OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
| 2 // for details. All rights reserved. Use of this source code is governed by a |
| 3 // BSD-style license that can be found in the LICENSE file. |
| 4 |
| 5 #include "vm/flow_graph_range_analysis.h" |
| 6 |
| 7 #include "vm/bit_vector.h" |
| 8 #include "vm/il_printer.h" |
| 9 |
| 10 namespace dart { |
| 11 |
| 12 DEFINE_FLAG(bool, array_bounds_check_elimination, true, |
| 13 "Eliminate redundant bounds checks."); |
| 14 DEFINE_FLAG(bool, trace_range_analysis, false, "Trace range analysis progress"); |
| 15 DEFINE_FLAG(bool, trace_integer_ir_selection, false, |
| 16 "Print integer IR selection optimization pass."); |
| 17 DECLARE_FLAG(bool, trace_constant_propagation); |
| 18 |
| 19 // Quick access to the locally defined isolate() method. |
| 20 #define I (isolate()) |
| 21 |
| 22 void RangeAnalysis::Analyze() { |
| 23 CollectValues(); |
| 24 InsertConstraints(); |
| 25 InferRanges(); |
| 26 IntegerInstructionSelector iis(flow_graph_); |
| 27 iis.Select(); |
| 28 RemoveConstraints(); |
| 29 } |
| 30 |
| 31 |
| 32 void RangeAnalysis::CollectValues() { |
| 33 const GrowableArray<Definition*>& initial = |
| 34 *flow_graph_->graph_entry()->initial_definitions(); |
| 35 for (intptr_t i = 0; i < initial.length(); ++i) { |
| 36 Definition* current = initial[i]; |
| 37 if (current->Type()->ToCid() == kSmiCid) { |
| 38 values_.Add(current); |
| 39 } else if (current->IsMintDefinition()) { |
| 40 values_.Add(current); |
| 41 } |
| 42 } |
| 43 |
| 44 for (BlockIterator block_it = flow_graph_->reverse_postorder_iterator(); |
| 45 !block_it.Done(); |
| 46 block_it.Advance()) { |
| 47 BlockEntryInstr* block = block_it.Current(); |
| 48 |
| 49 |
| 50 if (block->IsGraphEntry() || block->IsCatchBlockEntry()) { |
| 51 const GrowableArray<Definition*>& initial = block->IsGraphEntry() |
| 52 ? *block->AsGraphEntry()->initial_definitions() |
| 53 : *block->AsCatchBlockEntry()->initial_definitions(); |
| 54 for (intptr_t i = 0; i < initial.length(); ++i) { |
| 55 Definition* current = initial[i]; |
| 56 if (current->Type()->ToCid() == kSmiCid) { |
| 57 values_.Add(current); |
| 58 } else if (current->IsMintDefinition()) { |
| 59 values_.Add(current); |
| 60 } |
| 61 } |
| 62 } |
| 63 |
| 64 JoinEntryInstr* join = block->AsJoinEntry(); |
| 65 if (join != NULL) { |
| 66 for (PhiIterator phi_it(join); !phi_it.Done(); phi_it.Advance()) { |
| 67 PhiInstr* current = phi_it.Current(); |
| 68 if (current->Type()->ToCid() == kSmiCid) { |
| 69 values_.Add(current); |
| 70 } |
| 71 } |
| 72 } |
| 73 |
| 74 for (ForwardInstructionIterator instr_it(block); |
| 75 !instr_it.Done(); |
| 76 instr_it.Advance()) { |
| 77 Instruction* current = instr_it.Current(); |
| 78 Definition* defn = current->AsDefinition(); |
| 79 if (defn != NULL) { |
| 80 if ((defn->Type()->ToCid() == kSmiCid) && |
| 81 (defn->ssa_temp_index() != -1)) { |
| 82 values_.Add(defn); |
| 83 } else if ((defn->IsMintDefinition()) && |
| 84 (defn->ssa_temp_index() != -1)) { |
| 85 values_.Add(defn); |
| 86 } |
| 87 } else if (current->IsCheckSmi()) { |
| 88 smi_checks_.Add(current->AsCheckSmi()); |
| 89 } |
| 90 } |
| 91 } |
| 92 } |
| 93 |
| 94 |
| 95 // Returns true if use is dominated by the given instruction. |
| 96 // Note: uses that occur at instruction itself are not dominated by it. |
| 97 static bool IsDominatedUse(Instruction* dom, Value* use) { |
| 98 BlockEntryInstr* dom_block = dom->GetBlock(); |
| 99 |
| 100 Instruction* instr = use->instruction(); |
| 101 |
| 102 PhiInstr* phi = instr->AsPhi(); |
| 103 if (phi != NULL) { |
| 104 return dom_block->Dominates(phi->block()->PredecessorAt(use->use_index())); |
| 105 } |
| 106 |
| 107 BlockEntryInstr* use_block = instr->GetBlock(); |
| 108 if (use_block == dom_block) { |
| 109 // Fast path for the case of block entry. |
| 110 if (dom_block == dom) return true; |
| 111 |
| 112 for (Instruction* curr = dom->next(); curr != NULL; curr = curr->next()) { |
| 113 if (curr == instr) return true; |
| 114 } |
| 115 |
| 116 return false; |
| 117 } |
| 118 |
| 119 return dom_block->Dominates(use_block); |
| 120 } |
| 121 |
| 122 |
| 123 void RangeAnalysis::RenameDominatedUses(Definition* def, |
| 124 Instruction* dom, |
| 125 Definition* other) { |
| 126 for (Value::Iterator it(def->input_use_list()); |
| 127 !it.Done(); |
| 128 it.Advance()) { |
| 129 Value* use = it.Current(); |
| 130 |
| 131 // Skip dead phis. |
| 132 PhiInstr* phi = use->instruction()->AsPhi(); |
| 133 ASSERT((phi == NULL) || phi->is_alive()); |
| 134 if (IsDominatedUse(dom, use)) { |
| 135 use->BindTo(other); |
| 136 } |
| 137 } |
| 138 } |
| 139 |
| 140 |
| 141 // For a comparison operation return an operation for the equivalent flipped |
| 142 // comparison: a (op) b === b (op') a. |
| 143 static Token::Kind FlipComparison(Token::Kind op) { |
| 144 switch (op) { |
| 145 case Token::kEQ: return Token::kEQ; |
| 146 case Token::kNE: return Token::kNE; |
| 147 case Token::kLT: return Token::kGT; |
| 148 case Token::kGT: return Token::kLT; |
| 149 case Token::kLTE: return Token::kGTE; |
| 150 case Token::kGTE: return Token::kLTE; |
| 151 default: |
| 152 UNREACHABLE(); |
| 153 return Token::kILLEGAL; |
| 154 } |
| 155 } |
| 156 |
| 157 |
| 158 // Given a boundary (right operand) and a comparison operation return |
| 159 // a symbolic range constraint for the left operand of the comparison assuming |
| 160 // that it evaluated to true. |
| 161 // For example for the comparison a < b symbol a is constrained with range |
| 162 // [Smi::kMinValue, b - 1]. |
| 163 Range* RangeAnalysis::ConstraintRange(Token::Kind op, Definition* boundary) { |
| 164 switch (op) { |
| 165 case Token::kEQ: |
| 166 return new(I) Range(RangeBoundary::FromDefinition(boundary), |
| 167 RangeBoundary::FromDefinition(boundary)); |
| 168 case Token::kNE: |
| 169 return Range::Unknown(); |
| 170 case Token::kLT: |
| 171 return new(I) Range(RangeBoundary::MinSmi(), |
| 172 RangeBoundary::FromDefinition(boundary, -1)); |
| 173 case Token::kGT: |
| 174 return new(I) Range(RangeBoundary::FromDefinition(boundary, 1), |
| 175 RangeBoundary::MaxSmi()); |
| 176 case Token::kLTE: |
| 177 return new(I) Range(RangeBoundary::MinSmi(), |
| 178 RangeBoundary::FromDefinition(boundary)); |
| 179 case Token::kGTE: |
| 180 return new(I) Range(RangeBoundary::FromDefinition(boundary), |
| 181 RangeBoundary::MaxSmi()); |
| 182 default: |
| 183 UNREACHABLE(); |
| 184 return Range::Unknown(); |
| 185 } |
| 186 } |
| 187 |
| 188 |
| 189 ConstraintInstr* RangeAnalysis::InsertConstraintFor(Definition* defn, |
| 190 Range* constraint_range, |
| 191 Instruction* after) { |
| 192 // No need to constrain constants. |
| 193 if (defn->IsConstant()) return NULL; |
| 194 |
| 195 ConstraintInstr* constraint = new(I) ConstraintInstr( |
| 196 new(I) Value(defn), constraint_range); |
| 197 flow_graph_->InsertAfter(after, constraint, NULL, FlowGraph::kValue); |
| 198 RenameDominatedUses(defn, constraint, constraint); |
| 199 constraints_.Add(constraint); |
| 200 return constraint; |
| 201 } |
| 202 |
| 203 |
| 204 void RangeAnalysis::ConstrainValueAfterBranch(Definition* defn, Value* use) { |
| 205 BranchInstr* branch = use->instruction()->AsBranch(); |
| 206 RelationalOpInstr* rel_op = branch->comparison()->AsRelationalOp(); |
| 207 if ((rel_op != NULL) && (rel_op->operation_cid() == kSmiCid)) { |
| 208 // Found comparison of two smis. Constrain defn at true and false |
| 209 // successors using the other operand as a boundary. |
| 210 Definition* boundary; |
| 211 Token::Kind op_kind; |
| 212 if (use->use_index() == 0) { // Left operand. |
| 213 boundary = rel_op->InputAt(1)->definition(); |
| 214 op_kind = rel_op->kind(); |
| 215 } else { |
| 216 ASSERT(use->use_index() == 1); // Right operand. |
| 217 boundary = rel_op->InputAt(0)->definition(); |
| 218 // InsertConstraintFor assumes that defn is left operand of a |
| 219 // comparison if it is right operand flip the comparison. |
| 220 op_kind = FlipComparison(rel_op->kind()); |
| 221 } |
| 222 |
| 223 // Constrain definition at the true successor. |
