| Index: runtime/vm/intermediate_language.cc
|
| diff --git a/runtime/vm/intermediate_language.cc b/runtime/vm/intermediate_language.cc
|
| index c564930ec7955da7bc676bedeb586feb5e91b0ff..118e6522785e4646c971aa157781351c378535af 100644
|
| --- a/runtime/vm/intermediate_language.cc
|
| +++ b/runtime/vm/intermediate_language.cc
|
| @@ -12,6 +12,7 @@
|
| #include "vm/flow_graph_builder.h"
|
| #include "vm/flow_graph_compiler.h"
|
| #include "vm/flow_graph_optimizer.h"
|
| +#include "vm/flow_graph_range_analysis.h"
|
| #include "vm/locations.h"
|
| #include "vm/object.h"
|
| #include "vm/object_store.h"
|
| @@ -2582,579 +2583,6 @@ void Environment::DeepCopyToOuter(Isolate* isolate, Instruction* instr) const {
|
| }
|
|
|
|
|
| -RangeBoundary RangeBoundary::FromDefinition(Definition* defn, int64_t offs) {
|
| - if (defn->IsConstant() && defn->AsConstant()->value().IsSmi()) {
|
| - return FromConstant(Smi::Cast(defn->AsConstant()->value()).Value() + offs);
|
| - }
|
| - return RangeBoundary(kSymbol, reinterpret_cast<intptr_t>(defn), offs);
|
| -}
|
| -
|
| -
|
| -RangeBoundary RangeBoundary::LowerBound() const {
|
| - if (IsInfinity()) {
|
| - return NegativeInfinity();
|
| - }
|
| - if (IsConstant()) return *this;
|
| - return Add(Range::ConstantMin(symbol()->range()),
|
| - RangeBoundary::FromConstant(offset_),
|
| - NegativeInfinity());
|
| -}
|
| -
|
| -
|
| -RangeBoundary RangeBoundary::UpperBound() const {
|
| - if (IsInfinity()) {
|
| - return PositiveInfinity();
|
| - }
|
| - if (IsConstant()) return *this;
|
| - return Add(Range::ConstantMax(symbol()->range()),
|
| - RangeBoundary::FromConstant(offset_),
|
| - PositiveInfinity());
|
| -}
|
| -
|
| -
|
| -RangeBoundary RangeBoundary::Add(const RangeBoundary& a,
|
| - const RangeBoundary& b,
|
| - const RangeBoundary& overflow) {
|
| - if (a.IsInfinity() || b.IsInfinity()) return overflow;
|
| -
|
| - ASSERT(a.IsConstant() && b.IsConstant());
|
| - if (Utils::WillAddOverflow(a.ConstantValue(), b.ConstantValue())) {
|
| - return overflow;
|
| - }
|
| -
|
| - int64_t result = a.ConstantValue() + b.ConstantValue();
|
| -
|
| - return RangeBoundary::FromConstant(result);
|
| -}
|
| -
|
| -
|
| -RangeBoundary RangeBoundary::Sub(const RangeBoundary& a,
|
| - const RangeBoundary& b,
|
| - const RangeBoundary& overflow) {
|
| - if (a.IsInfinity() || b.IsInfinity()) return overflow;
|
| - ASSERT(a.IsConstant() && b.IsConstant());
|
| - if (Utils::WillSubOverflow(a.ConstantValue(), b.ConstantValue())) {
|
| - return overflow;
|
| - }
|
| -
|
| - int64_t result = a.ConstantValue() - b.ConstantValue();
|
| -
|
| - return RangeBoundary::FromConstant(result);
|
| -}
|
| -
|
| -
|
| -bool RangeBoundary::SymbolicAdd(const RangeBoundary& a,
|
| - const RangeBoundary& b,
|
| - RangeBoundary* result) {
|
| - if (a.IsSymbol() && b.IsConstant()) {
|
| - if (Utils::WillAddOverflow(a.offset(), b.ConstantValue())) {
|
| - return false;
|
| - }
|
| -
|
| - const int64_t offset = a.offset() + b.ConstantValue();
|
| -
|
| - *result = RangeBoundary::FromDefinition(a.symbol(), offset);
|
| - return true;
|
| - } else if (b.IsSymbol() && a.IsConstant()) {
|
| - return SymbolicAdd(b, a, result);
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -bool RangeBoundary::SymbolicSub(const RangeBoundary& a,
|
| - const RangeBoundary& b,
|
| - RangeBoundary* result) {
|
| - if (a.IsSymbol() && b.IsConstant()) {
|
| - if (Utils::WillSubOverflow(a.offset(), b.ConstantValue())) {
|
| - return false;
|
| - }
|
| -
|
| - const int64_t offset = a.offset() - b.ConstantValue();
|
| -
|
| - *result = RangeBoundary::FromDefinition(a.symbol(), offset);
|
| - return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -static Definition* UnwrapConstraint(Definition* defn) {
|
| - while (defn->IsConstraint()) {
|
| - defn = defn->AsConstraint()->value()->definition();
|
| - }
|
| - return defn;
|
| -}
|
| -
|
| -
|
| -static bool AreEqualDefinitions(Definition* a, Definition* b) {
|
| - a = UnwrapConstraint(a);
|
| - b = UnwrapConstraint(b);
|
| - return (a == b) ||
|
| - (a->AllowsCSE() &&
|
| - a->Dependencies().IsNone() &&
|
| - b->AllowsCSE() &&
|
| - b->Dependencies().IsNone() &&
|
| - a->Equals(b));
|
| -}
|
| -
|
| -
|
| -// Returns true if two range boundaries refer to the same symbol.
