OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright 2014 Google Inc. | 2 * Copyright 2014 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #include "SkTextureCompressor_ASTC.h" | 8 #include "SkTextureCompressor_ASTC.h" |
9 #include "SkTextureCompressor_Blitter.h" | 9 #include "SkTextureCompressor_Blitter.h" |
10 | 10 |
(...skipping 243 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
254 top = top ^ t ^ (t << 2); | 254 top = top ^ t ^ (t << 2); |
255 | 255 |
256 send_packing(dst, SkEndian_SwapLE64(top), SkEndian_SwapLE64(bottom)); | 256 send_packing(dst, SkEndian_SwapLE64(top), SkEndian_SwapLE64(bottom)); |
257 } | 257 } |
258 | 258 |
259 inline void CompressA8ASTCBlockVertical(uint8_t* dst, const uint8_t* src) { | 259 inline void CompressA8ASTCBlockVertical(uint8_t* dst, const uint8_t* src) { |
260 compress_a8_astc_block<GetAlphaTranspose>(&dst, src, 12); | 260 compress_a8_astc_block<GetAlphaTranspose>(&dst, src, 12); |
261 } | 261 } |
262 | 262 |
263 //////////////////////////////////////////////////////////////////////////////// | 263 //////////////////////////////////////////////////////////////////////////////// |
264 // | |
265 // ASTC Decoder | |
266 // | |
267 // Full details available in the spec: | |
268 // http://www.khronos.org/registry/gles/extensions/OES/OES_texture_compression_a stc.txt | |
269 // | |
270 //////////////////////////////////////////////////////////////////////////////// | |
271 | |
272 #define ASSERT_ASTC_DECODE_ERROR 0 | |
273 | |
274 // An ASTC block is 128 bits. We represent it as two 64-bit integers in order | |
275 // to efficiently operate on the block using bitwise operations. | |
robertphillips
2014/08/05 15:29:03
Skia-fy this? Maybe ASTCBlock ?
krajcevski
2014/08/05 20:55:06
Done.
| |
276 struct astcBlock_t { | |
277 uint64_t low; | |
278 uint64_t high; | |
279 }; | |
280 | |
281 // Writes the given color to every pixel in the block. This is used by void-exte nt | |
282 // blocks (a special constant-color encoding of a block) and by the error functi on. | |
283 static inline void write_constant_color(uint8_t* dst, int dstRowBytes, SkColor c olor) { | |
robertphillips
2014/08/05 15:29:03
12? i,j -> x,y ?
krajcevski
2014/08/05 20:55:05
Done.
| |
284 for (int j = 0; j < 12; ++j) { | |
285 SkColor *dstColors = reinterpret_cast<SkColor*>(dst + j*dstRowBytes); | |
286 for (int i = 0; i < 12; ++i) { | |
287 dstColors[i] = color; | |
288 } | |
289 } | |
290 } | |
291 | |
292 // Sets the entire block to the ASTC "error" color, a disgusting magenta | |
293 // that's not supposed to appear in natural images. | |
294 static inline void write_error_color(uint8_t* dst, int dstRowBytes) { | |
295 static const SkColor kASTCErrorColor = SkColorSetRGB(0xFF, 0, 0xFF); | |
296 | |
297 #if ASSERT_ASTC_DECODE_ERROR | |
298 SkDEBUGFAIL("ASTC decoding error!\n"); | |
299 #endif | |
300 | |
301 write_constant_color(dst, dstRowBytes, kASTCErrorColor); | |
302 } | |
303 | |
304 // Reads an ASTC block from the given pointer. | |
305 static inline void read_astc_block(astcBlock_t *dst, const uint8_t* src) { | |
306 const uint64_t* qword = reinterpret_cast<const uint64_t*>(src); | |
307 dst->low = SkEndian_SwapLE64(qword[0]); | |
308 dst->high = SkEndian_SwapLE64(qword[1]); | |
309 } | |
310 | |
311 // Reads up to 64 bits of the ASTC block starting from bit | |
312 // 'from' and going up to but not including bit 'to'. 'from' starts | |
313 // counting from the LSB, counting up to the MSB. Returns -1 on | |
314 // error. | |
315 static uint64_t read_astc_bits(const astcBlock_t &block, int from, int to) { | |
robertphillips
2014/08/05 15:29:02
Assert from & to are >= 0 && < 128 ?
krajcevski
2014/08/05 20:55:05
Done.
| |
316 const int nBits = to - from; | |
317 if (0 == nBits) { | |
318 return 0; | |
319 } | |
320 | |
321 if (nBits < 0 || 64 <= nBits) { | |
322 SkDEBUGFAIL("ASTC -- shouldn't read more than 64 bits"); | |
323 return -1; | |
324 } | |
325 | |
robertphillips
2014/08/05 15:29:03
I don't think we need these two asserts.
krajcevski
2014/08/05 20:55:07
Done.
| |
326 SkASSERT(to > from); | |
327 SkASSERT(nBits > 0); | |
328 | |
329 uint64_t result = 0; | |
robertphillips
2014/08/05 15:29:04
// remember: the 'to' bit isn't read
krajcevski
2014/08/05 20:55:07
Done.
| |
330 if (to <= 64) { | |
robertphillips
2014/08/05 15:29:02
// All desired bits are in low ?
krajcevski
2014/08/05 20:55:08
Done.
| |
331 result = (block.low >> from) & ((1ULL << nBits) - 1); | |
332 } else if (from >= 64) { | |
robertphillips
2014/08/05 15:29:02
// All desired bits are in high ?
krajcevski
2014/08/05 20:55:06
Done.
| |
333 result = (block.high >> (from - 64)) & ((1ULL << nBits) - 1); | |
334 } else { | |
335 // from < 64 && to > 64 | |
336 SkASSERT(nBits > (64 - from)); | |
robertphillips
2014/08/05 15:29:02
It seems like you should compute nLow first - clar
krajcevski
2014/08/05 20:55:08
Done.
| |
337 const int nHigh = nBits - (64 - from); | |
338 const int nLow = nBits - nHigh; | |
339 SkASSERT(nLow + nHigh == nBits); | |
340 result = | |
341 ((block.low >> from) & ((1ULL << nLow) - 1)) | | |
342 ((block.high & ((1ULL << nHigh) - 1)) << nLow); | |
343 } | |
344 | |
345 return result; | |
346 } | |
347 | |
348 // Reverse 64-bit integer taken from TAOCP 4a, although it's better | |
349 // documented at this site: | |
350 // http://matthewarcus.wordpress.com/2012/11/18/reversing-a-64-bit-word/ | |
351 | |
352 template <typename T, T m, int k> | |
353 static inline T swap_bits(T p) { | |
354 T q = ((p>>k)^p) & m; | |
355 return p^q^(q<<k); | |
356 } | |
357 | |
358 static inline uint64_t reverse64(uint64_t n) { | |
359 static const uint64_t m0 = 0x5555555555555555LLU; | |
360 static const uint64_t m1 = 0x0300c0303030c303LLU; | |
361 static const uint64_t m2 = 0x00c0300c03f0003fLLU; | |
362 static const uint64_t m3 = 0x00000ffc00003fffLLU; | |
363 n = ((n>>1)&m0) | (n&m0)<<1; | |
364 n = swap_bits<uint64_t, m1, 4>(n); | |
365 n = swap_bits<uint64_t, m2, 8>(n); | |
366 n = swap_bits<uint64_t, m3, 20>(n); | |
367 n = (n >> 34) | (n << 30); | |
368 return n; | |
369 } | |
370 | |
robertphillips
2014/08/05 15:29:02
Would this make more sense as a method on astcBloc
krajcevski
2014/08/05 20:55:06
Done.
| |
371 // Reverses the bits of an ASTC block, making the LSB of the | |
372 // 128 bit block the MSB. | |
robertphillips
2014/08/05 15:29:03
x -> block ?
krajcevski
2014/08/05 20:55:05
Done.
| |
373 static inline void reverse_block(astcBlock_t *x) { | |
robertphillips
2014/08/05 15:29:03
uint64_t newLow = reverse64(block->high);
block->h
krajcevski
2014/08/05 20:55:08
Done.
| |
374 const astcBlock_t b = { reverse64(x->high), reverse64(x->low) }; | |
375 x->high = b.high; | |
376 x->low = b.low; | |
377 } | |
378 | |
robertphillips
2014/08/05 15:29:02
SkIsPow2 in SkMath.h ?
krajcevski
2014/08/05 20:55:06
Done.
| |
379 // Helper function that returns true if x is a power of two. | |
380 static inline bool is_power_of_two(int x) { | |
381 return (x & (x - 1)) == 0; | |
382 } | |
383 | |
robertphillips
2014/08/05 15:29:04
Could SkNextLog2 serve here ?
krajcevski
2014/08/05 20:55:08
Done.
| |
384 // Returns the number of bits needed to represent a number | |
385 // in the given power-of-two range. | |
386 static inline int bits_for_range(int x) { | |
387 SkASSERT(is_power_of_two(x)); | |
388 SkASSERT(0 != x); | |
389 | |
390 int cnt = 0; | |
391 while (x >>= 1) { | |
392 cnt++; | |
393 } | |
394 | |
395 return cnt; | |
396 } | |
397 | |
robertphillips
2014/08/05 15:29:02
Use SkClampMax ?
krajcevski
2014/08/05 20:55:09
Done.
| |
398 // Clamps an integer to the range [0, 255] | |
399 static inline int clamp_byte(int x) { | |
400 return (x > 255)? 255 : ((x < 0)? 0 : x); | |
401 } | |
402 | |
403 // Helper function defined in the ASTC spec, section C.2.14 | |
robertphillips
2014/08/05 15:29:03
// It ... ?
krajcevski
2014/08/05 20:55:06
Done.
| |
404 static inline void bit_transfer_signed(int *a, int *b) { | |
405 *b >>= 1; | |
406 *b |= *a & 0x80; | |
407 *a >>= 1; | |
408 *a &= 0x3F; | |
409 if ( (*a & 0x20) != 0 ) { | |
410 *a -= 0x40; | |
411 } | |
412 } | |
413 | |
414 // Helper function defined in the ASTC spec, section C.2.14 | |
robertphillips
2014/08/05 15:29:03
// It ... ?
krajcevski
2014/08/05 20:55:07
Done.
