
4287 void* pv1 = (void*)0x1234; // NOLINT | |
4288 char* const p1 = reinterpret_cast<char*>(pv1); | |
4289 EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1), | |
4290 "p1"); | |
4291 } | |
4292 | |
4293 // Tests EXPECT_LE. | |
4294 TEST(ExpectTest, EXPECT_LE) { | |
4295 EXPECT_LE(2, 3); | |
4296 EXPECT_LE(2, 2); | |
4297 EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0), | |
4298 "Expected: (2) <= (0), actual: 2 vs 0"); | |
4299 EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9), | |
4300 "(1.1) <= (0.9)"); | |
4301 } | |
4302 | |
4303 // Tests EXPECT_LT. | |
4304 TEST(ExpectTest, EXPECT_LT) { | |
4305 EXPECT_LT(2, 3); | |
4306 EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2), | |
4307 "Expected: (2) < (2), actual: 2 vs 2"); | |
4308 EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1), | |
4309 "(2) < (1)"); | |
4310 } | |
4311 | |
4312 // Tests EXPECT_GE. | |
4313 TEST(ExpectTest, EXPECT_GE) { | |
4314 EXPECT_GE(2, 1); | |
4315 EXPECT_GE(2, 2); | |
4316 EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3), | |
4317 "Expected: (2) >= (3), actual: 2 vs 3"); | |
4318 EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1), | |
4319 "(0.9) >= (1.1)"); | |
4320 } | |
4321 | |
4322 // Tests EXPECT_GT. | |
4323 TEST(ExpectTest, EXPECT_GT) { | |
4324 EXPECT_GT(2, 1); | |
4325 EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2), | |
4326 "Expected: (2) > (2), actual: 2 vs 2"); | |
4327 EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3), | |
4328 "(2) > (3)"); | |
4329 } | |
4330 | |
4331 #if GTEST_HAS_EXCEPTIONS | |
4332 | |
4333 // Tests EXPECT_THROW. | |
4334 TEST(ExpectTest, EXPECT_THROW) { | |
4335 EXPECT_THROW(ThrowAnInteger(), int); | |
4336 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool), | |
4337 "Expected: ThrowAnInteger() throws an exception of " | |
4338 "type bool.\n Actual: it throws a different type."); | |
4339 EXPECT_NONFATAL_FAILURE( | |
4340 EXPECT_THROW(ThrowNothing(), bool), | |
4341 "Expected: ThrowNothing() throws an exception of type bool.\n" | |
4342 " Actual: it throws nothing."); | |
4343 } | |
4344 | |
4345 // Tests EXPECT_NO_THROW. | |
4346 TEST(ExpectTest, EXPECT_NO_THROW) { | |
4347 EXPECT_NO_THROW(ThrowNothing()); | |
4348 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()), | |
4349 "Expected: ThrowAnInteger() doesn't throw an " | |
4350 "exception.\n Actual: it throws."); | |
4351 } | |
4352 | |
4353 // Tests EXPECT_ANY_THROW. | |
4354 TEST(ExpectTest, EXPECT_ANY_THROW) { | |
4355 EXPECT_ANY_THROW(ThrowAnInteger()); | |
4356 EXPECT_NONFATAL_FAILURE( | |
4357 EXPECT_ANY_THROW(ThrowNothing()), | |
4358 "Expected: ThrowNothing() throws an exception.\n" | |
4359 " Actual: it doesn't."); | |
4360 } | |
4361 | |
4362 #endif // GTEST_HAS_EXCEPTIONS | |
4363 | |
4364 // Make sure we deal with the precedence of <<. | |
4365 TEST(ExpectTest, ExpectPrecedence) { | |
4366 EXPECT_EQ(1 < 2, true); | |
4367 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false), | |
4368 "Value of: true && false"); | |
4369 } | |
4370 | |
4371 | |
4372 // Tests the StreamableToString() function. | |
4373 | |
4374 // Tests using StreamableToString() on a scalar. | |
4375 TEST(StreamableToStringTest, Scalar) { | |
4376 EXPECT_STREQ("5", StreamableToString(5).c_str()); | |
4377 } | |
4378 | |
4379 // Tests using StreamableToString() on a non-char pointer. | |
4380 TEST(StreamableToStringTest, Pointer) { | |
4381 int n = 0; | |
4382 int* p = &n; | |
4383 EXPECT_STRNE("(null)", StreamableToString(p).c_str()); | |
4384 } | |
4385 | |
4386 // Tests using StreamableToString() on a NULL non-char pointer. | |
4387 TEST(StreamableToStringTest, NullPointer) { | |
4388 int* p = NULL; | |
4389 EXPECT_STREQ("(null)", StreamableToString(p).c_str()); | |
4390 } | |
4391 | |
4392 // Tests using StreamableToString() on a C string. | |
4393 TEST(StreamableToStringTest, CString) { | |
4394 EXPECT_STREQ("Foo", StreamableToString("Foo").c_str()); | |
4395 } | |
4396 | |
4397 // Tests using StreamableToString() on a NULL C string. | |
4398 TEST(StreamableToStringTest, NullCString) { | |
4399 char* p = NULL; | |
4400 EXPECT_STREQ("(null)", StreamableToString(p).c_str()); | |
4401 } | |
4402 | |
4403 // Tests using streamable values as assertion messages. | |
4404 | |
4405 // Tests using std::string as an assertion message. | |
4406 TEST(StreamableTest, string) { | |
4407 static const std::string str( | |
4408 "This failure message is a std::string, and is expected."); | |
4409 EXPECT_FATAL_FAILURE(FAIL() << str, | |
4410 str.c_str()); | |
4411 } | |
4412 | |
4413 // Tests that we can output strings containing embedded NULs. | |
4414 // Limited to Linux because we can only do this with std::string's. | |
4415 TEST(StreamableTest, stringWithEmbeddedNUL) { | |
4416 static const char char_array_with_nul[] = | |
4417 "Here's a NUL\0 and some more string"; | |
4418 static const std::string string_with_nul(char_array_with_nul, | |
4419 sizeof(char_array_with_nul) | |
4420 - 1); // drops the trailing NUL | |
4421 EXPECT_FATAL_FAILURE(FAIL() << string_with_nul, | |
4422 "Here's a NUL\\0 and some more string"); | |
4423 } | |
4424 | |
4425 // Tests that we can output a NUL char. | |
4426 TEST(StreamableTest, NULChar) { | |
4427 EXPECT_FATAL_FAILURE({ // NOLINT | |
4428 FAIL() << "A NUL" << '\0' << " and some more string"; | |
4429 }, "A NUL\\0 and some more string"); | |
4430 } | |
4431 | |
4432 // Tests using int as an assertion message. | |
4433 TEST(StreamableTest, int) { | |
4434 EXPECT_FATAL_FAILURE(FAIL() << 900913, | |
4435 "900913"); | |
4436 } | |
4437 | |
4438 // Tests using NULL char pointer as an assertion message. | |
4439 // | |
4440 // In MSVC, streaming a NULL char * causes access violation. Google Test | |
4441 // implemented a workaround (substituting "(null)" for NULL). This | |
4442 // tests whether the workaround works. | |
4443 TEST(StreamableTest, NullCharPtr) { | |
4444 EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL), | |
4445 "(null)"); | |
4446 } | |
4447 | |
4448 // Tests that basic IO manipulators (endl, ends, and flush) can be | |
4449 // streamed to testing::Message. | |
4450 TEST(StreamableTest, BasicIoManip) { | |
4451 EXPECT_FATAL_FAILURE({ // NOLINT | |
4452 FAIL() << "Line 1." << std::endl | |
4453 << "A NUL char " << std::ends << std::flush << " in line 2."; | |
4454 }, "Line 1.\nA NUL char \\0 in line 2."); | |
4455 } | |
4456 | |
4457 // Tests the macros that haven't been covered so far. | |
4458 | |
4459 void AddFailureHelper(bool* aborted) { | |
4460 *aborted = true; | |
4461 ADD_FAILURE() << "Failure"; | |
4462 *aborted = false; | |
4463 } | |
4464 | |
4465 // Tests ADD_FAILURE. | |
4466 TEST(MacroTest, ADD_FAILURE) { | |
4467 bool aborted = true; | |
4468 EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted), | |
4469 "Failure"); | |
4470 EXPECT_FALSE(aborted); | |
4471 } | |
4472 | |
4473 // Tests ADD_FAILURE_AT. | |
4474 TEST(MacroTest, ADD_FAILURE_AT) { | |
4475 // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and | |
4476 // the failure message contains the user-streamed part. | |
4477 EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!"); | |
4478 | |
4479 // Verifies that the user-streamed part is optional. | |
4480 EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed"); | |
4481 | |
4482 // Unfortunately, we cannot verify that the failure message contains | |
4483 // the right file path and line number the same way, as | |
4484 // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and | |
4485 // line number. Instead, we do that in gtest_output_test_.cc. | |
4486 } | |
4487 | |
4488 // Tests FAIL. | |
4489 TEST(MacroTest, FAIL) { | |
4490 EXPECT_FATAL_FAILURE(FAIL(), | |
4491 "Failed"); | |
4492 EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.", | |
4493 "Intentional failure."); | |
4494 } | |
4495 | |
4496 // Tests SUCCEED | |
4497 TEST(MacroTest, SUCCEED) { | |
4498 SUCCEED(); | |
4499 SUCCEED() << "Explicit success."; | |
4500 } | |
4501 | |
4502 | |
4503 // Tests for EXPECT_EQ() and ASSERT_EQ(). | |
4504 // | |
4505 // These tests fail *intentionally*, s.t. the failure messages can be | |
4506 // generated and tested. | |
4507 // | |
4508 // We have different tests for different argument types. | |
4509 | |
4510 // Tests using bool values in {EXPECT|ASSERT}_EQ. | |
4511 TEST(EqAssertionTest, Bool) { | |
4512 EXPECT_EQ(true, true); | |
4513 EXPECT_FATAL_FAILURE({ | |
4514 bool false_value = false; | |
4515 ASSERT_EQ(false_value, true); | |
4516 }, "Value of: true"); | |
4517 } | |
4518 | |
4519 // Tests using int values in {EXPECT|ASSERT}_EQ. | |
4520 TEST(EqAssertionTest, Int) { | |
4521 ASSERT_EQ(32, 32); | |
4522 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33), | |
4523 "33"); | |
4524 } | |
4525 | |
4526 // Tests using time_t values in {EXPECT|ASSERT}_EQ. | |
4527 TEST(EqAssertionTest, Time_T) { | |
4528 EXPECT_EQ(static_cast<time_t>(0), | |
4529 static_cast<time_t>(0)); | |
4530 EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0), | |
4531 static_cast<time_t>(1234)), | |
4532 "1234"); | |
4533 } | |
4534 | |
4535 // Tests using char values in {EXPECT|ASSERT}_EQ. | |
4536 TEST(EqAssertionTest, Char) { | |
4537 ASSERT_EQ('z', 'z'); | |
4538 const char ch = 'b'; | |
4539 EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch), | |
4540 "ch"); | |
4541 EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch), | |
4542 "ch"); | |
4543 } | |
4544 | |
4545 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ. | |
4546 TEST(EqAssertionTest, WideChar) { | |
4547 EXPECT_EQ(L'b', L'b'); | |
4548 | |
4549 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'), | |
4550 "Value of: L'x'\n" | |
4551 " Actual: L'x' (120, 0x78)\n" | |
4552 "Expected: L'\0'\n" | |
4553 "Which is: L'\0' (0, 0x0)"); | |
4554 | |
4555 static wchar_t wchar; | |
4556 wchar = L'b'; | |
4557 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar), | |
4558 "wchar"); | |
4559 wchar = 0x8119; | |
4560 EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar), | |
4561 "Value of: wchar"); | |
4562 } | |
4563 | |
4564 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ. | |
4565 TEST(EqAssertionTest, StdString) { | |
4566 // Compares a const char* to an std::string that has identical | |
4567 // content. | |
4568 ASSERT_EQ("Test", ::std::string("Test")); | |
4569 | |
4570 // Compares two identical std::strings. | |
4571 static const ::std::string str1("A * in the middle"); | |
4572 static const ::std::string str2(str1); | |
4573 EXPECT_EQ(str1, str2); | |
4574 | |
4575 // Compares a const char* to an std::string that has different | |
4576 // content | |
4577 EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")), | |
4578 "::std::string(\"test\")"); | |
4579 | |
4580 // Compares an std::string to a char* that has different content. | |
4581 char* const p1 = const_cast<char*>("foo"); | |
4582 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1), | |
4583 "p1"); | |
4584 | |
4585 // Compares two std::strings that have different contents, one of | |
4586 // which having a NUL character in the middle. This should fail. | |
4587 static ::std::string str3(str1); | |
4588 str3.at(2) = '\0'; | |
4589 EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3), | |
4590 "Value of: str3\n" | |
4591 " Actual: \"A \\0 in the middle\""); | |
4592 } | |
4593 | |
4594 #if GTEST_HAS_STD_WSTRING | |
4595 | |
4596 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ. | |
4597 TEST(EqAssertionTest, StdWideString) { | |
4598 // Compares two identical std::wstrings. | |
4599 const ::std::wstring wstr1(L"A * in the middle"); | |
4600 const ::std::wstring wstr2(wstr1); | |
4601 ASSERT_EQ(wstr1, wstr2); | |
4602 | |
4603 // Compares an std::wstring to a const wchar_t* that has identical | |
4604 // content. | |
4605 const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' }; | |
4606 EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119); | |
4607 | |
4608 // Compares an std::wstring to a const wchar_t* that has different | |
4609 // content. | |
4610 const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' }; | |
4611 EXPECT_NONFATAL_FAILURE({ // NOLINT | |
4612 EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120); | |
4613 }, "kTestX8120"); | |
4614 | |
4615 // Compares two std::wstrings that have different contents, one of | |
4616 // which having a NUL character in the middle. | |
4617 ::std::wstring wstr3(wstr1); | |
4618 wstr3.at(2) = L'\0'; | |
4619 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3), | |
4620 "wstr3"); | |
4621 | |
4622 // Compares a wchar_t* to an std::wstring that has different | |
4623 // content. | |
4624 EXPECT_FATAL_FAILURE({ // NOLINT | |
4625 ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar")); | |
4626 }, ""); | |
4627 } | |
4628 | |
4629 #endif // GTEST_HAS_STD_WSTRING | |
4630 | |
4631 #if GTEST_HAS_GLOBAL_STRING | |
4632 // Tests using ::string values in {EXPECT|ASSERT}_EQ. | |
4633 TEST(EqAssertionTest, GlobalString) { | |
4634 // Compares a const char* to a ::string that has identical content. | |
4635 EXPECT_EQ("Test", ::string("Test")); | |
4636 | |
4637 // Compares two identical ::strings. | |
4638 const ::string str1("A * in the middle"); | |
4639 const ::string str2(str1); | |
4640 ASSERT_EQ(str1, str2); | |
4641 | |
4642 // Compares a ::string to a const char* that has different content. | |
4643 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"), | |
4644 "test"); | |
4645 | |
4646 // Compares two ::strings that have different contents, one of which | |
4647 // having a NUL character in the middle. | |
4648 ::string str3(str1); | |
4649 str3.at(2) = '\0'; | |
4650 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3), | |
