Index: src/utils/SkTextureCompressor_ASTC.cpp |
diff --git a/src/utils/SkTextureCompressor_ASTC.cpp b/src/utils/SkTextureCompressor_ASTC.cpp |
index 8efffdfc9e8f04e035009bfc17a207ab8297758c..fbae8504e50fe225b3fd70dd70f07cef9f381b76 100644 |
--- a/src/utils/SkTextureCompressor_ASTC.cpp |
+++ b/src/utils/SkTextureCompressor_ASTC.cpp |
@@ -10,6 +10,7 @@ |
#include "SkBlitter.h" |
#include "SkEndian.h" |
+#include "SkMath.h" |
// This table contains the weight values for each texel. This is used in determining |
// how to convert a 12x12 grid of alpha values into a 6x5 grid of index values. Since |
@@ -261,10 +262,1741 @@ inline void CompressA8ASTCBlockVertical(uint8_t* dst, const uint8_t* src) { |
} |
//////////////////////////////////////////////////////////////////////////////// |
+// |
+// ASTC Decoder |
+// |
+// Full details available in the spec: |
+// http://www.khronos.org/registry/gles/extensions/OES/OES_texture_compression_astc.txt |
+// |
+//////////////////////////////////////////////////////////////////////////////// |
+ |
+// Enable this to assert whenever a decoded block has invalid ASTC values. Otherwise, |
+// each invalid block will result in a disgusting magenta color. |
+#define ASSERT_ASTC_DECODE_ERROR 0 |
+ |
+// Reverse 64-bit integer taken from TAOCP 4a, although it's better |
+// documented at this site: |
+// http://matthewarcus.wordpress.com/2012/11/18/reversing-a-64-bit-word/ |
+ |
+template <typename T, T m, int k> |
+static inline T swap_bits(T p) { |
+ T q = ((p>>k)^p) & m; |
+ return p^q^(q<<k); |
+} |
+ |
+static inline uint64_t reverse64(uint64_t n) { |
+ static const uint64_t m0 = 0x5555555555555555LLU; |
+ static const uint64_t m1 = 0x0300c0303030c303LLU; |
+ static const uint64_t m2 = 0x00c0300c03f0003fLLU; |
+ static const uint64_t m3 = 0x00000ffc00003fffLLU; |
+ n = ((n>>1)&m0) | (n&m0)<<1; |
+ n = swap_bits<uint64_t, m1, 4>(n); |
+ n = swap_bits<uint64_t, m2, 8>(n); |
+ n = swap_bits<uint64_t, m3, 20>(n); |
+ n = (n >> 34) | (n << 30); |
+ return n; |
+} |
+ |
+// An ASTC block is 128 bits. We represent it as two 64-bit integers in order |
+// to efficiently operate on the block using bitwise operations. |
+struct ASTCBlock { |
+ uint64_t fLow; |
+ uint64_t fHigh; |
+ |
+ // Reverses the bits of an ASTC block, making the LSB of the |
+ // 128 bit block the MSB. |
+ inline void reverse() { |
+ const uint64_t newLow = reverse64(this->fHigh); |
+ this->fHigh = reverse64(this->fLow); |
+ this->fLow = newLow; |
+ } |
+}; |
+ |
+// Writes the given color to every pixel in the block. This is used by void-extent |
+// blocks (a special constant-color encoding of a block) and by the error function. |
+static inline void write_constant_color(uint8_t* dst, int blockDimX, int blockDimY, |
+ int dstRowBytes, SkColor color) { |
+ for (int y = 0; y < blockDimY; ++y) { |
+ SkColor *dstColors = reinterpret_cast<SkColor*>(dst); |
+ for (int x = 0; x < blockDimX; ++x) { |
+ dstColors[x] = color; |
+ } |
+ dst += dstRowBytes; |
+ } |
+} |
+ |
+// Sets the entire block to the ASTC "error" color, a disgusting magenta |
+// that's not supposed to appear in natural images. |
+static inline void write_error_color(uint8_t* dst, int blockDimX, int blockDimY, |
+ int dstRowBytes) { |
+ static const SkColor kASTCErrorColor = SkColorSetRGB(0xFF, 0, 0xFF); |
+ |
+#if ASSERT_ASTC_DECODE_ERROR |
+ SkDEBUGFAIL("ASTC decoding error!\n"); |
+#endif |
+ |
+ write_constant_color(dst, blockDimX, blockDimY, dstRowBytes, kASTCErrorColor); |
+} |
+ |
+// Reads up to 64 bits of the ASTC block starting from bit |
+// 'from' and going up to but not including bit 'to'. 'from' starts |
+// counting from the LSB, counting up to the MSB. Returns -1 on |
+// error. |
+static uint64_t read_astc_bits(const ASTCBlock &block, int from, int to) { |
+ SkASSERT(0 <= from && from <= 128); |
+ SkASSERT(0 <= to && to <= 128); |
+ |
+ const int nBits = to - from; |
+ if (0 == nBits) { |
+ return 0; |
+ } |
+ |
+ if (nBits < 0 || 64 <= nBits) { |
+ SkDEBUGFAIL("ASTC -- shouldn't read more than 64 bits"); |
+ return -1; |
+ } |
+ |
+ // Remember, the 'to' bit isn't read. |
+ uint64_t result = 0; |
+ if (to <= 64) { |
+ // All desired bits are in the low 64-bits. |
+ result = (block.fLow >> from) & ((1ULL << nBits) - 1); |
+ } else if (from >= 64) { |
+ // All desired bits are in the high 64-bits. |
+ result = (block.fHigh >> (from - 64)) & ((1ULL << nBits) - 1); |
+ } else { |
+ // from < 64 && to > 64 |
+ SkASSERT(nBits > (64 - from)); |
+ const int nLow = 64 - from; |
+ const int nHigh = nBits - nLow; |
+ result = |
+ ((block.fLow >> from) & ((1ULL << nLow) - 1)) | |
+ ((block.fHigh & ((1ULL << nHigh) - 1)) << nLow); |
+ } |
+ |
+ return result; |
+} |
+ |
+// Returns the number of bits needed to represent a number |
+// in the given power-of-two range (excluding the power of two itself). |
+static inline int bits_for_range(int x) { |
+ SkASSERT(SkIsPow2(x)); |
+ SkASSERT(0 != x); |
+ // Since we know it's a power of two, there should only be one bit set, |
+ // meaning the number of trailing zeros is 31 minus the number of leading |
+ // zeros. |
+ return 31 - SkCLZ(x); |
+} |
+ |
+// Clamps an integer to the range [0, 255] |
+static inline int clamp_byte(int x) { |
+ return SkClampMax(x, 255); |
+} |
+ |
+// Helper function defined in the ASTC spec, section C.2.14 |
+// It transfers a few bits of precision from one value to another. |
+static inline void bit_transfer_signed(int *a, int *b) { |
+ *b >>= 1; |
+ *b |= *a & 0x80; |
+ *a >>= 1; |
+ *a &= 0x3F; |
+ if ( (*a & 0x20) != 0 ) { |
+ *a -= 0x40; |
+ } |
+} |
+ |
+// Helper function defined in the ASTC spec, section C.2.14 |
+// It uses the value in the blue channel to tint the red and green |
+static inline SkColor blue_contract(int a, int r, int g, int b) { |
+ return SkColorSetARGB(a, (r + b) >> 1, (g + b) >> 1, b); |
+} |
+ |
+// Helper function that decodes two colors from eight values. If isRGB is true, |
+// then the pointer 'v' contains six values and the last two are considered to be |
+// 0xFF. If isRGB is false, then all eight values come from the pointer 'v'. This |
+// corresponds to the decode procedure for the following endpoint modes: |
+// kLDR_RGB_Direct_ColorEndpointMode |
+// kLDR_RGBA_Direct_ColorEndpointMode |
+static inline void decode_rgba_direct(const int *v, SkColor *endpoints, bool isRGB) { |
+ |
+ int v6 = 0xFF; |
+ int v7 = 0xFF; |
+ if (!isRGB) { |
+ v6 = v[6]; |
+ v7 = v[7]; |
+ } |
+ |
+ const int s0 = v[0] + v[2] + v[4]; |
+ const int s1 = v[1] + v[3] + v[5]; |
+ |
+ if (s1 >= s0) { |
+ endpoints[0] = SkColorSetARGB(v6, v[0], v[2], v[4]); |
+ endpoints[1] = SkColorSetARGB(v7, v[1], v[3], v[5]); |
+ } else { |
+ endpoints[0] = blue_contract(v7, v[1], v[3], v[5]); |
+ endpoints[1] = blue_contract(v6, v[0], v[2], v[4]); |
+ } |
+} |
+ |
+// Helper function that decodes two colors from six values. If isRGB is true, |
+// then the pointer 'v' contains four values and the last two are considered to be |
+// 0xFF. If isRGB is false, then all six values come from the pointer 'v'. This |
