| Index: src/math.js
|
| diff --git a/src/math.js b/src/math.js
|
| index 9dc4b37d0ce2115ed9e9b5078f204fd060f926b9..436a41f5c44400609fe7cc446f318ca36ca6aacd 100644
|
| --- a/src/math.js
|
| +++ b/src/math.js
|
| @@ -56,12 +56,6 @@ function MathCeil(x) {
|
| return -MathFloor(-x);
|
| }
|
|
|
| -// ECMA 262 - 15.8.2.7
|
| -function MathCos(x) {
|
| - x = MathAbs(x); // Convert to number and get rid of -0.
|
| - return TrigonometricInterpolation(x, 1);
|
| -}
|
| -
|
| // ECMA 262 - 15.8.2.8
|
| function MathExp(x) {
|
| return %MathExpRT(TO_NUMBER_INLINE(x));
|
| @@ -164,97 +158,16 @@ function MathRound(x) {
|
| return %RoundNumber(TO_NUMBER_INLINE(x));
|
| }
|
|
|
| -// ECMA 262 - 15.8.2.16
|
| -function MathSin(x) {
|
| - x = x * 1; // Convert to number and deal with -0.
|
| - if (%_IsMinusZero(x)) return x;
|
| - return TrigonometricInterpolation(x, 0);
|
| -}
|
| -
|
| // ECMA 262 - 15.8.2.17
|
| function MathSqrt(x) {
|
| return %_MathSqrtRT(TO_NUMBER_INLINE(x));
|
| }
|
|
|
| -// ECMA 262 - 15.8.2.18
|
| -function MathTan(x) {
|
| - return MathSin(x) / MathCos(x);
|
| -}
|
| -
|
| // Non-standard extension.
|
| function MathImul(x, y) {
|
| return %NumberImul(TO_NUMBER_INLINE(x), TO_NUMBER_INLINE(y));
|
| }
|
|
|
| -
|
| -var kInversePiHalf = 0.636619772367581343; // 2 / pi
|
| -var kInversePiHalfS26 = 9.48637384723993156e-9; // 2 / pi / (2^26)
|
| -var kS26 = 1 << 26;
|
| -var kTwoStepThreshold = 1 << 27;
|
| -// pi / 2 rounded up
|
| -var kPiHalf = 1.570796326794896780; // 0x192d4454fb21f93f
|
| -// We use two parts for pi/2 to emulate a higher precision.
|
| -// pi_half_1 only has 26 significant bits for mantissa.
|
| -// Note that pi_half > pi_half_1 + pi_half_2
|
| -var kPiHalf1 = 1.570796325802803040; // 0x00000054fb21f93f
|
| -var kPiHalf2 = 9.920935796805404252e-10; // 0x3326a611460b113e
|
| -
|
| -var kSamples; // Initialized to a number during genesis.
|
| -var kIndexConvert; // Initialized to kSamples / (pi/2) during genesis.
|
| -var kSinTable; // Initialized to a Float64Array during genesis.
|
| -var kCosXIntervalTable; // Initialized to a Float64Array during genesis.
|
| -
|
| -// This implements sine using the following algorithm.
|
| -// 1) Multiplication takes care of to-number conversion.
|
| -// 2) Reduce x to the first quadrant [0, pi/2].
|
| -// Conveniently enough, in case of +/-Infinity, we get NaN.
|
| -// Note that we try to use only 26 instead of 52 significant bits for
|
| -// mantissa to avoid rounding errors when multiplying. For very large
|
| -// input we therefore have additional steps.
|
| -// 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant.
|
| -// 4) Do a table lookup for the closest samples to the left and right of x.
|
| -// 5) Find the derivatives at those sampling points by table lookup:
|
| -// dsin(x)/dx = cos(x) = sin(pi/2-x) for x in [0, pi/2].
|
| -// 6) Use cubic spline interpolation to approximate sin(x).
|
| -// 7) Negate the result if x was in the 3rd or 4th quadrant.
|
| -// 8) Get rid of -0 by adding 0.
