Index: include/core/SkPatch.h |
diff --git a/include/core/SkPatch.h b/include/core/SkPatch.h |
index 698b1cbf306e14dcddb0ce48aad2e886c63f3077..4390c7c537009aef18e1ce69ad7b435a438791b7 100644 |
--- a/include/core/SkPatch.h |
+++ b/include/core/SkPatch.h |
@@ -11,6 +11,7 @@ |
#include "SkColor.h" |
#include "SkPreConfig.h" |
#include "SkPoint.h" |
+#include "SkRect.h" |
/** |
* Class that represents a coons patch. |
@@ -69,17 +70,17 @@ public: |
kLeftP3_CubicCtrlPts = 9, |
}; |
- // Enum for corner colors also clockwise. |
- enum CornerColors { |
- kTopLeft_CornerColors = 0, |
- kTopRight_CornerColors, |
- kBottomRight_CornerColors, |
- kBottomLeft_CornerColors |
+ // Enum for corner also clockwise. |
+ enum Corner { |
+ kTopLeft_Corner = 0, |
+ kTopRight_Corner, |
+ kBottomRight_Corner, |
+ kBottomLeft_Corner |
}; |
enum { |
kNumCtrlPts = 12, |
- kNumColors = 4, |
+ kNumCorners = 4, |
kNumPtsCubic = 4 |
}; |
@@ -93,16 +94,20 @@ public: |
* (bottom curve) |
*/ |
SkPatch() { } |
- SkPatch(const SkPoint points[12], const SkColor colors[4]); |
+ SkPatch(const SkPoint points[12]); |
/** |
* Function that evaluates the coons patch interpolation. |
* data refers to the pointer of the PatchData struct in which the tessellation data is set. |
* lod refers the level of detail for each axis. |
*/ |
- bool getVertexData(SkPatch::VertexData* data, int lodX, int lodY) const; |
+ bool getVertexData(SkPatch::VertexData* data, const SkColor colors[4], |
+ const SkPoint texCoords[4], int lodX, int lodY) const; |
void getTopPoints(SkPoint points[4]) const { |
+ if (NULL == points) { |
reed1
2014/08/11 15:38:44
Hmmm, why is this check here? I can't think of a r
dandov
2014/08/11 18:07:52
I added them to avoid crashing but I see now that
|
+ return; |
+ } |
points[0] = fCtrlPoints[kTopP0_CubicCtrlPts]; |
points[1] = fCtrlPoints[kTopP1_CubicCtrlPts]; |
points[2] = fCtrlPoints[kTopP2_CubicCtrlPts]; |
@@ -110,6 +115,9 @@ public: |
} |
void getBottomPoints(SkPoint points[4]) const { |
+ if (NULL == points) { |
+ return; |
+ } |
points[0] = fCtrlPoints[kBottomP0_CubicCtrlPts]; |
points[1] = fCtrlPoints[kBottomP1_CubicCtrlPts]; |
points[2] = fCtrlPoints[kBottomP2_CubicCtrlPts]; |
@@ -117,6 +125,9 @@ public: |
} |
void getLeftPoints(SkPoint points[4]) const { |
+ if (NULL == points) { |
+ return; |
+ } |
points[0] = fCtrlPoints[kLeftP0_CubicCtrlPts]; |
points[1] = fCtrlPoints[kLeftP1_CubicCtrlPts]; |
points[2] = fCtrlPoints[kLeftP2_CubicCtrlPts]; |
@@ -124,6 +135,9 @@ public: |
} |
void getRightPoints(SkPoint points[4]) const { |
+ if (NULL == points) { |
+ return; |
+ } |
points[0] = fCtrlPoints[kRightP0_CubicCtrlPts]; |
points[1] = fCtrlPoints[kRightP1_CubicCtrlPts]; |
points[2] = fCtrlPoints[kRightP2_CubicCtrlPts]; |
@@ -131,31 +145,23 @@ public: |
} |
void getCornerPoints(SkPoint points[4]) const { |
+ if (NULL == points) { |
+ return; |
+ } |
points[0] = fCtrlPoints[kTopP0_CubicCtrlPts]; |
points[1] = fCtrlPoints[kTopP3_CubicCtrlPts]; |
points[2] = fCtrlPoints[kBottomP3_CubicCtrlPts]; |
points[3] = fCtrlPoints[kBottomP0_CubicCtrlPts]; |
} |
+ const SkRect getBounds() const; |
+ |
const SkPoint* getControlPoints() const { |
return fCtrlPoints; |
} |
- |
- const SkColor* getColors() const { |
- return fCornerColors; |
- } |
- |
- void setPoints(const SkPoint points[12]) { |
- memcpy(fCtrlPoints, points, kNumCtrlPts * sizeof(SkPoint)); |
- } |
- |
- void setColors(const SkColor colors[4]) { |
- memcpy(fCornerColors, colors, kNumColors * sizeof(SkColor)); |
- } |
- void reset(const SkPoint points[12], const SkColor colors[4]) { |
- this->setPoints(points); |
- this->setColors(colors); |
+ void reset(const SkPoint points[12]) { |
+ memcpy(fCtrlPoints, points, kNumCtrlPts * sizeof(SkPoint)); |
} |
/** |
@@ -176,7 +182,68 @@ public: |
private: |
SkPoint fCtrlPoints[kNumCtrlPts]; |
- SkColor fCornerColors[kNumColors]; |
+}; |
+ |
+/** |
+ * Evaluator to sample the values of a cubic bezier using forward differences. |
+ * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only |
+ * adding precalculated values. |
+ * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h |
+ * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first |
+ * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After |
+ * obtaining this value (mh) we could just add this constant step to our first sampled point |
+ * to compute the next one. |
+ * |
+ * For the cubic case the first difference gives as a result a quadratic polynomial to which we can |
+ * apply again forward differences and get linear function to which we can apply again forward |
+ * differences to get a constant difference. This is why we keep an array of size 4, the 0th |
+ * position keeps the sampled value while the next ones keep the quadratic, linear and constant |
+ * difference values. |
+ */ |
+ |
+class FwDCubicEvaluator { |
+ |
+public: |
+ FwDCubicEvaluator(); |
+ |
+ /** |
+ * Receives the 4 control points of the cubic bezier. |
+ */ |
+ FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d); |
+ |
+ explicit FwDCubicEvaluator(const SkPoint points[4]); |
+ |
+ /** |
+ * Restarts the forward differences evaluator to the first value of t = 0. |
+ */ |
+ void restart(int divisions); |
+ |
+ /** |
+ * Check if the evaluator is still within the range of 0<=t<=1 |
+ */ |
+ bool done() const { |
+ return fCurrent > fMax; |
+ } |
+ |
+ /** |
+ * Call next to obtain the SkPoint sampled and move to the next one. |
+ */ |
+ SkPoint next() { |
+ SkPoint point = fFwDiff[0]; |
+ fFwDiff[0] += fFwDiff[1]; |
+ fFwDiff[1] += fFwDiff[2]; |
+ fFwDiff[2] += fFwDiff[3]; |
+ fCurrent++; |
+ return point; |
+ } |
+ |
+ const SkPoint* getCtrlPoints() const { |
+ return fPoints; |
+ } |
+ |
+private: |
+ int fMax, fCurrent, fDivisions; |
+ SkPoint fFwDiff[4], fCoefs[4], fPoints[4]; |
}; |
#endif |