| |
415 static inline SkColor blue_contract(int a, int r, int g, int b) { | |
416 return SkColorSetARGB(a, (r + b) >> 1, (g + b) >> 1, b); | |
417 } | |
418 | |
419 // A helper class used to decode bit values from standard integer values. | |
420 // We can't use this class with astcBlock_t because then it would need to | |
421 // handle multi-value ranges, and it's non-trivial to lookup a range of bits | |
422 // that splits across two different ints. | |
423 template <typename T> | |
424 class SkTBits { | |
425 public: | |
426 SkTBits(const T val) : fVal(val) { } | |
427 | |
428 // Returns the bit at the given position | |
429 T operator [](const int idx) const { | |
430 return (fVal >> idx) & 1; | |
431 } | |
432 | |
433 // Returns the bits in the given range, inclusive | |
robertphillips
2014/08/05 15:29:03
Why not start then end ?
krajcevski
2014/08/05 20:55:05
This way the code below matches the spec better.
| |
434 T operator ()(const int end, const int start) const { | |
435 SkASSERT(end >= start); | |
436 return (fVal >> start) & ((1ULL << ((end - start) + 1)) - 1); | |
437 } | |
438 | |
439 private: | |
440 const T fVal; | |
441 }; | |
442 | |
443 // This algorithm matches the trit block decoding in the spec (Table C.2.14) | |
444 static void decode_trit_block(int* dst, int nBits, const uint64_t &block) { | |
445 | |
446 SkTBits<uint64_t> blockBits(block); | |
447 | |
robertphillips
2014/08/05 15:29:03
Is there a better name then 'm'?
krajcevski
2014/08/05 20:55:07
m is chosen to match the naming in the spec.
| |
448 int m[5]; | |
449 if (0 == nBits) { | |
450 memset(m, 0, sizeof(m)); | |
451 } else { | |
robertphillips
2014/08/05 15:29:02
// The trits are arranged ...
krajcevski
2014/08/05 20:55:06
Done.
| |
452 m[0] = blockBits(nBits - 1, 0); | |
453 m[1] = blockBits(2*nBits - 1 + 2, nBits + 2); | |
454 m[2] = blockBits(3*nBits - 1 + 4, 2*nBits + 4); | |
455 m[3] = blockBits(4*nBits - 1 + 5, 3*nBits + 5); | |
456 m[4] = blockBits(5*nBits - 1 + 7, 4*nBits + 7); | |
457 } | |
458 | |
robertphillips
2014/08/05 15:29:03
Blarg for the rest of this function
krajcevski
2014/08/05 20:55:09
I tried to match this function to the spec as much
| |
459 int T = | |
460 blockBits(nBits + 1, nBits) | | |
461 (blockBits(2*nBits + 2 + 1, 2*nBits + 2) << 2) | | |
462 (blockBits[3*nBits + 4] << 4) | | |
463 (blockBits(4*nBits + 5 + 1, 4*nBits + 5) << 5) | | |
464 (blockBits[5*nBits + 7] << 7); | |
465 | |
466 int t[5]; | |
467 | |
468 int C; | |
469 SkTBits<int> Tbits(T); | |
470 if (0x7 == Tbits(4, 2)) { | |
471 C = (Tbits(7, 5) << 2) | Tbits(1, 0); | |
472 t[3] = t[4] = 2; | |
473 } else { | |
474 C = Tbits(4, 0); | |
475 if (Tbits(6, 5) == 0x3) { | |
476 t[4] = 2; t[3] = Tbits[7]; | |
477 } else { | |
478 t[4] = Tbits[7]; t[3] = Tbits(6, 5); | |
479 } | |
480 } | |
481 | |
482 SkTBits<int> Cbits(C); | |
483 if (Cbits(1, 0) == 0x3) { | |
484 t[2] = 2; | |
485 t[1] = Cbits[4]; | |
486 t[0] = (Cbits[3] << 1) | (Cbits[2] & (0x1 & ~(Cbits[3]))); | |
487 } else if (Cbits(3, 2) == 0x3) { | |
488 t[2] = 2; | |
489 t[1] = 2; | |
490 t[0] = Cbits(1, 0); | |
491 } else { | |
492 t[2] = Cbits[4]; | |
493 t[1] = Cbits(3, 2); | |
494 t[0] = (Cbits[1] << 1) | (Cbits[0] & (0x1 & ~(Cbits[1]))); | |
495 } | |
496 | |
497 #if SK_DEBUG | |
498 for (int i = 0; i < 5; ++i) { | |
499 SkASSERT(t[i] < 3); | |
500 SkASSERT(m[i] < (1 << nBits)); | |
501 } | |
502 #endif | |
503 | |
504 for (int i = 0; i < 5; ++i) { | |
505 *dst = (t[i] << nBits) + m[i]; | |
506 ++dst; | |
507 } | |
508 } | |
509 | |
robertphillips
2014/08/05 15:29:02
trit -> quint ?
krajcevski
2014/08/05 20:55:05
Done.
| |
510 // This algorithm matches the trit block decoding in the spec (Table C.2.15) | |
511 static void decode_quint_block(int* dst, int nBits, const uint64_t &block) { | |
512 SkTBits<uint64_t> blockBits(block); | |
513 | |
514 int m[3]; | |
515 if (0 == nBits) { | |
516 memset(m, 0, sizeof(m)); | |
517 } else { | |
robertphillips
2014/08/05 15:29:02
// The quints are arranged ...
krajcevski
2014/08/05 20:55:08
Done.
| |
518 m[0] = blockBits(nBits - 1, 0); | |
519 m[1] = blockBits(2*nBits - 1 + 3, nBits + 3); | |
520 m[2] = blockBits(3*nBits - 1 + 5, 2*nBits + 5); | |
521 } | |
522 | |
robertphillips
2014/08/05 15:29:03
Blarg
krajcevski
2014/08/05 20:55:07
Blarg. :(
| |
523 int Q = | |
524 blockBits(nBits + 2, nBits) | | |
525 (blockBits(2*nBits + 3 + 1, 2*nBits + 3) << 3) | | |
526 (blockBits(3*nBits + 5 + 1, 3*nBits + 5) << 5); | |
527 | |
528 int q[3]; | |
529 SkTBits<int> Qbits(Q); // quantum? | |
530 | |
531 if (Qbits(2, 1) == 0x3 && Qbits(6, 5) == 0) { | |
532 const int notBitZero = (0x1 & ~(Qbits[0])); | |
533 q[2] = (Qbits[0] << 2) | ((Qbits[4] & notBitZero) << 1) | (Qbits[3] & no tBitZero); | |
534 q[1] = 4; | |
535 q[0] = 4; | |
536 } else { | |
537 int C; | |
538 if (Qbits(2, 1) == 0x3) { | |
539 q[2] = 4; | |
540 C = (Qbits(4, 3) << 3) | ((0x3 & ~(Qbits(6, 5))) << 1) | Qbits[0]; | |
541 } else { | |
542 q[2] = Qbits(6, 5); | |
543 C = Qbits(4, 0); | |
544 } | |
545 | |
546 SkTBits<int> Cbits(C); | |
547 if (Cbits(2, 0) == 0x5) { | |
548 q[1] = 4; | |
549 q[0] = Cbits(4, 3); | |
550 } else { | |
551 q[1] = Cbits(4, 3); | |
552 q[0] = Cbits(2, 0); | |
553 } | |
554 } | |
555 | |
556 #if SK_DEBUG | |
557 for (int i = 0; i < 3; ++i) { | |
558 SkASSERT(q[i] < 5); | |
559 SkASSERT(m[i] < (1 << nBits)); | |
560 } | |
561 #endif | |
562 | |
563 for (int i = 0; i < 3; ++i) { | |
564 *dst = (q[i] << nBits) + m[i]; | |
565 ++dst; | |
566 } | |
567 } | |
568 | |
569 // Function that decodes a sequence of integers stored as an ISE (Integer | |
570 // Sequence Encoding) bit stream. The full details of this function are outlined | |
571 // in section C.2.12 of the ASTC spec. A brief overview is as follows: | |
572 // | |
573 // - Each integer in the sequence is bounded by a specific range r. | |
574 // - The range of each value determines the way the bit stream is interpreted, | |
575 // - If the range is a power of two, then the sequence is a sequence of bits | |
576 // - If the range is of the form 3*2^n, then the sequence is stored as a | |
577 // sequence of blocks, each block contains 5 trits and 5 bit sequences, which | |
578 // decodes into 5 values. | |
579 // - Similarly, if the range is of the form 5*2^n, then the sequence is stored a s a | |
robertphillips
2014/08/05 15:29:02
trits -> quints ?
krajcevski
2014/08/05 20:55:06
Done.
| |
580 // sequence of blocks, each block contains 3 trits and 3 bit sequences, which | |
robertphillips
2014/08/05 15:29:02
5 -> 3 ?
krajcevski
2014/08/05 20:55:06
Done.
| |
581 // decodes into 5 values. | |
582 static bool decode_integer_sequence( | |
583 int* dst, // The array holding the destination bits | |
584 int dstSize, // The maximum size of the array | |
585 int nVals, // The number of values that we'd like to decode | |
586 const astcBlock_t &block, // The block that we're decoding from | |
587 int startBit, // The bit from which we're going to do the readin g | |
robertphillips
2014/08/05 15:29:03
inclusive or not ?
krajcevski
2014/08/05 20:55:08
Done.
| |
588 int endBit, // The bit at which we stop reading | |
589 bool bReadForward, // If true, then read LSB -> MSB, else read MSB -> LSB | |
590 int nBits, // The number of bits representing this encoding | |
591 int nTrits, // The number of trits representing this encoding | |
592 int nQuints // The number of quints representing this encoding | |
593 ) { | |
594 // If we want more values than we have, then fail. | |
595 if (nVals > dstSize) { | |
596 return false; | |
597 } | |
598 | |
599 astcBlock_t src = block; | |
600 | |
601 if (!bReadForward) { | |
602 reverse_block(&src); | |
603 startBit = 128 - startBit; | |
604 endBit = 128 - endBit; | |
605 } | |
606 | |
607 while (nVals > 0) { | |
608 | |
609 if (nTrits > 0) { | |
610 SkASSERT(0 == nQuints); | |
611 | |
612 int endBlockBit = startBit + 8 + 5*nBits; | |
613 if (endBlockBit > endBit) { | |
614 endBlockBit = endBit; | |
615 } | |
616 | |
617 decode_trit_block(dst, nBits, read_astc_bits(src, startBit, endBlock Bit)); | |
618 dst += 5; | |
619 nVals -= 5; | |
620 startBit = endBlockBit; | |
621 | |
622 } else if (nQuints > 0) { | |
623 SkASSERT(0 == nTrits); | |
624 | |
625 int endBlockBit = startBit + 7 + 3*nBits; | |
626 if (endBlockBit > endBit) { | |
627 endBlockBit = endBit; | |
628 } | |
629 | |
630 decode_quint_block(dst, nBits, read_astc_bits(src, startBit, endBloc kBit)); | |
631 dst += 3; | |
632 nVals -= 3; | |
633 startBit = endBlockBit; | |
634 | |
635 } else { | |
636 // Just read the bits, but don't read more than we have... | |
637 int endValBit = startBit + nBits; | |
638 if (endValBit > endBit) { | |
639 endValBit = endBit; | |
640 } | |
641 | |
642 *dst = read_astc_bits(src, startBit, endValBit); | |
643 ++dst; | |
644 --nVals; | |
645 startBit = endValBit; | |
646 } | |
647 } | |
648 | |
649 return true; | |
650 } | |
651 | |
652 // Helper function that unquantizes some (seemingly random) generated | |
653 // numbers... meant to match the ASTC hardware. This function is used | |
robertphillips
2014/08/05 15:29:02
to unquantize ?