|
| -function TrigonometricInterpolation(x, phase) {
|
| - if (x < 0 || x > kPiHalf) {
|
| - var multiple;
|
| - while (x < -kTwoStepThreshold || x > kTwoStepThreshold) {
|
| - // Let's assume this loop does not terminate.
|
| - // All numbers x in each loop forms a set S.
|
| - // (1) abs(x) > 2^27 for all x in S.
|
| - // (2) abs(multiple) != 0 since (2^27 * inverse_pi_half_s26) > 1
|
| - // (3) multiple is rounded down in 2^26 steps, so the rounding error is
|
| - // at most max(ulp, 2^26).
|
| - // (4) so for x > 2^27, we subtract at most (1+pi/4)x and at least
|
| - // (1-pi/4)x
|
| - // (5) The subtraction results in x' so that abs(x') <= abs(x)*pi/4.
|
| - // Note that this difference cannot be simply rounded off.
|
| - // Set S cannot exist since (5) violates (1). Loop must terminate.
|
| - multiple = MathFloor(x * kInversePiHalfS26) * kS26;
|
| - x = x - multiple * kPiHalf1 - multiple * kPiHalf2;
|
| - }
|
| - multiple = MathFloor(x * kInversePiHalf);
|
| - x = x - multiple * kPiHalf1 - multiple * kPiHalf2;
|
| - phase += multiple;
|
| - }
|
| - var double_index = x * kIndexConvert;
|
| - if (phase & 1) double_index = kSamples - double_index;
|
| - var index = double_index | 0;
|
| - var t1 = double_index - index;
|
| - var t2 = 1 - t1;
|
| - var y1 = kSinTable[index];
|
| - var y2 = kSinTable[index + 1];
|
| - var dy = y2 - y1;
|
| - return (t2 * y1 + t1 * y2 +
|
| - t1 * t2 * ((kCosXIntervalTable[index] - dy) * t2 +
|
| - (dy - kCosXIntervalTable[index + 1]) * t1))
|
| - * (1 - (phase & 2)) + 0;
|
| -}
|
| -
|
| -
|
| // ES6 draft 09-27-13, section 20.2.2.28.
|
| function MathSign(x) {
|
| x = TO_NUMBER_INLINE(x);
|
| @@ -264,7 +177,6 @@ function MathSign(x) {
|
| return NAN;
|
| }
|
|
|
| -
|
| // ES6 draft 09-27-13, section 20.2.2.34.
|
| function MathTrunc(x) {
|
| x = TO_NUMBER_INLINE(x);
|
| @@ -274,7 +186,6 @@ function MathTrunc(x) {
|
| return NAN;
|
| }
|
|
|
| -
|
| // ES6 draft 09-27-13, section 20.2.2.30.
|
| function MathSinh(x) {
|
| if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
| @@ -283,7 +194,6 @@ function MathSinh(x) {
|
| return (MathExp(x) - MathExp(-x)) / 2;
|
| }
|
|
|
| -
|
| // ES6 draft 09-27-13, section 20.2.2.12.
|
| function MathCosh(x) {
|
| if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
| @@ -291,7 +201,6 @@ function MathCosh(x) {
|
| return (MathExp(x) + MathExp(-x)) / 2;
|
| }
|
|
|
| -
|
| // ES6 draft 09-27-13, section 20.2.2.33.
|
| function MathTanh(x) {
|
| if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
| @@ -304,7 +213,6 @@ function MathTanh(x) {
|
| return (exp1 - exp2) / (exp1 + exp2);
|
| }
|
|
|
| -
|
| // ES6 draft 09-27-13, section 20.2.2.5.
|
| function MathAsinh(x) {
|
| if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
| @@ -315,7 +223,6 @@ function MathAsinh(x) {
|
| return -MathLog(-x + MathSqrt(x * x + 1));
|
| }
|
|
|
| -
|
| // ES6 draft 09-27-13, section 20.2.2.3.
|
| function MathAcosh(x) {
|
| if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
| @@ -325,7 +232,6 @@ function MathAcosh(x) {
|
| return MathLog(x + MathSqrt(x + 1) * MathSqrt(x - 1));
|
| }
|
|
|
| -
|
| // ES6 draft 09-27-13, section 20.2.2.7.
