Index: third_party/fdlibm/fdlibm.js |
diff --git a/third_party/fdlibm/fdlibm.js b/third_party/fdlibm/fdlibm.js |
deleted file mode 100644 |
index d5dbb72990a5adecafd3697393ca86928ba31970..0000000000000000000000000000000000000000 |
--- a/third_party/fdlibm/fdlibm.js |
+++ /dev/null |
@@ -1,356 +0,0 @@ |
-// The following is adapted from fdlibm (http://www.netlib.org/fdlibm), |
-// |
-// ==================================================== |
-// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
-// |
-// Developed at SunSoft, a Sun Microsystems, Inc. business. |
-// Permission to use, copy, modify, and distribute this |
-// software is freely granted, provided that this notice |
-// is preserved. |
-// ==================================================== |
-// |
-// The original source code covered by the above license above has been |
-// modified significantly by Google Inc. |
-// Copyright 2014 the V8 project authors. All rights reserved. |
-// |
-// The following is a straightforward translation of fdlibm routines for |
-// sin, cos, and tan, by Raymond Toy (rtoy@google.com). |
- |
- |
-var kTrig; // Initialized to a Float64Array during genesis and is not writable. |
- |
-const INVPIO2 = kTrig[0]; |
-const PIO2_1 = kTrig[1]; |
-const PIO2_1T = kTrig[2]; |
-const PIO2_2 = kTrig[3]; |
-const PIO2_2T = kTrig[4]; |
-const PIO2_3 = kTrig[5]; |
-const PIO2_3T = kTrig[6]; |
-const PIO4 = kTrig[32]; |
-const PIO4LO = kTrig[33]; |
- |
-// Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For |
-// precision, r is returned as two values y0 and y1 such that r = y0 + y1 |
-// to more than double precision. |
-macro REMPIO2(X) |
- var n, y0, y1; |
- var hx = %_DoubleHi(X); |
- var ix = hx & 0x7fffffff; |
- |
- if (ix < 0x4002d97c) { |
- // |X| ~< 3*pi/4, special case with n = +/- 1 |
- if (hx > 0) { |
- var z = X - PIO2_1; |
- if (ix != 0x3ff921fb) { |
- // 33+53 bit pi is good enough |
- y0 = z - PIO2_1T; |
- y1 = (z - y0) - PIO2_1T; |
- } else { |
- // near pi/2, use 33+33+53 bit pi |
- z -= PIO2_2; |
- y0 = z - PIO2_2T; |
- y1 = (z - y0) - PIO2_2T; |
- } |
- n = 1; |
- } else { |
- // Negative X |
- var z = X + PIO2_1; |
- if (ix != 0x3ff921fb) { |
- // 33+53 bit pi is good enough |
- y0 = z + PIO2_1T; |
- y1 = (z - y0) + PIO2_1T; |
- } else { |
- // near pi/2, use 33+33+53 bit pi |
- z += PIO2_2; |
- y0 = z + PIO2_2T; |
- y1 = (z - y0) + PIO2_2T; |
- } |
- n = -1; |
- } |
- } else if (ix <= 0x413921fb) { |
- // |X| ~<= 2^19*(pi/2), medium size |
- var t = MathAbs(X); |
- n = (t * INVPIO2 + 0.5) | 0; |
- var r = t - n * PIO2_1; |
- var w = n * PIO2_1T; |
- // First round good to 85 bit |
- y0 = r - w; |
- if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) { |
- // 2nd iteration needed, good to 118 |
- t = r; |
- w = n * PIO2_2; |
- r = t - w; |
- w = n * PIO2_2T - ((t - r) - w); |
- y0 = r - w; |
- if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) { |
- // 3rd iteration needed. 151 bits accuracy |
- t = r; |
- w = n * PIO2_3; |
- r = t - w; |
- w = n * PIO2_3T - ((t - r) - w); |
- y0 = r - w; |
- } |
- } |
- y1 = (r - y0) - w; |
- if (hx < 0) { |
- n = -n; |
- y0 = -y0; |
- y1 = -y1; |
- } |
- } else { |
- // Need to do full Payne-Hanek reduction here. |
- var r = %RemPiO2(X); |
- n = r[0]; |
- y0 = r[1]; |
- y1 = r[2]; |
- } |
-endmacro |
- |
- |
-// __kernel_sin(X, Y, IY) |
-// kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
-// Input X is assumed to be bounded by ~pi/4 in magnitude. |
-// Input Y is the tail of X so that x = X + Y. |
-// |
-// Algorithm |