|
| -static bool DependOnSameSymbol(const RangeBoundary& a, const RangeBoundary& b) {
|
| - return a.IsSymbol() && b.IsSymbol() &&
|
| - AreEqualDefinitions(a.symbol(), b.symbol());
|
| -}
|
| -
|
| -
|
| -bool RangeBoundary::Equals(const RangeBoundary& other) const {
|
| - if (IsConstant() && other.IsConstant()) {
|
| - return ConstantValue() == other.ConstantValue();
|
| - } else if (IsInfinity() && other.IsInfinity()) {
|
| - return kind() == other.kind();
|
| - } else if (IsSymbol() && other.IsSymbol()) {
|
| - return (offset() == other.offset()) && DependOnSameSymbol(*this, other);
|
| - } else if (IsUnknown() && other.IsUnknown()) {
|
| - return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -RangeBoundary RangeBoundary::Shl(const RangeBoundary& value_boundary,
|
| - int64_t shift_count,
|
| - const RangeBoundary& overflow) {
|
| - ASSERT(value_boundary.IsConstant());
|
| - ASSERT(shift_count >= 0);
|
| - int64_t limit = 64 - shift_count;
|
| - int64_t value = value_boundary.ConstantValue();
|
| -
|
| - if ((value == 0) ||
|
| - (shift_count == 0) ||
|
| - ((limit > 0) && Utils::IsInt(static_cast<int>(limit), value))) {
|
| - // Result stays in 64 bit range.
|
| - int64_t result = value << shift_count;
|
| - return RangeBoundary(result);
|
| - }
|
| -
|
| - return overflow;
|
| -}
|
| -
|
| -
|
| -static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a,
|
| - const RangeBoundary& overflow) {
|
| - if (a.IsConstant() || a.IsInfinity()) {
|
| - return a;
|
| - }
|
| -
|
| - int64_t offset = a.offset();
|
| - Definition* symbol = a.symbol();
|
| -
|
| - bool changed;
|
| - do {
|
| - changed = false;
|
| - if (symbol->IsConstraint()) {
|
| - symbol = symbol->AsConstraint()->value()->definition();
|
| - changed = true;
|
| - } else if (symbol->IsBinarySmiOp()) {
|
| - BinarySmiOpInstr* op = symbol->AsBinarySmiOp();
|
| - Definition* left = op->left()->definition();
|
| - Definition* right = op->right()->definition();
|
| - switch (op->op_kind()) {
|
| - case Token::kADD:
|
| - if (right->IsConstant()) {
|
| - int64_t rhs = Smi::Cast(right->AsConstant()->value()).Value();
|
| - if (Utils::WillAddOverflow(offset, rhs)) {
|
| - return overflow;
|
| - }
|
| - offset += rhs;
|
| - symbol = left;
|
| - changed = true;
|
| - } else if (left->IsConstant()) {
|
| - int64_t rhs = Smi::Cast(left->AsConstant()->value()).Value();
|
| - if (Utils::WillAddOverflow(offset, rhs)) {
|
| - return overflow;
|
| - }
|
| - offset += rhs;
|
| - symbol = right;
|
| - changed = true;
|
| - }
|
| - break;
|
| -
|
| - case Token::kSUB:
|
| - if (right->IsConstant()) {
|
| - int64_t rhs = Smi::Cast(right->AsConstant()->value()).Value();
|
| - if (Utils::WillSubOverflow(offset, rhs)) {
|
| - return overflow;
|
| - }
|
| - offset -= rhs;
|
| - symbol = left;
|
| - changed = true;
|
| - }
|
| - break;
|
| -
|
| - default:
|
| - break;
|
| - }
|
| - }
|
| - } while (changed);
|
| -
|
| - return RangeBoundary::FromDefinition(symbol, offset);
|
| -}
|
| -
|
| -
|
| -static bool CanonicalizeMaxBoundary(RangeBoundary* a) {
|
| - if (!a->IsSymbol()) return false;
|
| -
|
| - Range* range = a->symbol()->range();
|
| - if ((range == NULL) || !range->max().IsSymbol()) return false;
|
| -
|
| -
|
| - if (Utils::WillAddOverflow(range->max().offset(), a->offset())) {
|
| - *a = RangeBoundary::PositiveInfinity();
|
| - return true;
|
| - }
|
| -
|
| - const int64_t offset = range->max().offset() + a->offset();
|
| -
|
| -
|
| - *a = CanonicalizeBoundary(
|
| - RangeBoundary::FromDefinition(range->max().symbol(), offset),
|
| - RangeBoundary::PositiveInfinity());
|
| -
|
| - return true;
|
| -}
|
| -
|
| -
|
| -static bool CanonicalizeMinBoundary(RangeBoundary* a) {
|
| - if (!a->IsSymbol()) return false;
|
| -
|
| - Range* range = a->symbol()->range();
|
| - if ((range == NULL) || !range->min().IsSymbol()) return false;
|
| -
|
| - if (Utils::WillAddOverflow(range->min().offset(), a->offset())) {
|
| - *a = RangeBoundary::NegativeInfinity();
|
| - return true;
|
| - }
|
| -
|
| - const int64_t offset = range->min().offset() + a->offset();
|
| -
|
| - *a = CanonicalizeBoundary(
|
| - RangeBoundary::FromDefinition(range->min().symbol(), offset),
|
| - RangeBoundary::NegativeInfinity());
|
| -
|
| - return true;
|
| -}
|
| -
|
| -
|
| -RangeBoundary RangeBoundary::Min(RangeBoundary a, RangeBoundary b,
|
| - RangeSize size) {
|
| - ASSERT(!(a.IsNegativeInfinity() || b.IsNegativeInfinity()));
|
| - ASSERT(!a.IsUnknown() || !b.IsUnknown());
|
| - if (a.IsUnknown() && !b.IsUnknown()) {
|
| - return b;
|
| - }
|
| - if (!a.IsUnknown() && b.IsUnknown()) {