|
| function MathAtanh(x) {
|
| if (!IS_NUMBER(x)) x = NonNumberToNumber(x);
|
| @@ -336,7 +242,6 @@ function MathAtanh(x) {
|
| return 0.5 * MathLog((1 + x) / (1 - x));
|
| }
|
|
|
| -
|
| // ES6 draft 09-27-13, section 20.2.2.21.
|
| function MathLog10(x) {
|
| return MathLog(x) * 0.434294481903251828; // log10(x) = log(x)/log(10).
|
| @@ -348,7 +253,6 @@ function MathLog2(x) {
|
| return MathLog(x) * 1.442695040888963407; // log2(x) = log(x)/log(2).
|
| }
|
|
|
| -
|
| // ES6 draft 09-27-13, section 20.2.2.17.
|
| function MathHypot(x, y) { // Function length is 2.
|
| // We may want to introduce fast paths for two arguments and when
|
| @@ -381,13 +285,12 @@ function MathHypot(x, y) { // Function length is 2.
|
| return MathSqrt(sum) * max;
|
| }
|
|
|
| -
|
| // ES6 draft 09-27-13, section 20.2.2.16.
|
| function MathFroundJS(x) {
|
| return %MathFround(TO_NUMBER_INLINE(x));
|
| }
|
|
|
| -
|
| +// ES6 draft 07-18-14, section 20.2.2.11
|
| function MathClz32(x) {
|
| x = ToUint32(TO_NUMBER_INLINE(x));
|
| if (x == 0) return 32;
|
| @@ -401,7 +304,6 @@ function MathClz32(x) {
|
| return result;
|
| }
|
|
|
| -
|
| // ES6 draft 09-27-13, section 20.2.2.9.
|
| // Cube root approximation, refer to: http://metamerist.com/cbrt/cbrt.htm
|
| // Using initial approximation adapted from Kahan's cbrt and 4 iterations
|
| @@ -425,8 +327,6 @@ function CubeRoot(x) {
|
| return NEWTON_ITERATION_CBRT(x, approx);
|
| }
|
|
|
| -
|
| -
|
| // ES6 draft 09-27-13, section 20.2.2.14.
|
| // Use Taylor series to approximate.
|
| // exp(x) - 1 at 0 == -1 + exp(0) + exp'(0)*x/1! + exp''(0)*x^2/2! + ...
|
| @@ -447,7 +347,6 @@ function MathExpm1(x) {
|
| }
|
| }
|
|
|
| -
|
| // ES6 draft 09-27-13, section 20.2.2.20.
|
| // Use Taylor series to approximate. With y = x + 1;
|
| // log(y) at 1 == log(1) + log'(1)(y-1)/1! + log''(1)(y-1)^2/2! + ...
|
| @@ -502,14 +401,14 @@ function SetUpMath() {
|
| "asin", MathAsinJS,
|
| "atan", MathAtanJS,
|
| "ceil", MathCeil,
|
| - "cos", MathCos,
|
| + "cos", MathCos, // implemented by third_party/fdlibm
|
| "exp", MathExp,
|
| "floor", MathFloor,
|
| "log", MathLog,
|
| "round", MathRound,
|
| - "sin", MathSin,
|
| + "sin", MathSin, // implemented by third_party/fdlibm
|
| "sqrt", MathSqrt,
|
| - "tan", MathTan,
|
| + "tan", MathTan, // implemented by third_party/fdlibm
|
| "atan2", MathAtan2JS,
|
| "pow", MathPow,
|
| "max", MathMax,
|
| @@ -537,8 +436,6 @@ function SetUpMath() {
|
| %SetInlineBuiltinFlag(MathRandom);
|
| %SetInlineBuiltinFlag(MathSin);
|
| %SetInlineBuiltinFlag(MathCos);
|
| - %SetInlineBuiltinFlag(MathTan);
|
| - %SetInlineBuiltinFlag(TrigonometricInterpolation);
|
| }
|
|
|
| SetUpMath();
|
|
|