4651 "str3"); | |
4652 | |
4653 // Compares a ::string to a char* that has different content. | |
4654 EXPECT_FATAL_FAILURE({ // NOLINT | |
4655 ASSERT_EQ(::string("bar"), const_cast<char*>("foo")); | |
4656 }, ""); | |
4657 } | |
4658 | |
4659 #endif // GTEST_HAS_GLOBAL_STRING | |
4660 | |
4661 #if GTEST_HAS_GLOBAL_WSTRING | |
4662 | |
4663 // Tests using ::wstring values in {EXPECT|ASSERT}_EQ. | |
4664 TEST(EqAssertionTest, GlobalWideString) { | |
4665 // Compares two identical ::wstrings. | |
4666 static const ::wstring wstr1(L"A * in the middle"); | |
4667 static const ::wstring wstr2(wstr1); | |
4668 EXPECT_EQ(wstr1, wstr2); | |
4669 | |
4670 // Compares a const wchar_t* to a ::wstring that has identical content. | |
4671 const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' }; | |
4672 ASSERT_EQ(kTestX8119, ::wstring(kTestX8119)); | |
4673 | |
4674 // Compares a const wchar_t* to a ::wstring that has different | |
4675 // content. | |
4676 const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' }; | |
4677 EXPECT_NONFATAL_FAILURE({ // NOLINT | |
4678 EXPECT_EQ(kTestX8120, ::wstring(kTestX8119)); | |
4679 }, "Test\\x8119"); | |
4680 | |
4681 // Compares a wchar_t* to a ::wstring that has different content. | |
4682 wchar_t* const p1 = const_cast<wchar_t*>(L"foo"); | |
4683 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")), | |
4684 "bar"); | |
4685 | |
4686 // Compares two ::wstrings that have different contents, one of which | |
4687 // having a NUL character in the middle. | |
4688 static ::wstring wstr3; | |
4689 wstr3 = wstr1; | |
4690 wstr3.at(2) = L'\0'; | |
4691 EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3), | |
4692 "wstr3"); | |
4693 } | |
4694 | |
4695 #endif // GTEST_HAS_GLOBAL_WSTRING | |
4696 | |
4697 // Tests using char pointers in {EXPECT|ASSERT}_EQ. | |
4698 TEST(EqAssertionTest, CharPointer) { | |
4699 char* const p0 = NULL; | |
4700 // Only way to get the Nokia compiler to compile the cast | |
4701 // is to have a separate void* variable first. Putting | |
4702 // the two casts on the same line doesn't work, neither does | |
4703 // a direct C-style to char*. | |
4704 void* pv1 = (void*)0x1234; // NOLINT | |
4705 void* pv2 = (void*)0xABC0; // NOLINT | |
4706 char* const p1 = reinterpret_cast<char*>(pv1); | |
4707 char* const p2 = reinterpret_cast<char*>(pv2); | |
4708 ASSERT_EQ(p1, p1); | |
4709 | |
4710 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), | |
4711 "Value of: p2"); | |
4712 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), | |
4713 "p2"); | |
4714 EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234), | |
4715 reinterpret_cast<char*>(0xABC0)), | |
4716 "ABC0"); | |
4717 } | |
4718 | |
4719 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ. | |
4720 TEST(EqAssertionTest, WideCharPointer) { | |
4721 wchar_t* const p0 = NULL; | |
4722 // Only way to get the Nokia compiler to compile the cast | |
4723 // is to have a separate void* variable first. Putting | |
4724 // the two casts on the same line doesn't work, neither does | |
4725 // a direct C-style to char*. | |
4726 void* pv1 = (void*)0x1234; // NOLINT | |
4727 void* pv2 = (void*)0xABC0; // NOLINT | |
4728 wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1); | |
4729 wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2); | |
4730 EXPECT_EQ(p0, p0); | |
4731 | |
4732 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2), | |
4733 "Value of: p2"); | |
4734 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2), | |
4735 "p2"); | |
4736 void* pv3 = (void*)0x1234; // NOLINT | |
4737 void* pv4 = (void*)0xABC0; // NOLINT | |
4738 const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3); | |
4739 const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4); | |
4740 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4), | |
4741 "p4"); | |
4742 } | |
4743 | |
4744 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ. | |
4745 TEST(EqAssertionTest, OtherPointer) { | |
4746 ASSERT_EQ(static_cast<const int*>(NULL), | |
4747 static_cast<const int*>(NULL)); | |
4748 EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL), | |
4749 reinterpret_cast<const int*>(0x1234)), | |
4750 "0x1234"); | |
4751 } | |
4752 | |
4753 // A class that supports binary comparison operators but not streaming. | |
4754 class UnprintableChar { | |
4755 public: | |
4756 explicit UnprintableChar(char ch) : char_(ch) {} | |
4757 | |
4758 bool operator==(const UnprintableChar& rhs) const { | |
4759 return char_ == rhs.char_; | |
4760 } | |
4761 bool operator!=(const UnprintableChar& rhs) const { | |
4762 return char_ != rhs.char_; | |
4763 } | |
4764 bool operator<(const UnprintableChar& rhs) const { | |
4765 return char_ < rhs.char_; | |
4766 } | |
4767 bool operator<=(const UnprintableChar& rhs) const { | |
4768 return char_ <= rhs.char_; | |
4769 } | |
4770 bool operator>(const UnprintableChar& rhs) const { | |
4771 return char_ > rhs.char_; | |
4772 } | |
4773 bool operator>=(const UnprintableChar& rhs) const { | |
4774 return char_ >= rhs.char_; | |
4775 } | |
4776 | |
4777 private: | |
4778 char char_; | |
4779 }; | |
4780 | |
4781 // Tests that ASSERT_EQ() and friends don't require the arguments to | |
4782 // be printable. | |
4783 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) { | |
4784 const UnprintableChar x('x'), y('y'); | |
4785 ASSERT_EQ(x, x); | |
4786 EXPECT_NE(x, y); | |
4787 ASSERT_LT(x, y); | |
4788 EXPECT_LE(x, y); | |
4789 ASSERT_GT(y, x); | |
4790 EXPECT_GE(x, x); | |
4791 | |
4792 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>"); | |
4793 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>"); | |
4794 EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>"); | |
4795 EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>"); | |
4796 EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>"); | |
4797 | |
4798 // Code tested by EXPECT_FATAL_FAILURE cannot reference local | |
4799 // variables, so we have to write UnprintableChar('x') instead of x. | |
4800 #ifndef __BORLANDC__ | |
4801 // ICE's in C++Builder. | |
4802 EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')), | |
4803 "1-byte object <78>"); | |
4804 EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')), | |
4805 "1-byte object <78>"); | |
4806 #endif | |
4807 EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')), | |
4808 "1-byte object <79>"); | |
4809 EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')), | |
4810 "1-byte object <78>"); | |
4811 EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')), | |
4812 "1-byte object <79>"); | |
4813 } | |
4814 | |
4815 // Tests the FRIEND_TEST macro. | |
4816 | |
4817 // This class has a private member we want to test. We will test it | |
4818 // both in a TEST and in a TEST_F. | |
4819 class Foo { | |
4820 public: | |
4821 Foo() {} | |
4822 | |
4823 private: | |
4824 int Bar() const { return 1; } | |
4825 | |
4826 // Declares the friend tests that can access the private member | |
4827 // Bar(). | |
4828 FRIEND_TEST(FRIEND_TEST_Test, TEST); | |
4829 FRIEND_TEST(FRIEND_TEST_Test2, TEST_F); | |
4830 }; | |
4831 | |
4832 // Tests that the FRIEND_TEST declaration allows a TEST to access a | |
4833 // class's private members. This should compile. | |
4834 TEST(FRIEND_TEST_Test, TEST) { | |
4835 ASSERT_EQ(1, Foo().Bar()); | |
4836 } | |
4837 | |
4838 // The fixture needed to test using FRIEND_TEST with TEST_F. | |
4839 class FRIEND_TEST_Test2 : public Test { | |
4840 protected: | |
4841 Foo foo; | |
4842 }; | |
4843 | |
4844 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a | |
4845 // class's private members. This should compile. | |
4846 TEST_F(FRIEND_TEST_Test2, TEST_F) { | |
4847 ASSERT_EQ(1, foo.Bar()); | |
4848 } | |
4849 | |
4850 // Tests the life cycle of Test objects. | |
4851 | |
4852 // The test fixture for testing the life cycle of Test objects. | |
4853 // | |
4854 // This class counts the number of live test objects that uses this | |
4855 // fixture. | |
4856 class TestLifeCycleTest : public Test { | |
4857 protected: | |
4858 // Constructor. Increments the number of test objects that uses | |
4859 // this fixture. | |
4860 TestLifeCycleTest() { count_++; } | |
4861 | |
4862 // Destructor. Decrements the number of test objects that uses this | |
4863 // fixture. | |
4864 ~TestLifeCycleTest() { count_--; } | |
4865 | |
4866 // Returns the number of live test objects that uses this fixture. | |
4867 int count() const { return count_; } | |
4868 | |
4869 private: | |
4870 static int count_; | |
4871 }; | |
4872 | |
4873 int TestLifeCycleTest::count_ = 0; | |
4874 | |
4875 // Tests the life cycle of test objects. | |
4876 TEST_F(TestLifeCycleTest, Test1) { | |
4877 // There should be only one test object in this test case that's | |
4878 // currently alive. | |
4879 ASSERT_EQ(1, count()); | |
4880 } | |
4881 | |
4882 // Tests the life cycle of test objects. | |
4883 TEST_F(TestLifeCycleTest, Test2) { | |
4884 // After Test1 is done and Test2 is started, there should still be | |
4885 // only one live test object, as the object for Test1 should've been | |
4886 // deleted. | |
4887 ASSERT_EQ(1, count()); | |
4888 } | |
4889 | |
4890 } // namespace | |
4891 | |
4892 // Tests that the copy constructor works when it is NOT optimized away by | |
4893 // the compiler. | |
4894 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) { | |
4895 // Checks that the copy constructor doesn't try to dereference NULL pointers | |
4896 // in the source object. | |
4897 AssertionResult r1 = AssertionSuccess(); | |
4898 AssertionResult r2 = r1; | |
4899 // The following line is added to prevent the compiler from optimizing | |
4900 // away the constructor call. | |
4901 r1 << "abc"; | |
4902 | |
4903 AssertionResult r3 = r1; | |
4904 EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1)); | |
4905 EXPECT_STREQ("abc", r1.message()); | |
4906 } | |
4907 | |
4908 // Tests that AssertionSuccess and AssertionFailure construct | |
4909 // AssertionResult objects as expected. | |
4910 TEST(AssertionResultTest, ConstructionWorks) { | |
4911 AssertionResult r1 = AssertionSuccess(); | |
4912 EXPECT_TRUE(r1); | |
4913 EXPECT_STREQ("", r1.message()); | |
4914 | |
4915 AssertionResult r2 = AssertionSuccess() << "abc"; | |
4916 EXPECT_TRUE(r2); | |
4917 EXPECT_STREQ("abc", r2.message()); | |
4918 | |
4919 AssertionResult r3 = AssertionFailure(); | |
4920 EXPECT_FALSE(r3); | |
4921 EXPECT_STREQ("", r3.message()); | |
4922 | |
4923 AssertionResult r4 = AssertionFailure() << "def"; | |
4924 EXPECT_FALSE(r4); | |
4925 EXPECT_STREQ("def", r4.message()); | |
4926 | |
4927 AssertionResult r5 = AssertionFailure(Message() << "ghi"); | |
4928 EXPECT_FALSE(r5); | |
4929 EXPECT_STREQ("ghi", r5.message()); | |
4930 } | |
4931 | |
4932 // Tests that the negation flips the predicate result but keeps the message. | |
4933 TEST(AssertionResultTest, NegationWorks) { | |
4934 AssertionResult r1 = AssertionSuccess() << "abc"; | |
4935 EXPECT_FALSE(!r1); | |
4936 EXPECT_STREQ("abc", (!r1).message()); | |
4937 | |
4938 AssertionResult r2 = AssertionFailure() << "def"; | |
4939 EXPECT_TRUE(!r2); | |
4940 EXPECT_STREQ("def", (!r2).message()); | |
4941 } | |
4942 | |
4943 TEST(AssertionResultTest, StreamingWorks) { | |
4944 AssertionResult r = AssertionSuccess(); | |
4945 r << "abc" << 'd' << 0 << true; | |
4946 EXPECT_STREQ("abcd0true", r.message()); | |
4947 } | |
4948 | |
4949 TEST(AssertionResultTest, CanStreamOstreamManipulators) { | |
4950 AssertionResult r = AssertionSuccess(); | |
4951 r << "Data" << std::endl << std::flush << std::ends << "Will be visible"; | |
4952 EXPECT_STREQ("Data\n\\0Will be visible", r.message()); | |
4953 } | |
4954 | |
4955 // Tests streaming a user type whose definition and operator << are | |
4956 // both in the global namespace. | |
4957 class Base { | |
4958 public: | |
4959 explicit Base(int an_x) : x_(an_x) {} | |
4960 int x() const { return x_; } | |
4961 private: | |
4962 int x_; | |
4963 }; | |
4964 std::ostream& operator<<(std::ostream& os, | |
4965 const Base& val) { | |
4966 return os << val.x(); | |
4967 } | |
4968 std::ostream& operator<<(std::ostream& os, | |
4969 const Base* pointer) { | |
4970 return os << "(" << pointer->x() << ")"; | |
4971 } | |
4972 | |
4973 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) { | |
4974 Message msg; | |
4975 Base a(1); | |
4976 | |
4977 msg << a << &a; // Uses ::operator<<. | |
4978 EXPECT_STREQ("1(1)", msg.GetString().c_str()); | |
4979 } | |
4980 | |
4981 // Tests streaming a user type whose definition and operator<< are | |
4982 // both in an unnamed namespace. | |
4983 namespace { | |
4984 class MyTypeInUnnamedNameSpace : public Base { | |
4985 public: | |
4986 explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {} | |
4987 }; | |
4988 std::ostream& operator<<(std::ostream& os, | |
4989 const MyTypeInUnnamedNameSpace& val) { | |
4990 return os << val.x(); | |
4991 } | |
4992 std::ostream& operator<<(std::ostream& os, | |
4993 const MyTypeInUnnamedNameSpace* pointer) { | |
4994 return os << "(" << pointer->x() << ")"; | |
4995 } | |
4996 } // namespace | |
4997 | |
4998 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) { | |
4999 Message msg; | |
5000 MyTypeInUnnamedNameSpace a(1); | |
5001 | |
5002 msg << a << &a; // Uses <unnamed_namespace>::operator<<. | |
5003 EXPECT_STREQ("1(1)", msg.GetString().c_str()); | |
5004 } | |
5005 | |
5006 // Tests streaming a user type whose definition and operator<< are | |
5007 // both in a user namespace. | |
5008 namespace namespace1 { | |
5009 class MyTypeInNameSpace1 : public Base { | |
5010 public: | |
5011 explicit MyTypeInNameSpace1(int an_x): Base(an_x) {} | |
5012 }; | |
