Chromium Code Reviews| Index: pkg/math/lib/math.dart |
| diff --git a/pkg/math/lib/math.dart b/pkg/math/lib/math.dart |
| index 9958bec52ba1800eb71959658cd887967d62e4f5..bbb56edcdf53f7f33afd07b167659267efb8132f 100644 |
| --- a/pkg/math/lib/math.dart |
| +++ b/pkg/math/lib/math.dart |
| @@ -4,4 +4,149 @@ |
| library dart.pkg.math; |
| -// Placeholder library, reserved for future extension. |
| +/** |
| + * Computes the greatest common divisor between [a] and [b]. |
| + * |
| + * The result is always positive even if either `a` or `b` is negative. |
| + */ |
| +int gcd(int a, int b) { |
| + if (a == null) throw new ArgumentError(a); |
| + if (b == null) throw new ArgumentError(b); |
| + a = a.abs(); |
| + b = b.abs(); |
| + |
| + // Iterative Binary GCD algorithm. |
| + if (a == 0) return b; |
| + if (b == 0) return a; |
| + int powerOfTwo = 1; |
| + while (((a | b) & 1) == 0) { |
| + powerOfTwo *= 2; |
| + a ~/= 2; |
| + b ~/= 2; |
| + } |
| + |
| + while (a.isEven) a ~/= 2; |
| + |
| + do { |
| + while (b.isEven) b ~/= 2; |
| + if (a > b) { |
| + int temp = b; |
| + b = a; |
| + a = temp; |
| + } |
| + b -= a; |
| + } while (b != 0); |
| + |
| + return a * powerOfTwo; |
| +} |
| + |
| +/** |
| + * Computes the greatest common divisor between [a] and [b], as well as [x] and |
| + * [y] such that `ax+by == gcd(a,b)`. |
| + * |
| + * The return value is a List of three ints: the greatest common divisor, `x`, |
| + * and `y`, in that order. |
| + */ |
| +List<int> gcdext(int a, int b) { |
| + if (a == null) throw new ArgumentError(a); |
| + if (b == null) throw new ArgumentError(b); |
| + |
| + if (a < 0) { |
| + List<int> result = gcdext(-a, b); |
| + result[1] = -result[1]; |
| + return result; |
| + } |
| + if (b < 0) { |
| + List<int> result = gcdext(a, -b); |
| + result[2] = -result[2]; |
| + return result; |
| + } |
| + |
| + int r0 = a; |
| + int r1 = b; |
| + int x0, x1, y0, y1; |
| + x0 = y1 = 1; |
| + x1 = y0 = 0; |
| + |
| + while (r1 != 0) { |
| + int q = r0 ~/ r1; |
| + int tmp = r0; |
| + r0 = r1; |
| + r1 = tmp - q*r1; |
| + |
| + tmp = x0; |
| + x0 = x1; |
| + x1 = tmp - q*x1; |
| + |
| + tmp = y0; |
| + y0 = y1; |
| + y1 = tmp - q*y1; |
| + } |
| + |
| + return new List<int>(3) |
| + ..[0] = r0 |
| + ..[1] = x0 |
| + ..[2] = y0; |
| +} |
| + |
| +/** |
| + * Computes the inverse of [a] modulo [m]. |
| + * |
| + * Throws an [IntegerDivisionByZeroException] if `a` has no inverse modulo `m`: |
| + * |
| + * invert(4, 7); // 2 |
| + * invert(4, 10); // throws IntegerDivisionByZeroException |
| + */ |
| +int invert(int a, int m) { |
| + List<int> results = gcdext(a, m); |
| + int g = results[0]; |
| + int x = results[1]; |
| + if (g != 1) { |
| + throw new IntegerDivisionByZeroException(); |
| + } |
| + return x % m; |
| +} |
| + |
| +/** |
| + * Computes the least common multiple between [a] and [b]. |
| + */ |
| +int lcm(int a, int b) { |
| + if (a == null) throw new ArgumentError(a); |
| + if (b == null) throw new ArgumentError(b); |
| + if (a == 0 && b == 0) return 0; |
| + |
| + return a.abs() ~/ gcd(a, b) * b.abs(); |
| +} |
| + |
| +/** |
| + * Computes [base] raised to [exp] modulo [mod]. |
| + * |
| + * The result is always positive, in keeping with the behavior of modulus |
| + * operator (`%`). |
| + * |
| + * Throws an [IntegerDivisionByZeroException] if `exp` is negative and `base` has |
|
Lasse Reichstein Nielsen
2014/08/29 07:14:42
Long line.
srawlins
2014/09/02 19:49:23
Done.
|
| + * no inverse modulo `mod`. |
| + */ |
| +int powmod(int base, int exp, int mod) { |
| + if (base == null) throw new ArgumentError(base); |
| + if (exp == null) throw new ArgumentError(exp); |
| + if (mod == null) throw new ArgumentError(mod); |
| + |
| + // Right-to-left binary method of modular exponentiation. |
| + if (exp < 0) { |
| + base = invert(base, mod); |
| + exp = -exp; |
| + } |
| + int result = 1; |
| + base = base % mod; |
| + while (true) { |
|
Lasse Reichstein Nielsen
2014/08/29 07:14:42
Maybe add a comment saying that the code also work
srawlins
2014/09/02 19:49:23
Done.
|
| + if (exp.isOdd) { |
| + result = (result * base) % mod; |
| + } |
| + exp ~/= 2; |
| + if (exp == 0) { |
| + return result; |
| + } |
| + base = (base * base) % mod; |
| + } |
| +} |