| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file | |
| 2 // for details. All rights reserved. Use of this source code is governed by a | |
| 3 // BSD-style license that can be found in the LICENSE file. | |
| 4 | |
| 5 #include "platform/globals.h" | |
| 6 #if defined(TARGET_OS_ANDROID) | |
| 7 | |
| 8 #include "platform/thread.h" | |
| 9 | |
| 10 #include <errno.h> // NOLINT | |
| 11 #include <sys/time.h> // NOLINT | |
| 12 | |
| 13 #include "platform/assert.h" | |
| 14 | |
| 15 namespace dart { | |
| 16 | |
| 17 #define VALIDATE_PTHREAD_RESULT(result) \ | |
| 18 if (result != 0) { \ | |
| 19 const int kBufferSize = 1024; \ | |
| 20 char error_message[kBufferSize]; \ | |
| 21 strerror_r(result, error_message, kBufferSize); \ | |
| 22 FATAL2("pthread error: %d (%s)", result, error_message); \ | |
| 23 } | |
| 24 | |
| 25 | |
| 26 #ifdef DEBUG | |
| 27 #define RETURN_ON_PTHREAD_FAILURE(result) \ | |
| 28 if (result != 0) { \ | |
| 29 const int kBufferSize = 1024; \ | |
| 30 char error_message[kBufferSize]; \ | |
| 31 strerror_r(result, error_message, kBufferSize); \ | |
| 32 fprintf(stderr, "%s:%d: pthread error: %d (%s)\n", \ | |
| 33 __FILE__, __LINE__, result, error_message); \ | |
| 34 return result; \ | |
| 35 } | |
| 36 #else | |
| 37 #define RETURN_ON_PTHREAD_FAILURE(result) \ | |
| 38 if (result != 0) return result; | |
| 39 #endif | |
| 40 | |
| 41 | |
| 42 static void ComputeTimeSpecMicros(struct timespec* ts, int64_t micros) { | |
| 43 struct timeval tv; | |
| 44 int64_t secs = micros / kMicrosecondsPerSecond; | |
| 45 int64_t remaining_micros = (micros - (secs * kMicrosecondsPerSecond)); | |
| 46 int result = gettimeofday(&tv, NULL); | |
| 47 ASSERT(result == 0); | |
| 48 ts->tv_sec = tv.tv_sec + secs; | |
| 49 ts->tv_nsec = (tv.tv_usec + remaining_micros) * kNanosecondsPerMicrosecond; | |
| 50 if (ts->tv_nsec >= kNanosecondsPerSecond) { | |
| 51 ts->tv_sec += 1; | |
| 52 ts->tv_nsec -= kNanosecondsPerSecond; | |
| 53 } | |
| 54 } | |
| 55 | |
| 56 | |
| 57 class ThreadStartData { | |
| 58 public: | |
| 59 ThreadStartData(Thread::ThreadStartFunction function, | |
| 60 uword parameter) | |
| 61 : function_(function), parameter_(parameter) {} | |
| 62 | |
| 63 Thread::ThreadStartFunction function() const { return function_; } | |
| 64 uword parameter() const { return parameter_; } | |
| 65 | |
| 66 private: | |
| 67 Thread::ThreadStartFunction function_; | |
| 68 uword parameter_; | |
| 69 | |
| 70 DISALLOW_COPY_AND_ASSIGN(ThreadStartData); | |
| 71 }; | |
| 72 | |
| 73 | |
| 74 // Dispatch to the thread start function provided by the caller. This trampoline | |
| 75 // is used to ensure that the thread is properly destroyed if the thread just | |
| 76 // exits. | |
| 77 static void* ThreadStart(void* data_ptr) { | |
| 78 ThreadStartData* data = reinterpret_cast<ThreadStartData*>(data_ptr); | |
| 79 | |
| 80 Thread::ThreadStartFunction function = data->function(); | |
| 81 uword parameter = data->parameter(); | |
| 82 delete data; | |
| 83 | |
| 84 // Call the supplied thread start function handing it its parameters. | |
| 85 function(parameter); | |
| 86 | |
| 87 return NULL; | |
| 88 } | |
| 89 | |
| 90 | |
| 91 int Thread::Start(ThreadStartFunction function, uword parameter) { | |
| 92 pthread_attr_t attr; | |
| 93 int result = pthread_attr_init(&attr); | |
| 94 RETURN_ON_PTHREAD_FAILURE(result); | |
| 95 | |
| 96 result = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); | |
| 97 RETURN_ON_PTHREAD_FAILURE(result); | |
| 98 | |
| 99 result = pthread_attr_setstacksize(&attr, Thread::GetMaxStackSize()); | |
| 100 RETURN_ON_PTHREAD_FAILURE(result); | |
| 101 | |
| 102 ThreadStartData* data = new ThreadStartData(function, parameter); | |
| 103 | |
| 104 pthread_t tid; | |