-// 1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x. |
-// 2. ieee_sin(x) is approximated by a polynomial of degree 13 on |
-// [0,pi/4] |
-// 3 13 |
-// sin(x) ~ x + S1*x + ... + S6*x |
-// where |
-// |
-// |ieee_sin(x) 2 4 6 8 10 12 | -58 |
-// |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 |
-// | x | |
-// |
-// 3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y |
-// ~ ieee_sin(X) + (1-X*X/2)*Y |
-// For better accuracy, let |
-// 3 2 2 2 2 |
-// r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6)))) |
-// then 3 2 |
-// sin(x) = X + (S1*X + (X *(r-Y/2)+Y)) |
-// |
-macro KSIN(x) |
-kTrig[7+x] |
-endmacro |
- |
-macro RETURN_KERNELSIN(X, Y, SIGN) |
- var z = X * X; |
- var v = z * X; |
- var r = KSIN(1) + z * (KSIN(2) + z * (KSIN(3) + |
- z * (KSIN(4) + z * KSIN(5)))); |
- return (X - ((z * (0.5 * Y - v * r) - Y) - v * KSIN(0))) SIGN; |
-endmacro |
- |
-// __kernel_cos(X, Y) |
-// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 |
-// Input X is assumed to be bounded by ~pi/4 in magnitude. |
-// Input Y is the tail of X so that x = X + Y. |
-// |
-// Algorithm |
-// 1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x. |
-// 2. ieee_cos(x) is approximated by a polynomial of degree 14 on |
-// [0,pi/4] |
-// 4 14 |
-// cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x |
-// where the remez error is |
-// |
-// | 2 4 6 8 10 12 14 | -58 |
-// |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 |
-// | | |
-// |
-// 4 6 8 10 12 14 |
-// 3. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then |
-// ieee_cos(x) = 1 - x*x/2 + r |
-// since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y |
-// ~ ieee_cos(X) - X*Y, |
-// a correction term is necessary in ieee_cos(x) and hence |
-// cos(X+Y) = 1 - (X*X/2 - (r - X*Y)) |
-// For better accuracy when x > 0.3, let qx = |x|/4 with |
-// the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. |
-// Then |
-// cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)). |
-// Note that 1-qx and (X*X/2-qx) is EXACT here, and the |
-// magnitude of the latter is at least a quarter of X*X/2, |
-// thus, reducing the rounding error in the subtraction. |
-// |
-macro KCOS(x) |
-kTrig[13+x] |
-endmacro |
- |
-macro RETURN_KERNELCOS(X, Y, SIGN) |
- var ix = %_DoubleHi(X) & 0x7fffffff; |
- var z = X * X; |
- var r = z * (KCOS(0) + z * (KCOS(1) + z * (KCOS(2)+ |
- z * (KCOS(3) + z * (KCOS(4) + z * KCOS(5)))))); |
- if (ix < 0x3fd33333) { // |x| ~< 0.3 |
- return (1 - (0.5 * z - (z * r - X * Y))) SIGN; |
- } else { |
- var qx; |
- if (ix > 0x3fe90000) { // |x| > 0.78125 |
- qx = 0.28125; |
- } else { |
- qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0); |
- } |
- var hz = 0.5 * z - qx; |
- return (1 - qx - (hz - (z * r - X * Y))) SIGN; |
- } |
-endmacro |
- |
-// kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
-// Input x is assumed to be bounded by ~pi/4 in magnitude. |
-// Input y is the tail of x. |
-// Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1) |
-// is returned. |
-// |
-// Algorithm |
-// 1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x. |
-// 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. |
-// 3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on |
-// [0,0.67434] |
-// 3 27 |
-// tan(x) ~ x + T1*x + ... + T13*x |
-// where |
-// |
-// |ieee_tan(x) 2 4 26 | -59.2 |
-// |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 |
-// | x | |
-// |
-// Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y |
-// ~ ieee_tan(x) + (1+x*x)*y |