|
| - return a;
|
| - }
|
| - if (size == kRangeBoundarySmi) {
|
| - if (a.IsSmiMaximumOrAbove() && !b.IsSmiMaximumOrAbove()) {
|
| - return b;
|
| - }
|
| - if (!a.IsSmiMaximumOrAbove() && b.IsSmiMaximumOrAbove()) {
|
| - return a;
|
| - }
|
| - } else {
|
| - ASSERT(size == kRangeBoundaryInt64);
|
| - if (a.IsMaximumOrAbove() && !b.IsMaximumOrAbove()) {
|
| - return b;
|
| - }
|
| - if (!a.IsMaximumOrAbove() && b.IsMaximumOrAbove()) {
|
| - return a;
|
| - }
|
| - }
|
| -
|
| - if (a.Equals(b)) {
|
| - return b;
|
| - }
|
| -
|
| - {
|
| - RangeBoundary canonical_a =
|
| - CanonicalizeBoundary(a, RangeBoundary::PositiveInfinity());
|
| - RangeBoundary canonical_b =
|
| - CanonicalizeBoundary(b, RangeBoundary::PositiveInfinity());
|
| - do {
|
| - if (DependOnSameSymbol(canonical_a, canonical_b)) {
|
| - a = canonical_a;
|
| - b = canonical_b;
|
| - break;
|
| - }
|
| - } while (CanonicalizeMaxBoundary(&canonical_a) ||
|
| - CanonicalizeMaxBoundary(&canonical_b));
|
| - }
|
| -
|
| - if (DependOnSameSymbol(a, b)) {
|
| - return (a.offset() <= b.offset()) ? a : b;
|
| - }
|
| -
|
| - const int64_t min_a = a.UpperBound().Clamp(size).ConstantValue();
|
| - const int64_t min_b = b.UpperBound().Clamp(size).ConstantValue();
|
| -
|
| - return RangeBoundary::FromConstant(Utils::Minimum(min_a, min_b));
|
| -}
|
| -
|
| -
|
| -RangeBoundary RangeBoundary::Max(RangeBoundary a, RangeBoundary b,
|
| - RangeSize size) {
|
| - ASSERT(!(a.IsPositiveInfinity() || b.IsPositiveInfinity()));
|
| - ASSERT(!a.IsUnknown() || !b.IsUnknown());
|
| - if (a.IsUnknown() && !b.IsUnknown()) {
|
| - return b;
|
| - }
|
| - if (!a.IsUnknown() && b.IsUnknown()) {
|
| - return a;
|
| - }
|
| - if (size == kRangeBoundarySmi) {
|
| - if (a.IsSmiMinimumOrBelow() && !b.IsSmiMinimumOrBelow()) {
|
| - return b;
|
| - }
|
| - if (!a.IsSmiMinimumOrBelow() && b.IsSmiMinimumOrBelow()) {
|
| - return a;
|
| - }
|
| - } else {
|
| - ASSERT(size == kRangeBoundaryInt64);
|
| - if (a.IsMinimumOrBelow() && !b.IsMinimumOrBelow()) {
|
| - return b;
|
| - }
|
| - if (!a.IsMinimumOrBelow() && b.IsMinimumOrBelow()) {
|
| - return a;
|
| - }
|
| - }
|
| - if (a.Equals(b)) {
|
| - return b;
|
| - }
|
| -
|
| - {
|
| - RangeBoundary canonical_a =
|
| - CanonicalizeBoundary(a, RangeBoundary::NegativeInfinity());
|
| - RangeBoundary canonical_b =
|
| - CanonicalizeBoundary(b, RangeBoundary::NegativeInfinity());
|
| -
|
| - do {
|
| - if (DependOnSameSymbol(canonical_a, canonical_b)) {
|
| - a = canonical_a;
|
| - b = canonical_b;
|
| - break;
|
| - }
|
| - } while (CanonicalizeMinBoundary(&canonical_a) ||
|
| - CanonicalizeMinBoundary(&canonical_b));
|
| - }
|
| -
|
| - if (DependOnSameSymbol(a, b)) {
|
| - return (a.offset() <= b.offset()) ? b : a;
|
| - }
|
| -
|
| - const int64_t max_a = a.LowerBound().Clamp(size).ConstantValue();
|
| - const int64_t max_b = b.LowerBound().Clamp(size).ConstantValue();
|
| -
|
| - return RangeBoundary::FromConstant(Utils::Maximum(max_a, max_b));
|
| -}
|
| -
|
| -
|
| -int64_t RangeBoundary::ConstantValue() const {
|
| - ASSERT(IsConstant());
|
| - return value_;
|
| -}
|
| -
|
| -
|
| -void Definition::InferRange() {
|
| - if (Type()->ToCid() == kSmiCid) {
|
| - if (range_ == NULL) {
|
| - range_ = Range::UnknownSmi();
|
| - }
|
| - } else if (IsMintDefinition()) {
|
| - if (range_ == NULL) {
|
| - range_ = Range::Unknown();
|
| - }
|
| - } else {
|
| - // Only Smi and Mint supported.
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -void ConstantInstr::InferRange() {
|
| - if (value_.IsSmi()) {
|
| - if (range_ == NULL) {
|
| - int64_t value = Smi::Cast(value_).Value();
|
| - range_ = new Range(RangeBoundary::FromConstant(value),
|
| - RangeBoundary::FromConstant(value));
|
| - }
|
| - } else if (value_.IsMint()) {
|
| - if (range_ == NULL) {
|
| - int64_t value = Mint::Cast(value_).value();
|
| - range_ = new Range(RangeBoundary::FromConstant(value),
|
| - RangeBoundary::FromConstant(value));
|
| - }
|
| - } else {
|
| - // Only Smi and Mint supported.
|
| - UNREACHABLE();
|
| - }
|
| -}
|
| -
|
| -
|
| -void UnboxIntegerInstr::InferRange() {
|
| - if (range_ == NULL) {
|
| - Definition* unboxed = value()->definition();
|
| - ASSERT(unboxed != NULL);
|
| - Range* range = unboxed->range();
|
| - if (range == NULL) {
|
| - range_ = Range::Unknown();
|
| - return;
|
| - }
|
| - range_ = new Range(range->min(), range->max());
|
| - }
|
| -}
|
| -
|
| -
|
| -void ConstraintInstr::InferRange() {
|
| - Range* value_range = value()->definition()->range();
|
| -
|
| - // Only constraining smi values.
