| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2014 Google Inc. | 2 * Copyright 2014 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 #ifndef SkPatch_DEFINED | 8 #ifndef SkPatch_DEFINED |
| 9 #define SkPatch_DEFINED | 9 #define SkPatch_DEFINED |
| 10 | 10 |
| 11 #include "SkColor.h" | 11 #include "SkColor.h" |
| 12 #include "SkPreConfig.h" | 12 #include "SkPreConfig.h" |
| 13 #include "SkPoint.h" | 13 #include "SkPoint.h" |
| 14 #include "SkRect.h" |
| 14 | 15 |
| 15 /** | 16 /** |
| 16 * Class that represents a coons patch. | 17 * Class that represents a coons patch. |
| 17 */ | 18 */ |
| 18 class SK_API SkPatch { | 19 class SK_API SkPatch { |
| 19 | 20 |
| 20 public: | 21 public: |
| 21 /** | 22 /** |
| 22 * Structure that holds the vertex data related to the tessellation of a SkP
atch. It is passed | 23 * Structure that holds the vertex data related to the tessellation of a SkP
atch. It is passed |
| 23 * as a parameter to the function getVertexData which sets the points, color
s and texture | 24 * as a parameter to the function getVertexData which sets the points, color
s and texture |
| (...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 62 kBottomP1_CubicCtrlPts = 8, | 63 kBottomP1_CubicCtrlPts = 8, |
| 63 kBottomP2_CubicCtrlPts = 7, | 64 kBottomP2_CubicCtrlPts = 7, |
| 64 kBottomP3_CubicCtrlPts = 6, | 65 kBottomP3_CubicCtrlPts = 6, |
| 65 | 66 |
| 66 kLeftP0_CubicCtrlPts = 0, | 67 kLeftP0_CubicCtrlPts = 0, |
| 67 kLeftP1_CubicCtrlPts = 11, | 68 kLeftP1_CubicCtrlPts = 11, |
| 68 kLeftP2_CubicCtrlPts = 10, | 69 kLeftP2_CubicCtrlPts = 10, |
| 69 kLeftP3_CubicCtrlPts = 9, | 70 kLeftP3_CubicCtrlPts = 9, |
| 70 }; | 71 }; |
| 71 | 72 |
| 72 // Enum for corner colors also clockwise. | 73 // Enum for corner also clockwise. |
| 73 enum CornerColors { | 74 enum Corner { |
| 74 kTopLeft_CornerColors = 0, | 75 kTopLeft_Corner = 0, |
| 75 kTopRight_CornerColors, | 76 kTopRight_Corner, |
| 76 kBottomRight_CornerColors, | 77 kBottomRight_Corner, |
| 77 kBottomLeft_CornerColors | 78 kBottomLeft_Corner |
| 78 }; | 79 }; |
| 79 | 80 |
| 80 enum { | 81 enum { |
| 81 kNumCtrlPts = 12, | 82 kNumCtrlPts = 12, |
| 82 kNumColors = 4, | 83 kNumCorners = 4, |
| 83 kNumPtsCubic = 4 | 84 kNumPtsCubic = 4 |
| 84 }; | 85 }; |
| 85 | 86 |
| 86 /** | 87 /** |
| 87 * Points are in the following order: | 88 * Points are in the following order: |
| 88 * (top curve) | 89 * (top curve) |
| 89 * 0 1 2 3 | 90 * 0 1 2 3 |
| 90 * (left curve) 11 4 (right curve) | 91 * (left curve) 11 4 (right curve) |
| 91 * 10 5 | 92 * 10 5 |
| 92 * 9 8 7 6 | 93 * 9 8 7 6 |
| 93 * (bottom curve) | 94 * (bottom curve) |
| 94 */ | 95 */ |
| 95 SkPatch() { } | 96 SkPatch() { } |
| 96 SkPatch(const SkPoint points[12], const SkColor colors[4]); | 97 SkPatch(const SkPoint points[12]); |
| 97 | 98 |
| 98 /** | 99 /** |
| 99 * Function that evaluates the coons patch interpolation. | 100 * Function that evaluates the coons patch interpolation. |
| 100 * data refers to the pointer of the PatchData struct in which the tessellat
ion data is set. | 101 * data refers to the pointer of the PatchData struct in which the tessellat
ion data is set. |
| 101 * lod refers the level of detail for each axis. | 102 * lod refers the level of detail for each axis. |
| 102 */ | 103 */ |
| 103 bool getVertexData(SkPatch::VertexData* data, int lodX, int lodY) const; | 104 bool getVertexData(SkPatch::VertexData* data, const SkColor colors[4], |
| 105 const SkPoint texCoords[4], int lodX, int lodY) const; |
| 104 | 106 |
| 105 void getTopPoints(SkPoint points[4]) const { | 107 void getTopPoints(SkPoint points[4]) const { |
| 108 if (NULL == points) { |
| 109 return; |
| 110 } |
| 106 points[0] = fCtrlPoints[kTopP0_CubicCtrlPts]; | 111 points[0] = fCtrlPoints[kTopP0_CubicCtrlPts]; |