+// corresponds to the decode procedure for the following endpoint modes: |
+// kLDR_RGB_BaseScale_ColorEndpointMode |
+// kLDR_RGB_BaseScaleWithAlpha_ColorEndpointMode |
+static inline void decode_rgba_basescale(const int *v, SkColor *endpoints, bool isRGB) { |
+ |
+ int v4 = 0xFF; |
+ int v5 = 0xFF; |
+ if (!isRGB) { |
+ v4 = v[4]; |
+ v5 = v[5]; |
+ } |
+ |
+ endpoints[0] = SkColorSetARGB(v4, |
+ (v[0]*v[3]) >> 8, |
+ (v[1]*v[3]) >> 8, |
+ (v[2]*v[3]) >> 8); |
+ endpoints[1] = SkColorSetARGB(v5, v[0], v[1], v[2]); |
+} |
+ |
+// Helper function that decodes two colors from eight values. If isRGB is true, |
+// then the pointer 'v' contains six values and the last two are considered to be |
+// 0xFF. If isRGB is false, then all eight values come from the pointer 'v'. This |
+// corresponds to the decode procedure for the following endpoint modes: |
+// kLDR_RGB_BaseOffset_ColorEndpointMode |
+// kLDR_RGBA_BaseOffset_ColorEndpointMode |
+// |
+// If isRGB is true, then treat this as if v6 and v7 are meant to encode full alpha values. |
+static inline void decode_rgba_baseoffset(const int *v, SkColor *endpoints, bool isRGB) { |
+ int v0 = v[0]; |
+ int v1 = v[1]; |
+ int v2 = v[2]; |
+ int v3 = v[3]; |
+ int v4 = v[4]; |
+ int v5 = v[5]; |
+ int v6 = isRGB ? 0xFF : v[6]; |
+ // The 0 is here because this is an offset, not a direct value |
+ int v7 = isRGB ? 0 : v[7]; |
+ |
+ bit_transfer_signed(&v1, &v0); |
+ bit_transfer_signed(&v3, &v2); |
+ bit_transfer_signed(&v5, &v4); |
+ if (!isRGB) { |
+ bit_transfer_signed(&v7, &v6); |
+ } |
+ |
+ int c[2][4]; |
+ if ((v1 + v3 + v5) >= 0) { |
+ c[0][0] = v6; |
+ c[0][1] = v0; |
+ c[0][2] = v2; |
+ c[0][3] = v4; |
+ |
+ c[1][0] = v6 + v7; |
+ c[1][1] = v0 + v1; |
+ c[1][2] = v2 + v3; |
+ c[1][3] = v4 + v5; |
+ } else { |
+ c[0][0] = v6 + v7; |
+ c[0][1] = (v0 + v1 + v4 + v5) >> 1; |
+ c[0][2] = (v2 + v3 + v4 + v5) >> 1; |
+ c[0][3] = v4 + v5; |
+ |
+ c[1][0] = v6; |
+ c[1][1] = (v0 + v4) >> 1; |
+ c[1][2] = (v2 + v4) >> 1; |
+ c[1][3] = v4; |
+ } |
+ |
+ endpoints[0] = SkColorSetARGB(clamp_byte(c[0][0]), |
+ clamp_byte(c[0][1]), |
+ clamp_byte(c[0][2]), |
+ clamp_byte(c[0][3])); |
+ |
+ endpoints[1] = SkColorSetARGB(clamp_byte(c[1][0]), |
+ clamp_byte(c[1][1]), |
+ clamp_byte(c[1][2]), |
+ clamp_byte(c[1][3])); |
+} |
+ |
+ |
+// A helper class used to decode bit values from standard integer values. |
+// We can't use this class with ASTCBlock because then it would need to |
+// handle multi-value ranges, and it's non-trivial to lookup a range of bits |
+// that splits across two different ints. |
+template <typename T> |
+class SkTBits { |
+public: |
+ SkTBits(const T val) : fVal(val) { } |
+ |
+ // Returns the bit at the given position |
+ T operator [](const int idx) const { |
+ return (fVal >> idx) & 1; |
+ } |
+ |
+ // Returns the bits in the given range, inclusive |
+ T operator ()(const int end, const int start) const { |
+ SkASSERT(end >= start); |
+ return (fVal >> start) & ((1ULL << ((end - start) + 1)) - 1); |
+ } |
+ |
+private: |
+ const T fVal; |
+}; |
+ |
+// This algorithm matches the trit block decoding in the spec (Table C.2.14) |
+static void decode_trit_block(int* dst, int nBits, const uint64_t &block) { |
+ |
+ SkTBits<uint64_t> blockBits(block); |
+ |
+ // According to the spec, a trit block, which contains five values, |
+ // has the following layout: |
+ // |
+ // 27 26 25 24 23 22 21 20 19 18 17 16 |
+ // ----------------------------------------------- |
+ // |T7 | m4 |T6 T5 | m3 |T4 | |
+ // ----------------------------------------------- |
+ // |
+ // 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
+ // -------------------------------------------------------------- |
+ // | m2 |T3 T2 | m1 |T1 T0 | m0 | |
+ // -------------------------------------------------------------- |
+ // |
+ // Where the m's are variable width depending on the number of bits used |
+ // to encode the values (anywhere from 0 to 6). Since 3^5 = 243, the extra |
+ // byte labeled T (whose bits are interleaved where 0 is the LSB and 7 is |
+ // the MSB), contains five trit values. To decode the trit values, the spec |
+ // says that we need to follow the following algorithm: |
+ // |
+ // if T[4:2] = 111 |
+ // C = { T[7:5], T[1:0] }; t4 = t3 = 2 |
+ // else |
+ // C = T[4:0] |
+ // |
+ // if T[6:5] = 11 |
+ // t4 = 2; t3 = T[7] |
+ // else |
+ // t4 = T[7]; t3 = T[6:5] |
+ // |
+ // if C[1:0] = 11 |
+ // t2 = 2; t1 = C[4]; t0 = { C[3], C[2]&~C[3] } |
+ // else if C[3:2] = 11 |
+ // t2 = 2; t1 = 2; t0 = C[1:0] |
+ // else |
+ // t2 = C[4]; t1 = C[3:2]; t0 = { C[1], C[0]&~C[1] } |
+ // |
+ // The following C++ code is meant to mirror this layout and algorithm as |
+ // closely as possible. |
+ |
+ int m[5]; |
+ if (0 == nBits) { |
+ memset(m, 0, sizeof(m)); |
+ } else { |
+ SkASSERT(nBits < 8); |
+ m[0] = static_cast<int>(blockBits(nBits - 1, 0)); |
+ m[1] = static_cast<int>(blockBits(2*nBits - 1 + 2, nBits + 2)); |
+ m[2] = static_cast<int>(blockBits(3*nBits - 1 + 4, 2*nBits + 4)); |
+ m[3] = static_cast<int>(blockBits(4*nBits - 1 + 5, 3*nBits + 5)); |
+ m[4] = static_cast<int>(blockBits(5*nBits - 1 + 7, 4*nBits + 7)); |
+ } |
+ |
+ int T = |
+ static_cast<int>(blockBits(nBits + 1, nBits)) | |
+ (static_cast<int>(blockBits(2*nBits + 2 + 1, 2*nBits + 2)) << 2) | |
+ (static_cast<int>(blockBits[3*nBits + 4] << 4)) | |
+ (static_cast<int>(blockBits(4*nBits + 5 + 1, 4*nBits + 5)) << 5) | |
+ (static_cast<int>(blockBits[5*nBits + 7] << 7)); |
+ |
+ int t[5]; |
+ |
+ int C; |
+ SkTBits<int> Tbits(T); |
+ if (0x7 == Tbits(4, 2)) { |
+ C = (Tbits(7, 5) << 2) | Tbits(1, 0); |
+ t[3] = t[4] = 2; |
+ } else { |
+ C = Tbits(4, 0); |
+ if (Tbits(6, 5) == 0x3) { |
+ t[4] = 2; t[3] = Tbits[7]; |
+ } else { |
+ t[4] = Tbits[7]; t[3] = Tbits(6, 5); |
+ } |
+ } |
+ |
+ SkTBits<int> Cbits(C); |
+ if (Cbits(1, 0) == 0x3) { |
+ t[2] = 2; |
+ t[1] = Cbits[4]; |
+ t[0] = (Cbits[3] << 1) | (Cbits[2] & (0x1 & ~(Cbits[3]))); |
+ } else if (Cbits(3, 2) == 0x3) { |
+ t[2] = 2; |
+ t[1] = 2; |
+ t[0] = Cbits(1, 0); |
+ } else { |
+ t[2] = Cbits[4]; |
+ t[1] = Cbits(3, 2); |
+ t[0] = (Cbits[1] << 1) | (Cbits[0] & (0x1 & ~(Cbits[1]))); |
+ } |
+ |
+#ifdef SK_DEBUG |
+ // Make sure all of the decoded values have a trit less than three |
+ // and a bit value within the range of the allocated bits. |
+ for (int i = 0; i < 5; ++i) { |
+ SkASSERT(t[i] < 3); |
+ SkASSERT(m[i] < (1 << nBits)); |
+ } |
+#endif |
+ |
+ for (int i = 0; i < 5; ++i) { |
+ *dst = (t[i] << nBits) + m[i]; |
+ ++dst; |
+ } |
+} |
+ |
+// This algorithm matches the quint block decoding in the spec (Table C.2.15) |
+static void decode_quint_block(int* dst, int nBits, const uint64_t &block) { |
+ SkTBits<uint64_t> blockBits(block); |
+ |
+ // According to the spec, a quint block, which contains three values, |
+ // has the following layout: |
+ // |
+ // |
+ // 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 |
+ // -------------------------------------------------------------------------- |
+ // |Q6 Q5 | m2 |Q4 Q3 | m1 |Q2 Q1 Q0 | m0 | |