|
| - ASSERT(value()->IsSmiValue());
|
| -
|
| - RangeBoundary min;
|
| - RangeBoundary max;
|
| -
|
| - {
|
| - RangeBoundary value_min = (value_range == NULL) ?
|
| - RangeBoundary() : value_range->min();
|
| - RangeBoundary constraint_min = constraint()->min();
|
| - min = RangeBoundary::Max(value_min, constraint_min,
|
| - RangeBoundary::kRangeBoundarySmi);
|
| - }
|
| -
|
| - ASSERT(!min.IsUnknown());
|
| -
|
| - {
|
| - RangeBoundary value_max = (value_range == NULL) ?
|
| - RangeBoundary() : value_range->max();
|
| - RangeBoundary constraint_max = constraint()->max();
|
| - max = RangeBoundary::Min(value_max, constraint_max,
|
| - RangeBoundary::kRangeBoundarySmi);
|
| - }
|
| -
|
| - ASSERT(!max.IsUnknown());
|
| -
|
| - range_ = new Range(min, max);
|
| -
|
| - // Mark branches that generate unsatisfiable constraints as constant.
|
| - if (target() != NULL && range_->IsUnsatisfiable()) {
|
| - BranchInstr* branch =
|
| - target()->PredecessorAt(0)->last_instruction()->AsBranch();
|
| - if (target() == branch->true_successor()) {
|
| - // True unreachable.
|
| - if (FLAG_trace_constant_propagation) {
|
| - OS::Print("Range analysis: True unreachable (B%" Pd ")\n",
|
| - branch->true_successor()->block_id());
|
| - }
|
| - branch->set_constant_target(branch->false_successor());
|
| - } else {
|
| - ASSERT(target() == branch->false_successor());
|
| - // False unreachable.
|
| - if (FLAG_trace_constant_propagation) {
|
| - OS::Print("Range analysis: False unreachable (B%" Pd ")\n",
|
| - branch->false_successor()->block_id());
|
| - }
|
| - branch->set_constant_target(branch->true_successor());
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void LoadFieldInstr::InferRange() {
|
| - if ((range_ == NULL) &&
|
| - ((recognized_kind() == MethodRecognizer::kObjectArrayLength) ||
|
| - (recognized_kind() == MethodRecognizer::kImmutableArrayLength))) {
|
| - range_ = new Range(RangeBoundary::FromConstant(0),
|
| - RangeBoundary::FromConstant(Array::kMaxElements));
|
| - return;
|
| - }
|
| - if ((range_ == NULL) &&
|
| - (recognized_kind() == MethodRecognizer::kTypedDataLength)) {
|
| - range_ = new Range(RangeBoundary::FromConstant(0), RangeBoundary::MaxSmi());
|
| - return;
|
| - }
|
| - if ((range_ == NULL) &&
|
| - (recognized_kind() == MethodRecognizer::kStringBaseLength)) {
|
| - range_ = new Range(RangeBoundary::FromConstant(0),
|
| - RangeBoundary::FromConstant(String::kMaxElements));
|
| - return;
|
| - }
|
| - Definition::InferRange();
|
| -}
|
| -
|
| -
|
| -
|
| -void LoadIndexedInstr::InferRange() {
|
| - switch (class_id()) {
|
| - case kTypedDataInt8ArrayCid:
|
| - range_ = new Range(RangeBoundary::FromConstant(-128),
|
| - RangeBoundary::FromConstant(127));
|
| - break;
|
| - case kTypedDataUint8ArrayCid:
|
| - case kTypedDataUint8ClampedArrayCid:
|
| - case kExternalTypedDataUint8ArrayCid:
|
| - case kExternalTypedDataUint8ClampedArrayCid:
|
| - range_ = new Range(RangeBoundary::FromConstant(0),
|
| - RangeBoundary::FromConstant(255));
|
| - break;
|
| - case kTypedDataInt16ArrayCid:
|
| - range_ = new Range(RangeBoundary::FromConstant(-32768),
|
| - RangeBoundary::FromConstant(32767));
|
| - break;
|
| - case kTypedDataUint16ArrayCid:
|
| - range_ = new Range(RangeBoundary::FromConstant(0),
|
| - RangeBoundary::FromConstant(65535));
|
| - break;
|
| - case kTypedDataInt32ArrayCid:
|
| - if (Typed32BitIsSmi()) {
|
| - range_ = Range::UnknownSmi();
|
| - } else {
|
| - range_ = new Range(RangeBoundary::FromConstant(kMinInt32),
|
| - RangeBoundary::FromConstant(kMaxInt32));
|
| - }
|
| - break;
|
| - case kTypedDataUint32ArrayCid:
|
| - if (Typed32BitIsSmi()) {
|
| - range_ = Range::UnknownSmi();
|
| - } else {
|
| - range_ = new Range(RangeBoundary::FromConstant(0),
|
| - RangeBoundary::FromConstant(kMaxUint32));
|
| - }
|
| - break;
|
| - case kOneByteStringCid:
|
| - range_ = new Range(RangeBoundary::FromConstant(0),
|
| - RangeBoundary::FromConstant(0xFF));
|
| - break;
|
| - case kTwoByteStringCid:
|
| - range_ = new Range(RangeBoundary::FromConstant(0),
|
| - RangeBoundary::FromConstant(0xFFFF));
|
| - break;
|
| - default:
|
| - Definition::InferRange();
|
| - break;
|
| - }
|
| -}
|
| -
|
| -
|
| -void IfThenElseInstr::InferRange() {
|
| - const intptr_t min = Utils::Minimum(if_true_, if_false_);
|
| - const intptr_t max = Utils::Maximum(if_true_, if_false_);
|
| - range_ = new Range(RangeBoundary::FromConstant(min),
|
| - RangeBoundary::FromConstant(max));
|
| -}
|
| -
|
| -
|
| static bool BindsToSmiConstant(Value* value) {
|
| return value->BindsToConstant() && value->BoundConstant().IsSmi();
|
| }
|