5013 std::ostream& operator<<(std::ostream& os, | |
5014 const MyTypeInNameSpace1& val) { | |
5015 return os << val.x(); | |
5016 } | |
5017 std::ostream& operator<<(std::ostream& os, | |
5018 const MyTypeInNameSpace1* pointer) { | |
5019 return os << "(" << pointer->x() << ")"; | |
5020 } | |
5021 } // namespace namespace1 | |
5022 | |
5023 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) { | |
5024 Message msg; | |
5025 namespace1::MyTypeInNameSpace1 a(1); | |
5026 | |
5027 msg << a << &a; // Uses namespace1::operator<<. | |
5028 EXPECT_STREQ("1(1)", msg.GetString().c_str()); | |
5029 } | |
5030 | |
5031 // Tests streaming a user type whose definition is in a user namespace | |
5032 // but whose operator<< is in the global namespace. | |
5033 namespace namespace2 { | |
5034 class MyTypeInNameSpace2 : public ::Base { | |
5035 public: | |
5036 explicit MyTypeInNameSpace2(int an_x): Base(an_x) {} | |
5037 }; | |
5038 } // namespace namespace2 | |
5039 std::ostream& operator<<(std::ostream& os, | |
5040 const namespace2::MyTypeInNameSpace2& val) { | |
5041 return os << val.x(); | |
5042 } | |
5043 std::ostream& operator<<(std::ostream& os, | |
5044 const namespace2::MyTypeInNameSpace2* pointer) { | |
5045 return os << "(" << pointer->x() << ")"; | |
5046 } | |
5047 | |
5048 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) { | |
5049 Message msg; | |
5050 namespace2::MyTypeInNameSpace2 a(1); | |
5051 | |
5052 msg << a << &a; // Uses ::operator<<. | |
5053 EXPECT_STREQ("1(1)", msg.GetString().c_str()); | |
5054 } | |
5055 | |
5056 // Tests streaming NULL pointers to testing::Message. | |
5057 TEST(MessageTest, NullPointers) { | |
5058 Message msg; | |
5059 char* const p1 = NULL; | |
5060 unsigned char* const p2 = NULL; | |
5061 int* p3 = NULL; | |
5062 double* p4 = NULL; | |
5063 bool* p5 = NULL; | |
5064 Message* p6 = NULL; | |
5065 | |
5066 msg << p1 << p2 << p3 << p4 << p5 << p6; | |
5067 ASSERT_STREQ("(null)(null)(null)(null)(null)(null)", | |
5068 msg.GetString().c_str()); | |
5069 } | |
5070 | |
5071 // Tests streaming wide strings to testing::Message. | |
5072 TEST(MessageTest, WideStrings) { | |
5073 // Streams a NULL of type const wchar_t*. | |
5074 const wchar_t* const_wstr = NULL; | |
5075 EXPECT_STREQ("(null)", | |
5076 (Message() << const_wstr).GetString().c_str()); | |
5077 | |
5078 // Streams a NULL of type wchar_t*. | |
5079 wchar_t* wstr = NULL; | |
5080 EXPECT_STREQ("(null)", | |
5081 (Message() << wstr).GetString().c_str()); | |
5082 | |
5083 // Streams a non-NULL of type const wchar_t*. | |
5084 const_wstr = L"abc\x8119"; | |
5085 EXPECT_STREQ("abc\xe8\x84\x99", | |
5086 (Message() << const_wstr).GetString().c_str()); | |
5087 | |
5088 // Streams a non-NULL of type wchar_t*. | |
5089 wstr = const_cast<wchar_t*>(const_wstr); | |
5090 EXPECT_STREQ("abc\xe8\x84\x99", | |
5091 (Message() << wstr).GetString().c_str()); | |
5092 } | |
5093 | |
5094 | |
5095 // This line tests that we can define tests in the testing namespace. | |
5096 namespace testing { | |
5097 | |
5098 // Tests the TestInfo class. | |
5099 | |
5100 class TestInfoTest : public Test { | |
5101 protected: | |
5102 static const TestInfo* GetTestInfo(const char* test_name) { | |
5103 const TestCase* const test_case = GetUnitTestImpl()-> | |
5104 GetTestCase("TestInfoTest", "", NULL, NULL); | |
5105 | |
5106 for (int i = 0; i < test_case->total_test_count(); ++i) { | |
5107 const TestInfo* const test_info = test_case->GetTestInfo(i); | |
5108 if (strcmp(test_name, test_info->name()) == 0) | |
5109 return test_info; | |
5110 } | |
5111 return NULL; | |
5112 } | |
5113 | |
5114 static const TestResult* GetTestResult( | |
5115 const TestInfo* test_info) { | |
5116 return test_info->result(); | |
5117 } | |
5118 }; | |
5119 | |
5120 // Tests TestInfo::test_case_name() and TestInfo::name(). | |
5121 TEST_F(TestInfoTest, Names) { | |
5122 const TestInfo* const test_info = GetTestInfo("Names"); | |
5123 | |
5124 ASSERT_STREQ("TestInfoTest", test_info->test_case_name()); | |
5125 ASSERT_STREQ("Names", test_info->name()); | |
5126 } | |
5127 | |
5128 // Tests TestInfo::result(). | |
5129 TEST_F(TestInfoTest, result) { | |
5130 const TestInfo* const test_info = GetTestInfo("result"); | |
5131 | |
5132 // Initially, there is no TestPartResult for this test. | |
5133 ASSERT_EQ(0, GetTestResult(test_info)->total_part_count()); | |
5134 | |
5135 // After the previous assertion, there is still none. | |
5136 ASSERT_EQ(0, GetTestResult(test_info)->total_part_count()); | |
5137 } | |
5138 | |
5139 // Tests setting up and tearing down a test case. | |
5140 | |
5141 class SetUpTestCaseTest : public Test { | |
5142 protected: | |
5143 // This will be called once before the first test in this test case | |
5144 // is run. | |
5145 static void SetUpTestCase() { | |
5146 printf("Setting up the test case . . .\n"); | |
5147 | |
5148 // Initializes some shared resource. In this simple example, we | |
5149 // just create a C string. More complex stuff can be done if | |
5150 // desired. | |
5151 shared_resource_ = "123"; | |
5152 | |
5153 // Increments the number of test cases that have been set up. | |
5154 counter_++; | |
5155 | |
5156 // SetUpTestCase() should be called only once. | |
5157 EXPECT_EQ(1, counter_); | |
5158 } | |
5159 | |
5160 // This will be called once after the last test in this test case is | |
5161 // run. | |
5162 static void TearDownTestCase() { | |
5163 printf("Tearing down the test case . . .\n"); | |
5164 | |
5165 // Decrements the number of test cases that have been set up. | |
5166 counter_--; | |
5167 | |
5168 // TearDownTestCase() should be called only once. | |
5169 EXPECT_EQ(0, counter_); | |
5170 | |
5171 // Cleans up the shared resource. | |
5172 shared_resource_ = NULL; | |
5173 } | |
5174 | |
5175 // This will be called before each test in this test case. | |
5176 virtual void SetUp() { | |
5177 // SetUpTestCase() should be called only once, so counter_ should | |
5178 // always be 1. | |
5179 EXPECT_EQ(1, counter_); | |
5180 } | |
5181 | |
5182 // Number of test cases that have been set up. | |
5183 static int counter_; | |
5184 | |
5185 // Some resource to be shared by all tests in this test case. | |
5186 static const char* shared_resource_; | |
5187 }; | |
5188 | |
5189 int SetUpTestCaseTest::counter_ = 0; | |
5190 const char* SetUpTestCaseTest::shared_resource_ = NULL; | |
5191 | |
5192 // A test that uses the shared resource. | |
5193 TEST_F(SetUpTestCaseTest, Test1) { | |
5194 EXPECT_STRNE(NULL, shared_resource_); | |
5195 } | |
5196 | |
5197 // Another test that uses the shared resource. | |
5198 TEST_F(SetUpTestCaseTest, Test2) { | |
5199 EXPECT_STREQ("123", shared_resource_); | |
5200 } | |
5201 | |
5202 // The InitGoogleTestTest test case tests testing::InitGoogleTest(). | |
5203 | |
5204 // The Flags struct stores a copy of all Google Test flags. | |
5205 struct Flags { | |
5206 // Constructs a Flags struct where each flag has its default value. | |
5207 Flags() : also_run_disabled_tests(false), | |
5208 break_on_failure(false), | |
5209 catch_exceptions(false), | |
5210 death_test_use_fork(false), | |
5211 filter(""), | |
5212 list_tests(false), | |
5213 output(""), | |
5214 print_time(true), | |
5215 random_seed(0), | |
5216 repeat(1), | |
5217 shuffle(false), | |
5218 stack_trace_depth(kMaxStackTraceDepth), | |
5219 stream_result_to(""), | |
5220 throw_on_failure(false) {} | |
5221 | |
5222 // Factory methods. | |
5223 | |
5224 // Creates a Flags struct where the gtest_also_run_disabled_tests flag has | |
5225 // the given value. | |
5226 static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) { | |
5227 Flags flags; | |
5228 flags.also_run_disabled_tests = also_run_disabled_tests; | |
5229 return flags; | |
5230 } | |
5231 | |
5232 // Creates a Flags struct where the gtest_break_on_failure flag has | |
5233 // the given value. | |
5234 static Flags BreakOnFailure(bool break_on_failure) { | |
5235 Flags flags; | |
5236 flags.break_on_failure = break_on_failure; | |
5237 return flags; | |
5238 } | |
5239 | |
5240 // Creates a Flags struct where the gtest_catch_exceptions flag has | |
5241 // the given value. | |
5242 static Flags CatchExceptions(bool catch_exceptions) { | |
5243 Flags flags; | |
5244 flags.catch_exceptions = catch_exceptions; | |
5245 return flags; | |
5246 } | |
5247 | |
5248 // Creates a Flags struct where the gtest_death_test_use_fork flag has | |
5249 // the given value. | |
5250 static Flags DeathTestUseFork(bool death_test_use_fork) { | |
5251 Flags flags; | |
5252 flags.death_test_use_fork = death_test_use_fork; | |
5253 return flags; | |
5254 } | |
5255 | |
5256 // Creates a Flags struct where the gtest_filter flag has the given | |
5257 // value. | |
5258 static Flags Filter(const char* filter) { | |
5259 Flags flags; | |
5260 flags.filter = filter; | |
5261 return flags; | |
5262 } | |
5263 | |
5264 // Creates a Flags struct where the gtest_list_tests flag has the | |
5265 // given value. | |
5266 static Flags ListTests(bool list_tests) { | |
5267 Flags flags; | |
5268 flags.list_tests = list_tests; | |
5269 return flags; | |
5270 } | |
5271 | |
5272 // Creates a Flags struct where the gtest_output flag has the given | |
5273 // value. | |
5274 static Flags Output(const char* output) { | |
5275 Flags flags; | |
5276 flags.output = output; | |
5277 return flags; | |
5278 } | |
5279 | |
5280 // Creates a Flags struct where the gtest_print_time flag has the given | |
5281 // value. | |
5282 static Flags PrintTime(bool print_time) { | |
5283 Flags flags; | |
5284 flags.print_time = print_time; | |
5285 return flags; | |
5286 } | |
5287 | |
5288 // Creates a Flags struct where the gtest_random_seed flag has | |
5289 // the given value. | |
5290 static Flags RandomSeed(Int32 random_seed) { | |
5291 Flags flags; | |
5292 flags.random_seed = random_seed; | |
5293 return flags; | |
5294 } | |
5295 | |
5296 // Creates a Flags struct where the gtest_repeat flag has the given | |
5297 // value. | |
5298 static Flags Repeat(Int32 repeat) { | |
5299 Flags flags; | |
5300 flags.repeat = repeat; | |
5301 return flags; | |
5302 } | |
5303 | |
5304 // Creates a Flags struct where the gtest_shuffle flag has | |
5305 // the given value. | |
5306 static Flags Shuffle(bool shuffle) { | |
5307 Flags flags; | |
5308 flags.shuffle = shuffle; | |
5309 return flags; | |
5310 } | |
5311 | |
5312 // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has | |
5313 // the given value. | |
5314 static Flags StackTraceDepth(Int32 stack_trace_depth) { | |
5315 Flags flags; | |
5316 flags.stack_trace_depth = stack_trace_depth; | |
5317 return flags; | |
5318 } | |
5319 | |
5320 // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has | |
5321 // the given value. | |
5322 static Flags StreamResultTo(const char* stream_result_to) { | |
5323 Flags flags; | |
5324 flags.stream_result_to = stream_result_to; | |
5325 return flags; | |
5326 } | |
5327 | |
5328 // Creates a Flags struct where the gtest_throw_on_failure flag has | |
5329 // the given value. | |
5330 static Flags ThrowOnFailure(bool throw_on_failure) { | |
5331 Flags flags; | |
5332 flags.throw_on_failure = throw_on_failure; | |
5333 return flags; | |
5334 } | |
5335 | |
5336 // These fields store the flag values. | |
5337 bool also_run_disabled_tests; | |
5338 bool break_on_failure; | |
5339 bool catch_exceptions; | |
5340 bool death_test_use_fork; | |
5341 const char* filter; | |
5342 bool list_tests; | |
5343 const char* output; | |
5344 bool print_time; | |
5345 Int32 random_seed; | |
5346 Int32 repeat; | |
5347 bool shuffle; | |
5348 Int32 stack_trace_depth; | |
5349 const char* stream_result_to; | |
5350 bool throw_on_failure; | |
5351 }; | |
5352 | |
5353 // Fixture for testing InitGoogleTest(). | |
5354 class InitGoogleTestTest : public Test { | |
5355 protected: | |
5356 // Clears the flags before each test. | |
5357 virtual void SetUp() { | |
5358 GTEST_FLAG(also_run_disabled_tests) = false; | |
5359 GTEST_FLAG(break_on_failure) = false; | |
5360 GTEST_FLAG(catch_exceptions) = false; | |
5361 GTEST_FLAG(death_test_use_fork) = false; | |
5362 GTEST_FLAG(filter) = ""; | |
5363 GTEST_FLAG(list_tests) = false; | |
5364 GTEST_FLAG(output) = ""; | |
5365 GTEST_FLAG(print_time) = true; | |
5366 GTEST_FLAG(random_seed) = 0; | |
5367 GTEST_FLAG(repeat) = 1; | |
5368 GTEST_FLAG(shuffle) = false; | |
5369 GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth; | |
5370 GTEST_FLAG(stream_result_to) = ""; | |
5371 GTEST_FLAG(throw_on_failure) = false; | |
5372 } | |
5373 | |
5374 // Asserts that two narrow or wide string arrays are equal. | |
5375 template <typename CharType> | |
5376 static void AssertStringArrayEq(size_t size1, CharType** array1, | |
5377 size_t size2, CharType** array2) { | |
5378 ASSERT_EQ(size1, size2) << " Array sizes different."; | |
5379 | |
5380 for (size_t i = 0; i != size1; i++) { | |
5381 ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i; | |
5382 } | |
5383 } | |
5384 | |
5385 // Verifies that the flag values match the expected values. | |
5386 static void CheckFlags(const Flags& expected) { | |
5387 EXPECT_EQ(expected.also_run_disabled_tests, | |
5388 GTEST_FLAG(also_run_disabled_tests)); | |
5389 EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure)); | |
5390 EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions)); | |
5391 EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork)); | |
5392 EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str()); | |
5393 EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests)); | |
5394 EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str()); | |
5395 EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time)); | |