+ // -------------------------------------------------------------------------- |
+ // |
+ // Where the m's are variable width depending on the number of bits used |
+ // to encode the values (anywhere from 0 to 4). Since 5^3 = 125, the extra |
+ // 7-bit value labeled Q (whose bits are interleaved where 0 is the LSB and 6 is |
+ // the MSB), contains three quint values. To decode the quint values, the spec |
+ // says that we need to follow the following algorithm: |
+ // |
+ // if Q[2:1] = 11 and Q[6:5] = 00 |
+ // q2 = { Q[0], Q[4]&~Q[0], Q[3]&~Q[0] }; q1 = q0 = 4 |
+ // else |
+ // if Q[2:1] = 11 |
+ // q2 = 4; C = { Q[4:3], ~Q[6:5], Q[0] } |
+ // else |
+ // q2 = T[6:5]; C = Q[4:0] |
+ // |
+ // if C[2:0] = 101 |
+ // q1 = 4; q0 = C[4:3] |
+ // else |
+ // q1 = C[4:3]; q0 = C[2:0] |
+ // |
+ // The following C++ code is meant to mirror this layout and algorithm as |
+ // closely as possible. |
+ |
+ int m[3]; |
+ if (0 == nBits) { |
+ memset(m, 0, sizeof(m)); |
+ } else { |
+ SkASSERT(nBits < 8); |
+ m[0] = static_cast<int>(blockBits(nBits - 1, 0)); |
+ m[1] = static_cast<int>(blockBits(2*nBits - 1 + 3, nBits + 3)); |
+ m[2] = static_cast<int>(blockBits(3*nBits - 1 + 5, 2*nBits + 5)); |
+ } |
+ |
+ int Q = |
+ static_cast<int>(blockBits(nBits + 2, nBits)) | |
+ (static_cast<int>(blockBits(2*nBits + 3 + 1, 2*nBits + 3)) << 3) | |
+ (static_cast<int>(blockBits(3*nBits + 5 + 1, 3*nBits + 5)) << 5); |
+ |
+ int q[3]; |
+ SkTBits<int> Qbits(Q); // quantum? |
+ |
+ if (Qbits(2, 1) == 0x3 && Qbits(6, 5) == 0) { |
+ const int notBitZero = (0x1 & ~(Qbits[0])); |
+ q[2] = (Qbits[0] << 2) | ((Qbits[4] & notBitZero) << 1) | (Qbits[3] & notBitZero); |
+ q[1] = 4; |
+ q[0] = 4; |
+ } else { |
+ int C; |
+ if (Qbits(2, 1) == 0x3) { |
+ q[2] = 4; |
+ C = (Qbits(4, 3) << 3) | ((0x3 & ~(Qbits(6, 5))) << 1) | Qbits[0]; |
+ } else { |
+ q[2] = Qbits(6, 5); |
+ C = Qbits(4, 0); |
+ } |
+ |
+ SkTBits<int> Cbits(C); |
+ if (Cbits(2, 0) == 0x5) { |
+ q[1] = 4; |
+ q[0] = Cbits(4, 3); |
+ } else { |
+ q[1] = Cbits(4, 3); |
+ q[0] = Cbits(2, 0); |
+ } |
+ } |
+ |
+#ifdef SK_DEBUG |
+ for (int i = 0; i < 3; ++i) { |
+ SkASSERT(q[i] < 5); |
+ SkASSERT(m[i] < (1 << nBits)); |
+ } |
+#endif |
+ |
+ for (int i = 0; i < 3; ++i) { |
+ *dst = (q[i] << nBits) + m[i]; |
+ ++dst; |
+ } |
+} |
+ |
+// Function that decodes a sequence of integers stored as an ISE (Integer |
+// Sequence Encoding) bit stream. The full details of this function are outlined |
+// in section C.2.12 of the ASTC spec. A brief overview is as follows: |
+// |
+// - Each integer in the sequence is bounded by a specific range r. |
+// - The range of each value determines the way the bit stream is interpreted, |
+// - If the range is a power of two, then the sequence is a sequence of bits |
+// - If the range is of the form 3*2^n, then the sequence is stored as a |
+// sequence of blocks, each block contains 5 trits and 5 bit sequences, which |
+// decodes into 5 values. |
+// - Similarly, if the range is of the form 5*2^n, then the sequence is stored as a |
+// sequence of blocks, each block contains 3 quints and 3 bit sequences, which |
+// decodes into 3 values. |
+static bool decode_integer_sequence( |
+ int* dst, // The array holding the destination bits |
+ int dstSize, // The maximum size of the array |
+ int nVals, // The number of values that we'd like to decode |
+ const ASTCBlock &block, // The block that we're decoding from |
+ int startBit, // The bit from which we're going to do the reading |
+ int endBit, // The bit at which we stop reading (not inclusive) |
+ bool bReadForward, // If true, then read LSB -> MSB, else read MSB -> LSB |
+ int nBits, // The number of bits representing this encoding |
+ int nTrits, // The number of trits representing this encoding |
+ int nQuints // The number of quints representing this encoding |
+) { |
+ // If we want more values than we have, then fail. |
+ if (nVals > dstSize) { |
+ return false; |
+ } |
+ |
+ ASTCBlock src = block; |
+ |
+ if (!bReadForward) { |
+ src.reverse(); |
+ startBit = 128 - startBit; |
+ endBit = 128 - endBit; |
+ } |
+ |
+ while (nVals > 0) { |
+ |
+ if (nTrits > 0) { |
+ SkASSERT(0 == nQuints); |
+ |
+ int endBlockBit = startBit + 8 + 5*nBits; |
+ if (endBlockBit > endBit) { |
+ endBlockBit = endBit; |
+ } |
+ |
+ decode_trit_block(dst, nBits, read_astc_bits(src, startBit, endBlockBit)); |
+ dst += 5; |
+ nVals -= 5; |
+ startBit = endBlockBit; |
+ |
+ } else if (nQuints > 0) { |
+ SkASSERT(0 == nTrits); |
+ |
+ int endBlockBit = startBit + 7 + 3*nBits; |
+ if (endBlockBit > endBit) { |
+ endBlockBit = endBit; |
+ } |
+ |
+ decode_quint_block(dst, nBits, read_astc_bits(src, startBit, endBlockBit)); |
+ dst += 3; |
+ nVals -= 3; |
+ startBit = endBlockBit; |
+ |
+ } else { |
+ // Just read the bits, but don't read more than we have... |
+ int endValBit = startBit + nBits; |
+ if (endValBit > endBit) { |
+ endValBit = endBit; |
+ } |
+ |
+ SkASSERT(endValBit - startBit < 31); |
+ *dst = static_cast<int>(read_astc_bits(src, startBit, endValBit)); |
+ ++dst; |
+ --nVals; |
+ startBit = endValBit; |
+ } |
+ } |
+ |
+ return true; |
+} |
+ |
+// Helper function that unquantizes some (seemingly random) generated |
+// numbers... meant to match the ASTC hardware. This function is used |
+// to unquantize both colors (Table C.2.16) and weights (Table C.2.26) |
+static inline int unquantize_value(unsigned mask, int A, int B, int C, int D) { |
+ int T = D * C + B; |
+ T = T ^ A; |
+ T = (A & mask) | (T >> 2); |
+ SkASSERT(T < 256); |
+ return T; |
+} |
+ |
+// Helper function to replicate the bits in x that represents an oldPrec |
+// precision integer into a prec precision integer. For example: |
+// 255 == replicate_bits(7, 3, 8); |
+static inline int replicate_bits(int x, int oldPrec, int prec) { |
+ while (oldPrec < prec) { |
+ const int toShift = SkMin32(prec-oldPrec, oldPrec); |
+ x = (x << toShift) | (x >> (oldPrec - toShift)); |
+ oldPrec += toShift; |
+ } |
+ |
+ // Make sure that no bits are set outside the desired precision. |
+ SkASSERT((-(1 << prec) & x) == 0); |
+ return x; |
+} |
+ |
+// Returns the unquantized value of a color that's represented only as |
+// a set of bits. |
+static inline int unquantize_bits_color(int val, int nBits) { |
+ return replicate_bits(val, nBits, 8); |
+} |
+ |
+// Returns the unquantized value of a color that's represented as a |
+// trit followed by nBits bits. This algorithm follows the sequence |
+// defined in section C.2.13 of the ASTC spec. |
+static inline int unquantize_trit_color(int val, int nBits) { |
+ SkASSERT(nBits > 0); |
+ SkASSERT(nBits < 7); |
+ |
+ const int D = (val >> nBits) & 0x3; |
+ SkASSERT(D < 3); |
+ |
+ const int A = -(val & 0x1) & 0x1FF; |
+ |
+ static const int Cvals[6] = { 204, 93, 44, 22, 11, 5 }; |
+ const int C = Cvals[nBits - 1]; |
+ |
+ int B = 0; |
+ const SkTBits<int> valBits(val); |
+ switch (nBits) { |
+ case 1: |
+ B = 0; |
+ break; |
+ |
+ case 2: { |
+ const int b = valBits[1]; |
+ B = (b << 1) | (b << 2) | (b << 4) | (b << 8); |
+ } |
+ break; |
+ |