| @@ -3246,46 +2674,6 @@ bool IfThenElseInstr::Supports(ComparisonInstr* comparison,
|
| }
|
|
|
|
|
| -void PhiInstr::InferRange() {
|
| - RangeBoundary new_min;
|
| - RangeBoundary new_max;
|
| -
|
| - ASSERT(Type()->ToCid() == kSmiCid);
|
| -
|
| - for (intptr_t i = 0; i < InputCount(); i++) {
|
| - Range* input_range = InputAt(i)->definition()->range();
|
| - if (input_range == NULL) {
|
| - range_ = Range::UnknownSmi();
|
| - return;
|
| - }
|
| -
|
| - if (new_min.IsUnknown()) {
|
| - new_min = Range::ConstantMin(input_range);
|
| - } else {
|
| - new_min = RangeBoundary::Min(new_min,
|
| - Range::ConstantMinSmi(input_range),
|
| - RangeBoundary::kRangeBoundarySmi);
|
| - }
|
| -
|
| - if (new_max.IsUnknown()) {
|
| - new_max = Range::ConstantMax(input_range);
|
| - } else {
|
| - new_max = RangeBoundary::Max(new_max,
|
| - Range::ConstantMaxSmi(input_range),
|
| - RangeBoundary::kRangeBoundarySmi);
|
| - }
|
| - }
|
| -
|
| - ASSERT(new_min.IsUnknown() == new_max.IsUnknown());
|
| - if (new_min.IsUnknown()) {
|
| - range_ = Range::UnknownSmi();
|
| - return;
|
| - }
|
| -
|
| - range_ = new Range(new_min, new_max);
|
| -}
|
| -
|
| -
|
| bool PhiInstr::IsRedundant() const {
|
| ASSERT(InputCount() > 1);
|
| Definition* first = InputAt(0)->definition();
|
| @@ -3297,543 +2685,11 @@ bool PhiInstr::IsRedundant() const {
|
| }
|
|
|
|
|
| -static bool IsArrayLength(Definition* defn) {
|
| - if (defn == NULL) {
|
| - return false;
|
| - }
|
| - LoadFieldInstr* load = defn->AsLoadField();
|
| - return (load != NULL) && load->IsImmutableLengthLoad();
|
| -}
|
| -
|
| -
|
| -void BinarySmiOpInstr::InferRange() {
|
| - // TODO(vegorov): canonicalize BinarySmiOp to always have constant on the
|
| - // right and a non-constant on the left.
|
| - Definition* left_defn = left()->definition();
|
| -
|
| - Range* left_range = left_defn->range();
|
| - Range* right_range = right()->definition()->range();
|
| -
|
| - if ((left_range == NULL) || (right_range == NULL)) {
|
| - range_ = Range::UnknownSmi();
|
| - return;
|
| - }
|
| -
|
| - Range* possible_range = Range::BinaryOp(op_kind(),
|
| - left_range,
|
| - right_range,
|
| - left_defn);
|
| -
|
| - if ((range_ == NULL) && (possible_range == NULL)) {
|
| - // Initialize.
|
| - range_ = Range::UnknownSmi();
|
| - return;
|
| - }
|
| -
|
| - if (possible_range == NULL) {
|
| - // Nothing new.
|
| - return;
|
| - }
|
| -
|
| - range_ = possible_range;
|
| -
|
| - ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown());
|
| - // Calculate overflowed status before clamping.
|
| - const bool overflowed = range_->min().LowerBound().OverflowedSmi() ||
|
| - range_->max().UpperBound().OverflowedSmi();
|
| - set_overflow(overflowed);
|
| -
|
| - // Clamp value to be within smi range.
|
| - range_->Clamp(RangeBoundary::kRangeBoundarySmi);
|
| -}
|
| -
|
| -
|
| -void BinaryMintOpInstr::InferRange() {
|
| - // TODO(vegorov): canonicalize BinaryMintOpInstr to always have constant on
|
| - // the right and a non-constant on the left.
|
| - Definition* left_defn = left()->definition();
|
| -
|
| - Range* left_range = left_defn->range();
|
| - Range* right_range = right()->definition()->range();
|
| -
|
| - if ((left_range == NULL) || (right_range == NULL)) {
|
| - range_ = Range::Unknown();
|
| - return;
|
| - }
|
| -
|
| - Range* possible_range = Range::BinaryOp(op_kind(),
|
| - left_range,
|
| - right_range,
|
| - left_defn);
|
| -
|
| - if ((range_ == NULL) && (possible_range == NULL)) {
|
| - // Initialize.
|
| - range_ = Range::Unknown();
|
| - return;
|
| - }
|
| -
|
| - if (possible_range == NULL) {
|
| - // Nothing new.
|
| - return;
|
| - }
|
| -
|
| - range_ = possible_range;
|
| -
|
| - ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown());
|
| -
|
| - // Calculate overflowed status before clamping.
|
| - const bool overflowed = range_->min().LowerBound().OverflowedMint() ||
|
| - range_->max().UpperBound().OverflowedMint();
|
| - set_can_overflow(overflowed);
|
| -
|
| - // Clamp value to be within mint range.
|
| - range_->Clamp(RangeBoundary::kRangeBoundaryInt64);
|
| -}
|
| -
|
| -
|
| -void ShiftMintOpInstr::InferRange() {
|
| - Definition* left_defn = left()->definition();
|
| -
|
| - Range* left_range = left_defn->range();
|
| - Range* right_range = right()->definition()->range();
|
| -
|
| - if ((left_range == NULL) || (right_range == NULL)) {
|
| - range_ = Range::Unknown();
|
| - return;
|
| - }
|
| -
|
| - Range* possible_range = Range::BinaryOp(op_kind(),
|
| - left_range,
|
| - right_range,
|
| - left_defn);
|
| -
|
| - if ((range_ == NULL) && (possible_range == NULL)) {
|
| - // Initialize.