krajcevski
2014/08/05 20:55:08
Done.
| |
654 // by unquantizing both colors (Table C.2.16) and weights (Table C.2.26) | |
robertphillips
2014/08/05 17:30:01
Is templating on a mask really useful? Since its i
krajcevski
2014/08/05 20:55:08
Done.
| |
655 template<unsigned mask> | |
656 static inline int unquantize_value(int A, int B, int C, int D) { | |
657 int T = D * C + B; | |
658 T = T ^ A; | |
659 T = (A & mask) | (T >> 2); | |
660 SkASSERT(T < 256); | |
661 return T; | |
662 } | |
663 | |
robertphillips
2014/08/05 15:29:04
replicated -> replicate ?
krajcevski
2014/08/05 20:55:05
Done.
| |
664 // Helper function to replicated the bits in x that represents an oldPrec | |
665 // precision integer into a prec precision integer. For example: | |
666 // 255 == replicate_bits(7, 3, 8); | |
667 static inline int replicate_bits(int x, int oldPrec, int prec) { | |
668 while (oldPrec < prec) { | |
669 const int toShift = SkMin32(prec-oldPrec, oldPrec); | |
670 x = (x << toShift) | (x >> (oldPrec - toShift)); | |
671 oldPrec += toShift; | |
672 } | |
robertphillips
2014/08/05 15:29:03
Add assert that no bits are set outside of desired
krajcevski
2014/08/05 20:55:05
Done.
| |
673 return x; | |
674 } | |
675 | |
676 // Returns the unquantized value of a color that's represented only as | |
677 // a set of bits. | |
678 static inline int unquantize_bits_color(int val, int nBits) { | |
679 return replicate_bits(val, nBits, 8); | |
680 } | |
681 | |
682 // Returns the unquantized value of a color that's represented as a | |
683 // trit followed by nBits bits. This algorithm follows the sequence | |
684 // defined in section C.2.13 of the ASTC spec. | |
685 static inline int unquantize_trit_color(int val, int nBits) { | |
686 const int D = (val >> nBits) & 0x3; | |
687 SkASSERT(D < 3); | |
688 | |
689 const int A = -(val & 0x1) & 0x1FF; | |
690 | |
691 static const int Cvals[6] = { 204, 93, 44, 22, 11, 5 }; | |
robertphillips
2014/08/05 17:30:00
Move these asserts to the start of the function?
krajcevski
2014/08/05 20:55:09
Done.
| |
692 SkASSERT(nBits > 0); | |
693 SkASSERT(nBits < 7); | |
694 | |
695 const int C = Cvals[nBits - 1]; | |
696 | |
697 int B = 0; | |
698 const SkTBits<int> valBits(val); | |
699 switch (nBits) { | |
700 case 1: | |
701 B = 0; | |
702 break; | |
703 | |
robertphillips
2014/08/05 17:30:00
In Skia this is formatted as:
case kGaussian_
krajcevski
2014/08/05 20:55:06
Done.
| |
704 case 2: | |
705 { | |
706 const int b = valBits[1]; | |
707 B = (b << 1) | (b << 2) | (b << 4) | (b << 8); | |
708 } | |
709 break; | |
710 | |
711 case 3: | |
712 { | |
713 const int cb = valBits(2, 1); | |
714 B = cb | (cb << 2) | (cb << 7); | |
715 } | |
716 break; | |
717 | |
718 case 4: | |
719 { | |
720 const int dcb = valBits(3, 1); | |
721 B = dcb | (dcb << 6); | |
722 } | |
723 break; | |
724 | |
725 case 5: | |
726 { | |
727 const int edcb = valBits(4, 1); | |
728 B = (edcb << 5) | (edcb >> 2); | |
729 } | |
730 break; | |
731 | |
732 case 6: | |
733 { | |
734 const int fedcb = valBits(5, 1); | |
735 B = (fedcb << 4) | (fedcb >> 4); | |
736 } | |
737 break; | |
738 } | |
739 | |
740 return unquantize_value<0x80>(A, B, C, D); | |
741 } | |
742 | |
743 // Returns the unquantized value of a color that's represented as a | |
744 // quint followed by nBits bits. This algorithm follows the sequence | |
745 // defined in section C.2.13 of the ASTC spec. | |
746 static inline int unquantize_quint_color(int val, int nBits) { | |
747 const int D = (val >> nBits) & 0x7; | |
748 SkASSERT(D < 5); | |
749 | |
750 const int A = -(val & 0x1) & 0x1FF; | |
751 | |
752 static const int Cvals[5] = { 113, 54, 26, 13, 6 }; | |
753 SkASSERT(nBits > 0); | |
754 SkASSERT(nBits < 6); | |
755 | |
756 const int C = Cvals[nBits - 1]; | |
757 | |
758 int B = 0; | |
759 const SkTBits<int> valBits(val); | |
760 switch (nBits) { | |
761 case 1: | |
762 B = 0; | |
763 break; | |
764 | |
765 case 2: | |
766 { | |
767 const int b = valBits[1]; | |
768 B = (b << 2) | (b << 3) | (b << 8); | |
769 } | |
770 break; | |
771 | |
772 case 3: | |
773 { | |
774 const int cb = valBits(2, 1); | |
775 B = (cb >> 1) | (cb << 1) | (cb << 7); | |
776 } | |
777 break; | |
778 | |
779 case 4: | |
780 { | |
781 const int dcb = valBits(3, 1); | |
782 B = (dcb >> 1) | (dcb << 6); | |
783 } | |
784 break; | |
785 | |
786 case 5: | |
787 { | |
788 const int edcb = valBits(4, 1); | |
789 B = (edcb << 5) | (edcb >> 3); | |
790 } | |
791 break; | |
792 } | |
793 | |
794 return unquantize_value<0x80>(A, B, C, D); | |
795 } | |
796 | |
797 // This algorithm takes a list of integers, stored in vals, and unquantizes them | |
798 // in place. This follows the algorithm laid out in section C.2.13 of the ASTC s pec. | |
robertphillips
2014/08/05 17:30:00
This seems a bit odd. It seems like you actually w
krajcevski
2014/08/05 20:55:06
nBits is a value that needs to be passed to either
| |
799 static void unquantize_colors(int *vals, int nVals, int nBits, int nTrits, int n Quints) { | |
800 for (int i = 0; i < nVals; ++i) { | |
801 if (nTrits > 0) { | |
802 SkASSERT(nQuints == 0); | |
robertphillips
2014/08/05 17:30:00
extra space after ',' ?
krajcevski
2014/08/05 20:55:07
Done.
| |
803 vals[i] = unquantize_trit_color(vals[i], nBits); | |
804 } else if (nQuints > 0) { | |
805 SkASSERT(nTrits == 0); | |
806 vals[i] = unquantize_quint_color(vals[i], nBits); | |
807 } else { | |
808 SkASSERT(nQuints == 0 && nTrits == 0); | |
809 vals[i] = unquantize_bits_color(vals[i], nBits); | |
810 } | |
811 } | |
812 } | |
813 | |
814 // Returns an interpolated value between c0 and c1 based on the weight. This | |
815 // follows the algorithm laid out in section C.2.19 of the ASTC spec. | |
816 static int interpolate_channel(int c0, int c1, int weight) { | |
817 SkASSERT(0 <= c0 && c0 < 256); | |
818 SkASSERT(0 <= c1 && c1 < 256); | |
819 | |
820 c0 = (c0 << 8) | c0; | |
821 c1 = (c1 << 8) | c1; | |
822 | |
823 const int result = ((c0*(64 - weight) + c1*weight + 32) / 64) >> 8; | |
824 | |
825 if (result > 255) { | |
826 return 255; | |
827 } | |
828 | |
829 SkASSERT(result >= 0); | |
830 return result; | |
831 } | |
832 | |
833 // Returns an interpolated color between the two endpoints based on the weight. | |
834 static SkColor interpolate_endpoints(const SkColor endpoints[2], int weight) { | |
835 return SkColorSetARGB( | |
836 interpolate_channel(SkColorGetA(endpoints[0]), SkColorGetA(endpoints[1]) , weight), | |
837 interpolate_channel(SkColorGetR(endpoints[0]), SkColorGetR(endpoints[1]) , weight), | |
838 interpolate_channel(SkColorGetG(endpoints[0]), SkColorGetG(endpoints[1]) , weight), | |
839 interpolate_channel(SkColorGetB(endpoints[0]), SkColorGetB(endpoints[1]) , weight)); | |
840 } | |
841 | |
842 // Returns an interpolated color between the two endpoints based on the weight. | |
843 // It uses separate weights for the channel depending on the value of the 'plane ' | |
844 // variable. By default, all channels will use weight 0, and the value of plane | |
845 // means that weight1 will be used for: | |
846 // 0: red | |
847 // 1: green | |
848 // 2: blue | |
849 // 3: alpha | |
850 static SkColor interpolate_dual_endpoints( | |
851 const SkColor endpoints[2], int weight0, int weight1, int plane) { | |
852 int a = interpolate_channel(SkColorGetA(endpoints[0]), SkColorGetA(endpoints [1]), weight0); | |
853 int r = interpolate_channel(SkColorGetR(endpoints[0]), SkColorGetR(endpoints [1]), weight0); | |
854 int g = interpolate_channel(SkColorGetG(endpoints[0]), SkColorGetG(endpoints [1]), weight0); | |
855 int b = interpolate_channel(SkColorGetB(endpoints[0]), SkColorGetB(endpoints [1]), weight0); | |
856 | |
857 switch (plane) { | |
858 | |
859 case 0: | |
860 r = interpolate_channel( | |
861 SkColorGetR(endpoints[0]), SkColorGetR(endpoints[1]), weight1); | |
862 break; | |
863 | |
864 case 1: | |
865 g = interpolate_channel( | |
866 SkColorGetG(endpoints[0]), SkColorGetG(endpoints[1]), weight1); | |
867 break; | |
868 | |
869 case 2: | |
870 b = interpolate_channel( | |
871 SkColorGetB(endpoints[0]), SkColorGetB(endpoints[1]), weight1); | |
872 break; | |
873 | |
874 case 3: | |
875 a = interpolate_channel( | |
876 SkColorGetA(endpoints[0]), SkColorGetA(endpoints[1]), weight1); | |
877 break; | |
878 | |
879 default: | |
880 SkDEBUGFAIL("Plane should be 0-3"); | |
881 break; | |
882 } | |
883 | |
884 return SkColorSetARGB(a, r, g, b); | |
885 } | |
886 | |
887 // A struct of decoded values that we use to carry around information | |
888 // about the block. dimX and dimY are the dimension in texels of the block, | |
889 // for which there is only a limited subset of valid values. | |
robertphillips
2014/08/05 15:29:02
such as ?
