Index: bench/bench_util.py |
diff --git a/bench/bench_util.py b/bench/bench_util.py |
new file mode 100644 |
index 0000000000000000000000000000000000000000..b6fecb7ca801c62c6e11dae12b053994d54602bc |
--- /dev/null |
+++ b/bench/bench_util.py |
@@ -0,0 +1,356 @@ |
+''' |
+Created on May 19, 2011 |
+ |
+@author: bungeman |
+''' |
+ |
+import os |
+import re |
+import math |
+ |
+# bench representation algorithm constant names |
+ALGORITHM_AVERAGE = 'avg' |
+ALGORITHM_MEDIAN = 'med' |
+ALGORITHM_MINIMUM = 'min' |
+ALGORITHM_25TH_PERCENTILE = '25th' |
+ |
+# Regular expressions used throughout. |
+PER_SETTING_RE = '([^\s=]+)(?:=(\S+))?' |
+SETTINGS_RE = 'skia bench:((?:\s+' + PER_SETTING_RE + ')*)' |
+BENCH_RE = 'running bench (?:\[\d+ \d+\] )?\s*(\S+)' |
+TIME_RE = '(?:(\w*)msecs = )?\s*((?:\d+\.\d+)(?:,\s*\d+\.\d+)*)' |
+# non-per-tile benches have configs that don't end with ']' or '>' |
+CONFIG_RE = '(\S+[^\]>]):\s+((?:' + TIME_RE + '\s+)+)' |
+# per-tile bench lines are in the following format. Note that there are |
+# non-averaged bench numbers in separate lines, which we ignore now due to |
+# their inaccuracy. |
+TILE_RE = (' tile_(\S+): tile \[\d+,\d+\] out of \[\d+,\d+\] <averaged>:' |
+ ' ((?:' + TIME_RE + '\s+)+)') |
+# for extracting tile layout |
+TILE_LAYOUT_RE = ' out of \[(\d+),(\d+)\] <averaged>: ' |
+ |
+PER_SETTING_RE_COMPILED = re.compile(PER_SETTING_RE) |
+SETTINGS_RE_COMPILED = re.compile(SETTINGS_RE) |
+BENCH_RE_COMPILED = re.compile(BENCH_RE) |
+TIME_RE_COMPILED = re.compile(TIME_RE) |
+CONFIG_RE_COMPILED = re.compile(CONFIG_RE) |
+TILE_RE_COMPILED = re.compile(TILE_RE) |
+TILE_LAYOUT_RE_COMPILED = re.compile(TILE_LAYOUT_RE) |
+ |
+class BenchDataPoint: |
+ """A single data point produced by bench. |
+ """ |
+ def __init__(self, bench, config, time_type, time, settings, |
+ tile_layout='', per_tile_values=[], per_iter_time=[]): |
+ # string name of the benchmark to measure |
+ self.bench = bench |
+ # string name of the configurations to run |
+ self.config = config |
+ # type of the timer in string: '' (walltime), 'c' (cpu) or 'g' (gpu) |
+ self.time_type = time_type |
+ # float number of the bench time value |
+ self.time = time |
+ # dictionary of the run settings |
+ self.settings = settings |
+ # how tiles cover the whole picture: '5x3' means 5 columns and 3 rows |
+ self.tile_layout = tile_layout |
+ # list of float for per_tile bench values, if applicable |
+ self.per_tile_values = per_tile_values |
+ # list of float for per-iteration bench time, if applicable |
+ self.per_iter_time = per_iter_time |
+ |
+ def __repr__(self): |
+ return "BenchDataPoint(%s, %s, %s, %s, %s)" % ( |
+ str(self.bench), |
+ str(self.config), |
+ str(self.time_type), |
+ str(self.time), |
+ str(self.settings), |
+ ) |
+ |
+class _ExtremeType(object): |
+ """Instances of this class compare greater or less than other objects.""" |
+ def __init__(self, cmpr, rep): |
+ object.__init__(self) |
+ self._cmpr = cmpr |
+ self._rep = rep |
+ |
+ def __cmp__(self, other): |
+ if isinstance(other, self.__class__) and other._cmpr == self._cmpr: |
+ return 0 |
+ return self._cmpr |
+ |
+ def __repr__(self): |
+ return self._rep |
+ |
+Max = _ExtremeType(1, "Max") |
+Min = _ExtremeType(-1, "Min") |
+ |
+class _ListAlgorithm(object): |
+ """Algorithm for selecting the representation value from a given list. |
+ representation is one of the ALGORITHM_XXX representation types.""" |
+ def __init__(self, data, representation=None): |
+ if not representation: |
+ representation = ALGORITHM_AVERAGE # default algorithm |
+ self._data = data |
+ self._len = len(data) |
+ if representation == ALGORITHM_AVERAGE: |
+ self._rep = sum(self._data) / self._len |
+ else: |
+ self._data.sort() |
+ if representation == ALGORITHM_MINIMUM: |
+ self._rep = self._data[0] |
+ else: |
+ # for percentiles, we use the value below which x% of values are |
+ # found, which allows for better detection of quantum behaviors. |
+ if representation == ALGORITHM_MEDIAN: |
+ x = int(round(0.5 * self._len + 0.5)) |
+ elif representation == ALGORITHM_25TH_PERCENTILE: |