| 224 ConstraintInstr* true_constraint = |
| 225 InsertConstraintFor(defn, |
| 226 ConstraintRange(op_kind, boundary), |
| 227 branch->true_successor()); |
| 228 // Mark true_constraint an artificial use of boundary. This ensures |
| 229 // that constraint's range is recalculated if boundary's range changes. |
| 230 if (true_constraint != NULL) { |
| 231 true_constraint->AddDependency(boundary); |
| 232 true_constraint->set_target(branch->true_successor()); |
| 233 } |
| 234 |
| 235 // Constrain definition with a negated condition at the false successor. |
| 236 ConstraintInstr* false_constraint = |
| 237 InsertConstraintFor( |
| 238 defn, |
| 239 ConstraintRange(Token::NegateComparison(op_kind), boundary), |
| 240 branch->false_successor()); |
| 241 // Mark false_constraint an artificial use of boundary. This ensures |
| 242 // that constraint's range is recalculated if boundary's range changes. |
| 243 if (false_constraint != NULL) { |
| 244 false_constraint->AddDependency(boundary); |
| 245 false_constraint->set_target(branch->false_successor()); |
| 246 } |
| 247 } |
| 248 } |
| 249 |
| 250 |
| 251 void RangeAnalysis::InsertConstraintsFor(Definition* defn) { |
| 252 for (Value* use = defn->input_use_list(); |
| 253 use != NULL; |
| 254 use = use->next_use()) { |
| 255 if (use->instruction()->IsBranch()) { |
| 256 ConstrainValueAfterBranch(defn, use); |
| 257 } else if (use->instruction()->IsCheckArrayBound()) { |
| 258 ConstrainValueAfterCheckArrayBound( |
| 259 defn, |
| 260 use->instruction()->AsCheckArrayBound(), |
| 261 use->use_index()); |
| 262 } |
| 263 } |
| 264 } |
| 265 |
| 266 |
| 267 void RangeAnalysis::ConstrainValueAfterCheckArrayBound( |
| 268 Definition* defn, CheckArrayBoundInstr* check, intptr_t use_index) { |
| 269 Range* constraint_range = NULL; |
| 270 if (use_index == CheckArrayBoundInstr::kIndexPos) { |
| 271 Definition* length = check->length()->definition(); |
| 272 constraint_range = new(I) Range( |
| 273 RangeBoundary::FromConstant(0), |
| 274 RangeBoundary::FromDefinition(length, -1)); |
| 275 } else { |
| 276 ASSERT(use_index == CheckArrayBoundInstr::kLengthPos); |
| 277 Definition* index = check->index()->definition(); |
| 278 constraint_range = new(I) Range( |
| 279 RangeBoundary::FromDefinition(index, 1), |
| 280 RangeBoundary::MaxSmi()); |
| 281 } |
| 282 InsertConstraintFor(defn, constraint_range, check); |
| 283 } |
| 284 |
| 285 |
| 286 void RangeAnalysis::InsertConstraints() { |
| 287 for (intptr_t i = 0; i < smi_checks_.length(); i++) { |
| 288 CheckSmiInstr* check = smi_checks_[i]; |
| 289 ConstraintInstr* constraint = |
| 290 InsertConstraintFor(check->value()->definition(), |
| 291 Range::UnknownSmi(), |
| 292 check); |
| 293 if (constraint == NULL) { |
| 294 // No constraint was needed. |
| 295 continue; |
| 296 } |
| 297 // Mark the constraint's value's reaching type as smi. |
| 298 CompileType* smi_compile_type = |
| 299 ZoneCompileType::Wrap(CompileType::FromCid(kSmiCid)); |
| 300 constraint->value()->SetReachingType(smi_compile_type); |
| 301 } |
| 302 |
| 303 for (intptr_t i = 0; i < values_.length(); i++) { |
| 304 InsertConstraintsFor(values_[i]); |
| 305 } |
| 306 |
| 307 for (intptr_t i = 0; i < constraints_.length(); i++) { |
| 308 InsertConstraintsFor(constraints_[i]); |
| 309 } |
| 310 } |
| 311 |
| 312 |
| 313 void RangeAnalysis::ResetWorklist() { |
| 314 if (marked_defns_ == NULL) { |
| 315 marked_defns_ = new(I) BitVector(flow_graph_->current_ssa_temp_index()); |
| 316 } else { |
| 317 marked_defns_->Clear(); |
| 318 } |
| 319 worklist_.Clear(); |
| 320 } |
| 321 |
| 322 |
| 323 void RangeAnalysis::MarkDefinition(Definition* defn) { |
| 324 // Unwrap constrained value. |
| 325 while (defn->IsConstraint()) { |
| 326 defn = defn->AsConstraint()->value()->definition(); |
| 327 } |
| 328 |
| 329 if (!marked_defns_->Contains(defn->ssa_temp_index())) { |
| 330 worklist_.Add(defn); |
| 331 marked_defns_->Add(defn->ssa_temp_index()); |
| 332 } |
| 333 } |
| 334 |
| 335 |
| 336 RangeAnalysis::Direction RangeAnalysis::ToDirection(Value* val) { |
| 337 if (val->BindsToConstant()) { |
| 338 return (Smi::Cast(val->BoundConstant()).Value() >= 0) ? kPositive |
| 339 : kNegative; |
| 340 } else if (val->definition()->range() != NULL) { |
| 341 Range* range = val->definition()->range(); |
| 342 if (Range::ConstantMin(range).ConstantValue() >= 0) { |
| 343 return kPositive; |
| 344 } else if (Range::ConstantMax(range).ConstantValue() <= 0) { |
| 345 return kNegative; |
| 346 } |
| 347 } |
| 348 return kUnknown; |
| 349 } |
| 350 |
| 351 |
| 352 Range* RangeAnalysis::InferInductionVariableRange(JoinEntryInstr* loop_header, |
| 353 PhiInstr* var) { |
| 354 BitVector* loop_info = loop_header->loop_info(); |
| 355 |
| 356 Definition* initial_value = NULL; |
| 357 Direction direction = kUnknown; |
| 358 |
| 359 ResetWorklist(); |
| 360 MarkDefinition(var); |
| 361 while (!worklist_.is_empty()) { |
| 362 Definition* defn = worklist_.RemoveLast(); |
| 363 |
| 364 if (defn->IsPhi()) { |
| 365 PhiInstr* phi = defn->AsPhi(); |
| 366 for (intptr_t i = 0; i < phi->InputCount(); i++) { |
| 367 Definition* defn = phi->InputAt(i)->definition(); |
| 368 |
| 369 if (!loop_info->Contains(defn->GetBlock()->preorder_number())) { |
| 370 // The value is coming from outside of the loop. |
| 371 if (initial_value == NULL) { |
| 372 initial_value = defn; |
| 373 continue; |
| 374 } else if (initial_value == defn) { |
| 375 continue; |
| 376 } else { |
| 377 return NULL; |
| 378 } |
| 379 } |
| 380 |
| 381 MarkDefinition(defn); |
| 382 } |
| 383 } else if (defn->IsBinarySmiOp()) { |
| 384 BinarySmiOpInstr* binary_op = defn->AsBinarySmiOp(); |
| 385 |
| 386 switch (binary_op->op_kind()) { |
| 387 case Token::kADD: { |
| 388 const Direction growth_right = |
| 389 ToDirection(binary_op->right()); |
| 390 if (growth_right != kUnknown) { |
| 391 UpdateDirection(&direction, growth_right); |
| 392 MarkDefinition(binary_op->left()->definition()); |
| 393 break; |
| 394 } |
| 395 |
| 396 const Direction growth_left = |
| 397 ToDirection(binary_op->left()); |
| 398 if (growth_left != kUnknown) { |
| 399 UpdateDirection(&direction, growth_left); |
| 400 MarkDefinition(binary_op->right()->definition()); |
| 401 break; |
| 402 } |
| 403 |
| 404 return NULL; |
| 405 } |
| 406 |
| 407 case Token::kSUB: { |
| 408 const Direction growth_right = |
| 409 ToDirection(binary_op->right()); |
| 410 if (growth_right != kUnknown) { |
| 411 UpdateDirection(&direction, Invert(growth_right)); |
| 412 MarkDefinition(binary_op->left()->definition()); |
| 413 break; |
| 414 } |
| 415 return NULL; |
| 416 } |
| 417 |
| 418 default: |
| 419 return NULL; |
| 420 } |
| 421 } else { |
| 422 return NULL; |
| 423 } |
| 424 } |
| 425 |
| 426 |
| 427 // We transitively discovered all dependencies of the given phi |
| 428 // and confirmed that it depends on a single value coming from outside of |
| 429 // the loop and some linear combinations of itself. |
| 430 // Compute the range based on initial value and the direction of the growth. |
| 431 switch (direction) { |
| 432 case kPositive: |
| 433 return new(I) Range(RangeBoundary::FromDefinition(initial_value), |
| 434 RangeBoundary::MaxSmi()); |
| 435 |
| 436 case kNegative: |
| 437 return new(I) Range(RangeBoundary::MinSmi(), |
| 438 RangeBoundary::FromDefinition(initial_value)); |
| 439 |
| 440 case kUnknown: |
| 441 case kBoth: |
| 442 return Range::UnknownSmi(); |
| 443 } |
| 444 |
| 445 UNREACHABLE(); |
| 446 return NULL; |
| 447 } |
| 448 |
| 449 |
| 450 void RangeAnalysis::InferRangesRecursive(BlockEntryInstr* block) { |
| 451 JoinEntryInstr* join = block->AsJoinEntry(); |
| 452 if (join != NULL) { |
| 453 const bool is_loop_header = (join->loop_info() != NULL); |
| 454 for (PhiIterator it(join); !it.Done(); it.Advance()) { |
| 455 PhiInstr* phi = it.Current(); |
| 456 if (definitions_->Contains(phi->ssa_temp_index())) { |
| 457 if (is_loop_header) { |
| 458 // Try recognizing simple induction variables. |
| 459 Range* range = InferInductionVariableRange(join, phi); |
| 460 if (range != NULL) { |