5396 EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed)); | |
5397 EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat)); | |
5398 EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle)); | |
5399 EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth)); | |
5400 EXPECT_STREQ(expected.stream_result_to, | |
5401 GTEST_FLAG(stream_result_to).c_str()); | |
5402 EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure)); | |
5403 } | |
5404 | |
5405 // Parses a command line (specified by argc1 and argv1), then | |
5406 // verifies that the flag values are expected and that the | |
5407 // recognized flags are removed from the command line. | |
5408 template <typename CharType> | |
5409 static void TestParsingFlags(int argc1, const CharType** argv1, | |
5410 int argc2, const CharType** argv2, | |
5411 const Flags& expected, bool should_print_help) { | |
5412 const bool saved_help_flag = ::testing::internal::g_help_flag; | |
5413 ::testing::internal::g_help_flag = false; | |
5414 | |
5415 #if GTEST_HAS_STREAM_REDIRECTION | |
5416 CaptureStdout(); | |
5417 #endif | |
5418 | |
5419 // Parses the command line. | |
5420 internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1)); | |
5421 | |
5422 #if GTEST_HAS_STREAM_REDIRECTION | |
5423 const String captured_stdout = GetCapturedStdout(); | |
5424 #endif | |
5425 | |
5426 // Verifies the flag values. | |
5427 CheckFlags(expected); | |
5428 | |
5429 // Verifies that the recognized flags are removed from the command | |
5430 // line. | |
5431 AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2); | |
5432 | |
5433 // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the | |
5434 // help message for the flags it recognizes. | |
5435 EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag); | |
5436 | |
5437 #if GTEST_HAS_STREAM_REDIRECTION | |
5438 const char* const expected_help_fragment = | |
5439 "This program contains tests written using"; | |
5440 if (should_print_help) { | |
5441 EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout); | |
5442 } else { | |
5443 EXPECT_PRED_FORMAT2(IsNotSubstring, | |
5444 expected_help_fragment, captured_stdout); | |
5445 } | |
5446 #endif // GTEST_HAS_STREAM_REDIRECTION | |
5447 | |
5448 ::testing::internal::g_help_flag = saved_help_flag; | |
5449 } | |
5450 | |
5451 // This macro wraps TestParsingFlags s.t. the user doesn't need | |
5452 // to specify the array sizes. | |
5453 | |
5454 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \ | |
5455 TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \ | |
5456 sizeof(argv2)/sizeof(*argv2) - 1, argv2, \ | |
5457 expected, should_print_help) | |
5458 }; | |
5459 | |
5460 // Tests parsing an empty command line. | |
5461 TEST_F(InitGoogleTestTest, Empty) { | |
5462 const char* argv[] = { | |
5463 NULL | |
5464 }; | |
5465 | |
5466 const char* argv2[] = { | |
5467 NULL | |
5468 }; | |
5469 | |
5470 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false); | |
5471 } | |
5472 | |
5473 // Tests parsing a command line that has no flag. | |
5474 TEST_F(InitGoogleTestTest, NoFlag) { | |
5475 const char* argv[] = { | |
5476 "foo.exe", | |
5477 NULL | |
5478 }; | |
5479 | |
5480 const char* argv2[] = { | |
5481 "foo.exe", | |
5482 NULL | |
5483 }; | |
5484 | |
5485 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false); | |
5486 } | |
5487 | |
5488 // Tests parsing a bad --gtest_filter flag. | |
5489 TEST_F(InitGoogleTestTest, FilterBad) { | |
5490 const char* argv[] = { | |
5491 "foo.exe", | |
5492 "--gtest_filter", | |
5493 NULL | |
5494 }; | |
5495 | |
5496 const char* argv2[] = { | |
5497 "foo.exe", | |
5498 "--gtest_filter", | |
5499 NULL | |
5500 }; | |
5501 | |
5502 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true); | |
5503 } | |
5504 | |
5505 // Tests parsing an empty --gtest_filter flag. | |
5506 TEST_F(InitGoogleTestTest, FilterEmpty) { | |
5507 const char* argv[] = { | |
5508 "foo.exe", | |
5509 "--gtest_filter=", | |
5510 NULL | |
5511 }; | |
5512 | |
5513 const char* argv2[] = { | |
5514 "foo.exe", | |
5515 NULL | |
5516 }; | |
5517 | |
5518 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false); | |
5519 } | |
5520 | |
5521 // Tests parsing a non-empty --gtest_filter flag. | |
5522 TEST_F(InitGoogleTestTest, FilterNonEmpty) { | |
5523 const char* argv[] = { | |
5524 "foo.exe", | |
5525 "--gtest_filter=abc", | |
5526 NULL | |
5527 }; | |
5528 | |
5529 const char* argv2[] = { | |
5530 "foo.exe", | |
5531 NULL | |
5532 }; | |
5533 | |
5534 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false); | |
5535 } | |
5536 | |
5537 // Tests parsing --gtest_break_on_failure. | |
5538 TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) { | |
5539 const char* argv[] = { | |
5540 "foo.exe", | |
5541 "--gtest_break_on_failure", | |
5542 NULL | |
5543 }; | |
5544 | |
5545 const char* argv2[] = { | |
5546 "foo.exe", | |
5547 NULL | |
5548 }; | |
5549 | |
5550 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false); | |
5551 } | |
5552 | |
5553 // Tests parsing --gtest_break_on_failure=0. | |
5554 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) { | |
5555 const char* argv[] = { | |
5556 "foo.exe", | |
5557 "--gtest_break_on_failure=0", | |
5558 NULL | |
5559 }; | |
5560 | |
5561 const char* argv2[] = { | |
5562 "foo.exe", | |
5563 NULL | |
5564 }; | |
5565 | |
5566 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false); | |
5567 } | |
5568 | |
5569 // Tests parsing --gtest_break_on_failure=f. | |
5570 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) { | |
5571 const char* argv[] = { | |
5572 "foo.exe", | |
5573 "--gtest_break_on_failure=f", | |
5574 NULL | |
5575 }; | |
5576 | |
5577 const char* argv2[] = { | |
5578 "foo.exe", | |
5579 NULL | |
5580 }; | |
5581 | |
5582 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false); | |
5583 } | |
5584 | |
5585 // Tests parsing --gtest_break_on_failure=F. | |
5586 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) { | |
5587 const char* argv[] = { | |
5588 "foo.exe", | |
5589 "--gtest_break_on_failure=F", | |
5590 NULL | |
5591 }; | |
5592 | |
5593 const char* argv2[] = { | |
5594 "foo.exe", | |
5595 NULL | |
5596 }; | |
5597 | |
5598 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false); | |
5599 } | |
5600 | |
5601 // Tests parsing a --gtest_break_on_failure flag that has a "true" | |
5602 // definition. | |
5603 TEST_F(InitGoogleTestTest, BreakOnFailureTrue) { | |
5604 const char* argv[] = { | |
5605 "foo.exe", | |
5606 "--gtest_break_on_failure=1", | |
5607 NULL | |
5608 }; | |
5609 | |
5610 const char* argv2[] = { | |
5611 "foo.exe", | |
5612 NULL | |
5613 }; | |
5614 | |
5615 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false); | |
5616 } | |
5617 | |
5618 // Tests parsing --gtest_catch_exceptions. | |
5619 TEST_F(InitGoogleTestTest, CatchExceptions) { | |
5620 const char* argv[] = { | |
5621 "foo.exe", | |
5622 "--gtest_catch_exceptions", | |
5623 NULL | |
5624 }; | |
5625 | |
5626 const char* argv2[] = { | |
5627 "foo.exe", | |
5628 NULL | |
5629 }; | |
5630 | |
5631 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false); | |
5632 } | |
5633 | |
5634 // Tests parsing --gtest_death_test_use_fork. | |
5635 TEST_F(InitGoogleTestTest, DeathTestUseFork) { | |
5636 const char* argv[] = { | |
5637 "foo.exe", | |
5638 "--gtest_death_test_use_fork", | |
5639 NULL | |
5640 }; | |
5641 | |
5642 const char* argv2[] = { | |
5643 "foo.exe", | |
5644 NULL | |
5645 }; | |
5646 | |
5647 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false); | |
5648 } | |
5649 | |
5650 // Tests having the same flag twice with different values. The | |
5651 // expected behavior is that the one coming last takes precedence. | |
5652 TEST_F(InitGoogleTestTest, DuplicatedFlags) { | |
5653 const char* argv[] = { | |
5654 "foo.exe", | |
5655 "--gtest_filter=a", | |
5656 "--gtest_filter=b", | |
5657 NULL | |
5658 }; | |
5659 | |
5660 const char* argv2[] = { | |
5661 "foo.exe", | |
5662 NULL | |
5663 }; | |
5664 | |
5665 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false); | |
5666 } | |
5667 | |
5668 // Tests having an unrecognized flag on the command line. | |
5669 TEST_F(InitGoogleTestTest, UnrecognizedFlag) { | |
5670 const char* argv[] = { | |
5671 "foo.exe", | |
5672 "--gtest_break_on_failure", | |
5673 "bar", // Unrecognized by Google Test. | |
5674 "--gtest_filter=b", | |
5675 NULL | |
5676 }; | |
5677 | |
5678 const char* argv2[] = { | |
5679 "foo.exe", | |
5680 "bar", | |
5681 NULL | |
5682 }; | |
5683 | |
5684 Flags flags; | |
5685 flags.break_on_failure = true; | |
5686 flags.filter = "b"; | |
5687 GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false); | |
5688 } | |
5689 | |
5690 // Tests having a --gtest_list_tests flag | |
5691 TEST_F(InitGoogleTestTest, ListTestsFlag) { | |
5692 const char* argv[] = { | |
5693 "foo.exe", | |
5694 "--gtest_list_tests", | |
5695 NULL | |
5696 }; | |
5697 | |
5698 const char* argv2[] = { | |
5699 "foo.exe", | |
5700 NULL | |
5701 }; | |
5702 | |
5703 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false); | |
5704 } | |
5705 | |
5706 // Tests having a --gtest_list_tests flag with a "true" value | |
5707 TEST_F(InitGoogleTestTest, ListTestsTrue) { | |
5708 const char* argv[] = { | |
5709 "foo.exe", | |
5710 "--gtest_list_tests=1", | |
5711 NULL | |
5712 }; | |
5713 | |
5714 const char* argv2[] = { | |
5715 "foo.exe", | |
5716 NULL | |
5717 }; | |
5718 | |
5719 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false); | |
5720 } | |
5721 | |
5722 // Tests having a --gtest_list_tests flag with a "false" value | |
5723 TEST_F(InitGoogleTestTest, ListTestsFalse) { | |
5724 const char* argv[] = { | |
5725 "foo.exe", | |
5726 "--gtest_list_tests=0", | |
5727 NULL | |
5728 }; | |
5729 | |
5730 const char* argv2[] = { | |
5731 "foo.exe", | |
5732 NULL | |
5733 }; | |
5734 | |
5735 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false); | |
5736 } | |
5737 | |
5738 // Tests parsing --gtest_list_tests=f. | |
5739 TEST_F(InitGoogleTestTest, ListTestsFalse_f) { | |
5740 const char* argv[] = { | |
5741 "foo.exe", | |
5742 "--gtest_list_tests=f", | |
5743 NULL | |
5744 }; | |
5745 | |
5746 const char* argv2[] = { | |
5747 "foo.exe", | |
5748 NULL | |
5749 }; | |
5750 | |
5751 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false); | |
5752 } | |
5753 | |
5754 // Tests parsing --gtest_list_tests=F. | |
5755 TEST_F(InitGoogleTestTest, ListTestsFalse_F) { | |
5756 const char* argv[] = { | |
5757 "foo.exe", | |
5758 "--gtest_list_tests=F", | |
5759 NULL | |
5760 }; | |
5761 | |
5762 const char* argv2[] = { | |
5763 "foo.exe", | |
5764 NULL | |
5765 }; | |
5766 | |
5767 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false); | |
5768 } | |
5769 | |
5770 // Tests parsing --gtest_output (invalid). | |
5771 TEST_F(InitGoogleTestTest, OutputEmpty) { | |
5772 const char* argv[] = { | |
5773 "foo.exe", | |
5774 "--gtest_output", | |
5775 NULL | |
5776 }; | |
5777 | |
5778 const char* argv2[] = { | |
5779 "foo.exe", | |
5780 "--gtest_output", | |
5781 NULL | |
5782 }; | |
5783 | |
5784 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true); | |
5785 } | |
5786 | |
5787 // Tests parsing --gtest_output=xml | |
5788 TEST_F(InitGoogleTestTest, OutputXml) { | |
5789 const char* argv[] = { | |
5790 "foo.exe", | |
5791 "--gtest_output=xml", | |
5792 NULL | |
5793 }; | |
5794 | |
5795 const char* argv2[] = { | |
5796 "foo.exe", | |
5797 NULL | |
5798 }; | |
5799 | |
5800 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false); | |
5801 } | |
5802 | |
5803 // Tests parsing --gtest_output=xml:file | |
5804 TEST_F(InitGoogleTestTest, OutputXmlFile) { | |
5805 const char* argv[] = { | |
5806 "foo.exe", | |
5807 "--gtest_output=xml:file", | |
5808 NULL | |
5809 }; | |
5810 | |
5811 const char* argv2[] = { | |
5812 "foo.exe", | |
5813 NULL | |
5814 }; | |
5815 | |
5816 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false); | |
5817 } | |
5818 | |
5819 // Tests parsing --gtest_output=xml:directory/path/ | |
5820 TEST_F(InitGoogleTestTest, OutputXmlDirectory) { | |
5821 const char* argv[] = { | |
5822 "foo.exe", | |
5823 "--gtest_output=xml:directory/path/", | |
5824 NULL | |
5825 }; | |
5826 | |
5827 const char* argv2[] = { | |
5828 "foo.exe", | |
5829 NULL | |
5830 }; | |
5831 | |
5832 GTEST_TEST_PARSING_FLAGS_(argv, argv2, | |
5833 Flags::Output("xml:directory/path/"), false); | |
5834 } | |
5835 | |
5836 // Tests having a --gtest_print_time flag | |
5837 TEST_F(InitGoogleTestTest, PrintTimeFlag) { | |
5838 const char* argv[] = { | |
5839 "foo.exe", | |
5840 "--gtest_print_time", | |
5841 NULL | |
5842 }; | |
5843 | |
5844 const char* argv2[] = { | |
5845 "foo.exe", | |
5846 NULL | |
5847 }; | |
5848 | |
5849 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false); | |
5850 } | |
5851 | |
5852 // Tests having a --gtest_print_time flag with a "true" value | |
5853 TEST_F(InitGoogleTestTest, PrintTimeTrue) { | |
5854 const char* argv[] = { | |
5855 "foo.exe", | |
5856 "--gtest_print_time=1", | |
5857 NULL | |
5858 }; | |
5859 | |
5860 const char* argv2[] = { | |
5861 "foo.exe", | |
5862 NULL | |
5863 }; | |
5864 | |
5865 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false); | |
5866 } | |
5867 | |
5868 // Tests having a --gtest_print_time flag with a "false" value | |
5869 TEST_F(InitGoogleTestTest, PrintTimeFalse) { | |
5870 const char* argv[] = { | |
5871 "foo.exe", | |
5872 "--gtest_print_time=0", | |
5873 NULL | |
5874 }; | |
5875 | |
5876 const char* argv2[] = { | |
5877 "foo.exe", | |
5878 NULL | |
5879 }; | |
5880 | |
5881 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false); | |
5882 } | |
5883 | |
5884 // Tests parsing --gtest_print_time=f. | |
5885 TEST_F(InitGoogleTestTest, PrintTimeFalse_f) { | |