| 105 result = pthread_create(&tid, &attr, ThreadStart, data); | |
| 106 RETURN_ON_PTHREAD_FAILURE(result); | |
| 107 | |
| 108 result = pthread_attr_destroy(&attr); | |
| 109 RETURN_ON_PTHREAD_FAILURE(result); | |
| 110 | |
| 111 return 0; | |
| 112 } | |
| 113 | |
| 114 | |
| 115 ThreadLocalKey Thread::kUnsetThreadLocalKey = static_cast<pthread_key_t>(-1); | |
| 116 ThreadId Thread::kInvalidThreadId = static_cast<ThreadId>(0); | |
| 117 | |
| 118 ThreadLocalKey Thread::CreateThreadLocal() { | |
| 119 pthread_key_t key = kUnsetThreadLocalKey; | |
| 120 int result = pthread_key_create(&key, NULL); | |
| 121 VALIDATE_PTHREAD_RESULT(result); | |
| 122 ASSERT(key != kUnsetThreadLocalKey); | |
| 123 return key; | |
| 124 } | |
| 125 | |
| 126 | |
| 127 void Thread::DeleteThreadLocal(ThreadLocalKey key) { | |
| 128 ASSERT(key != kUnsetThreadLocalKey); | |
| 129 int result = pthread_key_delete(key); | |
| 130 VALIDATE_PTHREAD_RESULT(result); | |
| 131 } | |
| 132 | |
| 133 | |
| 134 void Thread::SetThreadLocal(ThreadLocalKey key, uword value) { | |
| 135 ASSERT(key != kUnsetThreadLocalKey); | |
| 136 int result = pthread_setspecific(key, reinterpret_cast<void*>(value)); | |
| 137 VALIDATE_PTHREAD_RESULT(result); | |
| 138 } | |
| 139 | |
| 140 | |
| 141 intptr_t Thread::GetMaxStackSize() { | |
| 142 const int kStackSize = (128 * kWordSize * KB); | |
| 143 return kStackSize; | |
| 144 } | |
| 145 | |
| 146 | |
| 147 ThreadId Thread::GetCurrentThreadId() { | |
| 148 return gettid(); | |
| 149 } | |
| 150 | |
| 151 | |
| 152 bool Thread::Join(ThreadId id) { | |
| 153 return false; | |
| 154 } | |
| 155 | |
| 156 | |
| 157 intptr_t Thread::ThreadIdToIntPtr(ThreadId id) { | |
| 158 ASSERT(sizeof(id) == sizeof(intptr_t)); | |
| 159 return static_cast<intptr_t>(id); | |
| 160 } | |
| 161 | |
| 162 | |
| 163 bool Thread::Compare(ThreadId a, ThreadId b) { | |
| 164 return a == b; | |
| 165 } | |
| 166 | |
| 167 | |
| 168 void Thread::GetThreadCpuUsage(ThreadId thread_id, int64_t* cpu_usage) { | |
| 169 ASSERT(thread_id == GetCurrentThreadId()); | |
| 170 ASSERT(cpu_usage != NULL); | |
| 171 struct timespec ts; | |
| 172 int r = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts); | |
| 173 ASSERT(r == 0); | |
| 174 *cpu_usage = (ts.tv_sec * kNanosecondsPerSecond + ts.tv_nsec) / | |
| 175 kNanosecondsPerMicrosecond; | |
| 176 } | |
| 177 | |
| 178 | |
| 179 Mutex::Mutex() { | |
| 180 pthread_mutexattr_t attr; | |
| 181 int result = pthread_mutexattr_init(&attr); | |
| 182 VALIDATE_PTHREAD_RESULT(result); | |
| 183 | |
| 184 #if defined(DEBUG) | |
| 185 result = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK); | |
| 186 VALIDATE_PTHREAD_RESULT(result); | |
| 187 #endif // defined(DEBUG) | |
| 188 | |
| 189 result = pthread_mutex_init(data_.mutex(), &attr); | |
| 190 // Verify that creating a pthread_mutex succeeded. | |
| 191 VALIDATE_PTHREAD_RESULT(result); | |
| 192 | |
| 193 result = pthread_mutexattr_destroy(&attr); | |
| 194 VALIDATE_PTHREAD_RESULT(result); | |
| 195 } | |
| 196 | |
| 197 | |
| 198 Mutex::~Mutex() { | |
| 199 int result = pthread_mutex_destroy(data_.mutex()); | |
| 200 // Verify that the pthread_mutex was destroyed. | |
| 201 VALIDATE_PTHREAD_RESULT(result); | |
| 202 } | |
| 203 | |
| 204 | |
| 205 void Mutex::Lock() { | |
| 206 int result = pthread_mutex_lock(data_.mutex()); | |
| 207 // Specifically check for dead lock to help debugging. | |
| 208 ASSERT(result != EDEADLK); | |
| 209 ASSERT(result == 0); // Verify no other errors. | |
| 210 // TODO(iposva): Do we need to track lock owners? | |
| 211 } | |
| 212 | |
| 213 | |
| 214 bool Mutex::TryLock() { | |
| 215 int result = pthread_mutex_trylock(data_.mutex()); | |
| 216 // Return false if the lock is busy and locking failed. | |
| 217 if (result == EBUSY) { | |