| 107 points[1] = fCtrlPoints[kTopP1_CubicCtrlPts]; | 112 points[1] = fCtrlPoints[kTopP1_CubicCtrlPts]; |
| 108 points[2] = fCtrlPoints[kTopP2_CubicCtrlPts]; | 113 points[2] = fCtrlPoints[kTopP2_CubicCtrlPts]; |
| 109 points[3] = fCtrlPoints[kTopP3_CubicCtrlPts]; | 114 points[3] = fCtrlPoints[kTopP3_CubicCtrlPts]; |
| 110 } | 115 } |
| 111 | 116 |
| 112 void getBottomPoints(SkPoint points[4]) const { | 117 void getBottomPoints(SkPoint points[4]) const { |
| 118 if (NULL == points) { |
| 119 return; |
| 120 } |
| 113 points[0] = fCtrlPoints[kBottomP0_CubicCtrlPts]; | 121 points[0] = fCtrlPoints[kBottomP0_CubicCtrlPts]; |
| 114 points[1] = fCtrlPoints[kBottomP1_CubicCtrlPts]; | 122 points[1] = fCtrlPoints[kBottomP1_CubicCtrlPts]; |
| 115 points[2] = fCtrlPoints[kBottomP2_CubicCtrlPts]; | 123 points[2] = fCtrlPoints[kBottomP2_CubicCtrlPts]; |
| 116 points[3] = fCtrlPoints[kBottomP3_CubicCtrlPts]; | 124 points[3] = fCtrlPoints[kBottomP3_CubicCtrlPts]; |
| 117 } | 125 } |
| 118 | 126 |
| 119 void getLeftPoints(SkPoint points[4]) const { | 127 void getLeftPoints(SkPoint points[4]) const { |
| 128 if (NULL == points) { |
| 129 return; |
| 130 } |
| 120 points[0] = fCtrlPoints[kLeftP0_CubicCtrlPts]; | 131 points[0] = fCtrlPoints[kLeftP0_CubicCtrlPts]; |
| 121 points[1] = fCtrlPoints[kLeftP1_CubicCtrlPts]; | 132 points[1] = fCtrlPoints[kLeftP1_CubicCtrlPts]; |
| 122 points[2] = fCtrlPoints[kLeftP2_CubicCtrlPts]; | 133 points[2] = fCtrlPoints[kLeftP2_CubicCtrlPts]; |
| 123 points[3] = fCtrlPoints[kLeftP3_CubicCtrlPts]; | 134 points[3] = fCtrlPoints[kLeftP3_CubicCtrlPts]; |
| 124 } | 135 } |
| 125 | 136 |
| 126 void getRightPoints(SkPoint points[4]) const { | 137 void getRightPoints(SkPoint points[4]) const { |
| 138 if (NULL == points) { |
| 139 return; |
| 140 } |
| 127 points[0] = fCtrlPoints[kRightP0_CubicCtrlPts]; | 141 points[0] = fCtrlPoints[kRightP0_CubicCtrlPts]; |
| 128 points[1] = fCtrlPoints[kRightP1_CubicCtrlPts]; | 142 points[1] = fCtrlPoints[kRightP1_CubicCtrlPts]; |
| 129 points[2] = fCtrlPoints[kRightP2_CubicCtrlPts]; | 143 points[2] = fCtrlPoints[kRightP2_CubicCtrlPts]; |
| 130 points[3] = fCtrlPoints[kRightP3_CubicCtrlPts]; | 144 points[3] = fCtrlPoints[kRightP3_CubicCtrlPts]; |
| 131 } | 145 } |
| 132 | 146 |
| 133 void getCornerPoints(SkPoint points[4]) const { | 147 void getCornerPoints(SkPoint points[4]) const { |
| 148 if (NULL == points) { |
| 149 return; |
| 150 } |
| 134 points[0] = fCtrlPoints[kTopP0_CubicCtrlPts]; | 151 points[0] = fCtrlPoints[kTopP0_CubicCtrlPts]; |
| 135 points[1] = fCtrlPoints[kTopP3_CubicCtrlPts]; | 152 points[1] = fCtrlPoints[kTopP3_CubicCtrlPts]; |
| 136 points[2] = fCtrlPoints[kBottomP3_CubicCtrlPts]; | 153 points[2] = fCtrlPoints[kBottomP3_CubicCtrlPts]; |
| 137 points[3] = fCtrlPoints[kBottomP0_CubicCtrlPts]; | 154 points[3] = fCtrlPoints[kBottomP0_CubicCtrlPts]; |
| 138 } | 155 } |
| 139 | 156 |
| 157 const SkRect getBounds() const; |
| 158 |
| 140 const SkPoint* getControlPoints() const { | 159 const SkPoint* getControlPoints() const { |
| 141 return fCtrlPoints; | 160 return fCtrlPoints; |
| 142 } | 161 } |
| 143 | 162 |
| 144 const SkColor* getColors() const { | 163 void reset(const SkPoint points[12]) { |
| 145 return fCornerColors; | |
| 146 } | |
| 147 | |
| 148 void setPoints(const SkPoint points[12]) { | |
| 149 memcpy(fCtrlPoints, points, kNumCtrlPts * sizeof(SkPoint)); | 164 memcpy(fCtrlPoints, points, kNumCtrlPts * sizeof(SkPoint)); |
| 150 } | 165 } |
| 151 | |
| 152 void setColors(const SkColor colors[4]) { | |
| 153 memcpy(fCornerColors, colors, kNumColors * sizeof(SkColor)); | |
| 154 } | |
| 155 | |
| 156 void reset(const SkPoint points[12], const SkColor colors[4]) { | |
| 157 this->setPoints(points); | |