| 461 phi->range_ = range; |
| 462 continue; |
| 463 } |
| 464 } |
| 465 |
| 466 phi->InferRange(); |
| 467 } |
| 468 } |
| 469 } |
| 470 |
| 471 for (ForwardInstructionIterator it(block); !it.Done(); it.Advance()) { |
| 472 Instruction* current = it.Current(); |
| 473 |
| 474 Definition* defn = current->AsDefinition(); |
| 475 if ((defn != NULL) && |
| 476 (defn->ssa_temp_index() != -1) && |
| 477 definitions_->Contains(defn->ssa_temp_index())) { |
| 478 defn->InferRange(); |
| 479 } else if (FLAG_array_bounds_check_elimination && |
| 480 current->IsCheckArrayBound()) { |
| 481 CheckArrayBoundInstr* check = current->AsCheckArrayBound(); |
| 482 RangeBoundary array_length = |
| 483 RangeBoundary::FromDefinition(check->length()->definition()); |
| 484 if (check->IsRedundant(array_length)) { |
| 485 it.RemoveCurrentFromGraph(); |
| 486 } |
| 487 } |
| 488 } |
| 489 |
| 490 for (intptr_t i = 0; i < block->dominated_blocks().length(); ++i) { |
| 491 InferRangesRecursive(block->dominated_blocks()[i]); |
| 492 } |
| 493 } |
| 494 |
| 495 |
| 496 void RangeAnalysis::InferRanges() { |
| 497 if (FLAG_trace_range_analysis) { |
| 498 OS::Print("---- before range analysis -------\n"); |
| 499 FlowGraphPrinter printer(*flow_graph_); |
| 500 printer.PrintBlocks(); |
| 501 } |
| 502 // Initialize bitvector for quick filtering of int values. |
| 503 definitions_ = |
| 504 new(I) BitVector(flow_graph_->current_ssa_temp_index()); |
| 505 for (intptr_t i = 0; i < values_.length(); i++) { |
| 506 definitions_->Add(values_[i]->ssa_temp_index()); |
| 507 } |
| 508 for (intptr_t i = 0; i < constraints_.length(); i++) { |
| 509 definitions_->Add(constraints_[i]->ssa_temp_index()); |
| 510 } |
| 511 |
| 512 // Infer initial values of ranges. |
| 513 const GrowableArray<Definition*>& initial = |
| 514 *flow_graph_->graph_entry()->initial_definitions(); |
| 515 for (intptr_t i = 0; i < initial.length(); ++i) { |
| 516 Definition* definition = initial[i]; |
| 517 if (definitions_->Contains(definition->ssa_temp_index())) { |
| 518 definition->InferRange(); |
| 519 } |
| 520 } |
| 521 InferRangesRecursive(flow_graph_->graph_entry()); |
| 522 |
| 523 if (FLAG_trace_range_analysis) { |
| 524 OS::Print("---- after range analysis -------\n"); |
| 525 FlowGraphPrinter printer(*flow_graph_); |
| 526 printer.PrintBlocks(); |
| 527 } |
| 528 } |
| 529 |
| 530 |
| 531 void RangeAnalysis::RemoveConstraints() { |
| 532 for (intptr_t i = 0; i < constraints_.length(); i++) { |
| 533 Definition* def = constraints_[i]->value()->definition(); |
| 534 // Some constraints might be constraining constraints. Unwind the chain of |
| 535 // constraints until we reach the actual definition. |
| 536 while (def->IsConstraint()) { |
| 537 def = def->AsConstraint()->value()->definition(); |
| 538 } |
| 539 constraints_[i]->ReplaceUsesWith(def); |
| 540 constraints_[i]->RemoveFromGraph(); |
| 541 } |
| 542 } |
| 543 |
| 544 |
| 545 IntegerInstructionSelector::IntegerInstructionSelector(FlowGraph* flow_graph) |
| 546 : flow_graph_(flow_graph), |
| 547 isolate_(NULL) { |
| 548 ASSERT(flow_graph_ != NULL); |
| 549 isolate_ = flow_graph_->isolate(); |
| 550 ASSERT(isolate_ != NULL); |
| 551 selected_uint32_defs_ = |
| 552 new(I) BitVector(flow_graph_->current_ssa_temp_index()); |
| 553 } |
| 554 |
| 555 |
| 556 void IntegerInstructionSelector::Select() { |
| 557 if (FLAG_trace_integer_ir_selection) { |
| 558 OS::Print("---- starting integer ir selection -------\n"); |
| 559 } |
| 560 FindPotentialUint32Definitions(); |
| 561 FindUint32NarrowingDefinitions(); |
| 562 Propagate(); |
| 563 ReplaceInstructions(); |
| 564 if (FLAG_trace_integer_ir_selection) { |
| 565 OS::Print("---- after integer ir selection -------\n"); |
| 566 FlowGraphPrinter printer(*flow_graph_); |
| 567 printer.PrintBlocks(); |
| 568 } |
| 569 } |
| 570 |
| 571 |
| 572 bool IntegerInstructionSelector::IsPotentialUint32Definition(Definition* def) { |
| 573 // TODO(johnmccutchan): Consider Smi operations, to avoid unnecessary tagging |
| 574 // & untagged of intermediate results. |
| 575 // TODO(johnmccutchan): Consider phis. |
| 576 return def->IsBoxInteger() || // BoxMint. |
| 577 def->IsUnboxInteger() || // UnboxMint. |
| 578 def->IsBinaryMintOp() || |
| 579 def->IsShiftMintOp() || |
| 580 def->IsUnaryMintOp(); |
| 581 } |
| 582 |
| 583 |
| 584 void IntegerInstructionSelector::FindPotentialUint32Definitions() { |
| 585 if (FLAG_trace_integer_ir_selection) { |
| 586 OS::Print("++++ Finding potential Uint32 definitions:\n"); |
| 587 } |
| 588 |
| 589 for (BlockIterator block_it = flow_graph_->reverse_postorder_iterator(); |
| 590 !block_it.Done(); |
| 591 block_it.Advance()) { |
| 592 BlockEntryInstr* block = block_it.Current(); |
| 593 |
| 594 for (ForwardInstructionIterator instr_it(block); |
| 595 !instr_it.Done(); |
| 596 instr_it.Advance()) { |
| 597 Instruction* current = instr_it.Current(); |
| 598 Definition* defn = current->AsDefinition(); |
| 599 if ((defn != NULL) && (defn->ssa_temp_index() != -1)) { |
| 600 if (IsPotentialUint32Definition(defn)) { |
| 601 if (FLAG_trace_integer_ir_selection) { |
| 602 OS::Print("Adding %s\n", current->ToCString()); |
| 603 } |
| 604 potential_uint32_defs_.Add(defn); |
| 605 } |
| 606 } |
| 607 } |
| 608 } |
| 609 } |
| 610 |
| 611 |
| 612 // BinaryMintOp masks and stores into unsigned typed arrays that truncate the |
| 613 // value into a Uint32 range. |
| 614 bool IntegerInstructionSelector::IsUint32NarrowingDefinition(Definition* def) { |
| 615 if (def->IsBinaryMintOp()) { |
| 616 BinaryMintOpInstr* op = def->AsBinaryMintOp(); |
| 617 // Must be a mask operation. |
| 618 if (op->op_kind() != Token::kBIT_AND) { |
| 619 return false; |
| 620 } |
| 621 Range* range = op->range(); |
| 622 if ((range == NULL) || |
| 623 !range->IsWithin(0, static_cast<int64_t>(kMaxUint32))) { |
| 624 return false; |
| 625 } |
| 626 return true; |
| 627 } |
| 628 // TODO(johnmccutchan): Add typed array stores. |
| 629 return false; |
| 630 } |
| 631 |
| 632 |
| 633 void IntegerInstructionSelector::FindUint32NarrowingDefinitions() { |
| 634 ASSERT(selected_uint32_defs_ != NULL); |
| 635 if (FLAG_trace_integer_ir_selection) { |
| 636 OS::Print("++++ Selecting Uint32 definitions:\n"); |
| 637 OS::Print("++++ Initial set:\n"); |
| 638 } |
| 639 for (intptr_t i = 0; i < potential_uint32_defs_.length(); i++) { |
| 640 Definition* defn = potential_uint32_defs_[i]; |
| 641 if (IsUint32NarrowingDefinition(defn)) { |
| 642 if (FLAG_trace_integer_ir_selection) { |
| 643 OS::Print("Adding %s\n", defn->ToCString()); |
| 644 } |
| 645 selected_uint32_defs_->Add(defn->ssa_temp_index()); |
| 646 } |
| 647 } |
| 648 } |
| 649 |
| 650 |
| 651 bool IntegerInstructionSelector::AllUsesAreUint32Narrowing(Value* list_head) { |
| 652 for (Value::Iterator it(list_head); |
| 653 !it.Done(); |
| 654 it.Advance()) { |
| 655 Value* use = it.Current(); |
| 656 Definition* defn = use->instruction()->AsDefinition(); |
| 657 if ((defn == NULL) || |
| 658 (defn->ssa_temp_index() == -1) || |
| 659 !selected_uint32_defs_->Contains(defn->ssa_temp_index())) { |
| 660 return false; |
| 661 } |
| 662 } |
| 663 return true; |
| 664 } |
| 665 |
| 666 |
| 667 bool IntegerInstructionSelector::CanBecomeUint32(Definition* def) { |
| 668 ASSERT(IsPotentialUint32Definition(def)); |
| 669 if (def->IsBoxInteger()) { |
| 670 // If a BoxInteger's input is a candidate, the box is a candidate. |
| 671 BoxIntegerInstr* box = def->AsBoxInteger(); |
| 672 Definition* box_input = box->value()->definition(); |
| 673 return selected_uint32_defs_->Contains(box_input->ssa_temp_index()); |
| 674 } |
| 675 // A right shift with an input outside of Uint32 range cannot be converted |
| 676 // because we need the high bits. |
| 677 if (def->IsShiftMintOp()) { |
| 678 ShiftMintOpInstr* op = def->AsShiftMintOp(); |
| 679 if (op->op_kind() == Token::kSHR) { |
| 680 Definition* shift_input = op->left()->definition(); |
| 681 ASSERT(shift_input != NULL); |
| 682 Range* range = shift_input->range(); |
| 683 if ((range == NULL) || |
| 684 !range->IsWithin(0, static_cast<int64_t>(kMaxUint32))) { |