5886 const char* argv[] = { | |
5887 "foo.exe", | |
5888 "--gtest_print_time=f", | |
5889 NULL | |
5890 }; | |
5891 | |
5892 const char* argv2[] = { | |
5893 "foo.exe", | |
5894 NULL | |
5895 }; | |
5896 | |
5897 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false); | |
5898 } | |
5899 | |
5900 // Tests parsing --gtest_print_time=F. | |
5901 TEST_F(InitGoogleTestTest, PrintTimeFalse_F) { | |
5902 const char* argv[] = { | |
5903 "foo.exe", | |
5904 "--gtest_print_time=F", | |
5905 NULL | |
5906 }; | |
5907 | |
5908 const char* argv2[] = { | |
5909 "foo.exe", | |
5910 NULL | |
5911 }; | |
5912 | |
5913 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false); | |
5914 } | |
5915 | |
5916 // Tests parsing --gtest_random_seed=number | |
5917 TEST_F(InitGoogleTestTest, RandomSeed) { | |
5918 const char* argv[] = { | |
5919 "foo.exe", | |
5920 "--gtest_random_seed=1000", | |
5921 NULL | |
5922 }; | |
5923 | |
5924 const char* argv2[] = { | |
5925 "foo.exe", | |
5926 NULL | |
5927 }; | |
5928 | |
5929 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false); | |
5930 } | |
5931 | |
5932 // Tests parsing --gtest_repeat=number | |
5933 TEST_F(InitGoogleTestTest, Repeat) { | |
5934 const char* argv[] = { | |
5935 "foo.exe", | |
5936 "--gtest_repeat=1000", | |
5937 NULL | |
5938 }; | |
5939 | |
5940 const char* argv2[] = { | |
5941 "foo.exe", | |
5942 NULL | |
5943 }; | |
5944 | |
5945 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false); | |
5946 } | |
5947 | |
5948 // Tests having a --gtest_also_run_disabled_tests flag | |
5949 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) { | |
5950 const char* argv[] = { | |
5951 "foo.exe", | |
5952 "--gtest_also_run_disabled_tests", | |
5953 NULL | |
5954 }; | |
5955 | |
5956 const char* argv2[] = { | |
5957 "foo.exe", | |
5958 NULL | |
5959 }; | |
5960 | |
5961 GTEST_TEST_PARSING_FLAGS_(argv, argv2, | |
5962 Flags::AlsoRunDisabledTests(true), false); | |
5963 } | |
5964 | |
5965 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value | |
5966 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) { | |
5967 const char* argv[] = { | |
5968 "foo.exe", | |
5969 "--gtest_also_run_disabled_tests=1", | |
5970 NULL | |
5971 }; | |
5972 | |
5973 const char* argv2[] = { | |
5974 "foo.exe", | |
5975 NULL | |
5976 }; | |
5977 | |
5978 GTEST_TEST_PARSING_FLAGS_(argv, argv2, | |
5979 Flags::AlsoRunDisabledTests(true), false); | |
5980 } | |
5981 | |
5982 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value | |
5983 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) { | |
5984 const char* argv[] = { | |
5985 "foo.exe", | |
5986 "--gtest_also_run_disabled_tests=0", | |
5987 NULL | |
5988 }; | |
5989 | |
5990 const char* argv2[] = { | |
5991 "foo.exe", | |
5992 NULL | |
5993 }; | |
5994 | |
5995 GTEST_TEST_PARSING_FLAGS_(argv, argv2, | |
5996 Flags::AlsoRunDisabledTests(false), false); | |
5997 } | |
5998 | |
5999 // Tests parsing --gtest_shuffle. | |
6000 TEST_F(InitGoogleTestTest, ShuffleWithoutValue) { | |
6001 const char* argv[] = { | |
6002 "foo.exe", | |
6003 "--gtest_shuffle", | |
6004 NULL | |
6005 }; | |
6006 | |
6007 const char* argv2[] = { | |
6008 "foo.exe", | |
6009 NULL | |
6010 }; | |
6011 | |
6012 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false); | |
6013 } | |
6014 | |
6015 // Tests parsing --gtest_shuffle=0. | |
6016 TEST_F(InitGoogleTestTest, ShuffleFalse_0) { | |
6017 const char* argv[] = { | |
6018 "foo.exe", | |
6019 "--gtest_shuffle=0", | |
6020 NULL | |
6021 }; | |
6022 | |
6023 const char* argv2[] = { | |
6024 "foo.exe", | |
6025 NULL | |
6026 }; | |
6027 | |
6028 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false); | |
6029 } | |
6030 | |
6031 // Tests parsing a --gtest_shuffle flag that has a "true" | |
6032 // definition. | |
6033 TEST_F(InitGoogleTestTest, ShuffleTrue) { | |
6034 const char* argv[] = { | |
6035 "foo.exe", | |
6036 "--gtest_shuffle=1", | |
6037 NULL | |
6038 }; | |
6039 | |
6040 const char* argv2[] = { | |
6041 "foo.exe", | |
6042 NULL | |
6043 }; | |
6044 | |
6045 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false); | |
6046 } | |
6047 | |
6048 // Tests parsing --gtest_stack_trace_depth=number. | |
6049 TEST_F(InitGoogleTestTest, StackTraceDepth) { | |
6050 const char* argv[] = { | |
6051 "foo.exe", | |
6052 "--gtest_stack_trace_depth=5", | |
6053 NULL | |
6054 }; | |
6055 | |
6056 const char* argv2[] = { | |
6057 "foo.exe", | |
6058 NULL | |
6059 }; | |
6060 | |
6061 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false); | |
6062 } | |
6063 | |
6064 TEST_F(InitGoogleTestTest, StreamResultTo) { | |
6065 const char* argv[] = { | |
6066 "foo.exe", | |
6067 "--gtest_stream_result_to=localhost:1234", | |
6068 NULL | |
6069 }; | |
6070 | |
6071 const char* argv2[] = { | |
6072 "foo.exe", | |
6073 NULL | |
6074 }; | |
6075 | |
6076 GTEST_TEST_PARSING_FLAGS_( | |
6077 argv, argv2, Flags::StreamResultTo("localhost:1234"), false); | |
6078 } | |
6079 | |
6080 // Tests parsing --gtest_throw_on_failure. | |
6081 TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) { | |
6082 const char* argv[] = { | |
6083 "foo.exe", | |
6084 "--gtest_throw_on_failure", | |
6085 NULL | |
6086 }; | |
6087 | |
6088 const char* argv2[] = { | |
6089 "foo.exe", | |
6090 NULL | |
6091 }; | |
6092 | |
6093 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false); | |
6094 } | |
6095 | |
6096 // Tests parsing --gtest_throw_on_failure=0. | |
6097 TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) { | |
6098 const char* argv[] = { | |
6099 "foo.exe", | |
6100 "--gtest_throw_on_failure=0", | |
6101 NULL | |
6102 }; | |
6103 | |
6104 const char* argv2[] = { | |
6105 "foo.exe", | |
6106 NULL | |
6107 }; | |
6108 | |
6109 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false); | |
6110 } | |
6111 | |
6112 // Tests parsing a --gtest_throw_on_failure flag that has a "true" | |
6113 // definition. | |
6114 TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) { | |
6115 const char* argv[] = { | |
6116 "foo.exe", | |
6117 "--gtest_throw_on_failure=1", | |
6118 NULL | |
6119 }; | |
6120 | |
6121 const char* argv2[] = { | |
6122 "foo.exe", | |
6123 NULL | |
6124 }; | |
6125 | |
6126 GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false); | |
6127 } | |
6128 | |
6129 #if GTEST_OS_WINDOWS | |
6130 // Tests parsing wide strings. | |
6131 TEST_F(InitGoogleTestTest, WideStrings) { | |
6132 const wchar_t* argv[] = { | |
6133 L"foo.exe", | |
6134 L"--gtest_filter=Foo*", | |
6135 L"--gtest_list_tests=1", | |
6136 L"--gtest_break_on_failure", | |
6137 L"--non_gtest_flag", | |
6138 NULL | |
6139 }; | |
6140 | |
6141 const wchar_t* argv2[] = { | |
6142 L"foo.exe", | |
6143 L"--non_gtest_flag", | |
6144 NULL | |
6145 }; | |
6146 | |
6147 Flags expected_flags; | |
6148 expected_flags.break_on_failure = true; | |
6149 expected_flags.filter = "Foo*"; | |
6150 expected_flags.list_tests = true; | |
6151 | |
6152 GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false); | |
6153 } | |
6154 #endif // GTEST_OS_WINDOWS | |
6155 | |
6156 // Tests current_test_info() in UnitTest. | |
6157 class CurrentTestInfoTest : public Test { | |
6158 protected: | |
6159 // Tests that current_test_info() returns NULL before the first test in | |
6160 // the test case is run. | |
6161 static void SetUpTestCase() { | |
6162 // There should be no tests running at this point. | |
6163 const TestInfo* test_info = | |
6164 UnitTest::GetInstance()->current_test_info(); | |
6165 EXPECT_TRUE(test_info == NULL) | |
6166 << "There should be no tests running at this point."; | |
6167 } | |
6168 | |
6169 // Tests that current_test_info() returns NULL after the last test in | |
6170 // the test case has run. | |
6171 static void TearDownTestCase() { | |
6172 const TestInfo* test_info = | |
6173 UnitTest::GetInstance()->current_test_info(); | |
6174 EXPECT_TRUE(test_info == NULL) | |
6175 << "There should be no tests running at this point."; | |
6176 } | |
6177 }; | |
6178 | |
6179 // Tests that current_test_info() returns TestInfo for currently running | |
6180 // test by checking the expected test name against the actual one. | |
6181 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) { | |
6182 const TestInfo* test_info = | |
6183 UnitTest::GetInstance()->current_test_info(); | |
6184 ASSERT_TRUE(NULL != test_info) | |
6185 << "There is a test running so we should have a valid TestInfo."; | |
6186 EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name()) | |
6187 << "Expected the name of the currently running test case."; | |
6188 EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name()) | |
6189 << "Expected the name of the currently running test."; | |
6190 } | |
6191 | |
6192 // Tests that current_test_info() returns TestInfo for currently running | |
6193 // test by checking the expected test name against the actual one. We | |
6194 // use this test to see that the TestInfo object actually changed from | |
6195 // the previous invocation. | |
6196 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) { | |
6197 const TestInfo* test_info = | |
6198 UnitTest::GetInstance()->current_test_info(); | |
6199 ASSERT_TRUE(NULL != test_info) | |
6200 << "There is a test running so we should have a valid TestInfo."; | |
6201 EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name()) | |
6202 << "Expected the name of the currently running test case."; | |
6203 EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name()) | |
6204 << "Expected the name of the currently running test."; | |
6205 } | |
6206 | |
6207 } // namespace testing | |
6208 | |
6209 // These two lines test that we can define tests in a namespace that | |
6210 // has the name "testing" and is nested in another namespace. | |
6211 namespace my_namespace { | |
6212 namespace testing { | |
6213 | |
6214 // Makes sure that TEST knows to use ::testing::Test instead of | |
6215 // ::my_namespace::testing::Test. | |
6216 class Test {}; | |
6217 | |
6218 // Makes sure that an assertion knows to use ::testing::Message instead of | |
6219 // ::my_namespace::testing::Message. | |
6220 class Message {}; | |
6221 | |
6222 // Makes sure that an assertion knows to use | |
6223 // ::testing::AssertionResult instead of | |
6224 // ::my_namespace::testing::AssertionResult. | |
6225 class AssertionResult {}; | |
6226 | |
6227 // Tests that an assertion that should succeed works as expected. | |
6228 TEST(NestedTestingNamespaceTest, Success) { | |
6229 EXPECT_EQ(1, 1) << "This shouldn't fail."; | |
6230 } | |
6231 | |
6232 // Tests that an assertion that should fail works as expected. | |
6233 TEST(NestedTestingNamespaceTest, Failure) { | |
6234 EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.", | |
6235 "This failure is expected."); | |
6236 } | |
6237 | |
6238 } // namespace testing | |
6239 } // namespace my_namespace | |
6240 | |
6241 // Tests that one can call superclass SetUp and TearDown methods-- | |
6242 // that is, that they are not private. | |
6243 // No tests are based on this fixture; the test "passes" if it compiles | |
6244 // successfully. | |
6245 class ProtectedFixtureMethodsTest : public Test { | |
6246 protected: | |
6247 virtual void SetUp() { | |
6248 Test::SetUp(); | |
6249 } | |
6250 virtual void TearDown() { | |
6251 Test::TearDown(); | |
6252 } | |
6253 }; | |
6254 | |
6255 // StreamingAssertionsTest tests the streaming versions of a representative | |
6256 // sample of assertions. | |
6257 TEST(StreamingAssertionsTest, Unconditional) { | |
6258 SUCCEED() << "expected success"; | |
6259 EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure", | |
6260 "expected failure"); | |
6261 EXPECT_FATAL_FAILURE(FAIL() << "expected failure", | |
6262 "expected failure"); | |
6263 } | |
6264 | |
6265 #ifdef __BORLANDC__ | |
6266 // Silences warnings: "Condition is always true", "Unreachable code" | |
6267 # pragma option push -w-ccc -w-rch | |
6268 #endif | |
6269 | |
6270 TEST(StreamingAssertionsTest, Truth) { | |
6271 EXPECT_TRUE(true) << "unexpected failure"; | |
6272 ASSERT_TRUE(true) << "unexpected failure"; | |
6273 EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure", | |
6274 "expected failure"); | |
6275 EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure", | |
6276 "expected failure"); | |
6277 } | |
6278 | |
6279 TEST(StreamingAssertionsTest, Truth2) { | |
6280 EXPECT_FALSE(false) << "unexpected failure"; | |
6281 ASSERT_FALSE(false) << "unexpected failure"; | |
6282 EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure", | |
6283 "expected failure"); | |
6284 EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure", | |
6285 "expected failure"); | |
6286 } | |
6287 | |
6288 #ifdef __BORLANDC__ | |
6289 // Restores warnings after previous "#pragma option push" supressed them | |
6290 # pragma option pop | |
6291 #endif | |
6292 | |
6293 TEST(StreamingAssertionsTest, IntegerEquals) { | |
6294 EXPECT_EQ(1, 1) << "unexpected failure"; | |
6295 ASSERT_EQ(1, 1) << "unexpected failure"; | |
6296 EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure", | |
6297 "expected failure"); | |
6298 EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure", | |
6299 "expected failure"); | |
6300 } | |
6301 | |
6302 TEST(StreamingAssertionsTest, IntegerLessThan) { | |
6303 EXPECT_LT(1, 2) << "unexpected failure"; | |
6304 ASSERT_LT(1, 2) << "unexpected failure"; | |
6305 EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure", | |
6306 "expected failure"); | |
6307 EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure", | |
6308 "expected failure"); | |
6309 } | |
6310 | |
6311 TEST(StreamingAssertionsTest, StringsEqual) { | |
6312 EXPECT_STREQ("foo", "foo") << "unexpected failure"; | |