|
| - range_ = Range::Unknown();
|
| - return;
|
| - }
|
| -
|
| - if (possible_range == NULL) {
|
| - // Nothing new.
|
| - return;
|
| - }
|
| -
|
| - range_ = possible_range;
|
| -
|
| - ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown());
|
| -
|
| - // Calculate overflowed status before clamping.
|
| - const bool overflowed = range_->min().LowerBound().OverflowedMint() ||
|
| - range_->max().UpperBound().OverflowedMint();
|
| - set_can_overflow(overflowed);
|
| -
|
| - // Clamp value to be within mint range.
|
| - range_->Clamp(RangeBoundary::kRangeBoundaryInt64);
|
| -}
|
| -
|
| -
|
| -void BoxIntegerInstr::InferRange() {
|
| - Range* input_range = value()->definition()->range();
|
| - if (input_range != NULL) {
|
| - bool is_smi = !input_range->min().LowerBound().OverflowedSmi() &&
|
| - !input_range->max().UpperBound().OverflowedSmi();
|
| - set_is_smi(is_smi);
|
| - // The output range is the same as the input range.
|
| - range_ = input_range;
|
| - }
|
| -}
|
| -
|
| -
|
| -bool Range::IsPositive() const {
|
| - if (min().IsNegativeInfinity()) {
|
| - return false;
|
| - }
|
| - if (min().LowerBound().ConstantValue() < 0) {
|
| - return false;
|
| - }
|
| - if (max().IsPositiveInfinity()) {
|
| - return true;
|
| - }
|
| - return max().UpperBound().ConstantValue() >= 0;
|
| -}
|
| -
|
| -
|
| -bool Range::OnlyLessThanOrEqualTo(int64_t val) const {
|
| - if (max().IsPositiveInfinity()) {
|
| - // Cannot be true.
|
| - return false;
|
| - }
|
| - if (max().UpperBound().ConstantValue() > val) {
|
| - // Not true.
|
| - return false;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -
|
| -bool Range::OnlyGreaterThanOrEqualTo(int64_t val) const {
|
| - if (min().IsNegativeInfinity()) {
|
| - return false;
|
| - }
|
| - if (min().LowerBound().ConstantValue() < val) {
|
| - return false;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -
|
| -// Inclusive.
|
| -bool Range::IsWithin(int64_t min_int, int64_t max_int) const {
|
| - RangeBoundary lower_min = min().LowerBound();
|
| - if (lower_min.IsNegativeInfinity() || (lower_min.ConstantValue() < min_int)) {
|
| - return false;
|
| - }
|
| - RangeBoundary upper_max = max().UpperBound();
|
| - if (upper_max.IsPositiveInfinity() || (upper_max.ConstantValue() > max_int)) {
|
| - return false;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -
|
| -bool Range::Overlaps(int64_t min_int, int64_t max_int) const {
|
| - RangeBoundary lower = min().LowerBound();
|
| - RangeBoundary upper = max().UpperBound();
|
| - const int64_t this_min = lower.IsNegativeInfinity() ?
|
| - RangeBoundary::kMin : lower.ConstantValue();
|
| - const int64_t this_max = upper.IsPositiveInfinity() ?
|
| - RangeBoundary::kMax : upper.ConstantValue();
|
| - if ((this_min <= min_int) && (min_int <= this_max)) return true;
|
| - if ((this_min <= max_int) && (max_int <= this_max)) return true;
|
| - if ((min_int < this_min) && (max_int > this_max)) return true;
|
| - return false;
|
| -}
|
| -
|
| -
|
| -bool Range::IsUnsatisfiable() const {
|
| - // Infinity case: [+inf, ...] || [..., -inf]
|
| - if (min().IsPositiveInfinity() || max().IsNegativeInfinity()) {
|
| - return true;
|
| - }
|
| - // Constant case: For example [0, -1].
|
| - if (Range::ConstantMin(this).ConstantValue() >
|
| - Range::ConstantMax(this).ConstantValue()) {
|
| - return true;
|
| - }
|
| - // Symbol case: For example [v+1, v].
|
| - if (DependOnSameSymbol(min(), max()) && min().offset() > max().offset()) {
|
| - return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -void Range::Clamp(RangeBoundary::RangeSize size) {
|
| - min_ = min_.Clamp(size);
|
| - max_ = max_.Clamp(size);
|
| -}
|
| -
|
| -
|
| -void Range::Shl(const Range* left,
|
| - const Range* right,
|
| - RangeBoundary* result_min,
|
| - RangeBoundary* result_max) {
|
| - ASSERT(left != NULL);
|
| - ASSERT(right != NULL);
|
| - ASSERT(result_min != NULL);
|
| - ASSERT(result_max != NULL);
|
| - RangeBoundary left_max = Range::ConstantMax(left);
|
| - RangeBoundary left_min = Range::ConstantMin(left);
|
| - // A negative shift count always deoptimizes (and throws), so the minimum
|
| - // shift count is zero.
