Index: src/core/SkPatch.cpp |
diff --git a/src/core/SkPatch.cpp b/src/core/SkPatch.cpp |
deleted file mode 100644 |
index 4cca2bad1d44abf7ad3d1fcd6418bfbb4a5a17ba..0000000000000000000000000000000000000000 |
--- a/src/core/SkPatch.cpp |
+++ /dev/null |
@@ -1,262 +0,0 @@ |
-/* |
- * Copyright 2014 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
-#include "SkPatch.h" |
- |
-#include "SkGeometry.h" |
-#include "SkColorPriv.h" |
-#include "SkBuffer.h" |
- |
-//////////////////////////////////////////////////////////////////////////////// |
- |
-/** |
- * Evaluator to sample the values of a cubic bezier using forward differences. |
- * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only |
- * adding precalculated values. |
- * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h |
- * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first |
- * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After |
- * obtaining this value (mh) we could just add this constant step to our first sampled point |
- * to compute the next one. |
- * |
- * For the cubic case the first difference gives as a result a quadratic polynomial to which we can |
- * apply again forward differences and get linear function to which we can apply again forward |
- * differences to get a constant difference. This is why we keep an array of size 4, the 0th |
- * position keeps the sampled value while the next ones keep the quadratic, linear and constant |
- * difference values. |
- */ |
- |
-class FwDCubicEvaluator { |
- |
-public: |
- FwDCubicEvaluator() { } |
- |
- /** |
- * Receives the 4 control points of the cubic bezier. |
- */ |
- FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d) { |
- fPoints[0] = a; |
- fPoints[1] = b; |
- fPoints[2] = c; |
- fPoints[3] = d; |
- |
- SkScalar cx[4], cy[4]; |
- SkGetCubicCoeff(fPoints, cx, cy); |
- fCoefs[0].set(cx[0], cy[0]); |
- fCoefs[1].set(cx[1], cy[1]); |
- fCoefs[2].set(cx[2], cy[2]); |
- fCoefs[3].set(cx[3], cy[3]); |
- |
- this->restart(1); |
- } |
- |
- explicit FwDCubicEvaluator(SkPoint points[4]) { |
- for (int i = 0; i< 4; i++) { |
- fPoints[i] = points[i]; |
- } |
- |
- SkScalar cx[4], cy[4]; |
- SkGetCubicCoeff(fPoints, cx, cy); |
- fCoefs[0].set(cx[0], cy[0]); |
- fCoefs[1].set(cx[1], cy[1]); |
- fCoefs[2].set(cx[2], cy[2]); |
- fCoefs[3].set(cx[3], cy[3]); |
- |
- this->restart(1); |
- } |
- |
- /** |
- * Restarts the forward differences evaluator to the first value of t = 0. |
- */ |
- void restart(int divisions) { |
- fDivisions = divisions; |
- SkScalar h = 1.f / fDivisions; |
- fCurrent = 0; |
- fMax = fDivisions + 1; |
- fFwDiff[0] = fCoefs[3]; |
- SkScalar h2 = h * h; |
- SkScalar h3 = h2 * h; |
- |
- fFwDiff[3].set(6.f * fCoefs[0].x() * h3, 6.f * fCoefs[0].y() * h3); //6ah^3 |
- fFwDiff[2].set(fFwDiff[3].x() + 2.f * fCoefs[1].x() * h2, //6ah^3 + 2bh^2 |
- fFwDiff[3].y() + 2.f * fCoefs[1].y() * h2); |
- fFwDiff[1].set(fCoefs[0].x() * h3 + fCoefs[1].x() * h2 + fCoefs[2].x() * h,//ah^3 + bh^2 +ch |
- fCoefs[0].y() * h3 + fCoefs[1].y() * h2 + fCoefs[2].y() * h); |
- } |
- |
- /** |
- * Check if the evaluator is still within the range of 0<=t<=1 |
- */ |
- bool done() const { |
- return fCurrent > fMax; |
- } |
- |
- /** |
- * Call next to obtain the SkPoint sampled and move to the next one. |
- */ |
- SkPoint next() { |
- SkPoint point = fFwDiff[0]; |
- fFwDiff[0] += fFwDiff[1]; |
- fFwDiff[1] += fFwDiff[2]; |
- fFwDiff[2] += fFwDiff[3]; |
- fCurrent++; |
- return point; |
- } |
- |
- const SkPoint* getCtrlPoints() const { |
- return fPoints; |
- } |
- |
-private: |
- int fMax, fCurrent, fDivisions; |
- SkPoint fFwDiff[4], fCoefs[4], fPoints[4]; |
-}; |
- |
-//////////////////////////////////////////////////////////////////////////////// |
- |
-SkPatch::SkPatch(const SkPoint points[12], const SkColor colors[4]) { |
- this->reset(points, colors); |
-} |
- |
-static uint8_t bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01, |
- SkScalar c11) { |
- SkScalar a = c00 * (1.f - tx) + c10 * tx; |
- SkScalar b = c01 * (1.f - tx) + c11 * tx; |
- return uint8_t(a * (1.f - ty) + b * ty); |
-} |
- |
-bool SkPatch::getVertexData(SkPatch::VertexData* data, int lodX, int lodY) const { |
- |
- if (lodX < 1 || lodY < 1) { |
- return false; |
- } |
- |
- // premultiply colors to avoid color bleeding. |
- SkPMColor colors[SkPatch::kNumColors]; |
- for (int i = 0; i < SkPatch::kNumColors; i++) { |
- colors[i] = SkPreMultiplyColor(fCornerColors[i]); |