6313 ASSERT_STREQ("foo", "foo") << "unexpected failure"; | |
6314 EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure", | |
6315 "expected failure"); | |
6316 EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure", | |
6317 "expected failure"); | |
6318 } | |
6319 | |
6320 TEST(StreamingAssertionsTest, StringsNotEqual) { | |
6321 EXPECT_STRNE("foo", "bar") << "unexpected failure"; | |
6322 ASSERT_STRNE("foo", "bar") << "unexpected failure"; | |
6323 EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure", | |
6324 "expected failure"); | |
6325 EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure", | |
6326 "expected failure"); | |
6327 } | |
6328 | |
6329 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) { | |
6330 EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure"; | |
6331 ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure"; | |
6332 EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure", | |
6333 "expected failure"); | |
6334 EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure", | |
6335 "expected failure"); | |
6336 } | |
6337 | |
6338 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) { | |
6339 EXPECT_STRCASENE("foo", "bar") << "unexpected failure"; | |
6340 ASSERT_STRCASENE("foo", "bar") << "unexpected failure"; | |
6341 EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure", | |
6342 "expected failure"); | |
6343 EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure", | |
6344 "expected failure"); | |
6345 } | |
6346 | |
6347 TEST(StreamingAssertionsTest, FloatingPointEquals) { | |
6348 EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure"; | |
6349 ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure"; | |
6350 EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure", | |
6351 "expected failure"); | |
6352 EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure", | |
6353 "expected failure"); | |
6354 } | |
6355 | |
6356 #if GTEST_HAS_EXCEPTIONS | |
6357 | |
6358 TEST(StreamingAssertionsTest, Throw) { | |
6359 EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure"; | |
6360 ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure"; | |
6361 EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) << | |
6362 "expected failure", "expected failure"); | |
6363 EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) << | |
6364 "expected failure", "expected failure"); | |
6365 } | |
6366 | |
6367 TEST(StreamingAssertionsTest, NoThrow) { | |
6368 EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure"; | |
6369 ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure"; | |
6370 EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) << | |
6371 "expected failure", "expected failure"); | |
6372 EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) << | |
6373 "expected failure", "expected failure"); | |
6374 } | |
6375 | |
6376 TEST(StreamingAssertionsTest, AnyThrow) { | |
6377 EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure"; | |
6378 ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure"; | |
6379 EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) << | |
6380 "expected failure", "expected failure"); | |
6381 EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) << | |
6382 "expected failure", "expected failure"); | |
6383 } | |
6384 | |
6385 #endif // GTEST_HAS_EXCEPTIONS | |
6386 | |
6387 // Tests that Google Test correctly decides whether to use colors in the output. | |
6388 | |
6389 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) { | |
6390 GTEST_FLAG(color) = "yes"; | |
6391 | |
6392 SetEnv("TERM", "xterm"); // TERM supports colors. | |
6393 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. | |
6394 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. | |
6395 | |
6396 SetEnv("TERM", "dumb"); // TERM doesn't support colors. | |
6397 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. | |
6398 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. | |
6399 } | |
6400 | |
6401 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) { | |
6402 SetEnv("TERM", "dumb"); // TERM doesn't support colors. | |
6403 | |
6404 GTEST_FLAG(color) = "True"; | |
6405 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. | |
6406 | |
6407 GTEST_FLAG(color) = "t"; | |
6408 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. | |
6409 | |
6410 GTEST_FLAG(color) = "1"; | |
6411 EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY. | |
6412 } | |
6413 | |
6414 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) { | |
6415 GTEST_FLAG(color) = "no"; | |
6416 | |
6417 SetEnv("TERM", "xterm"); // TERM supports colors. | |
6418 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. | |
6419 EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY. | |
6420 | |
6421 SetEnv("TERM", "dumb"); // TERM doesn't support colors. | |
6422 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. | |
6423 EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY. | |
6424 } | |
6425 | |
6426 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) { | |
6427 SetEnv("TERM", "xterm"); // TERM supports colors. | |
6428 | |
6429 GTEST_FLAG(color) = "F"; | |
6430 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. | |
6431 | |
6432 GTEST_FLAG(color) = "0"; | |
6433 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. | |
6434 | |
6435 GTEST_FLAG(color) = "unknown"; | |
6436 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. | |
6437 } | |
6438 | |
6439 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) { | |
6440 GTEST_FLAG(color) = "auto"; | |
6441 | |
6442 SetEnv("TERM", "xterm"); // TERM supports colors. | |
6443 EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY. | |
6444 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. | |
6445 } | |
6446 | |
6447 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) { | |
6448 GTEST_FLAG(color) = "auto"; | |
6449 | |
6450 #if GTEST_OS_WINDOWS | |
6451 // On Windows, we ignore the TERM variable as it's usually not set. | |
6452 | |
6453 SetEnv("TERM", "dumb"); | |
6454 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. | |
6455 | |
6456 SetEnv("TERM", ""); | |
6457 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. | |
6458 | |
6459 SetEnv("TERM", "xterm"); | |
6460 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. | |
6461 #else | |
6462 // On non-Windows platforms, we rely on TERM to determine if the | |
6463 // terminal supports colors. | |
6464 | |
6465 SetEnv("TERM", "dumb"); // TERM doesn't support colors. | |
6466 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. | |
6467 | |
6468 SetEnv("TERM", "emacs"); // TERM doesn't support colors. | |
6469 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. | |
6470 | |
6471 SetEnv("TERM", "vt100"); // TERM doesn't support colors. | |
6472 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. | |
6473 | |
6474 SetEnv("TERM", "xterm-mono"); // TERM doesn't support colors. | |
6475 EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY. | |
6476 | |
6477 SetEnv("TERM", "xterm"); // TERM supports colors. | |
6478 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. | |
6479 | |
6480 SetEnv("TERM", "xterm-color"); // TERM supports colors. | |
6481 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. | |
6482 | |
6483 SetEnv("TERM", "xterm-256color"); // TERM supports colors. | |
6484 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. | |
6485 | |
6486 SetEnv("TERM", "screen"); // TERM supports colors. | |
6487 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. | |
6488 | |
6489 SetEnv("TERM", "linux"); // TERM supports colors. | |
6490 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. | |
6491 | |
6492 SetEnv("TERM", "cygwin"); // TERM supports colors. | |
6493 EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY. | |
6494 #endif // GTEST_OS_WINDOWS | |
6495 } | |
6496 | |
6497 // Verifies that StaticAssertTypeEq works in a namespace scope. | |
6498 | |
6499 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>(); | |
6500 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ = | |
6501 StaticAssertTypeEq<const int, const int>(); | |
6502 | |
6503 // Verifies that StaticAssertTypeEq works in a class. | |
6504 | |
6505 template <typename T> | |
6506 class StaticAssertTypeEqTestHelper { | |
6507 public: | |
6508 StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); } | |
6509 }; | |
6510 | |
6511 TEST(StaticAssertTypeEqTest, WorksInClass) { | |
6512 StaticAssertTypeEqTestHelper<bool>(); | |
6513 } | |
6514 | |
6515 // Verifies that StaticAssertTypeEq works inside a function. | |
6516 | |
6517 typedef int IntAlias; | |
6518 | |
6519 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) { | |
6520 StaticAssertTypeEq<int, IntAlias>(); | |
6521 StaticAssertTypeEq<int*, IntAlias*>(); | |
6522 } | |
6523 | |
6524 TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) { | |
6525 testing::UnitTest* const unit_test = testing::UnitTest::GetInstance(); | |
6526 | |
6527 // We don't have a stack walker in Google Test yet. | |
6528 EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str()); | |
6529 EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str()); | |
6530 } | |
6531 | |
6532 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) { | |
6533 EXPECT_FALSE(HasNonfatalFailure()); | |
6534 } | |
6535 | |
6536 static void FailFatally() { FAIL(); } | |
6537 | |
6538 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) { | |
6539 FailFatally(); | |
6540 const bool has_nonfatal_failure = HasNonfatalFailure(); | |
6541 ClearCurrentTestPartResults(); | |
6542 EXPECT_FALSE(has_nonfatal_failure); | |
6543 } | |
6544 | |
6545 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) { | |
6546 ADD_FAILURE(); | |
6547 const bool has_nonfatal_failure = HasNonfatalFailure(); | |
6548 ClearCurrentTestPartResults(); | |
6549 EXPECT_TRUE(has_nonfatal_failure); | |
6550 } | |
6551 | |
6552 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) { | |
6553 FailFatally(); | |
6554 ADD_FAILURE(); | |
6555 const bool has_nonfatal_failure = HasNonfatalFailure(); | |
6556 ClearCurrentTestPartResults(); | |
6557 EXPECT_TRUE(has_nonfatal_failure); | |
6558 } | |
6559 | |
6560 // A wrapper for calling HasNonfatalFailure outside of a test body. | |
6561 static bool HasNonfatalFailureHelper() { | |
6562 return testing::Test::HasNonfatalFailure(); | |
6563 } | |
6564 | |
6565 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) { | |
6566 EXPECT_FALSE(HasNonfatalFailureHelper()); | |
6567 } | |
6568 | |
6569 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) { | |
6570 ADD_FAILURE(); | |
6571 const bool has_nonfatal_failure = HasNonfatalFailureHelper(); | |
6572 ClearCurrentTestPartResults(); | |
6573 EXPECT_TRUE(has_nonfatal_failure); | |
6574 } | |
6575 | |
6576 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) { | |
6577 EXPECT_FALSE(HasFailure()); | |
6578 } | |
6579 | |
6580 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) { | |
6581 FailFatally(); | |
6582 const bool has_failure = HasFailure(); | |
6583 ClearCurrentTestPartResults(); | |
6584 EXPECT_TRUE(has_failure); | |
6585 } | |
6586 | |
6587 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) { | |
6588 ADD_FAILURE(); | |
6589 const bool has_failure = HasFailure(); | |
6590 ClearCurrentTestPartResults(); | |
6591 EXPECT_TRUE(has_failure); | |
6592 } | |
6593 | |
6594 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) { | |
6595 FailFatally(); | |
6596 ADD_FAILURE(); | |
6597 const bool has_failure = HasFailure(); | |
6598 ClearCurrentTestPartResults(); | |
6599 EXPECT_TRUE(has_failure); | |
6600 } | |
6601 | |
6602 // A wrapper for calling HasFailure outside of a test body. | |
6603 static bool HasFailureHelper() { return testing::Test::HasFailure(); } | |
6604 | |
6605 TEST(HasFailureTest, WorksOutsideOfTestBody) { | |
6606 EXPECT_FALSE(HasFailureHelper()); | |
6607 } | |
6608 | |
6609 TEST(HasFailureTest, WorksOutsideOfTestBody2) { | |
6610 ADD_FAILURE(); | |
6611 const bool has_failure = HasFailureHelper(); | |
6612 ClearCurrentTestPartResults(); | |
6613 EXPECT_TRUE(has_failure); | |
6614 } | |
6615 | |
6616 class TestListener : public EmptyTestEventListener { | |
6617 public: | |
6618 TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {} | |
6619 TestListener(int* on_start_counter, bool* is_destroyed) | |
6620 : on_start_counter_(on_start_counter), | |
6621 is_destroyed_(is_destroyed) {} | |
6622 | |
6623 virtual ~TestListener() { | |
6624 if (is_destroyed_) | |
6625 *is_destroyed_ = true; | |
6626 } | |
6627 | |
6628 protected: | |
6629 virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) { | |
6630 if (on_start_counter_ != NULL) | |
6631 (*on_start_counter_)++; | |
6632 } | |
6633 | |
6634 private: | |
6635 int* on_start_counter_; | |
6636 bool* is_destroyed_; | |
6637 }; | |
6638 | |
6639 // Tests the constructor. | |
6640 TEST(TestEventListenersTest, ConstructionWorks) { | |
6641 TestEventListeners listeners; | |
6642 | |
6643 EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL); | |
6644 EXPECT_TRUE(listeners.default_result_printer() == NULL); | |
6645 EXPECT_TRUE(listeners.default_xml_generator() == NULL); | |
6646 } | |
6647 | |
6648 // Tests that the TestEventListeners destructor deletes all the listeners it | |
6649 // owns. | |
6650 TEST(TestEventListenersTest, DestructionWorks) { | |
6651 bool default_result_printer_is_destroyed = false; | |
6652 bool default_xml_printer_is_destroyed = false; | |
6653 bool extra_listener_is_destroyed = false; | |
6654 TestListener* default_result_printer = new TestListener( | |
6655 NULL, &default_result_printer_is_destroyed); | |
6656 TestListener* default_xml_printer = new TestListener( | |
6657 NULL, &default_xml_printer_is_destroyed); | |
