| Index: src/core/SkTileGrid.cpp
|
| diff --git a/src/core/SkTileGrid.cpp b/src/core/SkTileGrid.cpp
|
| index 2d6f3b1209552d48e65859d96fc98a4cb4601738..21788c1f016cbf50c54afab53a14d467ac13f4ad 100644
|
| --- a/src/core/SkTileGrid.cpp
|
| +++ b/src/core/SkTileGrid.cpp
|
| @@ -68,85 +68,94 @@ void SkTileGrid::insert(void* data, const SkIRect& bounds, bool) {
|
| fInsertionCount++;
|
| }
|
|
|
| -static void* next_datum(const SkTDArray<void*>** tileData,
|
| - SkAutoSTArray<SkTileGrid::kStackAllocationTileCount, int>& tileIndices) {
|
| - SkPictureStateTree::Draw* minVal = NULL;
|
| - int tileCount = tileIndices.count();
|
| - int minIndex = tileCount;
|
| - int maxIndex = 0;
|
| - // Find the next Datum; track where it's found so we reduce the size of the second loop.
|
| - for (int tile = 0; tile < tileCount; ++tile) {
|
| - int pos = tileIndices[tile];
|
| - if (pos != SkTileGrid::kTileFinished) {
|
| - SkPictureStateTree::Draw* candidate = (SkPictureStateTree::Draw*)(*tileData[tile])[pos];
|
| - if (NULL == minVal || (*candidate) < (*minVal)) {
|
| - minVal = candidate;
|
| - minIndex = tile;
|
| - maxIndex = tile;
|
| - } else if (!((*minVal) < (*candidate))) {
|
| - // We don't require operator==; if !(candidate<minVal) && !(minVal<candidate),
|
| - // candidate==minVal and we have to add this tile to the range searched.
|
| - maxIndex = tile;
|
| - }
|
| - }
|
| - }
|
| - // Increment indices past the next datum
|
| - if (minVal != NULL) {
|
| - for (int tile = minIndex; tile <= maxIndex; ++tile) {
|
| - int pos = tileIndices[tile];
|
| - if (pos != SkTileGrid::kTileFinished && (*tileData[tile])[pos] == minVal) {
|
| - if (++(tileIndices[tile]) >= tileData[tile]->count()) {
|
| - tileIndices[tile] = SkTileGrid::kTileFinished;
|
| - }
|
| - }
|
| - }
|
| - return minVal;
|
| - }
|
| - return NULL;
|
| +static int divide_ceil(int x, int y) {
|
| + return (x + y - 1) / y;
|
| }
|
|
|
| +// Number of tiles for which data is allocated on the stack in
|
| +// SkTileGrid::search. If malloc becomes a bottleneck, we may consider
|
| +// increasing this number. Typical large web page, say 2k x 16k, would
|
| +// require 512 tiles of size 256 x 256 pixels.
|
| +static const int kStackAllocationTileCount = 1024;
|
| +
|
| void SkTileGrid::search(const SkIRect& query, SkTDArray<void*>* results) const {
|
| - SkIRect adjustedQuery = query;
|
| + SkIRect adjusted = query;
|
| +
|
| // The inset is to counteract the outset that was applied in 'insert'
|
| // The outset/inset is to optimize for lookups of size
|
| // 'tileInterval + 2 * margin' that are aligned with the tile grid.
|
| - adjustedQuery.inset(fInfo.fMargin.width(), fInfo.fMargin.height());
|
| - adjustedQuery.offset(fInfo.fOffset);
|
| - adjustedQuery.sort(); // in case the inset inverted the rectangle
|
| + adjusted.inset(fInfo.fMargin.width(), fInfo.fMargin.height());
|
| + adjusted.offset(fInfo.fOffset);
|
| + adjusted.sort(); // in case the inset inverted the rectangle
|
| +
|
| // Convert the query rectangle from device coordinates to tile coordinates
|
| // by rounding outwards to the nearest tile boundary so that the resulting tile
|
| - // region includes the query rectangle. (using truncating division to "floor")
|
| - int tileStartX = adjustedQuery.left() / fInfo.fTileInterval.width();
|
| - int tileEndX = (adjustedQuery.right() + fInfo.fTileInterval.width() - 1) /
|
| - fInfo.fTileInterval.width();
|
| - int tileStartY = adjustedQuery.top() / fInfo.fTileInterval.height();
|
| - int tileEndY = (adjustedQuery.bottom() + fInfo.fTileInterval.height() - 1) /
|
| - fInfo.fTileInterval.height();
|
| -
|
| - tileStartX = SkPin32(tileStartX, 0, fXTileCount - 1);
|
| - tileEndX = SkPin32(tileEndX, tileStartX+1, fXTileCount);
|
| - tileStartY = SkPin32(tileStartY, 0, fYTileCount - 1);
|
| - tileEndY = SkPin32(tileEndY, tileStartY+1, fYTileCount);
|
| -
|
| - int queryTileCount = (tileEndX - tileStartX) * (tileEndY - tileStartY);
|
| - SkASSERT(queryTileCount);
|
| - if (queryTileCount == 1) {
|
| - *results = this->tile(tileStartX, tileStartY);
|
| - } else {
|
| - results->reset();
|
| - SkAutoSTArray<kStackAllocationTileCount, int> curPositions(queryTileCount);
|
| - SkAutoSTArray<kStackAllocationTileCount, SkTDArray<void *>*> storage(queryTileCount);
|
| - const SkTDArray<void *>** tileRange = const_cast<const SkTDArray<void*>**>(storage.get());
|
| - int tile = 0;
|
| - for (int x = tileStartX; x < tileEndX; ++x) {
|
| - for (int y = tileStartY; y < tileEndY; ++y) {
|
| - tileRange[tile] = &this->tile(x, y);
|
| - curPositions[tile] = tileRange[tile]->count() ? 0 : kTileFinished;
|
| - ++tile;
|
| + // region includes the query rectangle.