| 685 return false; |
| 686 } |
| 687 } |
| 688 } |
| 689 if (!def->HasUses()) { |
| 690 // No uses, skip. |
| 691 return false; |
| 692 } |
| 693 return AllUsesAreUint32Narrowing(def->input_use_list()) && |
| 694 AllUsesAreUint32Narrowing(def->env_use_list()); |
| 695 } |
| 696 |
| 697 |
| 698 void IntegerInstructionSelector::Propagate() { |
| 699 ASSERT(selected_uint32_defs_ != NULL); |
| 700 bool changed = true; |
| 701 intptr_t iteration = 0; |
| 702 while (changed) { |
| 703 if (FLAG_trace_integer_ir_selection) { |
| 704 OS::Print("+++ Iteration: %" Pd "\n", iteration++); |
| 705 } |
| 706 changed = false; |
| 707 for (intptr_t i = 0; i < potential_uint32_defs_.length(); i++) { |
| 708 Definition* defn = potential_uint32_defs_[i]; |
| 709 if (selected_uint32_defs_->Contains(defn->ssa_temp_index())) { |
| 710 // Already marked as a candidate, skip. |
| 711 continue; |
| 712 } |
| 713 if (defn->IsConstant()) { |
| 714 // Skip constants. |
| 715 continue; |
| 716 } |
| 717 if (CanBecomeUint32(defn)) { |
| 718 if (FLAG_trace_integer_ir_selection) { |
| 719 OS::Print("Adding %s\n", defn->ToCString()); |
| 720 } |
| 721 // Found a new candidate. |
| 722 selected_uint32_defs_->Add(defn->ssa_temp_index()); |
| 723 // Haven't reached fixed point yet. |
| 724 changed = true; |
| 725 } |
| 726 } |
| 727 } |
| 728 if (FLAG_trace_integer_ir_selection) { |
| 729 OS::Print("Reached fixed point\n"); |
| 730 } |
| 731 } |
| 732 |
| 733 |
| 734 Definition* IntegerInstructionSelector::ConstructReplacementFor( |
| 735 Definition* def) { |
| 736 // Should only see mint definitions. |
| 737 ASSERT(IsPotentialUint32Definition(def)); |
| 738 // Should not see constant instructions. |
| 739 ASSERT(!def->IsConstant()); |
| 740 if (def->IsBinaryMintOp()) { |
| 741 BinaryMintOpInstr* op = def->AsBinaryMintOp(); |
| 742 Token::Kind op_kind = op->op_kind(); |
| 743 Value* left = op->left()->CopyWithType(); |
| 744 Value* right = op->right()->CopyWithType(); |
| 745 intptr_t deopt_id = op->DeoptimizationTarget(); |
| 746 return new(I) BinaryUint32OpInstr(op_kind, left, right, deopt_id); |
| 747 } else if (def->IsBoxInteger()) { |
| 748 BoxIntegerInstr* box = def->AsBoxInteger(); |
| 749 Value* value = box->value()->CopyWithType(); |
| 750 return new(I) BoxUint32Instr(value); |
| 751 } else if (def->IsUnboxInteger()) { |
| 752 UnboxIntegerInstr* unbox = def->AsUnboxInteger(); |
| 753 Value* value = unbox->value()->CopyWithType(); |
| 754 intptr_t deopt_id = unbox->deopt_id(); |
| 755 return new(I) UnboxUint32Instr(value, deopt_id); |
| 756 } else if (def->IsUnaryMintOp()) { |
| 757 UnaryMintOpInstr* op = def->AsUnaryMintOp(); |
| 758 Token::Kind op_kind = op->op_kind(); |
| 759 Value* value = op->value()->CopyWithType(); |
| 760 intptr_t deopt_id = op->DeoptimizationTarget(); |
| 761 return new(I) UnaryUint32OpInstr(op_kind, value, deopt_id); |
| 762 } else if (def->IsShiftMintOp()) { |
| 763 ShiftMintOpInstr* op = def->AsShiftMintOp(); |
| 764 Token::Kind op_kind = op->op_kind(); |
| 765 Value* left = op->left()->CopyWithType(); |
| 766 Value* right = op->right()->CopyWithType(); |
| 767 intptr_t deopt_id = op->DeoptimizationTarget(); |
| 768 return new(I) ShiftUint32OpInstr(op_kind, left, right, deopt_id); |
| 769 } |
| 770 UNREACHABLE(); |
| 771 return NULL; |
| 772 } |
| 773 |
| 774 |
| 775 void IntegerInstructionSelector::ReplaceInstructions() { |
| 776 if (FLAG_trace_integer_ir_selection) { |
| 777 OS::Print("++++ Replacing instructions:\n"); |
| 778 } |
| 779 for (intptr_t i = 0; i < potential_uint32_defs_.length(); i++) { |
| 780 Definition* defn = potential_uint32_defs_[i]; |
| 781 if (!selected_uint32_defs_->Contains(defn->ssa_temp_index())) { |
| 782 // Not a candidate. |
| 783 continue; |
| 784 } |
| 785 Definition* replacement = ConstructReplacementFor(defn); |
| 786 ASSERT(replacement != NULL); |
| 787 if (FLAG_trace_integer_ir_selection) { |
| 788 OS::Print("Replacing %s with %s\n", defn->ToCString(), |
| 789 replacement->ToCString()); |
| 790 } |
| 791 defn->ReplaceWith(replacement, NULL); |
| 792 ASSERT(flow_graph_->VerifyUseLists()); |
| 793 } |
| 794 } |
| 795 |
| 796 |
| 797 RangeBoundary RangeBoundary::FromDefinition(Definition* defn, int64_t offs) { |
| 798 if (defn->IsConstant() && defn->AsConstant()->value().IsSmi()) { |
| 799 return FromConstant(Smi::Cast(defn->AsConstant()->value()).Value() + offs); |
| 800 } |
| 801 return RangeBoundary(kSymbol, reinterpret_cast<intptr_t>(defn), offs); |
| 802 } |
| 803 |
| 804 |
| 805 RangeBoundary RangeBoundary::LowerBound() const { |
| 806 if (IsInfinity()) { |
| 807 return NegativeInfinity(); |
| 808 } |
| 809 if (IsConstant()) return *this; |
| 810 return Add(Range::ConstantMin(symbol()->range()), |
| 811 RangeBoundary::FromConstant(offset_), |
| 812 NegativeInfinity()); |
| 813 } |
| 814 |
| 815 |
| 816 RangeBoundary RangeBoundary::UpperBound() const { |
| 817 if (IsInfinity()) { |
| 818 return PositiveInfinity(); |
| 819 } |
| 820 if (IsConstant()) return *this; |
| 821 return Add(Range::ConstantMax(symbol()->range()), |
| 822 RangeBoundary::FromConstant(offset_), |
| 823 PositiveInfinity()); |
| 824 } |
| 825 |
| 826 |
| 827 RangeBoundary RangeBoundary::Add(const RangeBoundary& a, |
| 828 const RangeBoundary& b, |
| 829 const RangeBoundary& overflow) { |
| 830 if (a.IsInfinity() || b.IsInfinity()) return overflow; |
| 831 |
| 832 ASSERT(a.IsConstant() && b.IsConstant()); |
| 833 if (Utils::WillAddOverflow(a.ConstantValue(), b.ConstantValue())) { |
| 834 return overflow; |
| 835 } |
| 836 |
| 837 int64_t result = a.ConstantValue() + b.ConstantValue(); |
| 838 |
| 839 return RangeBoundary::FromConstant(result); |
| 840 } |
| 841 |
| 842 |
| 843 RangeBoundary RangeBoundary::Sub(const RangeBoundary& a, |
| 844 const RangeBoundary& b, |
| 845 const RangeBoundary& overflow) { |
| 846 if (a.IsInfinity() || b.IsInfinity()) return overflow; |
| 847 ASSERT(a.IsConstant() && b.IsConstant()); |
| 848 if (Utils::WillSubOverflow(a.ConstantValue(), b.ConstantValue())) { |
| 849 return overflow; |
| 850 } |
| 851 |
| 852 int64_t result = a.ConstantValue() - b.ConstantValue(); |
| 853 |
| 854 return RangeBoundary::FromConstant(result); |
| 855 } |
| 856 |
| 857 |
| 858 bool RangeBoundary::SymbolicAdd(const RangeBoundary& a, |
| 859 const RangeBoundary& b, |
| 860 RangeBoundary* result) { |
| 861 if (a.IsSymbol() && b.IsConstant()) { |
| 862 if (Utils::WillAddOverflow(a.offset(), b.ConstantValue())) { |
| 863 return false; |
| 864 } |
| 865 |
| 866 const int64_t offset = a.offset() + b.ConstantValue(); |
| 867 |
| 868 *result = RangeBoundary::FromDefinition(a.symbol(), offset); |
| 869 return true; |
| 870 } else if (b.IsSymbol() && a.IsConstant()) { |
| 871 return SymbolicAdd(b, a, result); |
| 872 } |
| 873 return false; |
| 874 } |
| 875 |
| 876 |
| 877 bool RangeBoundary::SymbolicSub(const RangeBoundary& a, |
| 878 const RangeBoundary& b, |
| 879 RangeBoundary* result) { |
| 880 if (a.IsSymbol() && b.IsConstant()) { |
| 881 if (Utils::WillSubOverflow(a.offset(), b.ConstantValue())) { |
| 882 return false; |
| 883 } |
| 884 |
| 885 const int64_t offset = a.offset() - b.ConstantValue(); |
| 886 |
| 887 *result = RangeBoundary::FromDefinition(a.symbol(), offset); |
| 888 return true; |
| 889 } |
| 890 return false; |
| 891 } |
| 892 |
| 893 |
| 894 static Definition* UnwrapConstraint(Definition* defn) { |
| 895 while (defn->IsConstraint()) { |
| 896 defn = defn->AsConstraint()->value()->definition(); |
| 897 } |
| 898 return defn; |
| 899 } |
| 900 |
| 901 |
| 902 static bool AreEqualDefinitions(Definition* a, Definition* b) { |
| 903 a = UnwrapConstraint(a); |
| 904 b = UnwrapConstraint(b); |
| 905 return (a == b) || |
| 906 (a->AllowsCSE() && |
| 907 a->Dependencies().IsNone() && |
| 908 b->AllowsCSE() && |
| 909 b->Dependencies().IsNone() && |
| 910 a->Equals(b)); |
| 911 } |
| 912 |
| 913 |
| 914 // Returns true if two range boundaries refer to the same symbol. |
| 915 static bool DependOnSameSymbol(const RangeBoundary& a, const RangeBoundary& b) { |
| 916 return a.IsSymbol() && b.IsSymbol() && |