krajcevski
2014/08/05 20:55:05
Done.
| |
890 struct ASTCDecompressionData { | |
891 ASTCDecompressionData(int dimX, int dimY) : fDimX(dimX), fDimY(dimY) { } | |
892 const int fDimX; // the X dimension of the decompressed block | |
893 const int fDimY; // the Y dimension of the decompressed block | |
894 astcBlock_t fBlock; // the block data | |
895 int fBlockMode; // the block header that contains the block mode. | |
896 | |
897 bool fDualPlaneEnabled; // is this block compressing dual weight planes? | |
898 int fDualPlane; // the independent plane in dual plane mode. | |
899 | |
900 bool fVoidExtent; // is this block a single color? | |
901 bool fError; // does this block have an error encoding? | |
902 | |
903 int fWeightDimX; // the x dimension of the weight grid | |
904 int fWeightDimY; // the y dimension of the weight grid | |
905 | |
906 int fWeightBits; // the number of bits used for each weight value | |
907 int fWeightTrits; // the number of trits used for each weight value | |
908 int fWeightQuints; // the number of quints used for each weight value | |
909 | |
910 int fPartCount; // the number of partitions in this block | |
911 int fPartIndex; // the partition index: only relevant if fPartCount > 0 | |
912 | |
913 static const int kMaxPartitions = 4; | |
robertphillips
2014/08/05 17:30:00
// The possible CEM values are ... ?
krajcevski
2014/08/05 20:55:08
Done.
| |
914 int fCEM[kMaxPartitions]; // the color endpoint modes for this block. | |
915 | |
916 int fColorStartBit; // The bit position of the first bit of the color da ta | |
917 int fColorEndBit; // The bit position of the last *possible* bit of th e color data | |
918 | |
919 // Returns the number of partitions for this block. | |
920 int numPartitions() const { | |
921 return fPartCount; | |
922 } | |
923 | |
924 // Returns the total number of weight values that are stored in this block | |
925 int numWeights() const { | |
robertphillips
2014/08/05 17:30:01
Add a space before the '?' ?
krajcevski
2014/08/05 20:55:07
Done.
| |
926 return fWeightDimX * fWeightDimY * (fDualPlaneEnabled? 2 : 1); | |
927 } | |
928 | |
robertphillips
2014/08/05 17:30:00
#ifdef SK_DEBUG ?
krajcevski
2014/08/05 20:55:07
Done.
| |
929 // Returns the maximum value that any weight can take. We really only use | |
930 // this function for debugging. | |
931 int maxWeightValue() const { | |
932 int maxVal = (1 << fWeightBits); | |
933 if (fWeightTrits > 0) { | |
934 SkASSERT(0 == fWeightQuints); | |
935 maxVal *= 3; | |
936 } else if (fWeightQuints > 0) { | |
937 SkASSERT(0 == fWeightTrits); | |
938 maxVal *= 5; | |
939 } | |
940 return maxVal - 1; | |
941 } | |
robertphillips
2014/08/05 17:30:00
#endif ?
krajcevski
2014/08/05 20:55:05
Done.
| |
942 | |
943 // The number of bits needed to represent the texel weight data. This | |
944 // comes from the 'data size determination' section of the ASTC spec (C.2.22 ) | |
945 int numWeightBits() const { | |
946 const int nWeights = this->numWeights(); | |
947 return | |
948 ((nWeights*8*fWeightTrits + 4) / 5) + | |
949 ((nWeights*7*fWeightQuints + 2) / 3) + | |
950 (nWeights*fWeightBits); | |
951 } | |
952 | |
953 // Returns the number of color values stored in this block. The number of | |
954 // values stored is directly a function of the color endpoint modes. | |
955 int numColorValues() const { | |
956 int numValues = 0; | |
957 for (int i = 0; i < this->numPartitions(); ++i) { | |
958 numValues += ((fCEM[i] >> 2) + 1) * 2; | |
959 } | |
960 | |
961 return numValues; | |
962 } | |
963 | |
964 // Figures out the number of bits available for color values, and fills | |
965 // in the maximum encoding that will fit the number of color values that | |
966 // we need. Returns false on error. (See section C.2.22 of the spec) | |
967 bool getColorValueEncoding(int *nBits, int *nTrits, int *nQuints) const { | |
968 if (NULL == nBits || NULL == nTrits || NULL == nQuints) { | |
969 return false; | |
970 } | |
971 | |
972 const int nColorVals = this->numColorValues(); | |
973 if (nColorVals <= 0) { | |
974 return false; | |
975 } | |
976 | |
977 const int colorBits = fColorEndBit - fColorStartBit; | |
978 SkASSERT(colorBits > 0); | |
979 | |
980 // This is the minimum amount of accuracy required by the spec. | |
981 if (colorBits < ((13 * nColorVals + 4) / 5)) { | |
982 return false; | |
983 } | |
984 | |
985 // Values can be represented as at most 8-bit values. | |
986 // !SPEED! place this in a lookup table based on colorBits and nColorVal s | |
987 for (int i = 255; i > 0; --i) { | |
988 int range = i + 1; | |
989 int bits = 0, trits = 0, quints = 0; | |
990 bool valid = false; | |
991 if (is_power_of_two(range)) { | |
992 bits = bits_for_range(range); | |
993 valid = true; | |
994 } else if ((range % 3) == 0 && is_power_of_two(range/3)) { | |
995 trits = 1; | |
996 bits = bits_for_range(range/3); | |
997 valid = true; | |
998 } else if ((range % 5) == 0 && is_power_of_two(range/5)) { | |
999 quints = 1; | |
1000 bits = bits_for_range(range/5); | |
1001 valid = true; | |
1002 } | |
1003 | |
1004 if (valid) { | |
1005 const int actualColorBits = | |
1006 ((nColorVals*8*trits + 4) / 5) + | |
1007 ((nColorVals*7*quints + 2) / 3) + | |
1008 (nColorVals*bits); | |
1009 if (actualColorBits <= colorBits) { | |
1010 *nTrits = trits; | |
1011 *nQuints = quints; | |
1012 *nBits = bits; | |
1013 return true; | |
1014 } | |
1015 } | |
1016 } | |
1017 | |
1018 return false; | |
1019 } | |
1020 | |
1021 // Converts the sequence of color values into endpoints. The algorithm here | |
1022 // corresponds to the values determined by section C.2.14 of the ASTC spec | |
1023 void colorEndpoints(SkColor endpoints[4][2], const int* colorValues) const { | |
1024 for (int i = 0; i < this->numPartitions(); ++i) { | |
1025 switch (fCEM[i]) { | |
1026 // LDR Luminance, direct | |
robertphillips
2014/08/05 17:30:00
Can these ints be happy, happy enum values ?
krajcevski
2014/08/05 20:55:06
Done.
| |
1027 case 0: | |
robertphillips
2014/08/05 17:30:00
formatting ?
krajcevski
2014/08/05 20:55:06
Done.
| |
1028 { | |
1029 const int* v = colorValues; | |
1030 endpoints[i][0] = SkColorSetARGB(0xFF, v[0], v[0], v[0]); | |
1031 endpoints[i][1] = SkColorSetARGB(0xFF, v[1], v[1], v[1]); | |
1032 | |
1033 colorValues += 2; | |
1034 } | |
1035 break; | |
1036 | |
1037 // LDR Luminance, base+offset | |
1038 case 1: | |
1039 { | |
1040 const int* v = colorValues; | |
1041 const int L0 = (v[0] >> 2) | (v[1] & 0xC0); | |
1042 const int L1 = clamp_byte(L0 + (v[1] & 0x3F)); | |
1043 | |
1044 endpoints[i][0] = SkColorSetARGB(0xFF, L0, L0, L0); | |
1045 endpoints[i][1] = SkColorSetARGB(0xFF, L1, L1, L1); | |
1046 | |
1047 colorValues += 2; | |
1048 } | |
1049 break; | |
1050 | |
1051 // LDR Luminance + Alpha, direct | |
1052 case 4: | |
1053 { | |
1054 const int* v = colorValues; | |
1055 | |
1056 endpoints[i][0] = SkColorSetARGB(v[2], v[0], v[0], v[0]); | |
1057 endpoints[i][1] = SkColorSetARGB(v[3], v[1], v[1], v[1]); | |
1058 | |
1059 colorValues += 4; | |
1060 } | |
1061 break; | |
1062 | |
1063 // LDR Luminance + Alpha, base+offset | |
1064 case 5: | |
1065 { | |
1066 int v0 = colorValues[0]; | |
1067 int v1 = colorValues[1]; | |
1068 int v2 = colorValues[2]; | |
1069 int v3 = colorValues[3]; | |
1070 | |
1071 bit_transfer_signed(&v1, &v0); | |
1072 bit_transfer_signed(&v3, &v2); | |
1073 | |
1074 endpoints[i][0] = SkColorSetARGB(v2, v0, v0, v0); | |
1075 endpoints[i][1] = SkColorSetARGB( | |
1076 clamp_byte(v3+v2), | |
1077 clamp_byte(v1+v0), | |
1078 clamp_byte(v1+v0), | |
1079 clamp_byte(v1+v0)); | |
1080 | |
1081 colorValues += 4; | |
1082 } | |
1083 break; | |
1084 | |
1085 // LDR RGB, base+scale | |
1086 case 6: | |
1087 { | |
1088 const int* v = colorValues; | |
1089 | |
1090 endpoints[i][0] = SkColorSetARGB( | |
1091 0xFF, v[0]*v[3] >> 8, v[1]*v[3] >> 8, v[2]*v[3] >> 8); | |
1092 endpoints[i][1] = SkColorSetARGB(0xFF, v[0], v[1], v[2]); | |
1093 | |
1094 colorValues += 4; | |
1095 } | |
1096 break; | |
1097 | |
1098 // LDR RGB, direct | |
1099 case 8: | |
robertphillips
2014/08/05 17:30:00
Could 8 & 12 share a sub-routine ?