+ x = int(round(0.25 * self._len + 0.5)) |
+ else: |
+ raise Exception("invalid representation algorithm %s!" % |
+ representation) |
+ self._rep = self._data[x - 1] |
+ |
+ def compute(self): |
+ return self._rep |
+ |
+def _ParseAndStoreTimes(config_re_compiled, is_per_tile, line, bench, |
+ value_dic, layout_dic): |
+ """Parses given bench time line with regex and adds data to value_dic. |
+ |
+ config_re_compiled: precompiled regular expression for parsing the config |
+ line. |
+ is_per_tile: boolean indicating whether this is a per-tile bench. |
+ If so, we add tile layout into layout_dic as well. |
+ line: input string line to parse. |
+ bench: name of bench for the time values. |
+ value_dic: dictionary to store bench values. See bench_dic in parse() below. |
+ layout_dic: dictionary to store tile layouts. See parse() for descriptions. |
+ """ |
+ |
+ for config in config_re_compiled.finditer(line): |
+ current_config = config.group(1) |
+ tile_layout = '' |
+ if is_per_tile: # per-tile bench, add name prefix |
+ current_config = 'tile_' + current_config |
+ layouts = TILE_LAYOUT_RE_COMPILED.search(line) |
+ if layouts and len(layouts.groups()) == 2: |
+ tile_layout = '%sx%s' % layouts.groups() |
+ times = config.group(2) |
+ for new_time in TIME_RE_COMPILED.finditer(times): |
+ current_time_type = new_time.group(1) |
+ iters = [float(i) for i in |
+ new_time.group(2).strip().split(',')] |
+ value_dic.setdefault(bench, {}).setdefault( |
+ current_config, {}).setdefault(current_time_type, []).append( |
+ iters) |
+ layout_dic.setdefault(bench, {}).setdefault( |
+ current_config, {}).setdefault(current_time_type, tile_layout) |
+ |
+def parse_skp_bench_data(directory, revision, rep, default_settings=None): |
+ """Parses all the skp bench data in the given directory. |
+ |
+ Args: |
+ directory: string of path to input data directory. |
+ revision: git hash revision that matches the data to process. |
+ rep: bench representation algorithm, see bench_util.py. |
+ default_settings: dictionary of other run settings. See writer.option() in |
+ bench/benchmain.cpp. |
+ |
+ Returns: |
+ A list of BenchDataPoint objects. |
+ """ |
+ revision_data_points = [] |
+ file_list = os.listdir(directory) |
+ file_list.sort() |
+ for bench_file in file_list: |
+ scalar_type = None |
+ # Scalar type, if any, is in the bench filename after 'scalar_'. |
+ if (bench_file.startswith('bench_' + revision + '_data_')): |
+ if bench_file.find('scalar_') > 0: |
+ components = bench_file.split('_') |
+ scalar_type = components[components.index('scalar') + 1] |
+ else: # Skips non skp bench files. |
+ continue |
+ |
+ with open('/'.join([directory, bench_file]), 'r') as file_handle: |
+ settings = dict(default_settings or {}) |
+ settings['scalar'] = scalar_type |
+ revision_data_points.extend(parse(settings, file_handle, rep)) |
+ |
+ return revision_data_points |
+ |
+# TODO(bensong): switch to reading JSON output when available. This way we don't |
+# need the RE complexities. |
+def parse(settings, lines, representation=None): |
+ """Parses bench output into a useful data structure. |
+ |
+ ({str:str}, __iter__ -> str) -> [BenchDataPoint] |
+ representation is one of the ALGORITHM_XXX types.""" |
+ |
+ benches = [] |
+ current_bench = None |
+ # [bench][config][time_type] -> [[per-iter values]] where per-tile config |
+ # has per-iter value list for each tile [[<tile1_iter1>,<tile1_iter2>,...], |
+ # [<tile2_iter1>,<tile2_iter2>,...],...], while non-per-tile config only |
+ # contains one list of iterations [[iter1, iter2, ...]]. |
+ bench_dic = {} |
+ # [bench][config][time_type] -> tile_layout |
+ layout_dic = {} |
+ |
+ for line in lines: |
+ |
+ # see if this line is a settings line |
+ settingsMatch = SETTINGS_RE_COMPILED.search(line) |
+ if (settingsMatch): |
+ settings = dict(settings) |
+ for settingMatch in PER_SETTING_RE_COMPILED.finditer(settingsMatch.group(1)): |
+ if (settingMatch.group(2)): |
+ settings[settingMatch.group(1)] = settingMatch.group(2) |
+ else: |
+ settings[settingMatch.group(1)] = True |