+ case 3: { |
+ const int cb = valBits(2, 1); |
+ B = cb | (cb << 2) | (cb << 7); |
+ } |
+ break; |
+ |
+ case 4: { |
+ const int dcb = valBits(3, 1); |
+ B = dcb | (dcb << 6); |
+ } |
+ break; |
+ |
+ case 5: { |
+ const int edcb = valBits(4, 1); |
+ B = (edcb << 5) | (edcb >> 2); |
+ } |
+ break; |
+ |
+ case 6: { |
+ const int fedcb = valBits(5, 1); |
+ B = (fedcb << 4) | (fedcb >> 4); |
+ } |
+ break; |
+ } |
+ |
+ return unquantize_value(0x80, A, B, C, D); |
+} |
+ |
+// Returns the unquantized value of a color that's represented as a |
+// quint followed by nBits bits. This algorithm follows the sequence |
+// defined in section C.2.13 of the ASTC spec. |
+static inline int unquantize_quint_color(int val, int nBits) { |
+ const int D = (val >> nBits) & 0x7; |
+ SkASSERT(D < 5); |
+ |
+ const int A = -(val & 0x1) & 0x1FF; |
+ |
+ static const int Cvals[5] = { 113, 54, 26, 13, 6 }; |
+ SkASSERT(nBits > 0); |
+ SkASSERT(nBits < 6); |
+ |
+ const int C = Cvals[nBits - 1]; |
+ |
+ int B = 0; |
+ const SkTBits<int> valBits(val); |
+ switch (nBits) { |
+ case 1: |
+ B = 0; |
+ break; |
+ |
+ case 2: { |
+ const int b = valBits[1]; |
+ B = (b << 2) | (b << 3) | (b << 8); |
+ } |
+ break; |
+ |
+ case 3: { |
+ const int cb = valBits(2, 1); |
+ B = (cb >> 1) | (cb << 1) | (cb << 7); |
+ } |
+ break; |
+ |
+ case 4: { |
+ const int dcb = valBits(3, 1); |
+ B = (dcb >> 1) | (dcb << 6); |
+ } |
+ break; |
+ |
+ case 5: { |
+ const int edcb = valBits(4, 1); |
+ B = (edcb << 5) | (edcb >> 3); |
+ } |
+ break; |
+ } |
+ |
+ return unquantize_value(0x80, A, B, C, D); |
+} |
+ |
+// This algorithm takes a list of integers, stored in vals, and unquantizes them |
+// in place. This follows the algorithm laid out in section C.2.13 of the ASTC spec. |
+static void unquantize_colors(int *vals, int nVals, int nBits, int nTrits, int nQuints) { |
+ for (int i = 0; i < nVals; ++i) { |
+ if (nTrits > 0) { |
+ SkASSERT(nQuints == 0); |
+ vals[i] = unquantize_trit_color(vals[i], nBits); |
+ } else if (nQuints > 0) { |
+ SkASSERT(nTrits == 0); |
+ vals[i] = unquantize_quint_color(vals[i], nBits); |
+ } else { |
+ SkASSERT(nQuints == 0 && nTrits == 0); |
+ vals[i] = unquantize_bits_color(vals[i], nBits); |
+ } |
+ } |
+} |
+ |
+// Returns an interpolated value between c0 and c1 based on the weight. This |
+// follows the algorithm laid out in section C.2.19 of the ASTC spec. |
+static int interpolate_channel(int c0, int c1, int weight) { |
+ SkASSERT(0 <= c0 && c0 < 256); |
+ SkASSERT(0 <= c1 && c1 < 256); |
+ |
+ c0 = (c0 << 8) | c0; |
+ c1 = (c1 << 8) | c1; |
+ |
+ const int result = ((c0*(64 - weight) + c1*weight + 32) / 64) >> 8; |
+ |
+ if (result > 255) { |
+ return 255; |
+ } |
+ |
+ SkASSERT(result >= 0); |
+ return result; |
+} |
+ |
+// Returns an interpolated color between the two endpoints based on the weight. |
+static SkColor interpolate_endpoints(const SkColor endpoints[2], int weight) { |
+ return SkColorSetARGB( |
+ interpolate_channel(SkColorGetA(endpoints[0]), SkColorGetA(endpoints[1]), weight), |
+ interpolate_channel(SkColorGetR(endpoints[0]), SkColorGetR(endpoints[1]), weight), |
+ interpolate_channel(SkColorGetG(endpoints[0]), SkColorGetG(endpoints[1]), weight), |
+ interpolate_channel(SkColorGetB(endpoints[0]), SkColorGetB(endpoints[1]), weight)); |
+} |
+ |
+// Returns an interpolated color between the two endpoints based on the weight. |
+// It uses separate weights for the channel depending on the value of the 'plane' |
+// variable. By default, all channels will use weight 0, and the value of plane |
+// means that weight1 will be used for: |
+// 0: red |
+// 1: green |
+// 2: blue |
+// 3: alpha |
+static SkColor interpolate_dual_endpoints( |
+ const SkColor endpoints[2], int weight0, int weight1, int plane) { |
+ int a = interpolate_channel(SkColorGetA(endpoints[0]), SkColorGetA(endpoints[1]), weight0); |
+ int r = interpolate_channel(SkColorGetR(endpoints[0]), SkColorGetR(endpoints[1]), weight0); |
+ int g = interpolate_channel(SkColorGetG(endpoints[0]), SkColorGetG(endpoints[1]), weight0); |
+ int b = interpolate_channel(SkColorGetB(endpoints[0]), SkColorGetB(endpoints[1]), weight0); |
+ |
+ switch (plane) { |
+ |
+ case 0: |
+ r = interpolate_channel( |
+ SkColorGetR(endpoints[0]), SkColorGetR(endpoints[1]), weight1); |
+ break; |
+ |
+ case 1: |
+ g = interpolate_channel( |
+ SkColorGetG(endpoints[0]), SkColorGetG(endpoints[1]), weight1); |
+ break; |
+ |
+ case 2: |
+ b = interpolate_channel( |
+ SkColorGetB(endpoints[0]), SkColorGetB(endpoints[1]), weight1); |
+ break; |
+ |
+ case 3: |
+ a = interpolate_channel( |
+ SkColorGetA(endpoints[0]), SkColorGetA(endpoints[1]), weight1); |
+ break; |
+ |
+ default: |
+ SkDEBUGFAIL("Plane should be 0-3"); |
+ break; |
+ } |
+ |
+ return SkColorSetARGB(a, r, g, b); |
+} |
+ |
+// A struct of decoded values that we use to carry around information |
+// about the block. dimX and dimY are the dimension in texels of the block, |
+// for which there is only a limited subset of valid values: |
+// |
+// 4x4, 5x4, 5x5, 6x5, 6x6, 8x5, 8x6, 8x8, 10x5, 10x6, 10x8, 10x10, 12x10, 12x12 |
+ |
+struct ASTCDecompressionData { |
+ ASTCDecompressionData(int dimX, int dimY) : fDimX(dimX), fDimY(dimY) { } |
+ const int fDimX; // the X dimension of the decompressed block |
+ const int fDimY; // the Y dimension of the decompressed block |
+ ASTCBlock fBlock; // the block data |
+ int fBlockMode; // the block header that contains the block mode. |
+ |
+ bool fDualPlaneEnabled; // is this block compressing dual weight planes? |
+ int fDualPlane; // the independent plane in dual plane mode. |
+ |
+ bool fVoidExtent; // is this block a single color? |
+ bool fError; // does this block have an error encoding? |
+ |
+ int fWeightDimX; // the x dimension of the weight grid |
+ int fWeightDimY; // the y dimension of the weight grid |
+ |
+ int fWeightBits; // the number of bits used for each weight value |
+ int fWeightTrits; // the number of trits used for each weight value |
+ int fWeightQuints; // the number of quints used for each weight value |
+ |
+ int fPartCount; // the number of partitions in this block |
+ int fPartIndex; // the partition index: only relevant if fPartCount > 0 |
+ |
+ // CEM values can be anything in the range 0-15, and each corresponds to a different |
+ // mode that represents the color data. We only support LDR modes. |
+ enum ColorEndpointMode { |
+ kLDR_Luminance_Direct_ColorEndpointMode = 0, |
+ kLDR_Luminance_BaseOffset_ColorEndpointMode = 1, |
+ kHDR_Luminance_LargeRange_ColorEndpointMode = 2, |
+ kHDR_Luminance_SmallRange_ColorEndpointMode = 3, |
+ kLDR_LuminanceAlpha_Direct_ColorEndpointMode = 4, |
+ kLDR_LuminanceAlpha_BaseOffset_ColorEndpointMode = 5, |
+ kLDR_RGB_BaseScale_ColorEndpointMode = 6, |
+ kHDR_RGB_BaseScale_ColorEndpointMode = 7, |
+ kLDR_RGB_Direct_ColorEndpointMode = 8, |
+ kLDR_RGB_BaseOffset_ColorEndpointMode = 9, |
+ kLDR_RGB_BaseScaleWithAlpha_ColorEndpointMode = 10, |
+ kHDR_RGB_ColorEndpointMode = 11, |
+ kLDR_RGBA_Direct_ColorEndpointMode = 12, |