krajcevski
2014/08/05 20:55:07
Done.
| |
1100 { | |
1101 const int* v = colorValues; | |
1102 | |
1103 const int s0 = v[0] + v[2] + v[4]; | |
1104 const int s1 = v[1] + v[3] + v[5]; | |
1105 | |
1106 if (s1 >= s0) { | |
1107 endpoints[i][0] = SkColorSetARGB(0xFF, v[0], v[2], v[4]) ; | |
1108 endpoints[i][1] = SkColorSetARGB(0xFF, v[1], v[3], v[5]) ; | |
1109 } else { | |
1110 endpoints[i][0] = blue_contract(0xFF, v[1], v[3], v[5]); | |
1111 endpoints[i][1] = blue_contract(0xFF, v[0], v[2], v[4]); | |
1112 } | |
1113 | |
1114 colorValues += 6; | |
1115 } | |
1116 break; | |
1117 | |
1118 // LDR RGB, base+offset | |
1119 case 9: | |
robertphillips
2014/08/05 17:30:00
Could 9 & 13 share a subroutine ?
krajcevski
2014/08/05 20:55:07
Done.
| |
1120 { | |
1121 int v0 = colorValues[0]; | |
1122 int v1 = colorValues[1]; | |
1123 int v2 = colorValues[2]; | |
1124 int v3 = colorValues[3]; | |
1125 int v4 = colorValues[4]; | |
1126 int v5 = colorValues[5]; | |
1127 | |
1128 bit_transfer_signed(&v1, &v0); | |
1129 bit_transfer_signed(&v3, &v2); | |
1130 bit_transfer_signed(&v5, &v4); | |
1131 | |
1132 int c[2][4]; | |
1133 if (v1 + v3 + v5 >= 0) { | |
1134 c[0][0] = 0xFF; | |
1135 c[0][1] = v0; | |
1136 c[0][2] = v2; | |
1137 c[0][3] = v4; | |
1138 | |
1139 c[1][0] = 0xFF; | |
1140 c[1][1] = v0 + v1; | |
1141 c[1][2] = v2 + v3; | |
1142 c[1][3] = v4 + v5; | |
1143 } else { | |
1144 c[0][0] = 0xFF; | |
1145 c[0][1] = (v0 + v1 + v4 + v5) >> 1; | |
1146 c[0][2] = (v2 + v3 + v4 + v5) >> 1; | |
1147 c[0][3] = v4 + v5; | |
1148 | |
1149 c[1][0] = 0xFF; | |
1150 c[1][1] = (v0 + v4) >> 1; | |
1151 c[1][2] = (v2 + v4) >> 1; | |
1152 c[1][3] = v4; | |
1153 } | |
1154 | |
1155 endpoints[i][0] = SkColorSetARGB( | |
robertphillips
2014/08/05 17:30:00
Can we replace clamp_byte(c[0][0]) and clamp_byte(
krajcevski
2014/08/05 20:55:07
Not if they're in their own subroutine. :)
| |
1156 clamp_byte(c[0][0]), | |
1157 clamp_byte(c[0][1]), | |
1158 clamp_byte(c[0][2]), | |
1159 clamp_byte(c[0][3])); | |
1160 | |
1161 endpoints[i][1] = SkColorSetARGB( | |
1162 clamp_byte(c[1][0]), | |
1163 clamp_byte(c[1][1]), | |
1164 clamp_byte(c[1][2]), | |
1165 clamp_byte(c[1][3])); | |
1166 | |
1167 colorValues += 6; | |
1168 } | |
1169 break; | |
1170 | |
1171 // LDR RGBA, base+scale and two alpha | |
1172 case 10: | |
1173 { | |
1174 const int* v = colorValues; | |
1175 | |
1176 endpoints[i][0] = SkColorSetARGB(v[4], | |
1177 (v[0]*v[3]) >> 8, | |
1178 (v[1]*v[3]) >> 8, | |
1179 (v[2]*v[3]) >> 8); | |
1180 endpoints[i][1] = SkColorSetARGB(v[5], v[0], v[1], v[2]); | |
1181 | |
1182 colorValues += 6; | |
1183 } | |
1184 break; | |
1185 | |
1186 // LDR RGBA, direct | |
1187 case 12: | |
1188 { | |
1189 const int* v = colorValues; | |
1190 | |
1191 if ((v[0] + v[2] + v[4]) >= (v[1] + v[3] + v[5])) { | |
1192 endpoints[i][0] = SkColorSetARGB(v[6], v[0], v[2], v[4]) ; | |
1193 endpoints[i][1] = SkColorSetARGB(v[7], v[1], v[3], v[5]) ; | |
1194 } else { | |
1195 endpoints[i][0] = blue_contract(v[7], v[1], v[3], v[5]); | |
1196 endpoints[i][1] = blue_contract(v[6], v[0], v[2], v[4]); | |
1197 } | |
1198 | |
1199 colorValues += 8; | |
1200 } | |
1201 break; | |
1202 | |
1203 // LDR RGBA, base+offset | |
1204 case 13: | |
1205 { | |
1206 int v0 = colorValues[0]; | |
1207 int v1 = colorValues[1]; | |
1208 int v2 = colorValues[2]; | |
1209 int v3 = colorValues[3]; | |
1210 int v4 = colorValues[4]; | |
1211 int v5 = colorValues[5]; | |
1212 int v6 = colorValues[6]; | |
1213 int v7 = colorValues[7]; | |
1214 | |
1215 bit_transfer_signed(&v1, &v0); | |
1216 bit_transfer_signed(&v3, &v2); | |
1217 bit_transfer_signed(&v5, &v4); | |
1218 bit_transfer_signed(&v7, &v6); | |
1219 | |
1220 int c[2][4]; | |
1221 if ((v1 + v3 + v5) >= 0) { | |
1222 c[0][0] = v6; | |
1223 c[0][1] = v0; | |
1224 c[0][2] = v2; | |
1225 c[0][3] = v4; | |
1226 | |
1227 c[1][0] = v6 + v7; | |
1228 c[1][1] = v0 + v1; | |
1229 c[1][2] = v2 + v3; | |
1230 c[1][3] = v4 + v5; | |
1231 } else { | |
1232 c[0][0] = v6 + v7; | |
1233 c[0][1] = (v0 + v1 + v4 + v5) >> 1; | |
1234 c[0][2] = (v2 + v3 + v4 + v5) >> 1; | |
1235 c[0][3] = v4 + v5; | |
1236 | |
1237 c[1][0] = v6; | |
1238 c[1][1] = (v0 + v4) >> 1; | |
1239 c[1][2] = (v2 + v4) >> 1; | |
1240 c[1][3] = v4; | |
1241 } | |
1242 | |
1243 endpoints[i][0] = SkColorSetARGB( | |
1244 clamp_byte(c[0][0]), | |
1245 clamp_byte(c[0][1]), | |
1246 clamp_byte(c[0][2]), | |
1247 clamp_byte(c[0][3])); | |
1248 | |
1249 endpoints[i][1] = SkColorSetARGB( | |
1250 clamp_byte(c[1][0]), | |
1251 clamp_byte(c[1][1]), | |
1252 clamp_byte(c[1][2]), | |
1253 clamp_byte(c[1][3])); | |
1254 | |
1255 colorValues += 8; | |
1256 } | |
1257 break; | |
1258 | |
1259 default: | |
1260 SkDEBUGFAIL("HDR mode unsupported! This should be caught soo ner."); | |
1261 break; | |
1262 } | |
1263 } | |
1264 } | |
1265 | |
1266 // Follows the procedure from section C.2.17 of the ASTC specification | |
1267 int unquantizeWeight(int x) const { | |
1268 SkASSERT(x <= this->maxWeightValue()); | |
1269 | |
1270 const int D = (x >> fWeightBits) & 0x7; | |
1271 const int A = -(x & 0x1) & 0x7F; | |
1272 | |
1273 SkTBits<int> xbits(x); | |
1274 | |
1275 int T = 0; | |
1276 if (fWeightTrits > 0) { | |
1277 SkASSERT(0 == fWeightQuints); | |
1278 switch (fWeightBits) { | |
1279 case 0: | |
1280 { | |
1281 // x is a single trit | |
1282 SkASSERT(x < 3); | |
1283 | |
1284 static const int kUnquantizationTable[3] = { 0, 32, 63 }; | |
1285 T = kUnquantizationTable[x]; | |
1286 } | |
1287 break; | |
1288 | |
1289 case 1: | |
1290 { | |
1291 const int B = 0; | |
1292 const int C = 50; | |
1293 T = unquantize_value<0x20>(A, B, C, D); | |
1294 } | |
1295 break; | |
1296 | |
1297 case 2: | |
1298 { | |
1299 const int b = xbits[1]; | |
1300 const int B = b | (b << 2) | (b << 6); | |
1301 const int C = 23; | |
1302 T = unquantize_value<0x20>(A, B, C, D); | |
1303 } | |
1304 break; | |
1305 | |
1306 case 3: | |
1307 { | |
1308 const int cb = xbits(2, 1); | |
1309 const int B = cb | (cb << 5); | |
1310 const int C = 11; | |
1311 T = unquantize_value<0x20>(A, B, C, D); | |
1312 } | |
1313 break; | |
1314 | |
1315 default: | |
1316 SkDEBUGFAIL("Too many bits for trit encoding"); | |
1317 break; | |
1318 } | |
1319 | |
1320 } else if (fWeightQuints > 0) { | |
1321 SkASSERT(0 == fWeightTrits); | |
1322 switch (fWeightBits) { | |
1323 case 0: | |
1324 { | |
1325 // x is a single quint | |
1326 SkASSERT(x < 5); | |
1327 | |
1328 static const int kUnquantizationTable[5] = { 0, 16, 32, 47, 63 }; | |
1329 T = kUnquantizationTable[x]; | |
1330 } | |
1331 break; | |
1332 | |
1333 case 1: | |
1334 { | |
1335 const int B = 0; | |
1336 const int C = 28; | |
1337 T = unquantize_value<0x20>(A, B, C, D); | |
1338 } | |
1339 break; | |
1340 | |
1341 case 2: | |
1342 { | |
1343 const int b = xbits[1]; | |
1344 const int B = (b << 1) | (b << 6); | |
1345 const int C = 13; | |
1346 T = unquantize_value<0x20>(A, B, C, D); | |
1347 } | |
1348 break; | |
1349 | |
1350 default: | |
1351 SkDEBUGFAIL("Too many bits for quint encoding"); | |
1352 break; | |
1353 } | |
1354 } else { | |
1355 SkASSERT(0 == fWeightTrits); | |
1356 SkASSERT(0 == fWeightQuints); | |
1357 | |
1358 T = replicate_bits(x, fWeightBits, 6); | |
1359 } | |
1360 | |
1361 // This should bring the value within [0, 63].. | |
1362 SkASSERT(T <= 63); | |
1363 | |
1364 if (T > 32) { | |
1365 T += 1; | |
1366 } | |
1367 | |
1368 SkASSERT(T <= 64); | |
1369 | |
1370 return T; | |
1371 } | |
1372 | |
1373 // Returns the weight at the associated index. If the index is out of bounds , it | |
1374 // returns zero. It also chooses the weight appropriately based on the given dual | |
1375 // plane. | |
1376 int getWeight(const int* unquantizedWeights, int idx, bool dualPlane) const { | |
1377 const int maxIdx = ((fDualPlaneEnabled)? 2 : 1) * fWeightDimX * fWeightD imY - 1; | |
1378 if (fDualPlaneEnabled) { | |
robertphillips
2014/08/05 17:30:01
space before '?' ?