| 917 AreEqualDefinitions(a.symbol(), b.symbol()); |
| 918 } |
| 919 |
| 920 |
| 921 bool RangeBoundary::Equals(const RangeBoundary& other) const { |
| 922 if (IsConstant() && other.IsConstant()) { |
| 923 return ConstantValue() == other.ConstantValue(); |
| 924 } else if (IsInfinity() && other.IsInfinity()) { |
| 925 return kind() == other.kind(); |
| 926 } else if (IsSymbol() && other.IsSymbol()) { |
| 927 return (offset() == other.offset()) && DependOnSameSymbol(*this, other); |
| 928 } else if (IsUnknown() && other.IsUnknown()) { |
| 929 return true; |
| 930 } |
| 931 return false; |
| 932 } |
| 933 |
| 934 |
| 935 RangeBoundary RangeBoundary::Shl(const RangeBoundary& value_boundary, |
| 936 int64_t shift_count, |
| 937 const RangeBoundary& overflow) { |
| 938 ASSERT(value_boundary.IsConstant()); |
| 939 ASSERT(shift_count >= 0); |
| 940 int64_t limit = 64 - shift_count; |
| 941 int64_t value = value_boundary.ConstantValue(); |
| 942 |
| 943 if ((value == 0) || |
| 944 (shift_count == 0) || |
| 945 ((limit > 0) && Utils::IsInt(static_cast<int>(limit), value))) { |
| 946 // Result stays in 64 bit range. |
| 947 int64_t result = value << shift_count; |
| 948 return RangeBoundary(result); |
| 949 } |
| 950 |
| 951 return overflow; |
| 952 } |
| 953 |
| 954 |
| 955 static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a, |
| 956 const RangeBoundary& overflow) { |
| 957 if (a.IsConstant() || a.IsInfinity()) { |
| 958 return a; |
| 959 } |
| 960 |
| 961 int64_t offset = a.offset(); |
| 962 Definition* symbol = a.symbol(); |
| 963 |
| 964 bool changed; |
| 965 do { |
| 966 changed = false; |
| 967 if (symbol->IsConstraint()) { |
| 968 symbol = symbol->AsConstraint()->value()->definition(); |
| 969 changed = true; |
| 970 } else if (symbol->IsBinarySmiOp()) { |
| 971 BinarySmiOpInstr* op = symbol->AsBinarySmiOp(); |
| 972 Definition* left = op->left()->definition(); |
| 973 Definition* right = op->right()->definition(); |
| 974 switch (op->op_kind()) { |
| 975 case Token::kADD: |
| 976 if (right->IsConstant()) { |
| 977 int64_t rhs = Smi::Cast(right->AsConstant()->value()).Value(); |
| 978 if (Utils::WillAddOverflow(offset, rhs)) { |
| 979 return overflow; |
| 980 } |
| 981 offset += rhs; |
| 982 symbol = left; |
| 983 changed = true; |
| 984 } else if (left->IsConstant()) { |
| 985 int64_t rhs = Smi::Cast(left->AsConstant()->value()).Value(); |
| 986 if (Utils::WillAddOverflow(offset, rhs)) { |
| 987 return overflow; |
| 988 } |
| 989 offset += rhs; |
| 990 symbol = right; |
| 991 changed = true; |
| 992 } |
| 993 break; |
| 994 |
| 995 case Token::kSUB: |
| 996 if (right->IsConstant()) { |
| 997 int64_t rhs = Smi::Cast(right->AsConstant()->value()).Value(); |
| 998 if (Utils::WillSubOverflow(offset, rhs)) { |
| 999 return overflow; |
| 1000 } |
| 1001 offset -= rhs; |
| 1002 symbol = left; |
| 1003 changed = true; |
| 1004 } |
| 1005 break; |
| 1006 |
| 1007 default: |
| 1008 break; |
| 1009 } |
| 1010 } |
| 1011 } while (changed); |
| 1012 |
| 1013 return RangeBoundary::FromDefinition(symbol, offset); |
| 1014 } |
| 1015 |
| 1016 |
| 1017 static bool CanonicalizeMaxBoundary(RangeBoundary* a) { |
| 1018 if (!a->IsSymbol()) return false; |
| 1019 |
| 1020 Range* range = a->symbol()->range(); |
| 1021 if ((range == NULL) || !range->max().IsSymbol()) return false; |
| 1022 |
| 1023 |
| 1024 if (Utils::WillAddOverflow(range->max().offset(), a->offset())) { |
| 1025 *a = RangeBoundary::PositiveInfinity(); |
| 1026 return true; |
| 1027 } |
| 1028 |
| 1029 const int64_t offset = range->max().offset() + a->offset(); |
| 1030 |
| 1031 |
| 1032 *a = CanonicalizeBoundary( |
| 1033 RangeBoundary::FromDefinition(range->max().symbol(), offset), |
| 1034 RangeBoundary::PositiveInfinity()); |
| 1035 |
| 1036 return true; |
| 1037 } |
| 1038 |
| 1039 |
| 1040 static bool CanonicalizeMinBoundary(RangeBoundary* a) { |
| 1041 if (!a->IsSymbol()) return false; |
| 1042 |
| 1043 Range* range = a->symbol()->range(); |
| 1044 if ((range == NULL) || !range->min().IsSymbol()) return false; |
| 1045 |
| 1046 if (Utils::WillAddOverflow(range->min().offset(), a->offset())) { |
| 1047 *a = RangeBoundary::NegativeInfinity(); |
| 1048 return true; |
| 1049 } |
| 1050 |
| 1051 const int64_t offset = range->min().offset() + a->offset(); |
| 1052 |
| 1053 *a = CanonicalizeBoundary( |
| 1054 RangeBoundary::FromDefinition(range->min().symbol(), offset), |
| 1055 RangeBoundary::NegativeInfinity()); |
| 1056 |
| 1057 return true; |
| 1058 } |
| 1059 |
| 1060 |
| 1061 RangeBoundary RangeBoundary::Min(RangeBoundary a, RangeBoundary b, |
| 1062 RangeSize size) { |
| 1063 ASSERT(!(a.IsNegativeInfinity() || b.IsNegativeInfinity())); |
| 1064 ASSERT(!a.IsUnknown() || !b.IsUnknown()); |
| 1065 if (a.IsUnknown() && !b.IsUnknown()) { |
| 1066 return b; |
| 1067 } |
| 1068 if (!a.IsUnknown() && b.IsUnknown()) { |
| 1069 return a; |
| 1070 } |
| 1071 if (size == kRangeBoundarySmi) { |
| 1072 if (a.IsSmiMaximumOrAbove() && !b.IsSmiMaximumOrAbove()) { |
| 1073 return b; |
| 1074 } |
| 1075 if (!a.IsSmiMaximumOrAbove() && b.IsSmiMaximumOrAbove()) { |
| 1076 return a; |
| 1077 } |
| 1078 } else { |
| 1079 ASSERT(size == kRangeBoundaryInt64); |
| 1080 if (a.IsMaximumOrAbove() && !b.IsMaximumOrAbove()) { |
| 1081 return b; |
| 1082 } |
| 1083 if (!a.IsMaximumOrAbove() && b.IsMaximumOrAbove()) { |
| 1084 return a; |
| 1085 } |
| 1086 } |
| 1087 |
| 1088 if (a.Equals(b)) { |
| 1089 return b; |
| 1090 } |
| 1091 |
| 1092 { |
| 1093 RangeBoundary canonical_a = |
| 1094 CanonicalizeBoundary(a, RangeBoundary::PositiveInfinity()); |
| 1095 RangeBoundary canonical_b = |
| 1096 CanonicalizeBoundary(b, RangeBoundary::PositiveInfinity()); |
| 1097 do { |
| 1098 if (DependOnSameSymbol(canonical_a, canonical_b)) { |
| 1099 a = canonical_a; |
| 1100 b = canonical_b; |
| 1101 break; |
| 1102 } |
| 1103 } while (CanonicalizeMaxBoundary(&canonical_a) || |
| 1104 CanonicalizeMaxBoundary(&canonical_b)); |
| 1105 } |
| 1106 |
| 1107 if (DependOnSameSymbol(a, b)) { |
| 1108 return (a.offset() <= b.offset()) ? a : b; |
| 1109 } |
| 1110 |
| 1111 const int64_t min_a = a.UpperBound().Clamp(size).ConstantValue(); |
| 1112 const int64_t min_b = b.UpperBound().Clamp(size).ConstantValue(); |
| 1113 |
| 1114 return RangeBoundary::FromConstant(Utils::Minimum(min_a, min_b)); |
| 1115 } |
| 1116 |
| 1117 |
| 1118 RangeBoundary RangeBoundary::Max(RangeBoundary a, RangeBoundary b, |
| 1119 RangeSize size) { |
| 1120 ASSERT(!(a.IsPositiveInfinity() || b.IsPositiveInfinity())); |
| 1121 ASSERT(!a.IsUnknown() || !b.IsUnknown()); |
| 1122 if (a.IsUnknown() && !b.IsUnknown()) { |
| 1123 return b; |
| 1124 } |
| 1125 if (!a.IsUnknown() && b.IsUnknown()) { |
| 1126 return a; |
| 1127 } |
| 1128 if (size == kRangeBoundarySmi) { |
| 1129 if (a.IsSmiMinimumOrBelow() && !b.IsSmiMinimumOrBelow()) { |
| 1130 return b; |
| 1131 } |
| 1132 if (!a.IsSmiMinimumOrBelow() && b.IsSmiMinimumOrBelow()) { |
| 1133 return a; |
| 1134 } |
| 1135 } else { |
| 1136 ASSERT(size == kRangeBoundaryInt64); |
| 1137 if (a.IsMinimumOrBelow() && !b.IsMinimumOrBelow()) { |
| 1138 return b; |
| 1139 } |
| 1140 if (!a.IsMinimumOrBelow() && b.IsMinimumOrBelow()) { |
| 1141 return a; |
| 1142 } |
| 1143 } |
| 1144 if (a.Equals(b)) { |
| 1145 return b; |
| 1146 } |
| 1147 |
| 1148 { |
| 1149 RangeBoundary canonical_a = |
| 1150 CanonicalizeBoundary(a, RangeBoundary::NegativeInfinity()); |
| 1151 RangeBoundary canonical_b = |
| 1152 CanonicalizeBoundary(b, RangeBoundary::NegativeInfinity()); |
| 1153 |
| 1154 do { |
| 1155 if (DependOnSameSymbol(canonical_a, canonical_b)) { |
| 1156 a = canonical_a; |
| 1157 b = canonical_b; |
| 1158 break; |
| 1159 } |
| 1160 } while (CanonicalizeMinBoundary(&canonical_a) || |
| 1161 CanonicalizeMinBoundary(&canonical_b)); |
| 1162 } |
| 1163 |
| 1164 if (DependOnSameSymbol(a, b)) { |
| 1165 return (a.offset() <= b.offset()) ? b : a; |
| 1166 } |
| 1167 |
| 1168 const int64_t max_a = a.LowerBound().Clamp(size).ConstantValue(); |
| 1169 const int64_t max_b = b.LowerBound().Clamp(size).ConstantValue(); |
| 1170 |