+ kLDR_RGBA_BaseOffset_ColorEndpointMode = 13, |
+ kHDR_RGB_LDRAlpha_ColorEndpointMode = 14, |
+ kHDR_RGB_HDRAlpha_ColorEndpointMode = 15 |
+ }; |
+ static const int kMaxColorEndpointModes = 16; |
+ |
+ // the color endpoint modes for this block. |
+ static const int kMaxPartitions = 4; |
+ ColorEndpointMode fCEM[kMaxPartitions]; |
+ |
+ int fColorStartBit; // The bit position of the first bit of the color data |
+ int fColorEndBit; // The bit position of the last *possible* bit of the color data |
+ |
+ // Returns the number of partitions for this block. |
+ int numPartitions() const { |
+ return fPartCount; |
+ } |
+ |
+ // Returns the total number of weight values that are stored in this block |
+ int numWeights() const { |
+ return fWeightDimX * fWeightDimY * (fDualPlaneEnabled ? 2 : 1); |
+ } |
+ |
+#ifdef SK_DEBUG |
+ // Returns the maximum value that any weight can take. We really only use |
+ // this function for debugging. |
+ int maxWeightValue() const { |
+ int maxVal = (1 << fWeightBits); |
+ if (fWeightTrits > 0) { |
+ SkASSERT(0 == fWeightQuints); |
+ maxVal *= 3; |
+ } else if (fWeightQuints > 0) { |
+ SkASSERT(0 == fWeightTrits); |
+ maxVal *= 5; |
+ } |
+ return maxVal - 1; |
+ } |
+#endif |
+ |
+ // The number of bits needed to represent the texel weight data. This |
+ // comes from the 'data size determination' section of the ASTC spec (C.2.22) |
+ int numWeightBits() const { |
+ const int nWeights = this->numWeights(); |
+ return |
+ ((nWeights*8*fWeightTrits + 4) / 5) + |
+ ((nWeights*7*fWeightQuints + 2) / 3) + |
+ (nWeights*fWeightBits); |
+ } |
+ |
+ // Returns the number of color values stored in this block. The number of |
+ // values stored is directly a function of the color endpoint modes. |
+ int numColorValues() const { |
+ int numValues = 0; |
+ for (int i = 0; i < this->numPartitions(); ++i) { |
+ int cemInt = static_cast<int>(fCEM[i]); |
+ numValues += ((cemInt >> 2) + 1) * 2; |
+ } |
+ |
+ return numValues; |
+ } |
+ |
+ // Figures out the number of bits available for color values, and fills |
+ // in the maximum encoding that will fit the number of color values that |
+ // we need. Returns false on error. (See section C.2.22 of the spec) |
+ bool getColorValueEncoding(int *nBits, int *nTrits, int *nQuints) const { |
+ if (NULL == nBits || NULL == nTrits || NULL == nQuints) { |
+ return false; |
+ } |
+ |
+ const int nColorVals = this->numColorValues(); |
+ if (nColorVals <= 0) { |
+ return false; |
+ } |
+ |
+ const int colorBits = fColorEndBit - fColorStartBit; |
+ SkASSERT(colorBits > 0); |
+ |
+ // This is the minimum amount of accuracy required by the spec. |
+ if (colorBits < ((13 * nColorVals + 4) / 5)) { |
+ return false; |
+ } |
+ |
+ // Values can be represented as at most 8-bit values. |
+ // !SPEED! place this in a lookup table based on colorBits and nColorVals |
+ for (int i = 255; i > 0; --i) { |
+ int range = i + 1; |
+ int bits = 0, trits = 0, quints = 0; |
+ bool valid = false; |
+ if (SkIsPow2(range)) { |
+ bits = bits_for_range(range); |
+ valid = true; |
+ } else if ((range % 3) == 0 && SkIsPow2(range/3)) { |
+ trits = 1; |
+ bits = bits_for_range(range/3); |
+ valid = true; |
+ } else if ((range % 5) == 0 && SkIsPow2(range/5)) { |
+ quints = 1; |
+ bits = bits_for_range(range/5); |
+ valid = true; |
+ } |
+ |
+ if (valid) { |
+ const int actualColorBits = |
+ ((nColorVals*8*trits + 4) / 5) + |
+ ((nColorVals*7*quints + 2) / 3) + |
+ (nColorVals*bits); |
+ if (actualColorBits <= colorBits) { |
+ *nTrits = trits; |
+ *nQuints = quints; |
+ *nBits = bits; |
+ return true; |
+ } |
+ } |
+ } |
+ |
+ return false; |
+ } |
+ |
+ // Converts the sequence of color values into endpoints. The algorithm here |
+ // corresponds to the values determined by section C.2.14 of the ASTC spec |
+ void colorEndpoints(SkColor endpoints[4][2], const int* colorValues) const { |
+ for (int i = 0; i < this->numPartitions(); ++i) { |
+ switch (fCEM[i]) { |
+ case kLDR_Luminance_Direct_ColorEndpointMode: { |
+ const int* v = colorValues; |
+ endpoints[i][0] = SkColorSetARGB(0xFF, v[0], v[0], v[0]); |
+ endpoints[i][1] = SkColorSetARGB(0xFF, v[1], v[1], v[1]); |
+ |
+ colorValues += 2; |
+ } |
+ break; |
+ |
+ case kLDR_Luminance_BaseOffset_ColorEndpointMode: { |
+ const int* v = colorValues; |
+ const int L0 = (v[0] >> 2) | (v[1] & 0xC0); |
+ const int L1 = clamp_byte(L0 + (v[1] & 0x3F)); |
+ |
+ endpoints[i][0] = SkColorSetARGB(0xFF, L0, L0, L0); |
+ endpoints[i][1] = SkColorSetARGB(0xFF, L1, L1, L1); |
+ |
+ colorValues += 2; |
+ } |
+ break; |
+ |
+ case kLDR_LuminanceAlpha_Direct_ColorEndpointMode: { |
+ const int* v = colorValues; |
+ |
+ endpoints[i][0] = SkColorSetARGB(v[2], v[0], v[0], v[0]); |
+ endpoints[i][1] = SkColorSetARGB(v[3], v[1], v[1], v[1]); |
+ |
+ colorValues += 4; |
+ } |
+ break; |
+ |
+ case kLDR_LuminanceAlpha_BaseOffset_ColorEndpointMode: { |
+ int v0 = colorValues[0]; |
+ int v1 = colorValues[1]; |
+ int v2 = colorValues[2]; |
+ int v3 = colorValues[3]; |
+ |
+ bit_transfer_signed(&v1, &v0); |
+ bit_transfer_signed(&v3, &v2); |
+ |
+ endpoints[i][0] = SkColorSetARGB(v2, v0, v0, v0); |
+ endpoints[i][1] = SkColorSetARGB( |
+ clamp_byte(v3+v2), |
+ clamp_byte(v1+v0), |
+ clamp_byte(v1+v0), |
+ clamp_byte(v1+v0)); |
+ |
+ colorValues += 4; |
+ } |
+ break; |
+ |
+ case kLDR_RGB_BaseScale_ColorEndpointMode: { |
+ decode_rgba_basescale(colorValues, endpoints[i], true); |
+ colorValues += 4; |
+ } |
+ break; |
+ |
+ case kLDR_RGB_Direct_ColorEndpointMode: { |
+ decode_rgba_direct(colorValues, endpoints[i], true); |
+ colorValues += 6; |
+ } |
+ break; |
+ |
+ case kLDR_RGB_BaseOffset_ColorEndpointMode: { |
+ decode_rgba_baseoffset(colorValues, endpoints[i], true); |
+ colorValues += 6; |
+ } |
+ break; |
+ |
+ case kLDR_RGB_BaseScaleWithAlpha_ColorEndpointMode: { |
+ decode_rgba_basescale(colorValues, endpoints[i], false); |
+ colorValues += 6; |
+ } |
+ break; |
+ |
+ case kLDR_RGBA_Direct_ColorEndpointMode: { |
+ decode_rgba_direct(colorValues, endpoints[i], false); |
+ colorValues += 8; |
+ } |
+ break; |
+ |
+ case kLDR_RGBA_BaseOffset_ColorEndpointMode: { |
+ decode_rgba_baseoffset(colorValues, endpoints[i], false); |
+ colorValues += 8; |
+ } |
+ break; |
+ |
+ default: |
+ SkDEBUGFAIL("HDR mode unsupported! This should be caught sooner."); |
+ break; |
+ } |
+ } |
+ } |
+ |
+ // Follows the procedure from section C.2.17 of the ASTC specification |
+ int unquantizeWeight(int x) const { |
+ SkASSERT(x <= this->maxWeightValue()); |
+ |
+ const int D = (x >> fWeightBits) & 0x7; |
+ const int A = -(x & 0x1) & 0x7F; |
+ |
+ SkTBits<int> xbits(x); |
+ |
+ int T = 0; |
+ if (fWeightTrits > 0) { |
+ SkASSERT(0 == fWeightQuints); |
+ switch (fWeightBits) { |
+ case 0: { |
+ // x is a single trit |
+ SkASSERT(x < 3); |
+ |
+ static const int kUnquantizationTable[3] = { 0, 32, 63 }; |
+ T = kUnquantizationTable[x]; |
+ } |
+ break; |
+ |
+ case 1: { |
+ const int B = 0; |
+ const int C = 50; |
+ T = unquantize_value(0x20, A, B, C, D); |
+ } |
+ break; |
+ |
+ case 2: { |
+ const int b = xbits[1]; |