krajcevski
2014/08/05 20:55:05
Done.
| |
1379 const int effectiveIdx = 2*idx + (dualPlane? 1 : 0); | |
1380 if (effectiveIdx > maxIdx) { | |
1381 return 0; | |
1382 } | |
1383 return unquantizedWeights[effectiveIdx]; | |
1384 } | |
1385 | |
1386 SkASSERT(!dualPlane); | |
1387 | |
1388 if (idx > maxIdx) { | |
1389 return 0; | |
1390 } else { | |
1391 return unquantizedWeights[idx]; | |
1392 } | |
1393 } | |
1394 | |
1395 // This computes the effective weight at location (s, t) of the block. This | |
1396 // weight is computed by sampling the texel weight grid (it's usually not 1- 1), and | |
1397 // then applying a bilerp. The algorithm outlined here follows the algorithm | |
1398 // defined in section C.2.18 of the ASTC spec. | |
1399 int infillWeight(const int* unquantizedValues, int s, int t, bool dualPlane) const { | |
1400 const int Ds = (1024 + fDimX/2) / (fDimX - 1); | |
1401 const int Dt = (1024 + fDimY/2) / (fDimY - 1); | |
1402 | |
1403 const int cs = Ds * s; | |
1404 const int ct = Dt * t; | |
1405 | |
1406 const int gs = (cs*(fWeightDimX - 1) + 32) >> 6; | |
1407 const int gt = (ct*(fWeightDimY - 1) + 32) >> 6; | |
1408 | |
1409 const int js = gs >> 4; | |
1410 const int jt = gt >> 4; | |
1411 | |
1412 const int fs = gs & 0xF; | |
1413 const int ft = gt & 0xF; | |
1414 | |
1415 const int idx = js + jt*fWeightDimX; | |
1416 const int p00 = this->getWeight(unquantizedValues, idx, dualPlane); | |
1417 const int p01 = this->getWeight(unquantizedValues, idx + 1, dualPlane); | |
1418 const int p10 = this->getWeight(unquantizedValues, idx + fWeightDimX, du alPlane); | |
1419 const int p11 = this->getWeight(unquantizedValues, idx + fWeightDimX + 1 , dualPlane); | |
1420 | |
1421 const int w11 = (fs*ft + 8) >> 4; | |
1422 const int w10 = ft - w11; | |
1423 const int w01 = fs - w11; | |
1424 const int w00 = 16 - fs - ft + w11; | |
1425 | |
1426 const int weight = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4; | |
1427 SkASSERT(weight <= 64); | |
1428 return weight; | |
1429 } | |
1430 | |
1431 // Unquantizes the decoded texel weights as described in section C.2.17 of | |
1432 // the ASTC specification. Additionally, it populates texelWeights with | |
1433 // the expanded weight grid, which is computed according to section C.2.18 | |
1434 void texelWeights(int texelWeights[2][12][12], const int* texelValues) const { | |
1435 // Unquantized texel weights... | |
1436 int unquantizedValues[144*2]; // 12x12 blocks with dual plane decoding.. . | |
1437 SkASSERT(this->numWeights() <= 144*2); | |
1438 | |
1439 // Unquantize the weights and cache them | |
1440 for (int j = 0; j < this->numWeights(); ++j) { | |
1441 unquantizedValues[j] = this->unquantizeWeight(texelValues[j]); | |
1442 } | |
1443 | |
1444 // Do weight infill... | |
robertphillips
2014/08/05 20:37:53
Is there a reason to use s,t over x,y ?
krajcevski
2014/08/05 20:55:08
s,t are what's used in the spec. They also map bet
| |
1445 for (int t = 0; t < fDimY; ++t) { | |
1446 for (int s = 0; s < fDimX; ++s) { | |
robertphillips
2014/08/05 20:37:53
Would it be clearer to unroll the plane loop and j
krajcevski
2014/08/05 20:55:07
Yes, I think my brain was fried by this point.
| |
1447 for (int i = 0; i < 2; ++i) { | |
1448 bool bUseDualPlane = static_cast<bool>(i); | |
1449 if (bUseDualPlane && !fDualPlaneEnabled) { | |
1450 continue; | |
1451 } | |
1452 | |
1453 texelWeights[i][s][t] = | |
1454 this->infillWeight(unquantizedValues, s, t, bUseDualPlan e); | |
1455 } | |
1456 } | |
1457 } | |
1458 } | |
1459 | |
1460 // Returns the partition for the texel located at position (x, y). | |
robertphillips
2014/08/05 20:37:53
Adapted from ... ?
krajcevski
2014/08/05 20:55:05
Not sure what you mean? The next comment says wher
robertphillips
2014/08/06 12:31:52
I think we should replace "Copied directly from" w
krajcevski
2014/08/06 14:15:57
Done.
| |
1461 // Copied directly from C.2.21 of the ASTC specification | |
1462 int getPartition(int x, int y) const { | |
robertphillips
2014/08/05 20:37:53
bSmallBlock -> isSmallBlock ?
krajcevski
2014/08/05 20:55:08
Done.
| |
1463 bool bSmallBlock = (fDimX * fDimY) < 31; | |
1464 const int partitionCount = this->numPartitions(); | |
1465 int seed = fPartIndex; | |
1466 if (bSmallBlock) { | |
1467 x <<= 1; | |
1468 y <<= 1; | |
1469 } | |
1470 | |
1471 seed += (partitionCount - 1) * 1024; | |
1472 | |
1473 uint32_t p = seed; | |
1474 p ^= p >> 15; p -= p << 17; p += p << 7; p += p << 4; | |
1475 p ^= p >> 5; p += p << 16; p ^= p >> 7; p ^= p >> 3; | |
1476 p ^= p << 6; p ^= p >> 17; | |
1477 | |
1478 uint32_t rnum = p; | |
1479 uint8_t seed1 = rnum & 0xF; | |
1480 uint8_t seed2 = (rnum >> 4) & 0xF; | |
1481 uint8_t seed3 = (rnum >> 8) & 0xF; | |
1482 uint8_t seed4 = (rnum >> 12) & 0xF; | |
1483 uint8_t seed5 = (rnum >> 16) & 0xF; | |
1484 uint8_t seed6 = (rnum >> 20) & 0xF; | |
1485 uint8_t seed7 = (rnum >> 24) & 0xF; | |
1486 uint8_t seed8 = (rnum >> 28) & 0xF; | |
1487 uint8_t seed9 = (rnum >> 18) & 0xF; | |
1488 uint8_t seed10 = (rnum >> 22) & 0xF; | |
1489 uint8_t seed11 = (rnum >> 26) & 0xF; | |
1490 uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF; | |
1491 | |
1492 seed1 *= seed1; seed2 *= seed2; | |
1493 seed3 *= seed3; seed4 *= seed4; | |
1494 seed5 *= seed5; seed6 *= seed6; | |
1495 seed7 *= seed7; seed8 *= seed8; | |
1496 seed9 *= seed9; seed10 *= seed10; | |
1497 seed11 *= seed11; seed12 *= seed12; | |
1498 | |
1499 int sh1, sh2, sh3; | |
1500 if (0 != (seed & 1)) { | |
1501 sh1 = (0 != (seed & 2))? 4 : 5; | |
1502 sh2 = (partitionCount == 3)? 6 : 5; | |
1503 } else { | |
1504 sh1 = (partitionCount==3)? 6 : 5; | |
1505 sh2 = (0 != (seed & 2))? 4 : 5; | |
1506 } | |
1507 sh3 = (0 != (seed & 0x10))? sh1 : sh2; | |
1508 | |
1509 seed1 >>= sh1; seed2 >>= sh2; seed3 >>= sh1; seed4 >>= sh2; | |
1510 seed5 >>= sh1; seed6 >>= sh2; seed7 >>= sh1; seed8 >>= sh2; | |
1511 seed9 >>= sh3; seed10 >>= sh3; seed11 >>= sh3; seed12 >>= sh3; | |
1512 | |
1513 const int z = 0; | |
1514 int a = seed1*x + seed2*y + seed11*z + (rnum >> 14); | |
1515 int b = seed3*x + seed4*y + seed12*z + (rnum >> 10); | |
1516 int c = seed5*x + seed6*y + seed9 *z + (rnum >> 6); | |
1517 int d = seed7*x + seed8*y + seed10*z + (rnum >> 2); | |
1518 | |
1519 a &= 0x3F; | |
1520 b &= 0x3F; | |
1521 c &= 0x3F; | |
1522 d &= 0x3F; | |
1523 | |
1524 if (partitionCount < 4) { | |
1525 d = 0; | |
1526 } | |
1527 | |
1528 if (partitionCount < 3) { | |
1529 c = 0; | |
1530 } | |
1531 | |
1532 if (a >= b && a >= c && a >= d) { | |
1533 return 0; | |
1534 } else if (b >= c && b >= d) { | |
1535 return 1; | |
1536 } else if (c >= d) { | |
1537 return 2; | |
1538 } else { | |
1539 return 3; | |
1540 } | |
1541 } | |
1542 | |
1543 // Performs the proper interpolation of the texel based on the | |
1544 // endpoints and weights. | |
1545 SkColor getTexel(const SkColor endpoints[4][2], | |
1546 const int weights[2][12][12], | |
1547 int x, int y) const { | |
1548 int part = 0; | |
1549 if (this->numPartitions() > 1) { | |
1550 part = this->getPartition(x, y); | |
1551 } | |
1552 | |
1553 SkColor result; | |
1554 if (fDualPlaneEnabled) { | |
1555 result = interpolate_dual_endpoints( | |
1556 endpoints[part], weights[0][x][y], weights[1][x][y], fDualPlane) ; | |
1557 } else { | |
1558 result = interpolate_endpoints(endpoints[part], weights[0][x][y]); | |
1559 } | |
1560 | |
1561 #if 1 | |
1562 // !FIXME! if we're writing directly to a bitmap, then we don't need | |
1563 // to swap the red and blue channels, but since we're usually being used | |
1564 // by the SkImageDecoder_astc module, the results are expected to be in RGBA. | |
1565 result = SkColorSetARGB( | |
1566 SkColorGetA(result), SkColorGetB(result), SkColorGetG(result), SkCol orGetR(result)); | |
1567 #endif | |
1568 | |
1569 return result; | |
1570 } | |
1571 | |
1572 void decode() { | |
1573 // First decode the block mode. | |
1574 this->decodeBlockMode(); | |
1575 | |
1576 // Now we can decode the partition information. | |
1577 fPartIndex = read_astc_bits(fBlock, 11, 23); | |
1578 fPartCount = (fPartIndex & 0x3) + 1; | |
1579 fPartIndex >>= 2; | |
1580 | |
1581 // This is illegal | |
1582 if (fDualPlaneEnabled && this->numPartitions() == 4) { | |
1583 fError = true; | |
robertphillips
2014/08/05 20:37:53
Can we early out here?
