| Index: src/core/SkPatch.cpp
|
| diff --git a/src/core/SkPatch.cpp b/src/core/SkPatch.cpp
|
| deleted file mode 100644
|
| index 4cca2bad1d44abf7ad3d1fcd6418bfbb4a5a17ba..0000000000000000000000000000000000000000
|
| --- a/src/core/SkPatch.cpp
|
| +++ /dev/null
|
| @@ -1,262 +0,0 @@
|
| -/*
|
| - * Copyright 2014 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -
|
| -#include "SkPatch.h"
|
| -
|
| -#include "SkGeometry.h"
|
| -#include "SkColorPriv.h"
|
| -#include "SkBuffer.h"
|
| -
|
| -////////////////////////////////////////////////////////////////////////////////
|
| -
|
| -/**
|
| - * Evaluator to sample the values of a cubic bezier using forward differences.
|
| - * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only
|
| - * adding precalculated values.
|
| - * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h
|
| - * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
|
| - * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
|
| - * obtaining this value (mh) we could just add this constant step to our first sampled point
|
| - * to compute the next one.
|
| - *
|
| - * For the cubic case the first difference gives as a result a quadratic polynomial to which we can
|
| - * apply again forward differences and get linear function to which we can apply again forward
|
| - * differences to get a constant difference. This is why we keep an array of size 4, the 0th
|
| - * position keeps the sampled value while the next ones keep the quadratic, linear and constant
|
| - * difference values.
|
| - */
|
| -
|
| -class FwDCubicEvaluator {
|
| -
|
| -public:
|
| - FwDCubicEvaluator() { }
|
| -
|
| - /**
|
| - * Receives the 4 control points of the cubic bezier.
|
| - */
|
| - FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d) {
|
| - fPoints[0] = a;
|
| - fPoints[1] = b;
|
| - fPoints[2] = c;
|
| - fPoints[3] = d;
|
| -
|
| - SkScalar cx[4], cy[4];
|
| - SkGetCubicCoeff(fPoints, cx, cy);
|
| - fCoefs[0].set(cx[0], cy[0]);
|
| - fCoefs[1].set(cx[1], cy[1]);
|
| - fCoefs[2].set(cx[2], cy[2]);
|
| - fCoefs[3].set(cx[3], cy[3]);
|
| -
|
| - this->restart(1);
|
| - }
|
| -
|
| - explicit FwDCubicEvaluator(SkPoint points[4]) {
|
| - for (int i = 0; i< 4; i++) {
|
| - fPoints[i] = points[i];
|
| - }
|
| -
|
| - SkScalar cx[4], cy[4];
|
| - SkGetCubicCoeff(fPoints, cx, cy);
|
| - fCoefs[0].set(cx[0], cy[0]);
|
| - fCoefs[1].set(cx[1], cy[1]);
|
| - fCoefs[2].set(cx[2], cy[2]);
|
| - fCoefs[3].set(cx[3], cy[3]);
|
| -
|
| - this->restart(1);
|
| - }
|
| -
|
| - /**
|
| - * Restarts the forward differences evaluator to the first value of t = 0.
|
| - */
|
| - void restart(int divisions) {
|
| - fDivisions = divisions;
|
| - SkScalar h = 1.f / fDivisions;
|
| - fCurrent = 0;
|
| - fMax = fDivisions + 1;
|
| - fFwDiff[0] = fCoefs[3];
|
| - SkScalar h2 = h * h;
|
| - SkScalar h3 = h2 * h;
|
| -
|
| - fFwDiff[3].set(6.f * fCoefs[0].x() * h3, 6.f * fCoefs[0].y() * h3); //6ah^3
|
| - fFwDiff[2].set(fFwDiff[3].x() + 2.f * fCoefs[1].x() * h2, //6ah^3 + 2bh^2
|
| - fFwDiff[3].y() + 2.f * fCoefs[1].y() * h2);
|
| - fFwDiff[1].set(fCoefs[0].x() * h3 + fCoefs[1].x() * h2 + fCoefs[2].x() * h,//ah^3 + bh^2 +ch
|
| - fCoefs[0].y() * h3 + fCoefs[1].y() * h2 + fCoefs[2].y() * h);
|
| - }
|
| -
|
| - /**
|
| - * Check if the evaluator is still within the range of 0<=t<=1
|
| - */
|
| - bool done() const {
|
| - return fCurrent > fMax;
|
| - }
|
| -
|
| - /**
|
| - * Call next to obtain the SkPoint sampled and move to the next one.
