| Index: third_party/fdlibm/fdlibm.js
|
| diff --git a/third_party/fdlibm/fdlibm.js b/third_party/fdlibm/fdlibm.js
|
| index d5dbb72990a5adecafd3697393ca86928ba31970..a55b7c70c8a0f11e4a8721f52a6a78ca65ad8147 100644
|
| --- a/third_party/fdlibm/fdlibm.js
|
| +++ b/third_party/fdlibm/fdlibm.js
|
| @@ -13,21 +13,21 @@
|
| // modified significantly by Google Inc.
|
| // Copyright 2014 the V8 project authors. All rights reserved.
|
| //
|
| -// The following is a straightforward translation of fdlibm routines for
|
| -// sin, cos, and tan, by Raymond Toy (rtoy@google.com).
|
| +// The following is a straightforward translation of fdlibm routines
|
| +// by Raymond Toy (rtoy@google.com).
|
|
|
|
|
| -var kTrig; // Initialized to a Float64Array during genesis and is not writable.
|
| +var kMath; // Initialized to a Float64Array during genesis and is not writable.
|
|
|
| -const INVPIO2 = kTrig[0];
|
| -const PIO2_1 = kTrig[1];
|
| -const PIO2_1T = kTrig[2];
|
| -const PIO2_2 = kTrig[3];
|
| -const PIO2_2T = kTrig[4];
|
| -const PIO2_3 = kTrig[5];
|
| -const PIO2_3T = kTrig[6];
|
| -const PIO4 = kTrig[32];
|
| -const PIO4LO = kTrig[33];
|
| +const INVPIO2 = kMath[0];
|
| +const PIO2_1 = kMath[1];
|
| +const PIO2_1T = kMath[2];
|
| +const PIO2_2 = kMath[3];
|
| +const PIO2_2T = kMath[4];
|
| +const PIO2_3 = kMath[5];
|
| +const PIO2_3T = kMath[6];
|
| +const PIO4 = kMath[32];
|
| +const PIO4LO = kMath[33];
|
|
|
| // Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For
|
| // precision, r is returned as two values y0 and y1 such that r = y0 + y1
|
| @@ -133,7 +133,7 @@ endmacro
|
| // sin(x) = X + (S1*X + (X *(r-Y/2)+Y))
|
| //
|
| macro KSIN(x)
|
| -kTrig[7+x]
|
| +kMath[7+x]
|
| endmacro
|
|
|
| macro RETURN_KERNELSIN(X, Y, SIGN)
|
| @@ -177,7 +177,7 @@ endmacro
|
| // thus, reducing the rounding error in the subtraction.
|
| //
|
| macro KCOS(x)
|
| -kTrig[13+x]
|
| +kMath[13+x]
|
| endmacro
|
|
|
| macro RETURN_KERNELCOS(X, Y, SIGN)
|
| @@ -199,6 +199,7 @@ macro RETURN_KERNELCOS(X, Y, SIGN)
|
| }
|
| endmacro
|
|
|
| +
|
| // kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
| // Input x is assumed to be bounded by ~pi/4 in magnitude.
|
| // Input y is the tail of x.
|
| @@ -235,7 +236,7 @@ endmacro
|
| // and will cause incorrect results.
|
| //
|
| macro KTAN(x)
|
| -kTrig[19+x]
|
| +kMath[19+x]
|
| endmacro
|
|
|
| function KernelTan(x, y, returnTan) {
|
| @@ -354,3 +355,164 @@ function MathTan(x) {
|
| REMPIO2(x);
|
| return KernelTan(y0, y1, (n & 1) ? -1 : 1);
|
| }
|
| +
|
| +// ES6 draft 09-27-13, section 20.2.2.20.
|
| +// Math.log1p
|
| +//
|
| +// Method :
|
| +// 1. Argument Reduction: find k and f such that
|
| +// 1+x = 2^k * (1+f),
|
| +// where sqrt(2)/2 < 1+f < sqrt(2) .
|
| +//
|
| +// Note. If k=0, then f=x is exact. However, if k!=0, then f
|
| +// may not be representable exactly. In that case, a correction
|
| +// term is need. Let u=1+x rounded. Let c = (1+x)-u, then
|
| +// log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
|
| +// and add back the correction term c/u.
|
| +// (Note: when x > 2**53, one can simply return log(x))
|
| +//
|
| +// 2. Approximation of log1p(f).
|
| +// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
| +// = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
| +// = 2s + s*R
|
| +// We use a special Reme algorithm on [0,0.1716] to generate
|
| +// a polynomial of degree 14 to approximate R The maximum error
|
| +// of this polynomial approximation is bounded by 2**-58.45. In
|
| +// other words,
|
| +// 2 4 6 8 10 12 14
|
| +// R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
|
| +// (the values of Lp1 to Lp7 are listed in the program)
|
| +// and
|
| +// | 2 14 | -58.45
|
| +// | Lp1*s +...+Lp7*s - R(z) | <= 2
|
| +// | |
|
| +// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
| +// In order to guarantee error in log below 1ulp, we compute log
|
| +// by
|
| +// log1p(f) = f - (hfsq - s*(hfsq+R)).
|
| +//
|
| +// 3. Finally, log1p(x) = k*ln2 + log1p(f).