+ const int B = b | (b << 2) | (b << 6); |
+ const int C = 23; |
+ T = unquantize_value(0x20, A, B, C, D); |
+ } |
+ break; |
+ |
+ case 3: { |
+ const int cb = xbits(2, 1); |
+ const int B = cb | (cb << 5); |
+ const int C = 11; |
+ T = unquantize_value(0x20, A, B, C, D); |
+ } |
+ break; |
+ |
+ default: |
+ SkDEBUGFAIL("Too many bits for trit encoding"); |
+ break; |
+ } |
+ |
+ } else if (fWeightQuints > 0) { |
+ SkASSERT(0 == fWeightTrits); |
+ switch (fWeightBits) { |
+ case 0: { |
+ // x is a single quint |
+ SkASSERT(x < 5); |
+ |
+ static const int kUnquantizationTable[5] = { 0, 16, 32, 47, 63 }; |
+ T = kUnquantizationTable[x]; |
+ } |
+ break; |
+ |
+ case 1: { |
+ const int B = 0; |
+ const int C = 28; |
+ T = unquantize_value(0x20, A, B, C, D); |
+ } |
+ break; |
+ |
+ case 2: { |
+ const int b = xbits[1]; |
+ const int B = (b << 1) | (b << 6); |
+ const int C = 13; |
+ T = unquantize_value(0x20, A, B, C, D); |
+ } |
+ break; |
+ |
+ default: |
+ SkDEBUGFAIL("Too many bits for quint encoding"); |
+ break; |
+ } |
+ } else { |
+ SkASSERT(0 == fWeightTrits); |
+ SkASSERT(0 == fWeightQuints); |
+ |
+ T = replicate_bits(x, fWeightBits, 6); |
+ } |
+ |
+ // This should bring the value within [0, 63].. |
+ SkASSERT(T <= 63); |
+ |
+ if (T > 32) { |
+ T += 1; |
+ } |
+ |
+ SkASSERT(T <= 64); |
+ |
+ return T; |
+ } |
+ |
+ // Returns the weight at the associated index. If the index is out of bounds, it |
+ // returns zero. It also chooses the weight appropriately based on the given dual |
+ // plane. |
+ int getWeight(const int* unquantizedWeights, int idx, bool dualPlane) const { |
+ const int maxIdx = (fDualPlaneEnabled ? 2 : 1) * fWeightDimX * fWeightDimY - 1; |
+ if (fDualPlaneEnabled) { |
+ const int effectiveIdx = 2*idx + (dualPlane ? 1 : 0); |
+ if (effectiveIdx > maxIdx) { |
+ return 0; |
+ } |
+ return unquantizedWeights[effectiveIdx]; |
+ } |
+ |
+ SkASSERT(!dualPlane); |
+ |
+ if (idx > maxIdx) { |
+ return 0; |
+ } else { |
+ return unquantizedWeights[idx]; |
+ } |
+ } |
+ |
+ // This computes the effective weight at location (s, t) of the block. This |
+ // weight is computed by sampling the texel weight grid (it's usually not 1-1), and |
+ // then applying a bilerp. The algorithm outlined here follows the algorithm |
+ // defined in section C.2.18 of the ASTC spec. |
+ int infillWeight(const int* unquantizedValues, int s, int t, bool dualPlane) const { |
+ const int Ds = (1024 + fDimX/2) / (fDimX - 1); |
+ const int Dt = (1024 + fDimY/2) / (fDimY - 1); |
+ |
+ const int cs = Ds * s; |
+ const int ct = Dt * t; |
+ |
+ const int gs = (cs*(fWeightDimX - 1) + 32) >> 6; |
+ const int gt = (ct*(fWeightDimY - 1) + 32) >> 6; |
+ |
+ const int js = gs >> 4; |
+ const int jt = gt >> 4; |
+ |
+ const int fs = gs & 0xF; |
+ const int ft = gt & 0xF; |
+ |
+ const int idx = js + jt*fWeightDimX; |
+ const int p00 = this->getWeight(unquantizedValues, idx, dualPlane); |
+ const int p01 = this->getWeight(unquantizedValues, idx + 1, dualPlane); |
+ const int p10 = this->getWeight(unquantizedValues, idx + fWeightDimX, dualPlane); |
+ const int p11 = this->getWeight(unquantizedValues, idx + fWeightDimX + 1, dualPlane); |
+ |
+ const int w11 = (fs*ft + 8) >> 4; |
+ const int w10 = ft - w11; |
+ const int w01 = fs - w11; |
+ const int w00 = 16 - fs - ft + w11; |
+ |
+ const int weight = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4; |
+ SkASSERT(weight <= 64); |
+ return weight; |
+ } |
+ |
+ // Unquantizes the decoded texel weights as described in section C.2.17 of |
+ // the ASTC specification. Additionally, it populates texelWeights with |
+ // the expanded weight grid, which is computed according to section C.2.18 |
+ void texelWeights(int texelWeights[2][12][12], const int* texelValues) const { |
+ // Unquantized texel weights... |
+ int unquantizedValues[144*2]; // 12x12 blocks with dual plane decoding... |
+ SkASSERT(this->numWeights() <= 144*2); |
+ |
+ // Unquantize the weights and cache them |
+ for (int j = 0; j < this->numWeights(); ++j) { |
+ unquantizedValues[j] = this->unquantizeWeight(texelValues[j]); |
+ } |
+ |
+ // Do weight infill... |
+ for (int y = 0; y < fDimY; ++y) { |
+ for (int x = 0; x < fDimX; ++x) { |
+ texelWeights[0][x][y] = this->infillWeight(unquantizedValues, x, y, false); |
+ if (fDualPlaneEnabled) { |
+ texelWeights[1][x][y] = this->infillWeight(unquantizedValues, x, y, true); |
+ } |
+ } |
+ } |
+ } |
+ |
+ // Returns the partition for the texel located at position (x, y). |
+ // Adapted from C.2.21 of the ASTC specification |
+ int getPartition(int x, int y) const { |
+ const int partitionCount = this->numPartitions(); |
+ int seed = fPartIndex; |
+ if ((fDimX * fDimY) < 31) { |
+ x <<= 1; |
+ y <<= 1; |
+ } |
+ |
+ seed += (partitionCount - 1) * 1024; |
+ |
+ uint32_t p = seed; |
+ p ^= p >> 15; p -= p << 17; p += p << 7; p += p << 4; |
+ p ^= p >> 5; p += p << 16; p ^= p >> 7; p ^= p >> 3; |
+ p ^= p << 6; p ^= p >> 17; |
+ |
+ uint32_t rnum = p; |
+ uint8_t seed1 = rnum & 0xF; |
+ uint8_t seed2 = (rnum >> 4) & 0xF; |
+ uint8_t seed3 = (rnum >> 8) & 0xF; |
+ uint8_t seed4 = (rnum >> 12) & 0xF; |
+ uint8_t seed5 = (rnum >> 16) & 0xF; |
+ uint8_t seed6 = (rnum >> 20) & 0xF; |
+ uint8_t seed7 = (rnum >> 24) & 0xF; |
+ uint8_t seed8 = (rnum >> 28) & 0xF; |
+ uint8_t seed9 = (rnum >> 18) & 0xF; |
+ uint8_t seed10 = (rnum >> 22) & 0xF; |
+ uint8_t seed11 = (rnum >> 26) & 0xF; |
+ uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF; |
+ |
+ seed1 *= seed1; seed2 *= seed2; |
+ seed3 *= seed3; seed4 *= seed4; |
+ seed5 *= seed5; seed6 *= seed6; |
+ seed7 *= seed7; seed8 *= seed8; |
+ seed9 *= seed9; seed10 *= seed10; |
+ seed11 *= seed11; seed12 *= seed12; |
+ |
+ int sh1, sh2, sh3; |
+ if (0 != (seed & 1)) { |
+ sh1 = (0 != (seed & 2))? 4 : 5; |
+ sh2 = (partitionCount == 3)? 6 : 5; |
+ } else { |
+ sh1 = (partitionCount==3)? 6 : 5; |
+ sh2 = (0 != (seed & 2))? 4 : 5; |
+ } |
+ sh3 = (0 != (seed & 0x10))? sh1 : sh2; |
+ |
+ seed1 >>= sh1; seed2 >>= sh2; seed3 >>= sh1; seed4 >>= sh2; |
+ seed5 >>= sh1; seed6 >>= sh2; seed7 >>= sh1; seed8 >>= sh2; |
+ seed9 >>= sh3; seed10 >>= sh3; seed11 >>= sh3; seed12 >>= sh3; |
+ |
+ const int z = 0; |
+ int a = seed1*x + seed2*y + seed11*z + (rnum >> 14); |
+ int b = seed3*x + seed4*y + seed12*z + (rnum >> 10); |
+ int c = seed5*x + seed6*y + seed9 *z + (rnum >> 6); |
+ int d = seed7*x + seed8*y + seed10*z + (rnum >> 2); |
+ |
+ a &= 0x3F; |
+ b &= 0x3F; |
+ c &= 0x3F; |
+ d &= 0x3F; |
+ |
+ if (partitionCount < 4) { |
+ d = 0; |
+ } |
+ |
+ if (partitionCount < 3) { |
+ c = 0; |
+ } |
+ |
+ if (a >= b && a >= c && a >= d) { |
+ return 0; |
+ } else if (b >= c && b >= d) { |
+ return 1; |
+ } else if (c >= d) { |
+ return 2; |
+ } else { |
+ return 3; |
+ } |
+ } |
+ |
+ // Performs the proper interpolation of the texel based on the |
+ // endpoints and weights. |
+ SkColor getTexel(const SkColor endpoints[4][2], |
+ const int weights[2][12][12], |
+ int x, int y) const { |
+ int part = 0; |
+ if (this->numPartitions() > 1) { |
+ part = this->getPartition(x, y); |
+ } |
+ |