| 1171 return RangeBoundary::FromConstant(Utils::Maximum(max_a, max_b)); |
| 1172 } |
| 1173 |
| 1174 |
| 1175 int64_t RangeBoundary::ConstantValue() const { |
| 1176 ASSERT(IsConstant()); |
| 1177 return value_; |
| 1178 } |
| 1179 |
| 1180 |
| 1181 bool Range::IsPositive() const { |
| 1182 if (min().IsNegativeInfinity()) { |
| 1183 return false; |
| 1184 } |
| 1185 if (min().LowerBound().ConstantValue() < 0) { |
| 1186 return false; |
| 1187 } |
| 1188 if (max().IsPositiveInfinity()) { |
| 1189 return true; |
| 1190 } |
| 1191 return max().UpperBound().ConstantValue() >= 0; |
| 1192 } |
| 1193 |
| 1194 |
| 1195 bool Range::OnlyLessThanOrEqualTo(int64_t val) const { |
| 1196 if (max().IsPositiveInfinity()) { |
| 1197 // Cannot be true. |
| 1198 return false; |
| 1199 } |
| 1200 if (max().UpperBound().ConstantValue() > val) { |
| 1201 // Not true. |
| 1202 return false; |
| 1203 } |
| 1204 return true; |
| 1205 } |
| 1206 |
| 1207 |
| 1208 bool Range::OnlyGreaterThanOrEqualTo(int64_t val) const { |
| 1209 if (min().IsNegativeInfinity()) { |
| 1210 return false; |
| 1211 } |
| 1212 if (min().LowerBound().ConstantValue() < val) { |
| 1213 return false; |
| 1214 } |
| 1215 return true; |
| 1216 } |
| 1217 |
| 1218 |
| 1219 // Inclusive. |
| 1220 bool Range::IsWithin(int64_t min_int, int64_t max_int) const { |
| 1221 RangeBoundary lower_min = min().LowerBound(); |
| 1222 if (lower_min.IsNegativeInfinity() || (lower_min.ConstantValue() < min_int)) { |
| 1223 return false; |
| 1224 } |
| 1225 RangeBoundary upper_max = max().UpperBound(); |
| 1226 if (upper_max.IsPositiveInfinity() || (upper_max.ConstantValue() > max_int)) { |
| 1227 return false; |
| 1228 } |
| 1229 return true; |
| 1230 } |
| 1231 |
| 1232 |
| 1233 bool Range::Overlaps(int64_t min_int, int64_t max_int) const { |
| 1234 RangeBoundary lower = min().LowerBound(); |
| 1235 RangeBoundary upper = max().UpperBound(); |
| 1236 const int64_t this_min = lower.IsNegativeInfinity() ? |
| 1237 RangeBoundary::kMin : lower.ConstantValue(); |
| 1238 const int64_t this_max = upper.IsPositiveInfinity() ? |
| 1239 RangeBoundary::kMax : upper.ConstantValue(); |
| 1240 if ((this_min <= min_int) && (min_int <= this_max)) return true; |
| 1241 if ((this_min <= max_int) && (max_int <= this_max)) return true; |
| 1242 if ((min_int < this_min) && (max_int > this_max)) return true; |
| 1243 return false; |
| 1244 } |
| 1245 |
| 1246 |
| 1247 bool Range::IsUnsatisfiable() const { |
| 1248 // Infinity case: [+inf, ...] || [..., -inf] |
| 1249 if (min().IsPositiveInfinity() || max().IsNegativeInfinity()) { |
| 1250 return true; |
| 1251 } |
| 1252 // Constant case: For example [0, -1]. |
| 1253 if (Range::ConstantMin(this).ConstantValue() > |
| 1254 Range::ConstantMax(this).ConstantValue()) { |
| 1255 return true; |
| 1256 } |
| 1257 // Symbol case: For example [v+1, v]. |
| 1258 if (DependOnSameSymbol(min(), max()) && min().offset() > max().offset()) { |
| 1259 return true; |
| 1260 } |
| 1261 return false; |
| 1262 } |
| 1263 |
| 1264 |
| 1265 void Range::Clamp(RangeBoundary::RangeSize size) { |
| 1266 min_ = min_.Clamp(size); |
| 1267 max_ = max_.Clamp(size); |
| 1268 } |
| 1269 |
| 1270 |
| 1271 void Range::Shl(const Range* left, |
| 1272 const Range* right, |
| 1273 RangeBoundary* result_min, |
| 1274 RangeBoundary* result_max) { |
| 1275 ASSERT(left != NULL); |
| 1276 ASSERT(right != NULL); |
| 1277 ASSERT(result_min != NULL); |
| 1278 ASSERT(result_max != NULL); |
| 1279 RangeBoundary left_max = Range::ConstantMax(left); |
| 1280 RangeBoundary left_min = Range::ConstantMin(left); |
| 1281 // A negative shift count always deoptimizes (and throws), so the minimum |
| 1282 // shift count is zero. |
| 1283 int64_t right_max = Utils::Maximum(Range::ConstantMax(right).ConstantValue(), |
| 1284 static_cast<int64_t>(0)); |
| 1285 int64_t right_min = Utils::Maximum(Range::ConstantMin(right).ConstantValue(), |
| 1286 static_cast<int64_t>(0)); |
| 1287 |
| 1288 *result_min = RangeBoundary::Shl( |
| 1289 left_min, |
| 1290 left_min.ConstantValue() > 0 ? right_min : right_max, |
| 1291 left_min.ConstantValue() > 0 |
| 1292 ? RangeBoundary::PositiveInfinity() |
| 1293 : RangeBoundary::NegativeInfinity()); |
| 1294 |
| 1295 *result_max = RangeBoundary::Shl( |
| 1296 left_max, |
| 1297 left_max.ConstantValue() > 0 ? right_max : right_min, |
| 1298 left_max.ConstantValue() > 0 |
| 1299 ? RangeBoundary::PositiveInfinity() |
| 1300 : RangeBoundary::NegativeInfinity()); |
| 1301 } |
| 1302 |
| 1303 |
| 1304 void Range::Shr(const Range* left, |
| 1305 const Range* right, |
| 1306 RangeBoundary* result_min, |
| 1307 RangeBoundary* result_max) { |
| 1308 RangeBoundary left_max = Range::ConstantMax(left); |
| 1309 RangeBoundary left_min = Range::ConstantMin(left); |
| 1310 // A negative shift count always deoptimizes (and throws), so the minimum |
| 1311 // shift count is zero. |
| 1312 int64_t right_max = Utils::Maximum(Range::ConstantMax(right).ConstantValue(), |
| 1313 static_cast<int64_t>(0)); |
| 1314 int64_t right_min = Utils::Maximum(Range::ConstantMin(right).ConstantValue(), |
| 1315 static_cast<int64_t>(0)); |
| 1316 |
| 1317 *result_min = RangeBoundary::Shr( |
| 1318 left_min, |
| 1319 left_min.ConstantValue() > 0 ? right_max : right_min); |
| 1320 |
| 1321 *result_max = RangeBoundary::Shr( |
| 1322 left_max, |
| 1323 left_max.ConstantValue() > 0 ? right_min : right_max); |
| 1324 } |
| 1325 |
| 1326 |
| 1327 bool Range::And(const Range* left_range, |
| 1328 const Range* right_range, |
| 1329 RangeBoundary* result_min, |
| 1330 RangeBoundary* result_max) { |
| 1331 ASSERT(left_range != NULL); |
| 1332 ASSERT(right_range != NULL); |
| 1333 ASSERT(result_min != NULL); |
| 1334 ASSERT(result_max != NULL); |
| 1335 |
| 1336 if (Range::ConstantMin(right_range).ConstantValue() >= 0) { |
| 1337 *result_min = RangeBoundary::FromConstant(0); |
| 1338 *result_max = Range::ConstantMax(right_range); |
| 1339 return true; |
| 1340 } |
| 1341 |
| 1342 if (Range::ConstantMin(left_range).ConstantValue() >= 0) { |
| 1343 *result_min = RangeBoundary::FromConstant(0); |
| 1344 *result_max = Range::ConstantMax(left_range); |
| 1345 return true; |
| 1346 } |
| 1347 |
| 1348 return false; |
| 1349 } |
| 1350 |
| 1351 |
| 1352 static bool IsArrayLength(Definition* defn) { |
| 1353 if (defn == NULL) { |
| 1354 return false; |
| 1355 } |
| 1356 LoadFieldInstr* load = defn->AsLoadField(); |
| 1357 return (load != NULL) && load->IsImmutableLengthLoad(); |
| 1358 } |
| 1359 |
| 1360 |
| 1361 void Range::Add(const Range* left_range, |
| 1362 const Range* right_range, |
| 1363 RangeBoundary* result_min, |
| 1364 RangeBoundary* result_max, |
| 1365 Definition* left_defn) { |
| 1366 ASSERT(left_range != NULL); |
| 1367 ASSERT(right_range != NULL); |
| 1368 ASSERT(result_min != NULL); |
| 1369 ASSERT(result_max != NULL); |
| 1370 |
| 1371 RangeBoundary left_min = |
| 1372 IsArrayLength(left_defn) ? |
| 1373 RangeBoundary::FromDefinition(left_defn) : left_range->min(); |
| 1374 |
| 1375 RangeBoundary left_max = |
| 1376 IsArrayLength(left_defn) ? |
| 1377 RangeBoundary::FromDefinition(left_defn) : left_range->max(); |
| 1378 |
| 1379 if (!RangeBoundary::SymbolicAdd(left_min, right_range->min(), result_min)) { |
| 1380 *result_min = RangeBoundary::Add(left_range->min().LowerBound(), |
| 1381 right_range->min().LowerBound(), |
| 1382 RangeBoundary::NegativeInfinity()); |
| 1383 } |
| 1384 if (!RangeBoundary::SymbolicAdd(left_max, right_range->max(), result_max)) { |
| 1385 *result_max = RangeBoundary::Add(right_range->max().UpperBound(), |
| 1386 left_range->max().UpperBound(), |
| 1387 RangeBoundary::PositiveInfinity()); |
| 1388 } |
| 1389 } |
| 1390 |
| 1391 |
| 1392 void Range::Sub(const Range* left_range, |
| 1393 const Range* right_range, |
| 1394 RangeBoundary* result_min, |
| 1395 RangeBoundary* result_max, |
| 1396 Definition* left_defn) { |
| 1397 ASSERT(left_range != NULL); |
| 1398 ASSERT(right_range != NULL); |
| 1399 ASSERT(result_min != NULL); |
| 1400 ASSERT(result_max != NULL); |
| 1401 |
| 1402 RangeBoundary left_min = |