6658 TestListener* extra_listener = new TestListener( | |
6659 NULL, &extra_listener_is_destroyed); | |
6660 | |
6661 { | |
6662 TestEventListeners listeners; | |
6663 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, | |
6664 default_result_printer); | |
6665 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, | |
6666 default_xml_printer); | |
6667 listeners.Append(extra_listener); | |
6668 } | |
6669 EXPECT_TRUE(default_result_printer_is_destroyed); | |
6670 EXPECT_TRUE(default_xml_printer_is_destroyed); | |
6671 EXPECT_TRUE(extra_listener_is_destroyed); | |
6672 } | |
6673 | |
6674 // Tests that a listener Append'ed to a TestEventListeners list starts | |
6675 // receiving events. | |
6676 TEST(TestEventListenersTest, Append) { | |
6677 int on_start_counter = 0; | |
6678 bool is_destroyed = false; | |
6679 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); | |
6680 { | |
6681 TestEventListeners listeners; | |
6682 listeners.Append(listener); | |
6683 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
6684 *UnitTest::GetInstance()); | |
6685 EXPECT_EQ(1, on_start_counter); | |
6686 } | |
6687 EXPECT_TRUE(is_destroyed); | |
6688 } | |
6689 | |
6690 // Tests that listeners receive events in the order they were appended to | |
6691 // the list, except for *End requests, which must be received in the reverse | |
6692 // order. | |
6693 class SequenceTestingListener : public EmptyTestEventListener { | |
6694 public: | |
6695 SequenceTestingListener(std::vector<String>* vector, const char* id) | |
6696 : vector_(vector), id_(id) {} | |
6697 | |
6698 protected: | |
6699 virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) { | |
6700 vector_->push_back(GetEventDescription("OnTestProgramStart")); | |
6701 } | |
6702 | |
6703 virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) { | |
6704 vector_->push_back(GetEventDescription("OnTestProgramEnd")); | |
6705 } | |
6706 | |
6707 virtual void OnTestIterationStart(const UnitTest& /*unit_test*/, | |
6708 int /*iteration*/) { | |
6709 vector_->push_back(GetEventDescription("OnTestIterationStart")); | |
6710 } | |
6711 | |
6712 virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/, | |
6713 int /*iteration*/) { | |
6714 vector_->push_back(GetEventDescription("OnTestIterationEnd")); | |
6715 } | |
6716 | |
6717 private: | |
6718 String GetEventDescription(const char* method) { | |
6719 Message message; | |
6720 message << id_ << "." << method; | |
6721 return message.GetString(); | |
6722 } | |
6723 | |
6724 std::vector<String>* vector_; | |
6725 const char* const id_; | |
6726 | |
6727 GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener); | |
6728 }; | |
6729 | |
6730 TEST(EventListenerTest, AppendKeepsOrder) { | |
6731 std::vector<String> vec; | |
6732 TestEventListeners listeners; | |
6733 listeners.Append(new SequenceTestingListener(&vec, "1st")); | |
6734 listeners.Append(new SequenceTestingListener(&vec, "2nd")); | |
6735 listeners.Append(new SequenceTestingListener(&vec, "3rd")); | |
6736 | |
6737 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
6738 *UnitTest::GetInstance()); | |
6739 ASSERT_EQ(3U, vec.size()); | |
6740 EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str()); | |
6741 EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str()); | |
6742 EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str()); | |
6743 | |
6744 vec.clear(); | |
6745 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd( | |
6746 *UnitTest::GetInstance()); | |
6747 ASSERT_EQ(3U, vec.size()); | |
6748 EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str()); | |
6749 EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str()); | |
6750 EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str()); | |
6751 | |
6752 vec.clear(); | |
6753 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart( | |
6754 *UnitTest::GetInstance(), 0); | |
6755 ASSERT_EQ(3U, vec.size()); | |
6756 EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str()); | |
6757 EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str()); | |
6758 EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str()); | |
6759 | |
6760 vec.clear(); | |
6761 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd( | |
6762 *UnitTest::GetInstance(), 0); | |
6763 ASSERT_EQ(3U, vec.size()); | |
6764 EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str()); | |
6765 EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str()); | |
6766 EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str()); | |
6767 } | |
6768 | |
6769 // Tests that a listener removed from a TestEventListeners list stops receiving | |
6770 // events and is not deleted when the list is destroyed. | |
6771 TEST(TestEventListenersTest, Release) { | |
6772 int on_start_counter = 0; | |
6773 bool is_destroyed = false; | |
6774 // Although Append passes the ownership of this object to the list, | |
6775 // the following calls release it, and we need to delete it before the | |
6776 // test ends. | |
6777 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); | |
6778 { | |
6779 TestEventListeners listeners; | |
6780 listeners.Append(listener); | |
6781 EXPECT_EQ(listener, listeners.Release(listener)); | |
6782 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
6783 *UnitTest::GetInstance()); | |
6784 EXPECT_TRUE(listeners.Release(listener) == NULL); | |
6785 } | |
6786 EXPECT_EQ(0, on_start_counter); | |
6787 EXPECT_FALSE(is_destroyed); | |
6788 delete listener; | |
6789 } | |
6790 | |
6791 // Tests that no events are forwarded when event forwarding is disabled. | |
6792 TEST(EventListenerTest, SuppressEventForwarding) { | |
6793 int on_start_counter = 0; | |
6794 TestListener* listener = new TestListener(&on_start_counter, NULL); | |
6795 | |
6796 TestEventListeners listeners; | |
6797 listeners.Append(listener); | |
6798 ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners)); | |
6799 TestEventListenersAccessor::SuppressEventForwarding(&listeners); | |
6800 ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners)); | |
6801 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
6802 *UnitTest::GetInstance()); | |
6803 EXPECT_EQ(0, on_start_counter); | |
6804 } | |
6805 | |
6806 // Tests that events generated by Google Test are not forwarded in | |
6807 // death test subprocesses. | |
6808 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) { | |
6809 EXPECT_DEATH_IF_SUPPORTED({ | |
6810 GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled( | |
6811 *GetUnitTestImpl()->listeners())) << "expected failure";}, | |
6812 "expected failure"); | |
6813 } | |
6814 | |
6815 // Tests that a listener installed via SetDefaultResultPrinter() starts | |
6816 // receiving events and is returned via default_result_printer() and that | |
6817 // the previous default_result_printer is removed from the list and deleted. | |
6818 TEST(EventListenerTest, default_result_printer) { | |
6819 int on_start_counter = 0; | |
6820 bool is_destroyed = false; | |
6821 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); | |
6822 | |
6823 TestEventListeners listeners; | |
6824 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener); | |
6825 | |
6826 EXPECT_EQ(listener, listeners.default_result_printer()); | |
6827 | |
6828 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
6829 *UnitTest::GetInstance()); | |
6830 | |
6831 EXPECT_EQ(1, on_start_counter); | |
6832 | |
6833 // Replacing default_result_printer with something else should remove it | |
6834 // from the list and destroy it. | |
6835 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL); | |
6836 | |
6837 EXPECT_TRUE(listeners.default_result_printer() == NULL); | |
6838 EXPECT_TRUE(is_destroyed); | |
6839 | |
6840 // After broadcasting an event the counter is still the same, indicating | |
6841 // the listener is not in the list anymore. | |
6842 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
6843 *UnitTest::GetInstance()); | |
6844 EXPECT_EQ(1, on_start_counter); | |
6845 } | |
6846 | |
6847 // Tests that the default_result_printer listener stops receiving events | |
6848 // when removed via Release and that is not owned by the list anymore. | |
6849 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) { | |
6850 int on_start_counter = 0; | |
6851 bool is_destroyed = false; | |
6852 // Although Append passes the ownership of this object to the list, | |
6853 // the following calls release it, and we need to delete it before the | |
6854 // test ends. | |
6855 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); | |
6856 { | |
6857 TestEventListeners listeners; | |
6858 TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener); | |
6859 | |
6860 EXPECT_EQ(listener, listeners.Release(listener)); | |
6861 EXPECT_TRUE(listeners.default_result_printer() == NULL); | |
6862 EXPECT_FALSE(is_destroyed); | |
6863 | |
6864 // Broadcasting events now should not affect default_result_printer. | |
6865 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
6866 *UnitTest::GetInstance()); | |
6867 EXPECT_EQ(0, on_start_counter); | |
6868 } | |
6869 // Destroying the list should not affect the listener now, too. | |
6870 EXPECT_FALSE(is_destroyed); | |
6871 delete listener; | |
6872 } | |
6873 | |
6874 // Tests that a listener installed via SetDefaultXmlGenerator() starts | |
6875 // receiving events and is returned via default_xml_generator() and that | |
6876 // the previous default_xml_generator is removed from the list and deleted. | |
6877 TEST(EventListenerTest, default_xml_generator) { | |
6878 int on_start_counter = 0; | |
6879 bool is_destroyed = false; | |
6880 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); | |
6881 | |
6882 TestEventListeners listeners; | |
6883 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener); | |
6884 | |
6885 EXPECT_EQ(listener, listeners.default_xml_generator()); | |
6886 | |
6887 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
6888 *UnitTest::GetInstance()); | |
6889 | |
6890 EXPECT_EQ(1, on_start_counter); | |
6891 | |
6892 // Replacing default_xml_generator with something else should remove it | |
6893 // from the list and destroy it. | |
6894 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL); | |
6895 | |
6896 EXPECT_TRUE(listeners.default_xml_generator() == NULL); | |
6897 EXPECT_TRUE(is_destroyed); | |
6898 | |
6899 // After broadcasting an event the counter is still the same, indicating | |
6900 // the listener is not in the list anymore. | |
6901 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
6902 *UnitTest::GetInstance()); | |
6903 EXPECT_EQ(1, on_start_counter); | |
6904 } | |
6905 | |
6906 // Tests that the default_xml_generator listener stops receiving events | |
6907 // when removed via Release and that is not owned by the list anymore. | |
6908 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) { | |
6909 int on_start_counter = 0; | |
6910 bool is_destroyed = false; | |
6911 // Although Append passes the ownership of this object to the list, | |
6912 // the following calls release it, and we need to delete it before the | |
6913 // test ends. | |
6914 TestListener* listener = new TestListener(&on_start_counter, &is_destroyed); | |
6915 { | |
6916 TestEventListeners listeners; | |
6917 TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener); | |
6918 | |
6919 EXPECT_EQ(listener, listeners.Release(listener)); | |
6920 EXPECT_TRUE(listeners.default_xml_generator() == NULL); | |
6921 EXPECT_FALSE(is_destroyed); | |
6922 | |
6923 // Broadcasting events now should not affect default_xml_generator. | |
6924 TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart( | |
6925 *UnitTest::GetInstance()); | |
6926 EXPECT_EQ(0, on_start_counter); | |
6927 } | |
6928 // Destroying the list should not affect the listener now, too. | |
6929 EXPECT_FALSE(is_destroyed); | |
6930 delete listener; | |
6931 } | |
6932 | |
6933 // Sanity tests to ensure that the alternative, verbose spellings of | |
6934 // some of the macros work. We don't test them thoroughly as that | |
6935 // would be quite involved. Since their implementations are | |
6936 // straightforward, and they are rarely used, we'll just rely on the | |
6937 // users to tell us when they are broken. | |
6938 GTEST_TEST(AlternativeNameTest, Works) { // GTEST_TEST is the same as TEST. | |
6939 GTEST_SUCCEED() << "OK"; // GTEST_SUCCEED is the same as SUCCEED. | |
6940 | |
6941 // GTEST_FAIL is the same as FAIL. | |
6942 EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure", | |
6943 "An expected failure"); | |
6944 | |
6945 // GTEST_ASSERT_XY is the same as ASSERT_XY. | |
6946 | |
6947 GTEST_ASSERT_EQ(0, 0); | |
6948 EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure", | |
6949 "An expected failure"); | |
6950 EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure", | |
6951 "An expected failure"); | |
6952 | |
6953 GTEST_ASSERT_NE(0, 1); | |
6954 GTEST_ASSERT_NE(1, 0); | |
6955 EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure", | |
6956 "An expected failure"); | |
6957 | |
6958 GTEST_ASSERT_LE(0, 0); | |
6959 GTEST_ASSERT_LE(0, 1); | |
6960 EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure", | |
6961 "An expected failure"); | |
6962 | |
6963 GTEST_ASSERT_LT(0, 1); | |
6964 EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure", | |
6965 "An expected failure"); | |
6966 EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure", | |
6967 "An expected failure"); | |
6968 | |
6969 GTEST_ASSERT_GE(0, 0); | |
6970 GTEST_ASSERT_GE(1, 0); | |
6971 EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure", | |
6972 "An expected failure"); | |
6973 | |
6974 GTEST_ASSERT_GT(1, 0); | |
6975 EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure", | |