+ SkColor result; |
+ if (fDualPlaneEnabled) { |
+ result = interpolate_dual_endpoints( |
+ endpoints[part], weights[0][x][y], weights[1][x][y], fDualPlane); |
+ } else { |
+ result = interpolate_endpoints(endpoints[part], weights[0][x][y]); |
+ } |
+ |
+#if 1 |
+ // !FIXME! if we're writing directly to a bitmap, then we don't need |
+ // to swap the red and blue channels, but since we're usually being used |
+ // by the SkImageDecoder_astc module, the results are expected to be in RGBA. |
+ result = SkColorSetARGB( |
+ SkColorGetA(result), SkColorGetB(result), SkColorGetG(result), SkColorGetR(result)); |
+#endif |
+ |
+ return result; |
+ } |
+ |
+ void decode() { |
+ // First decode the block mode. |
+ this->decodeBlockMode(); |
+ |
+ // Now we can decode the partition information. |
+ fPartIndex = static_cast<int>(read_astc_bits(fBlock, 11, 23)); |
+ fPartCount = (fPartIndex & 0x3) + 1; |
+ fPartIndex >>= 2; |
+ |
+ // This is illegal |
+ if (fDualPlaneEnabled && this->numPartitions() == 4) { |
+ fError = true; |
+ return; |
+ } |
+ |
+ // Based on the partition info, we can decode the color information. |
+ this->decodeColorData(); |
+ } |
+ |
+ // Decodes the dual plane based on the given bit location. The final |
+ // location, if the dual plane is enabled, is also the end of our color data. |
+ // This function is only meant to be used from this->decodeColorData() |
+ void decodeDualPlane(int bitLoc) { |
+ if (fDualPlaneEnabled) { |
+ fDualPlane = static_cast<int>(read_astc_bits(fBlock, bitLoc - 2, bitLoc)); |
+ fColorEndBit = bitLoc - 2; |
+ } else { |
+ fColorEndBit = bitLoc; |
+ } |
+ } |
+ |
+ // Decodes the color information based on the ASTC spec. |
+ void decodeColorData() { |
+ |
+ // By default, the last color bit is at the end of the texel weights |
+ const int lastWeight = 128 - this->numWeightBits(); |
+ |
+ // If we have a dual plane then it will be at this location, too. |
+ int dualPlaneBitLoc = lastWeight; |
+ |
+ // If there's only one partition, then our job is (relatively) easy. |
+ if (this->numPartitions() == 1) { |
+ fCEM[0] = static_cast<ColorEndpointMode>(read_astc_bits(fBlock, 13, 17)); |
+ fColorStartBit = 17; |
+ |
+ // Handle dual plane mode... |
+ this->decodeDualPlane(dualPlaneBitLoc); |
+ |
+ return; |
+ } |
+ |
+ // If we have more than one partition, then we need to make |
+ // room for the partition index. |
+ fColorStartBit = 29; |
+ |
+ // Read the base CEM. If it's zero, then we have no additional |
+ // CEM data and the endpoints for each partition share the same CEM. |
+ const int baseCEM = static_cast<int>(read_astc_bits(fBlock, 23, 25)); |
+ if (0 == baseCEM) { |
+ |
+ const ColorEndpointMode sameCEM = |
+ static_cast<ColorEndpointMode>(read_astc_bits(fBlock, 25, 29)); |
+ |
+ for (int i = 0; i < kMaxPartitions; ++i) { |
+ fCEM[i] = sameCEM; |
+ } |
+ |
+ // Handle dual plane mode... |
+ this->decodeDualPlane(dualPlaneBitLoc); |
+ |
+ return; |
+ } |
+ |
+ // Move the dual plane selector bits down based on how many |
+ // partitions the block contains. |
+ switch (this->numPartitions()) { |
+ case 2: |
+ dualPlaneBitLoc -= 2; |
+ break; |
+ |
+ case 3: |
+ dualPlaneBitLoc -= 5; |
+ break; |
+ |
+ case 4: |
+ dualPlaneBitLoc -= 8; |
+ break; |
+ |
+ default: |
+ SkDEBUGFAIL("Internal ASTC decoding error."); |
+ break; |
+ } |
+ |
+ // The rest of the CEM config will be between the dual plane bit selector |
+ // and the texel weight grid. |
+ const int lowCEM = static_cast<int>(read_astc_bits(fBlock, 23, 29)); |
+ SkASSERT(lastWeight - dualPlaneBitLoc > 31); |
+ int fullCEM = static_cast<int>(read_astc_bits(fBlock, dualPlaneBitLoc, lastWeight)); |
+ |
+ // Attach the config at the end of the weight grid to the CEM values |
+ // in the beginning of the block. |
+ fullCEM = (fullCEM << 6) | lowCEM; |
+ |
+ // Ignore the two least significant bits, since those are our baseCEM above. |
+ fullCEM = fullCEM >> 2; |
+ |
+ int C[kMaxPartitions]; // Next, decode C and M from the spec (Table C.2.12) |
+ for (int i = 0; i < this->numPartitions(); ++i) { |
+ C[i] = fullCEM & 1; |
+ fullCEM = fullCEM >> 1; |
+ } |
+ |
+ int M[kMaxPartitions]; |
+ for (int i = 0; i < this->numPartitions(); ++i) { |
+ M[i] = fullCEM & 0x3; |
+ fullCEM = fullCEM >> 2; |
+ } |
+ |
+ // Construct our CEMs.. |
+ SkASSERT(baseCEM > 0); |
+ for (int i = 0; i < this->numPartitions(); ++i) { |
+ int cem = (baseCEM - 1) * 4; |
+ cem += (0 == C[i])? 0 : 4; |
+ cem += M[i]; |
+ |
+ SkASSERT(cem < 16); |
+ fCEM[i] = static_cast<ColorEndpointMode>(cem); |
+ } |
+ |
+ // Finally, if we have dual plane mode, then read the plane selector. |
+ this->decodeDualPlane(dualPlaneBitLoc); |
+ } |
+ |
+ // Decodes the block mode. This function determines whether or not we use |
+ // dual plane encoding, the size of the texel weight grid, and the number of |
+ // bits, trits and quints that are used to encode it. For more information, |
+ // see section C.2.10 of the ASTC spec. |
+ // |
+ // For 2D blocks, the Block Mode field is laid out as follows: |
+ // |
+ // ------------------------------------------------------------------------- |
+ // 10 9 8 7 6 5 4 3 2 1 0 Width Height Notes |
+ // ------------------------------------------------------------------------- |
+ // D H B A R0 0 0 R2 R1 B+4 A+2 |
+ // D H B A R0 0 1 R2 R1 B+8 A+2 |
+ // D H B A R0 1 0 R2 R1 A+2 B+8 |
+ // D H 0 B A R0 1 1 R2 R1 A+2 B+6 |
+ // D H 1 B A R0 1 1 R2 R1 B+2 A+2 |
+ // D H 0 0 A R0 R2 R1 0 0 12 A+2 |
+ // D H 0 1 A R0 R2 R1 0 0 A+2 12 |
+ // D H 1 1 0 0 R0 R2 R1 0 0 6 10 |
+ // D H 1 1 0 1 R0 R2 R1 0 0 10 6 |
+ // B 1 0 A R0 R2 R1 0 0 A+6 B+6 D=0, H=0 |
+ // x x 1 1 1 1 1 1 1 0 0 - - Void-extent |
+ // x x 1 1 1 x x x x 0 0 - - Reserved* |
+ // x x x x x x x 0 0 0 0 - - Reserved |
+ // ------------------------------------------------------------------------- |
+ // |
+ // D - dual plane enabled |
+ // H, R - used to determine the number of bits/trits/quints in texel weight encoding |
+ // R is a three bit value whose LSB is R0 and MSB is R1 |
+ // Width, Height - dimensions of the texel weight grid (determined by A and B) |
+ |
+ void decodeBlockMode() { |
+ const int blockMode = static_cast<int>(read_astc_bits(fBlock, 0, 11)); |
+ |
+ // Check for special void extent encoding |
+ fVoidExtent = (blockMode & 0x1FF) == 0x1FC; |
+ |
+ // Check for reserved block modes |
+ fError = ((blockMode & 0x1C3) == 0x1C0) || ((blockMode & 0xF) == 0); |
+ |
+ // Neither reserved nor void-extent, decode as usual |
+ // This code corresponds to table C.2.8 of the ASTC spec |
+ bool highPrecision = false; |
+ int R = 0; |
+ if ((blockMode & 0x3) == 0) { |
+ R = ((0xC & blockMode) >> 1) | ((0x10 & blockMode) >> 4); |
+ const int bitsSevenAndEight = (blockMode & 0x180) >> 7; |
+ SkASSERT(0 <= bitsSevenAndEight && bitsSevenAndEight < 4); |
+ |
+ const int A = (blockMode >> 5) & 0x3; |
+ const int B = (blockMode >> 9) & 0x3; |
+ |
+ fDualPlaneEnabled = (blockMode >> 10) & 0x1; |
+ highPrecision = (blockMode >> 9) & 0x1; |
+ |
+ switch (bitsSevenAndEight) { |
+ default: |
+ case 0: |