krajcevski
2014/08/05 20:55:06
Yes. If fError is true then none of the other valu
| |
1584 } | |
1585 | |
1586 // Based on the partition info, we can decode the color information. | |
1587 this->decodeColorData(); | |
1588 } | |
1589 | |
1590 // Decodes the dual plane based on the given bit location. The final | |
1591 // location, if the dual plane is enabled, is also the end of our color data . | |
1592 // This function is only meant to be used from this->decodeColorData() | |
1593 void decodeDualPlane(int bitLoc) { | |
1594 if (fDualPlaneEnabled) { | |
1595 fDualPlane = read_astc_bits(fBlock, bitLoc - 2, bitLoc); | |
1596 fColorEndBit = bitLoc - 2; | |
1597 } else { | |
1598 fColorEndBit = bitLoc; | |
1599 } | |
1600 } | |
1601 | |
1602 // Decodes the color information based on the ASTC spec. | |
1603 void decodeColorData() { | |
1604 | |
1605 // By default, the last color bit is at the end of the texel weights | |
1606 const int lastWeight = 128 - this->numWeightBits(); | |
1607 | |
1608 // If we have a dual plane then it will be at this location, too. | |
1609 int dualPlaneBitLoc = lastWeight; | |
1610 | |
1611 // If there's only one partition, then our job is (relatively) easy. | |
1612 if (this->numPartitions() == 1) { | |
1613 fCEM[0] = read_astc_bits(fBlock, 13, 17); | |
1614 fColorStartBit = 17; | |
1615 | |
1616 // Handle dual plane mode... | |
1617 this->decodeDualPlane(dualPlaneBitLoc); | |
1618 | |
1619 return; | |
1620 } | |
1621 | |
1622 // If we have more than one partition, then we need to make | |
1623 // room for the partition index. | |
1624 fColorStartBit = 29; | |
1625 | |
1626 // Read the base CEM. If it's zero, then we have no additional | |
1627 // CEM data and the endpoints for each partition share the same CEM. | |
1628 const int baseCEM = read_astc_bits(fBlock, 23, 25); | |
1629 if (0 == baseCEM) { | |
1630 const int sameCEM = read_astc_bits(fBlock, 25, 29); | |
1631 for (int i = 0; i < kMaxPartitions; ++i) { | |
1632 fCEM[i] = sameCEM; | |
1633 } | |
1634 | |
1635 // Handle dual plane mode... | |
1636 this->decodeDualPlane(dualPlaneBitLoc); | |
1637 | |
1638 return; | |
1639 } | |
1640 | |
1641 // Move the dual plane selector bits down based on how many | |
1642 // partitions the block contains. | |
1643 switch (this->numPartitions()) { | |
1644 case 2: | |
1645 dualPlaneBitLoc -= 2; | |
1646 break; | |
1647 | |
1648 case 3: | |
1649 dualPlaneBitLoc -= 5; | |
1650 break; | |
1651 | |
1652 case 4: | |
1653 dualPlaneBitLoc -= 8; | |
1654 break; | |
1655 | |
1656 default: | |
1657 SkDEBUGFAIL("Internal ASTC decoding error."); | |
1658 break; | |
1659 } | |
1660 | |
1661 // The rest of the CEM config will be between the dual plane bit selecto r | |
1662 // and the texel weight grid. | |
1663 const int lowCEM = read_astc_bits(fBlock, 23, 29); | |
1664 int fullCEM = read_astc_bits(fBlock, dualPlaneBitLoc, lastWeight); | |
1665 | |
1666 // Attach the config at the end of the weight grid to the CEM values | |
1667 // in the beginning of the block. | |
1668 fullCEM = (fullCEM << 6) | lowCEM; | |
1669 | |
1670 // Ignore the two least significant bits, since those are our baseCEM ab ove. | |
1671 fullCEM = fullCEM >> 2; | |
1672 | |
1673 int C[kMaxPartitions]; // Next, decode C and M from the spec (Table C.2. 12) | |
1674 for (int i = 0; i < this->numPartitions(); ++i) { | |
1675 C[i] = fullCEM & 1; | |
1676 fullCEM = fullCEM >> 1; | |
1677 } | |
1678 | |
1679 int M[kMaxPartitions]; | |
1680 for (int i = 0; i < this->numPartitions(); ++i) { | |
1681 M[i] = fullCEM & 0x3; | |
1682 fullCEM = fullCEM >> 2; | |
1683 } | |
1684 | |
1685 // Construct our CEMs.. | |
1686 SkASSERT(baseCEM > 0); | |
1687 for (int i = 0; i < this->numPartitions(); ++i) { | |
1688 int cem = (baseCEM - 1) * 4; | |
1689 cem += (0 == C[i])? 0 : 4; | |
1690 cem += M[i]; | |
1691 | |
1692 SkASSERT(cem < 16); | |
1693 fCEM[i] = cem; | |
1694 } | |
1695 | |
1696 // Finally, if we have dual plane mode, then read the plane selector. | |
1697 this->decodeDualPlane(dualPlaneBitLoc); | |
1698 } | |
1699 | |
1700 // Decodes the block mode. This function determines whether or not we use | |
1701 // dual plane encoding, the size of the texel weight grid, and the number of | |
1702 // bits, trits and quints that are used to encode it. For more information, | |
1703 // see section C.2.10 of the ASTC spec. | |
1704 void decodeBlockMode() { | |
1705 const int blockMode = read_astc_bits(fBlock, 0, 11); | |
1706 | |
1707 // Check for special void extent encoding | |
1708 fVoidExtent = (blockMode & 0x1FF) == 0x1FC; | |
1709 | |
1710 // Check for reserved block modes | |
1711 fError = (blockMode & 0x1C3) == 0x1C0; | |
1712 | |
1713 // Neither reserved nor void-extent, decode as usual | |
1714 // This code corresponds to table C.2.8 of the ASTC spec | |
robertphillips
2014/08/05 20:37:53
highPrecision ?
krajcevski
2014/08/05 20:55:06
Done.
| |
1715 bool bHighPrecision = false; | |
1716 int R = 0; | |
1717 if ((blockMode & 0x3) == 0) { | |
1718 R = ((0xC & blockMode) >> 1) | ((0x10 & blockMode) >> 4); | |
1719 const int bitsSevenAndEight = (blockMode & 0x180) >> 7; | |
1720 SkASSERT(0 <= bitsSevenAndEight && bitsSevenAndEight < 4); | |
1721 | |
1722 const int A = (blockMode >> 5) & 0x3; | |
1723 const int B = (blockMode >> 9) & 0x3; | |
1724 | |
robertphillips
2014/08/05 20:37:53
Would it be any better to define these two as flag
krajcevski
2014/08/05 20:55:06
If life were easy, yes. Some block modes don't enc
| |
1725 fDualPlaneEnabled = (blockMode >> 10) & 0x1; | |
1726 bHighPrecision = (blockMode >> 9) & 0x1; | |
1727 | |
1728 switch (bitsSevenAndEight) { | |
1729 default: | |
robertphillips
2014/08/05 20:37:53
Do these 0..4 values have some clear symolic inter
krajcevski
2014/08/05 20:55:07
I'm not sure that there's a meaningful way to comm
| |
1730 case 0: | |
1731 fWeightDimX = 12; | |
1732 fWeightDimY = A + 2; | |
1733 break; | |
1734 | |
1735 case 1: | |
1736 fWeightDimX = A + 2; | |
1737 fWeightDimY = 12; | |
1738 break; | |
1739 | |
1740 case 2: | |
1741 fWeightDimX = A + 6; | |
1742 fWeightDimY = B + 6; | |
1743 fDualPlaneEnabled = false; | |
1744 bHighPrecision = false; | |
1745 break; | |
1746 | |
1747 case 3: | |
1748 if (0 == A) { | |
1749 fWeightDimX = 6; | |
1750 fWeightDimY = 10; | |
1751 } else { | |
1752 fWeightDimX = 10; | |
1753 fWeightDimY = 6; | |
1754 } | |
1755 break; | |
1756 } | |
1757 } else { // (blockMode & 0x3) != 0 | |
1758 R = ((blockMode & 0x3) << 1) | ((blockMode & 0x10) >> 4); | |
1759 | |
1760 const int bitsTwoAndThree = (blockMode >> 2) & 0x3; | |
1761 SkASSERT(0 <= bitsTwoAndThree && bitsTwoAndThree < 4); | |
1762 | |
1763 const int A = (blockMode >> 5) & 0x3; | |
1764 const int B = (blockMode >> 7) & 0x3; | |
1765 | |
1766 fDualPlaneEnabled = (blockMode >> 10) & 0x1; | |
1767 bHighPrecision = (blockMode >> 9) & 0x1; | |
1768 | |
1769 switch (bitsTwoAndThree) { | |
1770 case 0: | |
1771 fWeightDimX = B + 4; | |
1772 fWeightDimY = A + 2; | |
1773 break; | |
1774 case 1: | |
1775 fWeightDimX = B + 8; | |
1776 fWeightDimY = A + 2; | |
1777 break; | |
1778 case 2: | |
1779 fWeightDimX = A + 2; | |
1780 fWeightDimY = B + 8; | |
1781 break; | |
1782 case 3: | |
1783 if ((B & 0x2) == 0) { | |
1784 fWeightDimX = A + 2; | |
1785 fWeightDimY = (B & 1) + 6; | |
1786 } else { | |
1787 fWeightDimX = (B & 1) + 2; | |
1788 fWeightDimY = A + 2; | |
1789 } | |
1790 break; | |
1791 } | |
1792 } | |
1793 | |
1794 // We should have set the values of R and bHighPrecision | |
1795 // from decoding the block mode, these are used to determine | |
1796 // the proper dimensions of our weight grid. | |
1797 if ((R & 0x6) == 0) { | |
1798 fError = true; | |
1799 } else { | |
1800 static const int kBitAllocationTable[2][6][3] = { | |
1801 { | |
1802 { 1, 0, 0 }, | |
1803 { 0, 1, 0 }, | |
1804 { 2, 0, 0 }, | |
1805 { 0, 0, 1 }, | |
1806 { 1, 1, 0 }, | |
1807 { 3, 0, 0 } | |
1808 }, | |
1809 { | |
1810 { 1, 0, 1 }, | |
1811 { 2, 1, 0 }, | |
1812 { 4, 0, 0 }, | |
1813 { 2, 0, 1 }, | |
1814 { 3, 1, 0 }, | |
1815 { 5, 0, 0 } | |
1816 } | |
1817 }; | |
1818 | |
1819 fWeightBits = kBitAllocationTable[bHighPrecision][R - 2][0]; | |
1820 fWeightTrits = kBitAllocationTable[bHighPrecision][R - 2][1]; | |
1821 fWeightQuints = kBitAllocationTable[bHighPrecision][R - 2][2]; | |
1822 } | |
1823 } | |
1824 }; | |
1825 | |
1826 // Take a known void-extent block, and write out the values as a constant color. | |
1827 static void decompress_void_extent(uint8_t* dst, int dstRowBytes, | |
1828 const ASTCDecompressionData &data) { | |
robertphillips
2014/08/05 15:29:03
0x100 ?