6976 "An expected failure"); | |
6977 EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure", | |
6978 "An expected failure"); | |
6979 } | |
6980 | |
6981 // Tests for internal utilities necessary for implementation of the universal | |
6982 // printing. | |
6983 // TODO(vladl@google.com): Find a better home for them. | |
6984 | |
6985 class ConversionHelperBase {}; | |
6986 class ConversionHelperDerived : public ConversionHelperBase {}; | |
6987 | |
6988 // Tests that IsAProtocolMessage<T>::value is a compile-time constant. | |
6989 TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) { | |
6990 GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value, | |
6991 const_true); | |
6992 GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false); | |
6993 } | |
6994 | |
6995 // Tests that IsAProtocolMessage<T>::value is true when T is | |
6996 // proto2::Message or a sub-class of it. | |
6997 TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) { | |
6998 EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value); | |
6999 EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value); | |
7000 } | |
7001 | |
7002 // Tests that IsAProtocolMessage<T>::value is false when T is neither | |
7003 // ProtocolMessage nor a sub-class of it. | |
7004 TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) { | |
7005 EXPECT_FALSE(IsAProtocolMessage<int>::value); | |
7006 EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value); | |
7007 } | |
7008 | |
7009 // Tests that CompileAssertTypesEqual compiles when the type arguments are | |
7010 // equal. | |
7011 TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) { | |
7012 CompileAssertTypesEqual<void, void>(); | |
7013 CompileAssertTypesEqual<int*, int*>(); | |
7014 } | |
7015 | |
7016 // Tests that RemoveReference does not affect non-reference types. | |
7017 TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) { | |
7018 CompileAssertTypesEqual<int, RemoveReference<int>::type>(); | |
7019 CompileAssertTypesEqual<const char, RemoveReference<const char>::type>(); | |
7020 } | |
7021 | |
7022 // Tests that RemoveReference removes reference from reference types. | |
7023 TEST(RemoveReferenceTest, RemovesReference) { | |
7024 CompileAssertTypesEqual<int, RemoveReference<int&>::type>(); | |
7025 CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>(); | |
7026 } | |
7027 | |
7028 // Tests GTEST_REMOVE_REFERENCE_. | |
7029 | |
7030 template <typename T1, typename T2> | |
7031 void TestGTestRemoveReference() { | |
7032 CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>(); | |
7033 } | |
7034 | |
7035 TEST(RemoveReferenceTest, MacroVersion) { | |
7036 TestGTestRemoveReference<int, int>(); | |
7037 TestGTestRemoveReference<const char, const char&>(); | |
7038 } | |
7039 | |
7040 | |
7041 // Tests that RemoveConst does not affect non-const types. | |
7042 TEST(RemoveConstTest, DoesNotAffectNonConstType) { | |
7043 CompileAssertTypesEqual<int, RemoveConst<int>::type>(); | |
7044 CompileAssertTypesEqual<char&, RemoveConst<char&>::type>(); | |
7045 } | |
7046 | |
7047 // Tests that RemoveConst removes const from const types. | |
7048 TEST(RemoveConstTest, RemovesConst) { | |
7049 CompileAssertTypesEqual<int, RemoveConst<const int>::type>(); | |
7050 CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>(); | |
7051 CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>(); | |
7052 } | |
7053 | |
7054 // Tests GTEST_REMOVE_CONST_. | |
7055 | |
7056 template <typename T1, typename T2> | |
7057 void TestGTestRemoveConst() { | |
7058 CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>(); | |
7059 } | |
7060 | |
7061 TEST(RemoveConstTest, MacroVersion) { | |
7062 TestGTestRemoveConst<int, int>(); | |
7063 TestGTestRemoveConst<double&, double&>(); | |
7064 TestGTestRemoveConst<char, const char>(); | |
7065 } | |
7066 | |
7067 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_. | |
7068 | |
7069 template <typename T1, typename T2> | |
7070 void TestGTestRemoveReferenceAndConst() { | |
7071 CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>(); | |
7072 } | |
7073 | |
7074 TEST(RemoveReferenceToConstTest, Works) { | |
7075 TestGTestRemoveReferenceAndConst<int, int>(); | |
7076 TestGTestRemoveReferenceAndConst<double, double&>(); | |
7077 TestGTestRemoveReferenceAndConst<char, const char>(); | |
7078 TestGTestRemoveReferenceAndConst<char, const char&>(); | |
7079 TestGTestRemoveReferenceAndConst<const char*, const char*>(); | |
7080 } | |
7081 | |
7082 // Tests that AddReference does not affect reference types. | |
7083 TEST(AddReferenceTest, DoesNotAffectReferenceType) { | |
7084 CompileAssertTypesEqual<int&, AddReference<int&>::type>(); | |
7085 CompileAssertTypesEqual<const char&, AddReference<const char&>::type>(); | |
7086 } | |
7087 | |
7088 // Tests that AddReference adds reference to non-reference types. | |
7089 TEST(AddReferenceTest, AddsReference) { | |
7090 CompileAssertTypesEqual<int&, AddReference<int>::type>(); | |
7091 CompileAssertTypesEqual<const char&, AddReference<const char>::type>(); | |
7092 } | |
7093 | |
7094 // Tests GTEST_ADD_REFERENCE_. | |
7095 | |
7096 template <typename T1, typename T2> | |
7097 void TestGTestAddReference() { | |
7098 CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>(); | |
7099 } | |
7100 | |
7101 TEST(AddReferenceTest, MacroVersion) { | |
7102 TestGTestAddReference<int&, int>(); | |
7103 TestGTestAddReference<const char&, const char&>(); | |
7104 } | |
7105 | |
7106 // Tests GTEST_REFERENCE_TO_CONST_. | |
7107 | |
7108 template <typename T1, typename T2> | |
7109 void TestGTestReferenceToConst() { | |
7110 CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>(); | |
7111 } | |
7112 | |
7113 TEST(GTestReferenceToConstTest, Works) { | |
7114 TestGTestReferenceToConst<const char&, char>(); | |
7115 TestGTestReferenceToConst<const int&, const int>(); | |
7116 TestGTestReferenceToConst<const double&, double>(); | |
7117 TestGTestReferenceToConst<const String&, const String&>(); | |
7118 } | |
7119 | |
7120 // Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant. | |
7121 TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) { | |
7122 GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true); | |
7123 GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value), | |
7124 const_false); | |
7125 } | |
7126 | |
7127 // Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can | |
7128 // be implicitly converted to T2. | |
7129 TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) { | |
7130 EXPECT_TRUE((ImplicitlyConvertible<int, double>::value)); | |
7131 EXPECT_TRUE((ImplicitlyConvertible<double, int>::value)); | |
7132 EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value)); | |
7133 EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value)); | |
7134 EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&, | |
7135 const ConversionHelperBase&>::value)); | |
7136 EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase, | |
7137 ConversionHelperBase>::value)); | |
7138 } | |
7139 | |
7140 // Tests that ImplicitlyConvertible<T1, T2>::value is false when T1 | |
7141 // cannot be implicitly converted to T2. | |
7142 TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) { | |
7143 EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value)); | |
7144 EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value)); | |
7145 EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value)); | |
7146 EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&, | |
7147 ConversionHelperDerived&>::value)); | |
7148 } | |
7149 | |
7150 // Tests IsContainerTest. | |
7151 | |
7152 class NonContainer {}; | |
7153 | |
7154 TEST(IsContainerTestTest, WorksForNonContainer) { | |
7155 EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0))); | |
7156 EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0))); | |
7157 EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0))); | |
7158 } | |
7159 | |
7160 TEST(IsContainerTestTest, WorksForContainer) { | |
7161 EXPECT_EQ(sizeof(IsContainer), | |
7162 sizeof(IsContainerTest<std::vector<bool> >(0))); | |
7163 EXPECT_EQ(sizeof(IsContainer), | |
7164 sizeof(IsContainerTest<std::map<int, double> >(0))); | |
7165 } | |
7166 | |
7167 // Tests ArrayEq(). | |
7168 | |
7169 TEST(ArrayEqTest, WorksForDegeneratedArrays) { | |
7170 EXPECT_TRUE(ArrayEq(5, 5L)); | |
7171 EXPECT_FALSE(ArrayEq('a', 0)); | |
7172 } | |
7173 | |
7174 TEST(ArrayEqTest, WorksForOneDimensionalArrays) { | |
7175 const int a[] = { 0, 1 }; | |
7176 long b[] = { 0, 1 }; | |
7177 EXPECT_TRUE(ArrayEq(a, b)); | |
7178 EXPECT_TRUE(ArrayEq(a, 2, b)); | |
7179 | |
7180 b[0] = 2; | |
7181 EXPECT_FALSE(ArrayEq(a, b)); | |
7182 EXPECT_FALSE(ArrayEq(a, 1, b)); | |
7183 } | |
7184 | |
7185 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) { | |
7186 const char a[][3] = { "hi", "lo" }; | |
7187 const char b[][3] = { "hi", "lo" }; | |
7188 const char c[][3] = { "hi", "li" }; | |
7189 | |
7190 EXPECT_TRUE(ArrayEq(a, b)); | |
7191 EXPECT_TRUE(ArrayEq(a, 2, b)); | |
7192 | |
7193 EXPECT_FALSE(ArrayEq(a, c)); | |
7194 EXPECT_FALSE(ArrayEq(a, 2, c)); | |
7195 } | |
7196 | |
7197 // Tests ArrayAwareFind(). | |
7198 | |
7199 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) { | |
7200 const char a[] = "hello"; | |
7201 EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o')); | |
7202 EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x')); | |
7203 } | |
7204 | |
7205 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) { | |
7206 int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } }; | |
7207 const int b[2] = { 2, 3 }; | |
7208 EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b)); | |
7209 | |
7210 const int c[2] = { 6, 7 }; | |
7211 EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c)); | |
7212 } | |
7213 | |
7214 // Tests CopyArray(). | |
7215 | |
7216 TEST(CopyArrayTest, WorksForDegeneratedArrays) { | |
7217 int n = 0; | |
7218 CopyArray('a', &n); | |
7219 EXPECT_EQ('a', n); | |
7220 } | |
7221 | |
7222 TEST(CopyArrayTest, WorksForOneDimensionalArrays) { | |
7223 const char a[3] = "hi"; | |
7224 int b[3]; | |
7225 #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions. | |
7226 CopyArray(a, &b); | |
7227 EXPECT_TRUE(ArrayEq(a, b)); | |
7228 #endif | |
7229 | |
7230 int c[3]; | |
7231 CopyArray(a, 3, c); | |
7232 EXPECT_TRUE(ArrayEq(a, c)); | |
7233 } | |
7234 | |
7235 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) { | |
7236 const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } }; | |
7237 int b[2][3]; | |
7238 #ifndef __BORLANDC__ // C++Builder cannot compile some array size deductions. | |
7239 CopyArray(a, &b); | |
7240 EXPECT_TRUE(ArrayEq(a, b)); | |
7241 #endif | |
7242 | |
7243 int c[2][3]; | |
7244 CopyArray(a, 2, c); | |
7245 EXPECT_TRUE(ArrayEq(a, c)); | |
7246 } | |
7247 | |
7248 // Tests NativeArray. | |
7249 | |
7250 TEST(NativeArrayTest, ConstructorFromArrayWorks) { | |
7251 const int a[3] = { 0, 1, 2 }; | |
7252 NativeArray<int> na(a, 3, kReference); | |
7253 EXPECT_EQ(3U, na.size()); | |
7254 EXPECT_EQ(a, na.begin()); | |
7255 } | |
7256 | |
7257 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) { | |
7258 typedef int Array[2]; | |
7259 Array* a = new Array[1]; | |
7260 (*a)[0] = 0; | |
7261 (*a)[1] = 1; | |
7262 NativeArray<int> na(*a, 2, kCopy); | |
7263 EXPECT_NE(*a, na.begin()); | |
7264 delete[] a; | |
7265 EXPECT_EQ(0, na.begin()[0]); | |
7266 EXPECT_EQ(1, na.begin()[1]); | |
7267 | |
7268 // We rely on the heap checker to verify that na deletes the copy of | |
7269 // array. | |
7270 } | |
7271 | |
7272 TEST(NativeArrayTest, TypeMembersAreCorrect) { | |
7273 StaticAssertTypeEq<char, NativeArray<char>::value_type>(); | |
7274 StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>(); | |
7275 | |
7276 StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>(); | |
7277 StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>(); | |
7278 } | |
7279 | |
7280 TEST(NativeArrayTest, MethodsWork) { | |
7281 const int a[3] = { 0, 1, 2 }; | |
7282 NativeArray<int> na(a, 3, kCopy); | |
7283 ASSERT_EQ(3U, na.size()); | |
7284 EXPECT_EQ(3, na.end() - na.begin()); | |
7285 | |
7286 NativeArray<int>::const_iterator it = na.begin(); | |
7287 EXPECT_EQ(0, *it); | |
7288 ++it; | |
7289 EXPECT_EQ(1, *it); | |
7290 it++; | |
7291 EXPECT_EQ(2, *it); | |
7292 ++it; | |
7293 EXPECT_EQ(na.end(), it); | |
7294 | |
7295 EXPECT_TRUE(na == na); | |
7296 | |
7297 NativeArray<int> na2(a, 3, kReference); | |
7298 EXPECT_TRUE(na == na2); | |
7299 | |
7300 const int b1[3] = { 0, 1, 1 }; | |
7301 const int b2[4] = { 0, 1, 2, 3 }; | |
7302 EXPECT_FALSE(na == NativeArray<int>(b1, 3, kReference)); | |
7303 EXPECT_FALSE(na == NativeArray<int>(b2, 4, kCopy)); | |
7304 } | |
7305 | |
7306 TEST(NativeArrayTest, WorksForTwoDimensionalArray) { | |
7307 const char a[2][3] = { "hi", "lo" }; | |
7308 NativeArray<char[3]> na(a, 2, kReference); | |
7309 ASSERT_EQ(2U, na.size()); | |
7310 EXPECT_EQ(a, na.begin()); | |
7311 } | |
7312 | |
7313 // Tests SkipPrefix(). | |
7314 | |
7315 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) { | |
7316 const char* const str = "hello"; | |
7317 | |
7318 const char* p = str; | |
7319 EXPECT_TRUE(SkipPrefix("", &p)); | |
7320 EXPECT_EQ(str, p); | |
7321 | |
7322 p = str; | |
7323 EXPECT_TRUE(SkipPrefix("hell", &p)); | |
7324 EXPECT_EQ(str + 4, p); | |
7325 } | |
7326 | |
7327 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) { | |
7328 const char* const str = "world"; | |
7329 | |
7330 const char* p = str; | |
7331 EXPECT_FALSE(SkipPrefix("W", &p)); | |
7332 EXPECT_EQ(str, p); | |
7333 | |
7334 p = str; | |
7335 EXPECT_FALSE(SkipPrefix("world!", &p)); | |
7336 EXPECT_EQ(str, p); | |
7337 } | |
OLD | NEW |