|
| + int startX = adjusted.left() / fInfo.fTileInterval.width(),
|
| + startY = adjusted.top() / fInfo.fTileInterval.height();
|
| + int endX = divide_ceil(adjusted.right(), fInfo.fTileInterval.width()),
|
| + endY = divide_ceil(adjusted.bottom(), fInfo.fTileInterval.height());
|
| +
|
| + // Logically, we could pin endX to [startX, fXTileCount], but we force it
|
| + // up to (startX, fXTileCount] to make sure we hit at least one tile.
|
| + // This snaps just-out-of-bounds queries to the neighboring border tile.
|
| + // I don't know if this is an important feature outside of unit tests.
|
| + startX = SkPin32(startX, 0, fXTileCount - 1);
|
| + startY = SkPin32(startY, 0, fYTileCount - 1);
|
| + endX = SkPin32(endX, startX + 1, fXTileCount);
|
| + endY = SkPin32(endY, startY + 1, fYTileCount);
|
| +
|
| + const int tilesHit = (endX - startX) * (endY - startY);
|
| + SkASSERT(tilesHit > 0);
|
| +
|
| + if (tilesHit == 1) {
|
| + // A performance shortcut. The merging code below would work fine here too.
|
| + *results = this->tile(startX, startY);
|
| + return;
|
| + }
|
| +
|
| + // We've got to merge the data in many tiles into a single sorted and deduplicated stream.
|
| + // Each tile itself is already sorted (TODO: assert this while building) so we just need to do
|
| + // a simple k-way merge.
|
| +
|
| + // Gather pointers to the starts and ends of the tiles to merge.
|
| + SkAutoSTArray<kStackAllocationTileCount, void**> tiles(tilesHit), ends(tilesHit);
|
| + int i = 0;
|
| + for (int x = startX; x < endX; x++) {
|
| + for (int y = startY; y < endY; y++) {
|
| + tiles[i] = fTileData[y * fXTileCount + x].begin();
|
| + ends[i] = fTileData[y * fXTileCount + x].end();
|
| + i++;
|
| + }
|
| + }
|
| +
|
| + // Merge tiles into results until they're fully consumed.
|
| + results->reset();
|
| + while (true) {
|
| + // The tiles themselves are already sorted, so the smallest datum is the front of some tile.
|
| + // It may be at the front of several, even all, tiles.
|
| + SkPictureStateTree::Draw* smallest = NULL;
|
| + for (int i = 0; i < tiles.count(); i++) {
|
| + if (tiles[i] < ends[i]) {
|
| + SkPictureStateTree::Draw* candidate =
|
| + static_cast<SkPictureStateTree::Draw*>(*tiles[i]);
|
| + if (NULL == smallest || (*candidate) < (*smallest)) {
|
| + smallest = candidate;
|
| + }
|
| }
|
| }
|
| - while(void* nextElement = next_datum(tileRange, curPositions)) {
|
| - results->push(nextElement);
|
| +
|
| + // If we didn't find a smallest datum, there's nothing left to merge.
|
| + if (NULL == smallest) {
|
| + return;
|
| + }
|
| +
|
| + // We did find a smallest datum. Output it, and step forward in every tile that contains it.
|
| + results->push(smallest);
|
| + for (int i = 0; i < tiles.count(); i++) {
|
| + if (tiles[i] < ends[i] && *tiles[i] == smallest) {
|
| + tiles[i]++;
|
| + }
|
| }
|
| }
|
| }
|
|
|