|
| - */
|
| - SkPoint next() {
|
| - SkPoint point = fFwDiff[0];
|
| - fFwDiff[0] += fFwDiff[1];
|
| - fFwDiff[1] += fFwDiff[2];
|
| - fFwDiff[2] += fFwDiff[3];
|
| - fCurrent++;
|
| - return point;
|
| - }
|
| -
|
| - const SkPoint* getCtrlPoints() const {
|
| - return fPoints;
|
| - }
|
| -
|
| -private:
|
| - int fMax, fCurrent, fDivisions;
|
| - SkPoint fFwDiff[4], fCoefs[4], fPoints[4];
|
| -};
|
| -
|
| -////////////////////////////////////////////////////////////////////////////////
|
| -
|
| -SkPatch::SkPatch(const SkPoint points[12], const SkColor colors[4]) {
|
| - this->reset(points, colors);
|
| -}
|
| -
|
| -static uint8_t bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01,
|
| - SkScalar c11) {
|
| - SkScalar a = c00 * (1.f - tx) + c10 * tx;
|
| - SkScalar b = c01 * (1.f - tx) + c11 * tx;
|
| - return uint8_t(a * (1.f - ty) + b * ty);
|
| -}
|
| -
|
| -bool SkPatch::getVertexData(SkPatch::VertexData* data, int lodX, int lodY) const {
|
| -
|
| - if (lodX < 1 || lodY < 1) {
|
| - return false;
|
| - }
|
| -
|
| - // premultiply colors to avoid color bleeding.
|
| - SkPMColor colors[SkPatch::kNumColors];
|
| - for (int i = 0; i < SkPatch::kNumColors; i++) {
|
| - colors[i] = SkPreMultiplyColor(fCornerColors[i]);
|
| - }
|
| -
|
| - // number of indices is limited by size of uint16_t, so we clamp it to avoid overflow
|
| - data->fVertexCount = SkMin32((lodX + 1) * (lodY + 1), 65536);
|
| - lodX = SkMin32(lodX, 255);
|
| - lodY = SkMin32(lodY, 255);
|
| - data->fIndexCount = lodX * lodY * 6;
|
| -
|
| - data->fPoints = SkNEW_ARRAY(SkPoint, data->fVertexCount);
|
| - data->fColors = SkNEW_ARRAY(uint32_t, data->fVertexCount);
|
| - data->fTexCoords = SkNEW_ARRAY(SkPoint, data->fVertexCount);
|
| - data->fIndices = SkNEW_ARRAY(uint16_t, data->fIndexCount);
|
| -
|
| - SkPoint pts[SkPatch::kNumPtsCubic];
|
| - this->getBottomPoints(pts);
|
| - FwDCubicEvaluator fBottom(pts);
|
| - this->getTopPoints(pts);
|
| - FwDCubicEvaluator fTop(pts);
|
| - this->getLeftPoints(pts);
|
| - FwDCubicEvaluator fLeft(pts);
|
| - this->getRightPoints(pts);
|
| - FwDCubicEvaluator fRight(pts);
|
| -
|
| - fBottom.restart(lodX);
|
| - fTop.restart(lodX);
|
| -
|
| - SkScalar u = 0.0f;
|
| - int stride = lodY + 1;
|
| - for (int x = 0; x <= lodX; x++) {
|
| - SkPoint bottom = fBottom.next(), top = fTop.next();
|
| - fLeft.restart(lodY);
|
| - fRight.restart(lodY);
|
| - SkScalar v = 0.f;
|
| - for (int y = 0; y <= lodY; y++) {
|
| - int dataIndex = x * (lodY + 1) + y;
|
| -
|
| - SkPoint left = fLeft.next(), right = fRight.next();
|
| -
|
| - SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
|
| - (1.0f - v) * top.y() + v * bottom.y());
|
| - SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
|
| - (1.0f - u) * left.y() + u * right.y());
|
| - SkPoint s2 = SkPoint::Make(
|
| - (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x()
|
| - + u * fTop.getCtrlPoints()[3].x())
|
| - + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x()