+ |
+ # see if this line starts a new bench |
+ new_bench = BENCH_RE_COMPILED.search(line) |
+ if new_bench: |
+ current_bench = new_bench.group(1) |
+ |
+ # add configs on this line to the bench_dic |
+ if current_bench: |
+ if line.startswith(' tile_') : |
+ _ParseAndStoreTimes(TILE_RE_COMPILED, True, line, current_bench, |
+ bench_dic, layout_dic) |
+ else: |
+ _ParseAndStoreTimes(CONFIG_RE_COMPILED, False, line, |
+ current_bench, bench_dic, layout_dic) |
+ |
+ # append benches to list |
+ for bench in bench_dic: |
+ for config in bench_dic[bench]: |
+ for time_type in bench_dic[bench][config]: |
+ tile_layout = '' |
+ per_tile_values = [] # empty for non-per-tile configs |
+ per_iter_time = [] # empty for per-tile configs |
+ bench_summary = None # a single final bench value |
+ if len(bench_dic[bench][config][time_type]) > 1: |
+ # per-tile config; compute representation for each tile |
+ per_tile_values = [ |
+ _ListAlgorithm(iters, representation).compute() |
+ for iters in bench_dic[bench][config][time_type]] |
+ # use sum of each tile representation for total bench value |
+ bench_summary = sum(per_tile_values) |
+ # extract tile layout |
+ tile_layout = layout_dic[bench][config][time_type] |
+ else: |
+ # get the list of per-iteration values |
+ per_iter_time = bench_dic[bench][config][time_type][0] |
+ bench_summary = _ListAlgorithm( |
+ per_iter_time, representation).compute() |
+ benches.append(BenchDataPoint( |
+ bench, |
+ config, |
+ time_type, |
+ bench_summary, |
+ settings, |
+ tile_layout, |
+ per_tile_values, |
+ per_iter_time)) |
+ |
+ return benches |
+ |
+class LinearRegression: |
+ """Linear regression data based on a set of data points. |
+ |
+ ([(Number,Number)]) |
+ There must be at least two points for this to make sense.""" |
+ def __init__(self, points): |
+ n = len(points) |
+ max_x = Min |
+ min_x = Max |
+ |
+ Sx = 0.0 |
+ Sy = 0.0 |
+ Sxx = 0.0 |
+ Sxy = 0.0 |
+ Syy = 0.0 |
+ for point in points: |
+ x = point[0] |
+ y = point[1] |
+ max_x = max(max_x, x) |
+ min_x = min(min_x, x) |
+ |
+ Sx += x |
+ Sy += y |
+ Sxx += x*x |
+ Sxy += x*y |
+ Syy += y*y |
+ |
+ denom = n*Sxx - Sx*Sx |
+ if (denom != 0.0): |
+ B = (n*Sxy - Sx*Sy) / denom |
+ else: |
+ B = 0.0 |
+ a = (1.0/n)*(Sy - B*Sx) |
+ |
+ se2 = 0 |
+ sB2 = 0 |
+ sa2 = 0 |
+ if (n >= 3 and denom != 0.0): |
+ se2 = (1.0/(n*(n-2)) * (n*Syy - Sy*Sy - B*B*denom)) |
+ sB2 = (n*se2) / denom |
+ sa2 = sB2 * (1.0/n) * Sxx |
+ |
+ |
+ self.slope = B |
+ self.intercept = a |
+ self.serror = math.sqrt(max(0, se2)) |
+ self.serror_slope = math.sqrt(max(0, sB2)) |
+ self.serror_intercept = math.sqrt(max(0, sa2)) |
+ self.max_x = max_x |
+ self.min_x = min_x |
+ |
+ def __repr__(self): |
+ return "LinearRegression(%s, %s, %s, %s, %s)" % ( |
+ str(self.slope), |
+ str(self.intercept), |
+ str(self.serror), |
+ str(self.serror_slope), |
+ str(self.serror_intercept), |
+ ) |
+ |
+ def find_min_slope(self): |
+ """Finds the minimal slope given one standard deviation.""" |
+ slope = self.slope |
+ intercept = self.intercept |
+ error = self.serror |
+ regr_start = self.min_x |
+ regr_end = self.max_x |
+ regr_width = regr_end - regr_start |
+ |
+ if slope < 0: |
+ lower_left_y = slope*regr_start + intercept - error |
+ upper_right_y = slope*regr_end + intercept + error |
+ return min(0, (upper_right_y - lower_left_y) / regr_width) |
+ |
+ elif slope > 0: |
+ upper_left_y = slope*regr_start + intercept + error |
+ lower_right_y = slope*regr_end + intercept - error |
+ return max(0, (lower_right_y - upper_left_y) / regr_width) |
+ |
+ return 0 |
+ |
+def CreateRevisionLink(revision_number): |
+ """Returns HTML displaying the given revision number and linking to |
+ that revision's change page at code.google.com, e.g. |
+ http://code.google.com/p/skia/source/detail?r=2056 |
+ """ |
+ return '<a href="http://code.google.com/p/skia/source/detail?r=%s">%s</a>'%( |
+ revision_number, revision_number) |
+ |
+def main(): |
+ foo = [[0.0, 0.0], [0.0, 1.0], [0.0, 2.0], [0.0, 3.0]] |
+ LinearRegression(foo) |
+ |
+if __name__ == "__main__": |
+ main() |