| 1403 IsArrayLength(left_defn) ? |
| 1404 RangeBoundary::FromDefinition(left_defn) : left_range->min(); |
| 1405 |
| 1406 RangeBoundary left_max = |
| 1407 IsArrayLength(left_defn) ? |
| 1408 RangeBoundary::FromDefinition(left_defn) : left_range->max(); |
| 1409 |
| 1410 if (!RangeBoundary::SymbolicSub(left_min, right_range->max(), result_min)) { |
| 1411 *result_min = RangeBoundary::Sub(left_range->min().LowerBound(), |
| 1412 right_range->max().UpperBound(), |
| 1413 RangeBoundary::NegativeInfinity()); |
| 1414 } |
| 1415 if (!RangeBoundary::SymbolicSub(left_max, right_range->min(), result_max)) { |
| 1416 *result_max = RangeBoundary::Sub(left_range->max().UpperBound(), |
| 1417 right_range->min().LowerBound(), |
| 1418 RangeBoundary::PositiveInfinity()); |
| 1419 } |
| 1420 } |
| 1421 |
| 1422 |
| 1423 bool Range::Mul(const Range* left_range, |
| 1424 const Range* right_range, |
| 1425 RangeBoundary* result_min, |
| 1426 RangeBoundary* result_max) { |
| 1427 ASSERT(left_range != NULL); |
| 1428 ASSERT(right_range != NULL); |
| 1429 ASSERT(result_min != NULL); |
| 1430 ASSERT(result_max != NULL); |
| 1431 |
| 1432 const int64_t left_max = ConstantAbsMax(left_range); |
| 1433 const int64_t right_max = ConstantAbsMax(right_range); |
| 1434 if ((left_max <= -kSmiMin) && (right_max <= -kSmiMin) && |
| 1435 ((left_max == 0) || (right_max <= kMaxInt64 / left_max))) { |
| 1436 // Product of left and right max values stays in 64 bit range. |
| 1437 const int64_t mul_max = left_max * right_max; |
| 1438 if (Smi::IsValid(mul_max) && Smi::IsValid(-mul_max)) { |
| 1439 const int64_t r_min = |
| 1440 OnlyPositiveOrZero(*left_range, *right_range) ? 0 : -mul_max; |
| 1441 *result_min = RangeBoundary::FromConstant(r_min); |
| 1442 const int64_t r_max = |
| 1443 OnlyNegativeOrZero(*left_range, *right_range) ? 0 : mul_max; |
| 1444 *result_max = RangeBoundary::FromConstant(r_max); |
| 1445 return true; |
| 1446 } |
| 1447 } |
| 1448 return false; |
| 1449 } |
| 1450 |
| 1451 |
| 1452 // Both the a and b ranges are >= 0. |
| 1453 bool Range::OnlyPositiveOrZero(const Range& a, const Range& b) { |
| 1454 return a.OnlyGreaterThanOrEqualTo(0) && b.OnlyGreaterThanOrEqualTo(0); |
| 1455 } |
| 1456 |
| 1457 |
| 1458 // Both the a and b ranges are <= 0. |
| 1459 bool Range::OnlyNegativeOrZero(const Range& a, const Range& b) { |
| 1460 return a.OnlyLessThanOrEqualTo(0) && b.OnlyLessThanOrEqualTo(0); |
| 1461 } |
| 1462 |
| 1463 |
| 1464 // Return the maximum absolute value included in range. |
| 1465 int64_t Range::ConstantAbsMax(const Range* range) { |
| 1466 if (range == NULL) { |
| 1467 return RangeBoundary::kMax; |
| 1468 } |
| 1469 const int64_t abs_min = Utils::Abs(Range::ConstantMin(range).ConstantValue()); |
| 1470 const int64_t abs_max = Utils::Abs(Range::ConstantMax(range).ConstantValue()); |
| 1471 return Utils::Maximum(abs_min, abs_max); |
| 1472 } |
| 1473 |
| 1474 |
| 1475 Range* Range::BinaryOp(const Token::Kind op, |
| 1476 const Range* left_range, |
| 1477 const Range* right_range, |
| 1478 Definition* left_defn) { |
| 1479 ASSERT(left_range != NULL); |
| 1480 ASSERT(right_range != NULL); |
| 1481 |
| 1482 // Both left and right ranges are finite. |
| 1483 ASSERT(left_range->IsFinite()); |
| 1484 ASSERT(right_range->IsFinite()); |
| 1485 |
| 1486 RangeBoundary min; |
| 1487 RangeBoundary max; |
| 1488 ASSERT(min.IsUnknown() && max.IsUnknown()); |
| 1489 |
| 1490 switch (op) { |
| 1491 case Token::kADD: |
| 1492 Range::Add(left_range, right_range, &min, &max, left_defn); |
| 1493 break; |
| 1494 case Token::kSUB: |
| 1495 Range::Sub(left_range, right_range, &min, &max, left_defn); |
| 1496 break; |
| 1497 case Token::kMUL: { |
| 1498 if (!Range::Mul(left_range, right_range, &min, &max)) { |
| 1499 return NULL; |
| 1500 } |
| 1501 break; |
| 1502 } |
| 1503 case Token::kSHL: { |
| 1504 Range::Shl(left_range, right_range, &min, &max); |
| 1505 break; |
| 1506 } |
| 1507 case Token::kSHR: { |
| 1508 Range::Shr(left_range, right_range, &min, &max); |
| 1509 break; |
| 1510 } |
| 1511 case Token::kBIT_AND: |
| 1512 if (!Range::And(left_range, right_range, &min, &max)) { |
| 1513 return NULL; |
| 1514 } |
| 1515 break; |
| 1516 default: |
| 1517 return NULL; |
| 1518 break; |
| 1519 } |
| 1520 |
| 1521 ASSERT(!min.IsUnknown() && !max.IsUnknown()); |
| 1522 |
| 1523 return new Range(min, max); |
| 1524 } |
| 1525 |
| 1526 |
| 1527 void Definition::InferRange() { |
| 1528 if (Type()->ToCid() == kSmiCid) { |
| 1529 if (range_ == NULL) { |
| 1530 range_ = Range::UnknownSmi(); |
| 1531 } |
| 1532 } else if (IsMintDefinition()) { |
| 1533 if (range_ == NULL) { |
| 1534 range_ = Range::Unknown(); |
| 1535 } |
| 1536 } else { |
| 1537 // Only Smi and Mint supported. |
| 1538 UNREACHABLE(); |
| 1539 } |
| 1540 } |
| 1541 |
| 1542 |
| 1543 void PhiInstr::InferRange() { |
| 1544 RangeBoundary new_min; |
| 1545 RangeBoundary new_max; |
| 1546 |
| 1547 ASSERT(Type()->ToCid() == kSmiCid); |
| 1548 |
| 1549 for (intptr_t i = 0; i < InputCount(); i++) { |
| 1550 Range* input_range = InputAt(i)->definition()->range(); |
| 1551 if (input_range == NULL) { |
| 1552 range_ = Range::UnknownSmi(); |
| 1553 return; |
| 1554 } |
| 1555 |
| 1556 if (new_min.IsUnknown()) { |
| 1557 new_min = Range::ConstantMin(input_range); |
| 1558 } else { |
| 1559 new_min = RangeBoundary::Min(new_min, |
| 1560 Range::ConstantMinSmi(input_range), |
| 1561 RangeBoundary::kRangeBoundarySmi); |
| 1562 } |
| 1563 |
| 1564 if (new_max.IsUnknown()) { |
| 1565 new_max = Range::ConstantMax(input_range); |
| 1566 } else { |
| 1567 new_max = RangeBoundary::Max(new_max, |
| 1568 Range::ConstantMaxSmi(input_range), |
| 1569 RangeBoundary::kRangeBoundarySmi); |
| 1570 } |
| 1571 } |
| 1572 |
| 1573 ASSERT(new_min.IsUnknown() == new_max.IsUnknown()); |
| 1574 if (new_min.IsUnknown()) { |
| 1575 range_ = Range::UnknownSmi(); |
| 1576 return; |
| 1577 } |
| 1578 |
| 1579 range_ = new Range(new_min, new_max); |
| 1580 } |
| 1581 |
| 1582 |
| 1583 void ConstantInstr::InferRange() { |
| 1584 if (value_.IsSmi()) { |
| 1585 if (range_ == NULL) { |
| 1586 int64_t value = Smi::Cast(value_).Value(); |
| 1587 range_ = new Range(RangeBoundary::FromConstant(value), |
| 1588 RangeBoundary::FromConstant(value)); |
| 1589 } |
| 1590 } else if (value_.IsMint()) { |
| 1591 if (range_ == NULL) { |
| 1592 int64_t value = Mint::Cast(value_).value(); |
| 1593 range_ = new Range(RangeBoundary::FromConstant(value), |
| 1594 RangeBoundary::FromConstant(value)); |
| 1595 } |
| 1596 } else { |
| 1597 // Only Smi and Mint supported. |
| 1598 UNREACHABLE(); |
| 1599 } |
| 1600 } |
| 1601 |
| 1602 |
| 1603 void UnboxIntegerInstr::InferRange() { |
| 1604 if (range_ == NULL) { |
| 1605 Definition* unboxed = value()->definition(); |
| 1606 ASSERT(unboxed != NULL); |
| 1607 Range* range = unboxed->range(); |
| 1608 if (range == NULL) { |
| 1609 range_ = Range::Unknown(); |
| 1610 return; |
| 1611 } |
| 1612 range_ = new Range(range->min(), range->max()); |
| 1613 } |
| 1614 } |
| 1615 |
| 1616 |
| 1617 void ConstraintInstr::InferRange() { |
| 1618 Range* value_range = value()->definition()->range(); |
| 1619 |
| 1620 // Only constraining smi values. |
| 1621 ASSERT(value()->IsSmiValue()); |
| 1622 |
| 1623 RangeBoundary min; |
| 1624 RangeBoundary max; |
| 1625 |
| 1626 { |
| 1627 RangeBoundary value_min = (value_range == NULL) ? |
| 1628 RangeBoundary() : value_range->min(); |
| 1629 RangeBoundary constraint_min = constraint()->min(); |
| 1630 min = RangeBoundary::Max(value_min, constraint_min, |
| 1631 RangeBoundary::kRangeBoundarySmi); |
| 1632 } |
| 1633 |
| 1634 ASSERT(!min.IsUnknown()); |
| 1635 |
| 1636 { |
| 1637 RangeBoundary value_max = (value_range == NULL) ? |
| 1638 RangeBoundary() : value_range->max(); |
| 1639 RangeBoundary constraint_max = constraint()->max(); |
| 1640 max = RangeBoundary::Min(value_max, constraint_max, |
| 1641 RangeBoundary::kRangeBoundarySmi); |
| 1642 } |
| 1643 |
| 1644 ASSERT(!max.IsUnknown()); |
| 1645 |
| 1646 range_ = new Range(min, max); |
| 1647 |
| 1648 // Mark branches that generate unsatisfiable constraints as constant. |