|
| - int64_t right_max = Utils::Maximum(Range::ConstantMax(right).ConstantValue(),
|
| - static_cast<int64_t>(0));
|
| - int64_t right_min = Utils::Maximum(Range::ConstantMin(right).ConstantValue(),
|
| - static_cast<int64_t>(0));
|
| -
|
| - *result_min = RangeBoundary::Shl(
|
| - left_min,
|
| - left_min.ConstantValue() > 0 ? right_min : right_max,
|
| - left_min.ConstantValue() > 0
|
| - ? RangeBoundary::PositiveInfinity()
|
| - : RangeBoundary::NegativeInfinity());
|
| -
|
| - *result_max = RangeBoundary::Shl(
|
| - left_max,
|
| - left_max.ConstantValue() > 0 ? right_max : right_min,
|
| - left_max.ConstantValue() > 0
|
| - ? RangeBoundary::PositiveInfinity()
|
| - : RangeBoundary::NegativeInfinity());
|
| -}
|
| -
|
| -
|
| -void Range::Shr(const Range* left,
|
| - const Range* right,
|
| - RangeBoundary* result_min,
|
| - RangeBoundary* result_max) {
|
| - RangeBoundary left_max = Range::ConstantMax(left);
|
| - RangeBoundary left_min = Range::ConstantMin(left);
|
| - // A negative shift count always deoptimizes (and throws), so the minimum
|
| - // shift count is zero.
|
| - int64_t right_max = Utils::Maximum(Range::ConstantMax(right).ConstantValue(),
|
| - static_cast<int64_t>(0));
|
| - int64_t right_min = Utils::Maximum(Range::ConstantMin(right).ConstantValue(),
|
| - static_cast<int64_t>(0));
|
| -
|
| - *result_min = RangeBoundary::Shr(
|
| - left_min,
|
| - left_min.ConstantValue() > 0 ? right_max : right_min);
|
| -
|
| - *result_max = RangeBoundary::Shr(
|
| - left_max,
|
| - left_max.ConstantValue() > 0 ? right_min : right_max);
|
| -}
|
| -
|
| -
|
| -bool Range::And(const Range* left_range,
|
| - const Range* right_range,
|
| - RangeBoundary* result_min,
|
| - RangeBoundary* result_max) {
|
| - ASSERT(left_range != NULL);
|
| - ASSERT(right_range != NULL);
|
| - ASSERT(result_min != NULL);
|
| - ASSERT(result_max != NULL);
|
| -
|
| - if (Range::ConstantMin(right_range).ConstantValue() >= 0) {
|
| - *result_min = RangeBoundary::FromConstant(0);
|
| - *result_max = Range::ConstantMax(right_range);
|
| - return true;
|
| - }
|
| -
|
| - if (Range::ConstantMin(left_range).ConstantValue() >= 0) {
|
| - *result_min = RangeBoundary::FromConstant(0);
|
| - *result_max = Range::ConstantMax(left_range);
|
| - return true;
|
| - }
|
| -
|
| - return false;
|
| -}
|
| -
|
| -
|
| -void Range::Add(const Range* left_range,
|
| - const Range* right_range,
|
| - RangeBoundary* result_min,
|
| - RangeBoundary* result_max,
|
| - Definition* left_defn) {
|
| - ASSERT(left_range != NULL);
|
| - ASSERT(right_range != NULL);
|
| - ASSERT(result_min != NULL);
|
| - ASSERT(result_max != NULL);
|
| -
|
| - RangeBoundary left_min =
|
| - IsArrayLength(left_defn) ?
|
| - RangeBoundary::FromDefinition(left_defn) : left_range->min();
|
| -
|
| - RangeBoundary left_max =
|
| - IsArrayLength(left_defn) ?
|
| - RangeBoundary::FromDefinition(left_defn) : left_range->max();
|
| -
|
| - if (!RangeBoundary::SymbolicAdd(left_min, right_range->min(), result_min)) {
|
| - *result_min = RangeBoundary::Add(left_range->min().LowerBound(),
|
| - right_range->min().LowerBound(),
|
| - RangeBoundary::NegativeInfinity());
|
| - }
|
| - if (!RangeBoundary::SymbolicAdd(left_max, right_range->max(), result_max)) {
|
| - *result_max = RangeBoundary::Add(right_range->max().UpperBound(),
|
| - left_range->max().UpperBound(),
|
| - RangeBoundary::PositiveInfinity());
|
| - }
|
| -}
|
| -
|
| -
|
| -void Range::Sub(const Range* left_range,
|
| - const Range* right_range,
|
| - RangeBoundary* result_min,
|
| - RangeBoundary* result_max,
|
| - Definition* left_defn) {
|
| - ASSERT(left_range != NULL);
|
| - ASSERT(right_range != NULL);
|
| - ASSERT(result_min != NULL);
|
| - ASSERT(result_max != NULL);
|
| -
|
| - RangeBoundary left_min =
|
| - IsArrayLength(left_defn) ?
|
| - RangeBoundary::FromDefinition(left_defn) : left_range->min();
|
| -
|
| - RangeBoundary left_max =
|
| - IsArrayLength(left_defn) ?
|
| - RangeBoundary::FromDefinition(left_defn) : left_range->max();
|
| -
|
| - if (!RangeBoundary::SymbolicSub(left_min, right_range->max(), result_min)) {
|
| - *result_min = RangeBoundary::Sub(left_range->min().LowerBound(),
|
| - right_range->max().UpperBound(),
|
| - RangeBoundary::NegativeInfinity());
|
| - }
|
| - if (!RangeBoundary::SymbolicSub(left_max, right_range->min(), result_max)) {
|
| - *result_max = RangeBoundary::Sub(left_range->max().UpperBound(),
|
| - right_range->min().LowerBound(),
|
| - RangeBoundary::PositiveInfinity());
|
| - }
|
| -}
|
| -
|
| -
|
| -bool Range::Mul(const Range* left_range,
|
| - const Range* right_range,
|
| - RangeBoundary* result_min,
|
| - RangeBoundary* result_max) {
|
| - ASSERT(left_range != NULL);
|
| - ASSERT(right_range != NULL);
|
| - ASSERT(result_min != NULL);
|
| - ASSERT(result_max != NULL);
|
| -
|
| - const int64_t left_max = ConstantAbsMax(left_range);
|
| - const int64_t right_max = ConstantAbsMax(right_range);
|
| - if ((left_max <= -kSmiMin) && (right_max <= -kSmiMin) &&
|
| - ((left_max == 0) || (right_max <= kMaxInt64 / left_max))) {
|
| - // Product of left and right max values stays in 64 bit range.