- } |
- |
- // number of indices is limited by size of uint16_t, so we clamp it to avoid overflow |
- data->fVertexCount = SkMin32((lodX + 1) * (lodY + 1), 65536); |
- lodX = SkMin32(lodX, 255); |
- lodY = SkMin32(lodY, 255); |
- data->fIndexCount = lodX * lodY * 6; |
- |
- data->fPoints = SkNEW_ARRAY(SkPoint, data->fVertexCount); |
- data->fColors = SkNEW_ARRAY(uint32_t, data->fVertexCount); |
- data->fTexCoords = SkNEW_ARRAY(SkPoint, data->fVertexCount); |
- data->fIndices = SkNEW_ARRAY(uint16_t, data->fIndexCount); |
- |
- SkPoint pts[SkPatch::kNumPtsCubic]; |
- this->getBottomPoints(pts); |
- FwDCubicEvaluator fBottom(pts); |
- this->getTopPoints(pts); |
- FwDCubicEvaluator fTop(pts); |
- this->getLeftPoints(pts); |
- FwDCubicEvaluator fLeft(pts); |
- this->getRightPoints(pts); |
- FwDCubicEvaluator fRight(pts); |
- |
- fBottom.restart(lodX); |
- fTop.restart(lodX); |
- |
- SkScalar u = 0.0f; |
- int stride = lodY + 1; |
- for (int x = 0; x <= lodX; x++) { |
- SkPoint bottom = fBottom.next(), top = fTop.next(); |
- fLeft.restart(lodY); |
- fRight.restart(lodY); |
- SkScalar v = 0.f; |
- for (int y = 0; y <= lodY; y++) { |
- int dataIndex = x * (lodY + 1) + y; |
- |
- SkPoint left = fLeft.next(), right = fRight.next(); |
- |
- SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(), |
- (1.0f - v) * top.y() + v * bottom.y()); |
- SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(), |
- (1.0f - u) * left.y() + u * right.y()); |
- SkPoint s2 = SkPoint::Make( |
- (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x() |
- + u * fTop.getCtrlPoints()[3].x()) |
- + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x() |
- + u * fBottom.getCtrlPoints()[3].x()), |
- (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y() |
- + u * fTop.getCtrlPoints()[3].y()) |
- + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y() |
- + u * fBottom.getCtrlPoints()[3].y())); |
- data->fPoints[dataIndex] = s0 + s1 - s2; |
- |
- uint8_t a = bilerp(u, v, |
- SkScalar(SkColorGetA(colors[kTopLeft_CornerColors])), |
- SkScalar(SkColorGetA(colors[kTopRight_CornerColors])), |
- SkScalar(SkColorGetA(colors[kBottomLeft_CornerColors])), |
- SkScalar(SkColorGetA(colors[kBottomRight_CornerColors]))); |
- uint8_t r = bilerp(u, v, |
- SkScalar(SkColorGetR(colors[kTopLeft_CornerColors])), |
- SkScalar(SkColorGetR(colors[kTopRight_CornerColors])), |
- SkScalar(SkColorGetR(colors[kBottomLeft_CornerColors])), |
- SkScalar(SkColorGetR(colors[kBottomRight_CornerColors]))); |
- uint8_t g = bilerp(u, v, |
- SkScalar(SkColorGetG(colors[kTopLeft_CornerColors])), |
- SkScalar(SkColorGetG(colors[kTopRight_CornerColors])), |
- SkScalar(SkColorGetG(colors[kBottomLeft_CornerColors])), |
- SkScalar(SkColorGetG(colors[kBottomRight_CornerColors]))); |
- uint8_t b = bilerp(u, v, |
- SkScalar(SkColorGetB(colors[kTopLeft_CornerColors])), |
- SkScalar(SkColorGetB(colors[kTopRight_CornerColors])), |
- SkScalar(SkColorGetB(colors[kBottomLeft_CornerColors])), |
- SkScalar(SkColorGetB(colors[kBottomRight_CornerColors]))); |
- data->fColors[dataIndex] = SkPackARGB32(a,r,g,b); |
- |
- data->fTexCoords[dataIndex] = SkPoint::Make(u, v); |
- |
- if(x < lodX && y < lodY) { |
- int i = 6 * (x * lodY + y); |
- data->fIndices[i] = x * stride + y; |
- data->fIndices[i + 1] = x * stride + 1 + y; |
- data->fIndices[i + 2] = (x + 1) * stride + 1 + y; |
- data->fIndices[i + 3] = data->fIndices[i]; |
- data->fIndices[i + 4] = data->fIndices[i + 2]; |
- data->fIndices[i + 5] = (x + 1) * stride + y; |
- } |
- v = SkScalarClampMax(v + 1.f / lodY, 1); |
- } |
- u = SkScalarClampMax(u + 1.f / lodX, 1); |
- } |
- return true; |
-} |
- |
-size_t SkPatch::writeToMemory(void* storage) const { |
- int byteCount = kNumCtrlPts * sizeof(SkPoint) + kNumColors * sizeof(SkColor); |
- |
- if (NULL == storage) { |
- return SkAlign4(byteCount); |
- } |
- |
- SkWBuffer buffer(storage); |
- |
- buffer.write(fCtrlPoints, kNumCtrlPts * sizeof(SkPoint)); |
- buffer.write(fCornerColors, kNumColors * sizeof(SkColor)); |
- |
- buffer.padToAlign4(); |
- return buffer.pos(); |
-} |
- |
-size_t SkPatch::readFromMemory(const void* storage, size_t length) { |
- SkRBufferWithSizeCheck buffer(storage, length); |
- |
- if (!buffer.read(fCtrlPoints, kNumCtrlPts * sizeof(SkPoint))) { |
- return 0; |
- } |
- |
- if (!buffer.read(fCornerColors, kNumColors * sizeof(SkColor))) { |
- return 0; |
- } |
- return kNumCtrlPts * sizeof(SkPoint) + kNumColors * sizeof(SkColor); |
-} |