|
| +// = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
| +// Here ln2 is split into two floating point number:
|
| +// ln2_hi + ln2_lo,
|
| +// where n*ln2_hi is always exact for |n| < 2000.
|
| +//
|
| +// Special cases:
|
| +// log1p(x) is NaN with signal if x < -1 (including -INF) ;
|
| +// log1p(+INF) is +INF; log1p(-1) is -INF with signal;
|
| +// log1p(NaN) is that NaN with no signal.
|
| +//
|
| +// Accuracy:
|
| +// according to an error analysis, the error is always less than
|
| +// 1 ulp (unit in the last place).
|
| +//
|
| +// Constants:
|
| +// The hexadecimal values are the intended ones for the following
|
| +// constants. The decimal values may be used, provided that the
|
| +// compiler will convert from decimal to binary accurately enough
|
| +// to produce the hexadecimal values shown.
|
| +//
|
| +// Note: Assuming log() return accurate answer, the following
|
| +// algorithm can be used to compute log1p(x) to within a few ULP:
|
| +//
|
| +// u = 1+x;
|
| +// if (u==1.0) return x ; else
|
| +// return log(u)*(x/(u-1.0));
|
| +//
|
| +// See HP-15C Advanced Functions Handbook, p.193.
|
| +//
|
| +const LN2_HI = kMath[34];
|
| +const LN2_LO = kMath[35];
|
| +const TWO54 = kMath[36];
|
| +const TWO_THIRD = kMath[37];
|
| +macro KLOGP1(x)
|
| +(kMath[38+x])
|
| +endmacro
|
| +
|
| +function MathLog1p(x) {
|
| + x = x * 1; // Convert to number.
|
| + var hx = %_DoubleHi(x);
|
| + var ax = hx & 0x7fffffff;
|
| + var k = 1;
|
| + var f = x;
|
| + var hu = 1;
|
| + var c = 0;
|
| + var u = x;
|
| +
|
| + if (hx < 0x3fda827a) {
|
| + // x < 0.41422
|
| + if (ax >= 0x3ff00000) { // |x| >= 1
|
| + if (x === -1) {
|
| + return -INFINITY; // log1p(-1) = -inf
|
| + } else {
|
| + return NAN; // log1p(x<-1) = NaN
|
| + }
|
| + } else if (ax < 0x3c900000) {
|
| + // For |x| < 2^-54 we can return x.
|
| + return x;
|
| + } else if (ax < 0x3e200000) {
|
| + // For |x| < 2^-29 we can use a simple two-term Taylor series.
|
| + return x - x * x * 0.5;
|
| + }
|
| +
|
| + if ((hx > 0) || (hx <= -0x402D413D)) { // (int) 0xbfd2bec3 = -0x402d413d
|
| + // -.2929 < x < 0.41422
|
| + k = 0;
|
| + }
|
| + }
|
| +
|
| + // Handle Infinity and NAN
|
| + if (hx >= 0x7ff00000) return x;
|
| +
|
| + if (k !== 0) {
|
| + if (hx < 0x43400000) {
|
| + // x < 2^53
|
| + u = 1 + x;
|
| + hu = %_DoubleHi(u);
|
| + k = (hu >> 20) - 1023;
|
| + c = (k > 0) ? 1 - (u - x) : x - (u - 1);
|
| + c = c / u;
|
| + } else {
|
| + hu = %_DoubleHi(u);
|
| + k = (hu >> 20) - 1023;
|
| + }
|
| + hu = hu & 0xfffff;
|
| + if (hu < 0x6a09e) {
|
| + u = %_ConstructDouble(hu | 0x3ff00000, %_DoubleLo(u)); // Normalize u.
|
| + } else {
|
| + ++k;
|
| + u = %_ConstructDouble(hu | 0x3fe00000, %_DoubleLo(u)); // Normalize u/2.
|
| + hu = (0x00100000 - hu) >> 2;
|
| + }
|
| + f = u - 1;
|
| + }
|
| +
|
| + var hfsq = 0.5 * f * f;
|
| + if (hu === 0) {
|
| + // |f| < 2^-20;
|
| + if (f === 0) {
|
| + if (k === 0) {
|
| + return 0.0;
|
| + } else {
|
| + return k * LN2_HI + (c + k * LN2_LO);
|
| + }
|
| + }
|
| + var R = hfsq * (1 - TWO_THIRD * f);
|
| + if (k === 0) {
|
| + return f - R;
|
| + } else {
|
| + return k * LN2_HI - ((R - (k * LN2_LO + c)) - f);
|
| + }
|
| + }
|
| +
|
| + var s = f / (2 + f);
|
| + var z = s * s;
|
| + var R = z * (KLOGP1(0) + z * (KLOGP1(1) + z *
|
| + (KLOGP1(2) + z * (KLOGP1(3) + z *
|
| + (KLOGP1(4) + z * (KLOGP1(5) + z * KLOGP1(6)))))));
|
| + if (k === 0) {
|
| + return f - (hfsq - s * (hfsq + R));
|
| + } else {
|
| + return k * LN2_HI - ((hfsq - (s * (hfsq + R) + (k * LN2_LO + c))) - f);
|
| + }
|
| +}
|
|
|