+ fWeightDimX = 12; |
+ fWeightDimY = A + 2; |
+ break; |
+ |
+ case 1: |
+ fWeightDimX = A + 2; |
+ fWeightDimY = 12; |
+ break; |
+ |
+ case 2: |
+ fWeightDimX = A + 6; |
+ fWeightDimY = B + 6; |
+ fDualPlaneEnabled = false; |
+ highPrecision = false; |
+ break; |
+ |
+ case 3: |
+ if (0 == A) { |
+ fWeightDimX = 6; |
+ fWeightDimY = 10; |
+ } else { |
+ fWeightDimX = 10; |
+ fWeightDimY = 6; |
+ } |
+ break; |
+ } |
+ } else { // (blockMode & 0x3) != 0 |
+ R = ((blockMode & 0x3) << 1) | ((blockMode & 0x10) >> 4); |
+ |
+ const int bitsTwoAndThree = (blockMode >> 2) & 0x3; |
+ SkASSERT(0 <= bitsTwoAndThree && bitsTwoAndThree < 4); |
+ |
+ const int A = (blockMode >> 5) & 0x3; |
+ const int B = (blockMode >> 7) & 0x3; |
+ |
+ fDualPlaneEnabled = (blockMode >> 10) & 0x1; |
+ highPrecision = (blockMode >> 9) & 0x1; |
+ |
+ switch (bitsTwoAndThree) { |
+ case 0: |
+ fWeightDimX = B + 4; |
+ fWeightDimY = A + 2; |
+ break; |
+ case 1: |
+ fWeightDimX = B + 8; |
+ fWeightDimY = A + 2; |
+ break; |
+ case 2: |
+ fWeightDimX = A + 2; |
+ fWeightDimY = B + 8; |
+ break; |
+ case 3: |
+ if ((B & 0x2) == 0) { |
+ fWeightDimX = A + 2; |
+ fWeightDimY = (B & 1) + 6; |
+ } else { |
+ fWeightDimX = (B & 1) + 2; |
+ fWeightDimY = A + 2; |
+ } |
+ break; |
+ } |
+ } |
+ |
+ // We should have set the values of R and highPrecision |
+ // from decoding the block mode, these are used to determine |
+ // the proper dimensions of our weight grid. |
+ if ((R & 0x6) == 0) { |
+ fError = true; |
+ } else { |
+ static const int kBitAllocationTable[2][6][3] = { |
+ { |
+ { 1, 0, 0 }, |
+ { 0, 1, 0 }, |
+ { 2, 0, 0 }, |
+ { 0, 0, 1 }, |
+ { 1, 1, 0 }, |
+ { 3, 0, 0 } |
+ }, |
+ { |
+ { 1, 0, 1 }, |
+ { 2, 1, 0 }, |
+ { 4, 0, 0 }, |
+ { 2, 0, 1 }, |
+ { 3, 1, 0 }, |
+ { 5, 0, 0 } |
+ } |
+ }; |
+ |
+ fWeightBits = kBitAllocationTable[highPrecision][R - 2][0]; |
+ fWeightTrits = kBitAllocationTable[highPrecision][R - 2][1]; |
+ fWeightQuints = kBitAllocationTable[highPrecision][R - 2][2]; |
+ } |
+ } |
+}; |
+ |
+// Reads an ASTC block from the given pointer. |
+static inline void read_astc_block(ASTCDecompressionData *dst, const uint8_t* src) { |
+ const uint64_t* qword = reinterpret_cast<const uint64_t*>(src); |
+ dst->fBlock.fLow = SkEndian_SwapLE64(qword[0]); |
+ dst->fBlock.fHigh = SkEndian_SwapLE64(qword[1]); |
+ dst->decode(); |
+} |
+ |
+// Take a known void-extent block, and write out the values as a constant color. |
+static void decompress_void_extent(uint8_t* dst, int dstRowBytes, |
+ const ASTCDecompressionData &data) { |
+ // The top 64 bits contain 4 16-bit RGBA values. |
+ int a = (static_cast<int>(read_astc_bits(data.fBlock, 112, 128)) + 255) >> 8; |
+ int b = (static_cast<int>(read_astc_bits(data.fBlock, 96, 112)) + 255) >> 8; |
+ int g = (static_cast<int>(read_astc_bits(data.fBlock, 80, 96)) + 255) >> 8; |
+ int r = (static_cast<int>(read_astc_bits(data.fBlock, 64, 80)) + 255) >> 8; |
+ |
+ write_constant_color(dst, data.fDimX, data.fDimY, dstRowBytes, SkColorSetARGB(a, r, g, b)); |
+} |
+ |
+// Decompresses a single ASTC block. It's assumed that data.fDimX and data.fDimY are |
+// set and that the block has already been decoded (i.e. data.decode() has been called) |
+static void decompress_astc_block(uint8_t* dst, int dstRowBytes, |
+ const ASTCDecompressionData &data) { |
+ if (data.fError) { |
+ write_error_color(dst, data.fDimX, data.fDimY, dstRowBytes); |
+ return; |
+ } |
+ |
+ if (data.fVoidExtent) { |
+ decompress_void_extent(dst, dstRowBytes, data); |
+ return; |
+ } |
+ |
+ // According to the spec, any more than 64 values is illegal. (C.2.24) |
+ static const int kMaxTexelValues = 64; |
+ |
+ // Decode the texel weights. |
+ int texelValues[kMaxTexelValues]; |
+ bool success = decode_integer_sequence( |
+ texelValues, kMaxTexelValues, data.numWeights(), |
+ // texel data goes to the end of the 128 bit block. |
+ data.fBlock, 128, 128 - data.numWeightBits(), false, |
+ data.fWeightBits, data.fWeightTrits, data.fWeightQuints); |
+ |
+ if (!success) { |
+ write_error_color(dst, data.fDimX, data.fDimY, dstRowBytes); |
+ return; |
+ } |
+ |
+ // Decode the color endpoints |
+ int colorBits, colorTrits, colorQuints; |
+ if (!data.getColorValueEncoding(&colorBits, &colorTrits, &colorQuints)) { |
+ write_error_color(dst, data.fDimX, data.fDimY, dstRowBytes); |
+ return; |
+ } |
+ |
+ // According to the spec, any more than 18 color values is illegal. (C.2.24) |
+ static const int kMaxColorValues = 18; |
+ |
+ int colorValues[kMaxColorValues]; |
+ success = decode_integer_sequence( |
+ colorValues, kMaxColorValues, data.numColorValues(), |
+ data.fBlock, data.fColorStartBit, data.fColorEndBit, true, |
+ colorBits, colorTrits, colorQuints); |
+ |
+ if (!success) { |
+ write_error_color(dst, data.fDimX, data.fDimY, dstRowBytes); |
+ return; |
+ } |
+ |
+ // Unquantize the color values after they've been decoded. |
+ unquantize_colors(colorValues, data.numColorValues(), colorBits, colorTrits, colorQuints); |
+ |
+ // Decode the colors into the appropriate endpoints. |
+ SkColor endpoints[4][2]; |
+ data.colorEndpoints(endpoints, colorValues); |
+ |
+ // Do texel infill and decode the texel values. |
+ int texelWeights[2][12][12]; |
+ data.texelWeights(texelWeights, texelValues); |
+ |
+ // Write the texels by interpolating them based on the information |
+ // stored in the block. |
+ dst += data.fDimY * dstRowBytes; |
+ for (int y = 0; y < data.fDimY; ++y) { |
+ dst -= dstRowBytes; |
+ SkColor* colorPtr = reinterpret_cast<SkColor*>(dst); |
+ for (int x = 0; x < data.fDimX; ++x) { |
+ colorPtr[x] = data.getTexel(endpoints, texelWeights, x, y); |
+ } |
+ } |
+} |
+ |
+//////////////////////////////////////////////////////////////////////////////// |
namespace SkTextureCompressor { |
-bool CompressA8To12x12ASTC(uint8_t* dst, const uint8_t* src, int width, int height, int rowBytes) { |
+bool CompressA8To12x12ASTC(uint8_t* dst, const uint8_t* src, |
+ int width, int height, int rowBytes) { |
if (width < 0 || ((width % 12) != 0) || height < 0 || ((height % 12) != 0)) { |
return false; |
} |
@@ -285,4 +2017,25 @@ SkBlitter* CreateASTCBlitter(int width, int height, void* outputBuffer) { |
(width, height, outputBuffer); |
} |
+void DecompressASTC(uint8_t* dst, int dstRowBytes, const uint8_t* src, |
+ int width, int height, int blockDimX, int blockDimY) { |
+ // ASTC is encoded in what they call "raster order", so that the first |
+ // block is the bottom-left block in the image, and the first pixel |
+ // is the bottom-left pixel of the image |
+ dst += height * dstRowBytes; |
+ |
+ ASTCDecompressionData data(blockDimX, blockDimY); |
+ for (int y = 0; y < height; y += blockDimY) { |
+ dst -= blockDimY * dstRowBytes; |
+ SkColor *colorPtr = reinterpret_cast<SkColor*>(dst); |
+ for (int x = 0; x < width; x += blockDimX) { |
+ read_astc_block(&data, src); |
+ decompress_astc_block(reinterpret_cast<uint8_t*>(colorPtr + x), dstRowBytes, data); |
+ |
+ // ASTC encoded blocks are 16 bytes (128 bits) large. |
+ src += 16; |
+ } |
+ } |
+} |
+ |
} // SkTextureCompressor |