| 158 this->setColors(colors); | |
| 159 } | |
| 160 | 166 |
| 161 /** | 167 /** |
| 162 * Write the patch to the buffer, and return the number of bytes written. | 168 * Write the patch to the buffer, and return the number of bytes written. |
| 163 * If buffer is NULL, it still returns the number of bytes. | 169 * If buffer is NULL, it still returns the number of bytes. |
| 164 */ | 170 */ |
| 165 size_t writeToMemory(void* buffer) const; | 171 size_t writeToMemory(void* buffer) const; |
| 166 | 172 |
| 167 /** | 173 /** |
| 168 * Initializes the patch from the buffer | 174 * Initializes the patch from the buffer |
| 169 * | 175 * |
| 170 * buffer Memory to read from | 176 * buffer Memory to read from |
| 171 * length Amount of memory available in the buffer | 177 * length Amount of memory available in the buffer |
| 172 * returns the number of bytes read (must be a multiple of 4) or | 178 * returns the number of bytes read (must be a multiple of 4) or |
| 173 * 0 if there was not enough memory available | 179 * 0 if there was not enough memory available |
| 174 */ | 180 */ |
| 175 size_t readFromMemory(const void* buffer, size_t length); | 181 size_t readFromMemory(const void* buffer, size_t length); |
| 176 | 182 |
| 177 private: | 183 private: |
| 178 SkPoint fCtrlPoints[kNumCtrlPts]; | 184 SkPoint fCtrlPoints[kNumCtrlPts]; |
| 179 SkColor fCornerColors[kNumColors]; | 185 }; |
| 186 |
| 187 /** |
| 188 * Evaluator to sample the values of a cubic bezier using forward differences. |
| 189 * Forward differences is a method for evaluating a nth degree polynomial at a u
niform step by only |
| 190 * adding precalculated values. |
| 191 * For a linear example we have the function f(t) = m*t+b, then the value of tha
t function at t+h |
| 192 * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must
add to the first |
| 193 * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t
+ b = mh. After |
| 194 * obtaining this value (mh) we could just add this constant step to our first s
ampled point |
| 195 * to compute the next one. |
| 196 * |
| 197 * For the cubic case the first difference gives as a result a quadratic polynom
ial to which we can |
| 198 * apply again forward differences and get linear function to which we can apply
again forward |
| 199 * differences to get a constant difference. This is why we keep an array of siz
e 4, the 0th |
| 200 * position keeps the sampled value while the next ones keep the quadratic, line
ar and constant |
| 201 * difference values. |
| 202 */ |
| 203 |
| 204 class FwDCubicEvaluator { |
| 205 |
| 206 public: |
| 207 FwDCubicEvaluator(); |
| 208 |
| 209 /** |
| 210 * Receives the 4 control points of the cubic bezier. |
| 211 */ |
| 212 FwDCubicEvaluator(SkPoint a, SkPoint b, SkPoint c, SkPoint d); |
| 213 |
| 214 explicit FwDCubicEvaluator(const SkPoint points[4]); |
| 215 |
| 216 /** |
| 217 * Restarts the forward differences evaluator to the first value of t = 0. |
| 218 */ |
| 219 void restart(int divisions); |
| 220 |
| 221 /** |
| 222 * Check if the evaluator is still within the range of 0<=t<=1 |
| 223 */ |
| 224 bool done() const { |
| 225 return fCurrent > fMax; |
| 226 } |
| 227 |
| 228 /** |
| 229 * Call next to obtain the SkPoint sampled and move to the next one. |
| 230 */ |
| 231 SkPoint next() { |
| 232 SkPoint point = fFwDiff[0]; |
| 233 fFwDiff[0] += fFwDiff[1]; |
| 234 fFwDiff[1] += fFwDiff[2]; |
| 235 fFwDiff[2] += fFwDiff[3]; |
| 236 fCurrent++; |
| 237 return point; |
| 238 } |
| 239 |
| 240 const SkPoint* getCtrlPoints() const { |
| 241 return fPoints; |
| 242 } |
| 243 |
| 244 private: |
| 245 int fMax, fCurrent, fDivisions; |
| 246 SkPoint fFwDiff[4], fCoefs[4], fPoints[4]; |
| 180 }; | 247 }; |
| 181 | 248 |
| 182 #endif | 249 #endif |
| OLD | NEW |