-// Therefore, for better accuracy in computing ieee_tan(x+y), let |
-// 3 2 2 2 2 |
-// r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) |
-// then |
-// 3 2 |
-// tan(x+y) = x + (T1*x + (x *(r+y)+y)) |
-// |
-// 4. For x in [0.67434,pi/4], let y = pi/4 - x, then |
-// tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y)) |
-// = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y))) |
-// |
-// Set returnTan to 1 for tan; -1 for cot. Anything else is illegal |
-// and will cause incorrect results. |
-// |
-macro KTAN(x) |
-kTrig[19+x] |
-endmacro |
- |
-function KernelTan(x, y, returnTan) { |
- var z; |
- var w; |
- var hx = %_DoubleHi(x); |
- var ix = hx & 0x7fffffff; |
- |
- if (ix < 0x3e300000) { // |x| < 2^-28 |
- if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) { |
- // x == 0 && returnTan = -1 |
- return 1 / MathAbs(x); |
- } else { |
- if (returnTan == 1) { |
- return x; |
- } else { |
- // Compute -1/(x + y) carefully |
- var w = x + y; |
- var z = %_ConstructDouble(%_DoubleHi(w), 0); |
- var v = y - (z - x); |
- var a = -1 / w; |
- var t = %_ConstructDouble(%_DoubleHi(a), 0); |
- var s = 1 + t * z; |
- return t + a * (s + t * v); |
- } |
- } |
- } |
- if (ix >= 0x3fe59429) { // |x| > .6744 |
- if (x < 0) { |
- x = -x; |
- y = -y; |
- } |
- z = PIO4 - x; |
- w = PIO4LO - y; |
- x = z + w; |
- y = 0; |
- } |
- z = x * x; |
- w = z * z; |
- |
- // Break x^5 * (T1 + x^2*T2 + ...) into |
- // x^5 * (T1 + x^4*T3 + ... + x^20*T11) + |
- // x^5 * (x^2 * (T2 + x^4*T4 + ... + x^22*T12)) |
- var r = KTAN(1) + w * (KTAN(3) + w * (KTAN(5) + |
- w * (KTAN(7) + w * (KTAN(9) + w * KTAN(11))))); |
- var v = z * (KTAN(2) + w * (KTAN(4) + w * (KTAN(6) + |
- w * (KTAN(8) + w * (KTAN(10) + w * KTAN(12)))))); |
- var s = z * x; |
- r = y + z * (s * (r + v) + y); |
- r = r + KTAN(0) * s; |
- w = x + r; |
- if (ix >= 0x3fe59428) { |
- return (1 - ((hx >> 30) & 2)) * |
- (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r))); |
- } |
- if (returnTan == 1) { |
- return w; |
- } else { |
- z = %_ConstructDouble(%_DoubleHi(w), 0); |
- v = r - (z - x); |
- var a = -1 / w; |
- var t = %_ConstructDouble(%_DoubleHi(a), 0); |
- s = 1 + t * z; |
- return t + a * (s + t * v); |
- } |
-} |
- |
-function MathSinSlow(x) { |
- REMPIO2(x); |
- var sign = 1 - (n & 2); |
- if (n & 1) { |
- RETURN_KERNELCOS(y0, y1, * sign); |
- } else { |
- RETURN_KERNELSIN(y0, y1, * sign); |
- } |
-} |
- |
-function MathCosSlow(x) { |
- REMPIO2(x); |
- if (n & 1) { |
- var sign = (n & 2) - 1; |
- RETURN_KERNELSIN(y0, y1, * sign); |
- } else { |
- var sign = 1 - (n & 2); |
- RETURN_KERNELCOS(y0, y1, * sign); |
- } |
-} |
- |
-// ECMA 262 - 15.8.2.16 |
-function MathSin(x) { |
- x = x * 1; // Convert to number. |
- if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |
- // |x| < pi/4, approximately. No reduction needed. |
- RETURN_KERNELSIN(x, 0, /* empty */); |
- } |
- return MathSinSlow(x); |
-} |
- |
-// ECMA 262 - 15.8.2.7 |
-function MathCos(x) { |
- x = x * 1; // Convert to number. |
- if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |
- // |x| < pi/4, approximately. No reduction needed. |
- RETURN_KERNELCOS(x, 0, /* empty */); |
- } |
- return MathCosSlow(x); |
-} |
- |
-// ECMA 262 - 15.8.2.18 |
-function MathTan(x) { |
- x = x * 1; // Convert to number. |
- if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { |
- // |x| < pi/4, approximately. No reduction needed. |
- return KernelTan(x, 0, 1); |
- } |
- REMPIO2(x); |
- return KernelTan(y0, y1, (n & 1) ? -1 : 1); |
-} |