|
| - + u * fBottom.getCtrlPoints()[3].x()),
|
| - (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y()
|
| - + u * fTop.getCtrlPoints()[3].y())
|
| - + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y()
|
| - + u * fBottom.getCtrlPoints()[3].y()));
|
| - data->fPoints[dataIndex] = s0 + s1 - s2;
|
| -
|
| - uint8_t a = bilerp(u, v,
|
| - SkScalar(SkColorGetA(colors[kTopLeft_CornerColors])),
|
| - SkScalar(SkColorGetA(colors[kTopRight_CornerColors])),
|
| - SkScalar(SkColorGetA(colors[kBottomLeft_CornerColors])),
|
| - SkScalar(SkColorGetA(colors[kBottomRight_CornerColors])));
|
| - uint8_t r = bilerp(u, v,
|
| - SkScalar(SkColorGetR(colors[kTopLeft_CornerColors])),
|
| - SkScalar(SkColorGetR(colors[kTopRight_CornerColors])),
|
| - SkScalar(SkColorGetR(colors[kBottomLeft_CornerColors])),
|
| - SkScalar(SkColorGetR(colors[kBottomRight_CornerColors])));
|
| - uint8_t g = bilerp(u, v,
|
| - SkScalar(SkColorGetG(colors[kTopLeft_CornerColors])),
|
| - SkScalar(SkColorGetG(colors[kTopRight_CornerColors])),
|
| - SkScalar(SkColorGetG(colors[kBottomLeft_CornerColors])),
|
| - SkScalar(SkColorGetG(colors[kBottomRight_CornerColors])));
|
| - uint8_t b = bilerp(u, v,
|
| - SkScalar(SkColorGetB(colors[kTopLeft_CornerColors])),
|
| - SkScalar(SkColorGetB(colors[kTopRight_CornerColors])),
|
| - SkScalar(SkColorGetB(colors[kBottomLeft_CornerColors])),
|
| - SkScalar(SkColorGetB(colors[kBottomRight_CornerColors])));
|
| - data->fColors[dataIndex] = SkPackARGB32(a,r,g,b);
|
| -
|
| - data->fTexCoords[dataIndex] = SkPoint::Make(u, v);
|
| -
|
| - if(x < lodX && y < lodY) {
|
| - int i = 6 * (x * lodY + y);
|
| - data->fIndices[i] = x * stride + y;
|
| - data->fIndices[i + 1] = x * stride + 1 + y;
|
| - data->fIndices[i + 2] = (x + 1) * stride + 1 + y;
|
| - data->fIndices[i + 3] = data->fIndices[i];
|
| - data->fIndices[i + 4] = data->fIndices[i + 2];
|
| - data->fIndices[i + 5] = (x + 1) * stride + y;
|
| - }
|
| - v = SkScalarClampMax(v + 1.f / lodY, 1);
|
| - }
|
| - u = SkScalarClampMax(u + 1.f / lodX, 1);
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -size_t SkPatch::writeToMemory(void* storage) const {
|
| - int byteCount = kNumCtrlPts * sizeof(SkPoint) + kNumColors * sizeof(SkColor);
|
| -
|
| - if (NULL == storage) {
|
| - return SkAlign4(byteCount);
|
| - }
|
| -
|
| - SkWBuffer buffer(storage);
|
| -
|
| - buffer.write(fCtrlPoints, kNumCtrlPts * sizeof(SkPoint));
|
| - buffer.write(fCornerColors, kNumColors * sizeof(SkColor));
|
| -
|
| - buffer.padToAlign4();
|
| - return buffer.pos();
|
| -}
|
| -
|
| -size_t SkPatch::readFromMemory(const void* storage, size_t length) {
|
| - SkRBufferWithSizeCheck buffer(storage, length);
|
| -
|
| - if (!buffer.read(fCtrlPoints, kNumCtrlPts * sizeof(SkPoint))) {
|
| - return 0;
|
| - }
|
| -
|
| - if (!buffer.read(fCornerColors, kNumColors * sizeof(SkColor))) {
|
| - return 0;
|
| - }
|
| - return kNumCtrlPts * sizeof(SkPoint) + kNumColors * sizeof(SkColor);
|
| -}
|
|
|