krajcevski
2014/08/05 20:55:08
I think this is remains of a decompressor past.
| |
1829 if ((0x100 & data.fBlockMode) == 0) { | |
1830 write_error_color(dst, dstRowBytes); | |
1831 return; | |
1832 } | |
1833 | |
1834 // The top 64 bits contain 4 16-bit RGBA values. | |
1835 int a = (read_astc_bits(data.fBlock, 112, 128) + 255) >> 8; | |
1836 int b = (read_astc_bits(data.fBlock, 96, 112) + 255) >> 8; | |
1837 int g = (read_astc_bits(data.fBlock, 80, 96) + 255) >> 8; | |
1838 int r = (read_astc_bits(data.fBlock, 64, 80) + 255) >> 8; | |
1839 | |
1840 write_constant_color(dst, dstRowBytes, SkColorSetARGB(a, r, g, b)); | |
1841 } | |
1842 | |
1843 // Decompresses a single ASTC block. It's assumed that data.fDimX and data.fDimY are | |
1844 // set and that the block has already been decoded (i.e. data.decode() has been called) | |
1845 static void decompress_astc_block(uint8_t* dst, int dstRowBytes, | |
1846 const ASTCDecompressionData &data) { | |
1847 if (data.fError) { | |
1848 write_error_color(dst, dstRowBytes); | |
1849 return; | |
1850 } | |
1851 | |
1852 if(data.fVoidExtent) { | |
1853 decompress_void_extent(dst, dstRowBytes, data); | |
1854 return; | |
1855 } | |
1856 | |
1857 // Decode the texel weights. | |
robertphillips
2014/08/05 15:29:03
64?
krajcevski
2014/08/05 20:55:05
Done.
| |
1858 int texelValues[64]; | |
1859 bool success = decode_integer_sequence( | |
1860 texelValues, 64, data.numWeights(), | |
robertphillips
2014/08/05 15:29:02
128?
krajcevski
2014/08/05 20:55:07
Done.
| |
1861 data.fBlock, 128, 128 - data.numWeightBits(), false, | |
1862 data.fWeightBits, data.fWeightTrits, data.fWeightQuints); | |
1863 | |
1864 if (!success) { | |
1865 write_error_color(dst, dstRowBytes); | |
1866 return; | |
1867 } | |
1868 | |
1869 // Decode the color endpoints | |
1870 int colorBits, colorTrits, colorQuints; | |
1871 if (!data.getColorValueEncoding(&colorBits, &colorTrits, &colorQuints)) { | |
1872 write_error_color(dst, dstRowBytes); | |
1873 return; | |
1874 } | |
1875 | |
1876 int colorValues[18]; | |
1877 success = decode_integer_sequence( | |
1878 colorValues, 18, data.numColorValues(), | |
1879 data.fBlock, data.fColorStartBit, data.fColorEndBit, true, | |
1880 colorBits, colorTrits, colorQuints); | |
1881 | |
1882 if (!success) { | |
1883 write_error_color(dst, dstRowBytes); | |
1884 return; | |
1885 } | |
1886 | |
1887 // Unquantize the color values after they've been decoded. | |
1888 unquantize_colors(colorValues, data.numColorValues(), colorBits, colorTrits, colorQuints); | |
1889 | |
1890 // Decode the colors into the appropriate endpoints. | |
1891 SkColor endpoints[4][2]; | |
1892 data.colorEndpoints(endpoints, colorValues); | |
1893 | |
1894 // Do texel infill and decode the texel values. | |
1895 int texelWeights[2][12][12]; | |
1896 data.texelWeights(texelWeights, texelValues); | |
1897 | |
1898 // Write the texels by interpolating them based on the information | |
1899 // stored in the block. | |
1900 dst += data.fDimY * dstRowBytes; | |
robertphillips
2014/08/05 15:29:03
i,j -> x,y ?
krajcevski
2014/08/05 20:55:07
Done.
| |
1901 for (int j = 0; j < data.fDimY; ++j) { | |
1902 dst -= dstRowBytes; | |
1903 SkColor* colorPtr = reinterpret_cast<SkColor*>(dst); | |
1904 for (int i = 0; i < data.fDimX; ++i) { | |
1905 colorPtr[i] = data.getTexel(endpoints, texelWeights, i, j); | |
1906 } | |
1907 } | |
1908 } | |
1909 | |
1910 //////////////////////////////////////////////////////////////////////////////// | |
264 | 1911 |
265 namespace SkTextureCompressor { | 1912 namespace SkTextureCompressor { |
266 | 1913 |
267 bool CompressA8To12x12ASTC(uint8_t* dst, const uint8_t* src, int width, int heig ht, int rowBytes) { | 1914 bool CompressA8To12x12ASTC(uint8_t* dst, const uint8_t* src, int width, int heig ht, int rowBytes) { |
268 if (width < 0 || ((width % 12) != 0) || height < 0 || ((height % 12) != 0)) { | 1915 if (width < 0 || ((width % 12) != 0) || height < 0 || ((height % 12) != 0)) { |
269 return false; | 1916 return false; |
270 } | 1917 } |
271 | 1918 |
272 uint8_t** dstPtr = &dst; | 1919 uint8_t** dstPtr = &dst; |
273 for (int y = 0; y < height; y += 12) { | 1920 for (int y = 0; y < height; y += 12) { |
274 for (int x = 0; x < width; x += 12) { | 1921 for (int x = 0; x < width; x += 12) { |
275 compress_a8_astc_block<GetAlpha>(dstPtr, src + y*rowBytes + x, rowBy tes); | 1922 compress_a8_astc_block<GetAlpha>(dstPtr, src + y*rowBytes + x, rowBy tes); |
276 } | 1923 } |
277 } | 1924 } |
278 | 1925 |
279 return true; | 1926 return true; |
280 } | 1927 } |
281 | 1928 |
282 SkBlitter* CreateASTCBlitter(int width, int height, void* outputBuffer) { | 1929 SkBlitter* CreateASTCBlitter(int width, int height, void* outputBuffer) { |
283 return new | 1930 return new |
284 SkTCompressedAlphaBlitter<12, 16, CompressA8ASTCBlockVertical> | 1931 SkTCompressedAlphaBlitter<12, 16, CompressA8ASTCBlockVertical> |
285 (width, height, outputBuffer); | 1932 (width, height, outputBuffer); |
286 } | 1933 } |
287 | 1934 |
1935 void DecompressASTC(uint8_t* dst, int dstRowBytes, const uint8_t* src, | |
1936 int width, int height, int blockDimX, int blockDimY) { | |
robertphillips
2014/08/05 15:29:02
// ASTC is encoded upside down so we need to walk
krajcevski
2014/08/05 20:55:06
Done.
| |
1937 dst += height * dstRowBytes; | |
1938 | |
1939 ASTCDecompressionData data(blockDimX, blockDimY); | |
robertphillips
2014/08/05 15:29:03
Do we need (or already have) and assert somewhere
krajcevski
2014/08/05 20:55:05
Yes, that should be caught in SkTextureCompressor.
| |
1940 for (int j = 0; j < height; j += blockDimY) { | |
1941 dst -= blockDimY * dstRowBytes; | |
1942 SkColor *colorPtr = reinterpret_cast<SkColor*>(dst); | |
1943 for (int i = 0; i < width; i += blockDimX) { | |
robertphillips
2014/08/05 15:29:02
Should we just pass in data here (rather then data
krajcevski
2014/08/05 20:55:05
Done.
| |
1944 read_astc_block(&(data.fBlock), src); | |
1945 data.decode(); | |
1946 decompress_astc_block(reinterpret_cast<uint8_t*>(colorPtr + i), dstR owBytes, data); | |
robertphillips
2014/08/05 15:29:02
16?
krajcevski
2014/08/05 20:55:05
Done.
| |
1947 src += 16; | |
1948 } | |
1949 } | |
1950 } | |
1951 | |
288 } // SkTextureCompressor | 1952 } // SkTextureCompressor |
OLD | NEW |