|
| - const int64_t mul_max = left_max * right_max;
|
| - if (Smi::IsValid(mul_max) && Smi::IsValid(-mul_max)) {
|
| - const int64_t r_min =
|
| - OnlyPositiveOrZero(*left_range, *right_range) ? 0 : -mul_max;
|
| - *result_min = RangeBoundary::FromConstant(r_min);
|
| - const int64_t r_max =
|
| - OnlyNegativeOrZero(*left_range, *right_range) ? 0 : mul_max;
|
| - *result_max = RangeBoundary::FromConstant(r_max);
|
| - return true;
|
| - }
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -
|
| -// Both the a and b ranges are >= 0.
|
| -bool Range::OnlyPositiveOrZero(const Range& a, const Range& b) {
|
| - return a.OnlyGreaterThanOrEqualTo(0) && b.OnlyGreaterThanOrEqualTo(0);
|
| -}
|
| -
|
| -
|
| -// Both the a and b ranges are <= 0.
|
| -bool Range::OnlyNegativeOrZero(const Range& a, const Range& b) {
|
| - return a.OnlyLessThanOrEqualTo(0) && b.OnlyLessThanOrEqualTo(0);
|
| -}
|
| -
|
| -
|
| -// Return the maximum absolute value included in range.
|
| -int64_t Range::ConstantAbsMax(const Range* range) {
|
| - if (range == NULL) {
|
| - return RangeBoundary::kMax;
|
| - }
|
| - const int64_t abs_min = Utils::Abs(Range::ConstantMin(range).ConstantValue());
|
| - const int64_t abs_max = Utils::Abs(Range::ConstantMax(range).ConstantValue());
|
| - return Utils::Maximum(abs_min, abs_max);
|
| -}
|
| -
|
| -
|
| -Range* Range::BinaryOp(const Token::Kind op,
|
| - const Range* left_range,
|
| - const Range* right_range,
|
| - Definition* left_defn) {
|
| - ASSERT(left_range != NULL);
|
| - ASSERT(right_range != NULL);
|
| -
|
| - // Both left and right ranges are finite.
|
| - ASSERT(left_range->IsFinite());
|
| - ASSERT(right_range->IsFinite());
|
| -
|
| - RangeBoundary min;
|
| - RangeBoundary max;
|
| - ASSERT(min.IsUnknown() && max.IsUnknown());
|
| -
|
| - switch (op) {
|
| - case Token::kADD:
|
| - Range::Add(left_range, right_range, &min, &max, left_defn);
|
| - break;
|
| - case Token::kSUB:
|
| - Range::Sub(left_range, right_range, &min, &max, left_defn);
|
| - break;
|
| - case Token::kMUL: {
|
| - if (!Range::Mul(left_range, right_range, &min, &max)) {
|
| - return NULL;
|
| - }
|
| - break;
|
| - }
|
| - case Token::kSHL: {
|
| - Range::Shl(left_range, right_range, &min, &max);
|
| - break;
|
| - }
|
| - case Token::kSHR: {
|
| - Range::Shr(left_range, right_range, &min, &max);
|
| - break;
|
| - }
|
| - case Token::kBIT_AND:
|
| - if (!Range::And(left_range, right_range, &min, &max)) {
|
| - return NULL;
|
| - }
|
| - break;
|
| - default:
|
| - return NULL;
|
| - break;
|
| - }
|
| -
|
| - ASSERT(!min.IsUnknown() && !max.IsUnknown());
|
| -
|
| - return new Range(min, max);
|
| -}
|
| -
|
| -
|
| bool CheckArrayBoundInstr::IsFixedLengthArrayType(intptr_t cid) {
|
| return LoadFieldInstr::IsFixedLengthArrayCid(cid);
|
| }
|
|
|
|
|
| -bool CheckArrayBoundInstr::IsRedundant(RangeBoundary length) {
|
| - Range* index_range = index()->definition()->range();
|
| -
|
| - // Range of the index is unknown can't decide if the check is redundant.
|
| - if (index_range == NULL) {
|
| - return false;
|
| - }
|
| -
|
| - // Range of the index is not positive. Check can't be redundant.
|
| - if (Range::ConstantMinSmi(index_range).ConstantValue() < 0) {
|
| - return false;
|
| - }
|
| -
|
| - RangeBoundary max = CanonicalizeBoundary(index_range->max(),
|
| - RangeBoundary::PositiveInfinity());
|
| -
|
| - if (max.OverflowedSmi()) {
|
| - return false;
|
| - }
|
| -
|
| -
|
| - RangeBoundary max_upper = max.UpperBound();
|
| - RangeBoundary length_lower = length.LowerBound();
|
| -
|
| - if (max_upper.OverflowedSmi() || length_lower.OverflowedSmi()) {
|
| - return false;
|
| - }
|
| -
|
| - // Try to compare constant boundaries.
|
| - if (max_upper.ConstantValue() < length_lower.ConstantValue()) {
|
| - return true;
|
| - }
|
| -
|
| - length = CanonicalizeBoundary(length, RangeBoundary::PositiveInfinity());
|
| - if (length.OverflowedSmi()) {
|
| - return false;
|
| - }
|
| -
|
| - // Try symbolic comparison.
|
| - do {
|
| - if (DependOnSameSymbol(max, length)) return max.offset() < length.offset();
|
| - } while (CanonicalizeMaxBoundary(&max) || CanonicalizeMinBoundary(&length));
|
| -
|
| - // Failed to prove that maximum is bounded with array length.
|
| - return false;
|
| -}
|
| -
|
| -
|
| Instruction* CheckArrayBoundInstr::Canonicalize(FlowGraph* flow_graph) {
|
| return IsRedundant(RangeBoundary::FromDefinition(length()->definition())) ?
|
| NULL : this;
|
|
|