| 218 return false; | |
| 219 } | |
| 220 ASSERT(result == 0); // Verify no other errors. | |
| 221 // TODO(iposva): Do we need to track lock owners? | |
| 222 return true; | |
| 223 } | |
| 224 | |
| 225 | |
| 226 void Mutex::Unlock() { | |
| 227 // TODO(iposva): Do we need to track lock owners? | |
| 228 int result = pthread_mutex_unlock(data_.mutex()); | |
| 229 // Specifically check for wrong thread unlocking to aid debugging. | |
| 230 ASSERT(result != EPERM); | |
| 231 ASSERT(result == 0); // Verify no other errors. | |
| 232 } | |
| 233 | |
| 234 | |
| 235 Monitor::Monitor() { | |
| 236 pthread_mutexattr_t mutex_attr; | |
| 237 int result = pthread_mutexattr_init(&mutex_attr); | |
| 238 VALIDATE_PTHREAD_RESULT(result); | |
| 239 | |
| 240 #if defined(DEBUG) | |
| 241 result = pthread_mutexattr_settype(&mutex_attr, PTHREAD_MUTEX_ERRORCHECK); | |
| 242 VALIDATE_PTHREAD_RESULT(result); | |
| 243 #endif // defined(DEBUG) | |
| 244 | |
| 245 result = pthread_mutex_init(data_.mutex(), &mutex_attr); | |
| 246 VALIDATE_PTHREAD_RESULT(result); | |
| 247 | |
| 248 result = pthread_mutexattr_destroy(&mutex_attr); | |
| 249 VALIDATE_PTHREAD_RESULT(result); | |
| 250 | |
| 251 pthread_condattr_t cond_attr; | |
| 252 result = pthread_condattr_init(&cond_attr); | |
| 253 VALIDATE_PTHREAD_RESULT(result); | |
| 254 | |
| 255 result = pthread_cond_init(data_.cond(), &cond_attr); | |
| 256 VALIDATE_PTHREAD_RESULT(result); | |
| 257 | |
| 258 result = pthread_condattr_destroy(&cond_attr); | |
| 259 VALIDATE_PTHREAD_RESULT(result); | |
| 260 } | |
| 261 | |
| 262 | |
| 263 Monitor::~Monitor() { | |
| 264 int result = pthread_mutex_destroy(data_.mutex()); | |
| 265 VALIDATE_PTHREAD_RESULT(result); | |
| 266 | |
| 267 result = pthread_cond_destroy(data_.cond()); | |
| 268 VALIDATE_PTHREAD_RESULT(result); | |
| 269 } | |
| 270 | |
| 271 | |
| 272 void Monitor::Enter() { | |
| 273 int result = pthread_mutex_lock(data_.mutex()); | |
| 274 VALIDATE_PTHREAD_RESULT(result); | |
| 275 // TODO(iposva): Do we need to track lock owners? | |
| 276 } | |
| 277 | |
| 278 | |
| 279 void Monitor::Exit() { | |
| 280 // TODO(iposva): Do we need to track lock owners? | |
| 281 int result = pthread_mutex_unlock(data_.mutex()); | |
| 282 VALIDATE_PTHREAD_RESULT(result); | |
| 283 } | |
| 284 | |
| 285 | |
| 286 Monitor::WaitResult Monitor::Wait(int64_t millis) { | |
| 287 return WaitMicros(millis * kMicrosecondsPerMillisecond); | |
| 288 } | |
| 289 | |
| 290 | |
| 291 Monitor::WaitResult Monitor::WaitMicros(int64_t micros) { | |
| 292 // TODO(iposva): Do we need to track lock owners? | |
| 293 Monitor::WaitResult retval = kNotified; | |
| 294 if (micros == kNoTimeout) { | |
| 295 // Wait forever. | |
| 296 int result = pthread_cond_wait(data_.cond(), data_.mutex()); | |
| 297 VALIDATE_PTHREAD_RESULT(result); | |
| 298 } else { | |
| 299 struct timespec ts; | |
| 300 ComputeTimeSpecMicros(&ts, micros); | |
| 301 int result = pthread_cond_timedwait(data_.cond(), data_.mutex(), &ts); | |
| 302 ASSERT((result == 0) || (result == ETIMEDOUT)); | |
| 303 if (result == ETIMEDOUT) { | |
| 304 retval = kTimedOut; | |
| 305 } | |
| 306 } | |
| 307 return retval; | |
| 308 } | |
| 309 | |
| 310 | |
| 311 void Monitor::Notify() { | |
| 312 // TODO(iposva): Do we need to track lock owners? | |
| 313 int result = pthread_cond_signal(data_.cond()); | |
| 314 VALIDATE_PTHREAD_RESULT(result); | |
| 315 } | |
| 316 | |
| 317 | |
| 318 void Monitor::NotifyAll() { | |
| 319 // TODO(iposva): Do we need to track lock owners? | |
| 320 int result = pthread_cond_broadcast(data_.cond()); | |
| 321 VALIDATE_PTHREAD_RESULT(result); | |
| 322 } | |
| 323 | |
| 324 } // namespace dart | |
| 325 | |
| 326 #endif // defined(TARGET_OS_ANDROID) | |
| OLD | NEW |