| 1649 if (target() != NULL && range_->IsUnsatisfiable()) { |
| 1650 BranchInstr* branch = |
| 1651 target()->PredecessorAt(0)->last_instruction()->AsBranch(); |
| 1652 if (target() == branch->true_successor()) { |
| 1653 // True unreachable. |
| 1654 if (FLAG_trace_constant_propagation) { |
| 1655 OS::Print("Range analysis: True unreachable (B%" Pd ")\n", |
| 1656 branch->true_successor()->block_id()); |
| 1657 } |
| 1658 branch->set_constant_target(branch->false_successor()); |
| 1659 } else { |
| 1660 ASSERT(target() == branch->false_successor()); |
| 1661 // False unreachable. |
| 1662 if (FLAG_trace_constant_propagation) { |
| 1663 OS::Print("Range analysis: False unreachable (B%" Pd ")\n", |
| 1664 branch->false_successor()->block_id()); |
| 1665 } |
| 1666 branch->set_constant_target(branch->true_successor()); |
| 1667 } |
| 1668 } |
| 1669 } |
| 1670 |
| 1671 |
| 1672 void LoadFieldInstr::InferRange() { |
| 1673 if ((range_ == NULL) && |
| 1674 ((recognized_kind() == MethodRecognizer::kObjectArrayLength) || |
| 1675 (recognized_kind() == MethodRecognizer::kImmutableArrayLength))) { |
| 1676 range_ = new Range(RangeBoundary::FromConstant(0), |
| 1677 RangeBoundary::FromConstant(Array::kMaxElements)); |
| 1678 return; |
| 1679 } |
| 1680 if ((range_ == NULL) && |
| 1681 (recognized_kind() == MethodRecognizer::kTypedDataLength)) { |
| 1682 range_ = new Range(RangeBoundary::FromConstant(0), RangeBoundary::MaxSmi()); |
| 1683 return; |
| 1684 } |
| 1685 if ((range_ == NULL) && |
| 1686 (recognized_kind() == MethodRecognizer::kStringBaseLength)) { |
| 1687 range_ = new Range(RangeBoundary::FromConstant(0), |
| 1688 RangeBoundary::FromConstant(String::kMaxElements)); |
| 1689 return; |
| 1690 } |
| 1691 Definition::InferRange(); |
| 1692 } |
| 1693 |
| 1694 |
| 1695 |
| 1696 void LoadIndexedInstr::InferRange() { |
| 1697 switch (class_id()) { |
| 1698 case kTypedDataInt8ArrayCid: |
| 1699 range_ = new Range(RangeBoundary::FromConstant(-128), |
| 1700 RangeBoundary::FromConstant(127)); |
| 1701 break; |
| 1702 case kTypedDataUint8ArrayCid: |
| 1703 case kTypedDataUint8ClampedArrayCid: |
| 1704 case kExternalTypedDataUint8ArrayCid: |
| 1705 case kExternalTypedDataUint8ClampedArrayCid: |
| 1706 range_ = new Range(RangeBoundary::FromConstant(0), |
| 1707 RangeBoundary::FromConstant(255)); |
| 1708 break; |
| 1709 case kTypedDataInt16ArrayCid: |
| 1710 range_ = new Range(RangeBoundary::FromConstant(-32768), |
| 1711 RangeBoundary::FromConstant(32767)); |
| 1712 break; |
| 1713 case kTypedDataUint16ArrayCid: |
| 1714 range_ = new Range(RangeBoundary::FromConstant(0), |
| 1715 RangeBoundary::FromConstant(65535)); |
| 1716 break; |
| 1717 case kTypedDataInt32ArrayCid: |
| 1718 if (Typed32BitIsSmi()) { |
| 1719 range_ = Range::UnknownSmi(); |
| 1720 } else { |
| 1721 range_ = new Range(RangeBoundary::FromConstant(kMinInt32), |
| 1722 RangeBoundary::FromConstant(kMaxInt32)); |
| 1723 } |
| 1724 break; |
| 1725 case kTypedDataUint32ArrayCid: |
| 1726 if (Typed32BitIsSmi()) { |
| 1727 range_ = Range::UnknownSmi(); |
| 1728 } else { |
| 1729 range_ = new Range(RangeBoundary::FromConstant(0), |
| 1730 RangeBoundary::FromConstant(kMaxUint32)); |
| 1731 } |
| 1732 break; |
| 1733 case kOneByteStringCid: |
| 1734 range_ = new Range(RangeBoundary::FromConstant(0), |
| 1735 RangeBoundary::FromConstant(0xFF)); |
| 1736 break; |
| 1737 case kTwoByteStringCid: |
| 1738 range_ = new Range(RangeBoundary::FromConstant(0), |
| 1739 RangeBoundary::FromConstant(0xFFFF)); |
| 1740 break; |
| 1741 default: |
| 1742 Definition::InferRange(); |
| 1743 break; |
| 1744 } |
| 1745 } |
| 1746 |
| 1747 |
| 1748 void IfThenElseInstr::InferRange() { |
| 1749 const intptr_t min = Utils::Minimum(if_true_, if_false_); |
| 1750 const intptr_t max = Utils::Maximum(if_true_, if_false_); |
| 1751 range_ = new Range(RangeBoundary::FromConstant(min), |
| 1752 RangeBoundary::FromConstant(max)); |
| 1753 } |
| 1754 |
| 1755 |
| 1756 void BinarySmiOpInstr::InferRange() { |
| 1757 // TODO(vegorov): canonicalize BinarySmiOp to always have constant on the |
| 1758 // right and a non-constant on the left. |
| 1759 Definition* left_defn = left()->definition(); |
| 1760 |
| 1761 Range* left_range = left_defn->range(); |
| 1762 Range* right_range = right()->definition()->range(); |
| 1763 |
| 1764 if ((left_range == NULL) || (right_range == NULL)) { |
| 1765 range_ = Range::UnknownSmi(); |
| 1766 return; |
| 1767 } |
| 1768 |
| 1769 Range* possible_range = Range::BinaryOp(op_kind(), |
| 1770 left_range, |
| 1771 right_range, |
| 1772 left_defn); |
| 1773 |
| 1774 if ((range_ == NULL) && (possible_range == NULL)) { |
| 1775 // Initialize. |
| 1776 range_ = Range::UnknownSmi(); |
| 1777 return; |
| 1778 } |
| 1779 |
| 1780 if (possible_range == NULL) { |
| 1781 // Nothing new. |
| 1782 return; |
| 1783 } |
| 1784 |
| 1785 range_ = possible_range; |
| 1786 |
| 1787 ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown()); |
| 1788 // Calculate overflowed status before clamping. |
| 1789 const bool overflowed = range_->min().LowerBound().OverflowedSmi() || |
| 1790 range_->max().UpperBound().OverflowedSmi(); |
| 1791 set_overflow(overflowed); |
| 1792 |
| 1793 // Clamp value to be within smi range. |
| 1794 range_->Clamp(RangeBoundary::kRangeBoundarySmi); |
| 1795 } |
| 1796 |
| 1797 |
| 1798 void BinaryMintOpInstr::InferRange() { |
| 1799 // TODO(vegorov): canonicalize BinaryMintOpInstr to always have constant on |
| 1800 // the right and a non-constant on the left. |
| 1801 Definition* left_defn = left()->definition(); |
| 1802 |
| 1803 Range* left_range = left_defn->range(); |
| 1804 Range* right_range = right()->definition()->range(); |
| 1805 |
| 1806 if ((left_range == NULL) || (right_range == NULL)) { |
| 1807 range_ = Range::Unknown(); |
| 1808 return; |
| 1809 } |
| 1810 |
| 1811 Range* possible_range = Range::BinaryOp(op_kind(), |
| 1812 left_range, |
| 1813 right_range, |
| 1814 left_defn); |
| 1815 |
| 1816 if ((range_ == NULL) && (possible_range == NULL)) { |
| 1817 // Initialize. |
| 1818 range_ = Range::Unknown(); |
| 1819 return; |
| 1820 } |
| 1821 |
| 1822 if (possible_range == NULL) { |
| 1823 // Nothing new. |
| 1824 return; |
| 1825 } |
| 1826 |
| 1827 range_ = possible_range; |
| 1828 |
| 1829 ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown()); |
| 1830 |
| 1831 // Calculate overflowed status before clamping. |
| 1832 const bool overflowed = range_->min().LowerBound().OverflowedMint() || |
| 1833 range_->max().UpperBound().OverflowedMint(); |
| 1834 set_can_overflow(overflowed); |
| 1835 |
| 1836 // Clamp value to be within mint range. |
| 1837 range_->Clamp(RangeBoundary::kRangeBoundaryInt64); |
| 1838 } |
| 1839 |
| 1840 |
| 1841 void ShiftMintOpInstr::InferRange() { |
| 1842 Definition* left_defn = left()->definition(); |
| 1843 |
| 1844 Range* left_range = left_defn->range(); |
| 1845 Range* right_range = right()->definition()->range(); |
| 1846 |
| 1847 if ((left_range == NULL) || (right_range == NULL)) { |
| 1848 range_ = Range::Unknown(); |
| 1849 return; |
| 1850 } |
| 1851 |
| 1852 Range* possible_range = Range::BinaryOp(op_kind(), |
| 1853 left_range, |
| 1854 right_range, |
| 1855 left_defn); |
| 1856 |
| 1857 if ((range_ == NULL) && (possible_range == NULL)) { |
| 1858 // Initialize. |
| 1859 range_ = Range::Unknown(); |
| 1860 return; |
| 1861 } |
| 1862 |
| 1863 if (possible_range == NULL) { |
| 1864 // Nothing new. |
| 1865 return; |
| 1866 } |
| 1867 |
| 1868 range_ = possible_range; |
| 1869 |
| 1870 ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown()); |
| 1871 |
| 1872 // Calculate overflowed status before clamping. |
| 1873 const bool overflowed = range_->min().LowerBound().OverflowedMint() || |
| 1874 range_->max().UpperBound().OverflowedMint(); |
| 1875 set_can_overflow(overflowed); |
| 1876 |
| 1877 // Clamp value to be within mint range. |
| 1878 range_->Clamp(RangeBoundary::kRangeBoundaryInt64); |
| 1879 } |
| 1880 |
| 1881 |
| 1882 void BoxIntegerInstr::InferRange() { |
| 1883 Range* input_range = value()->definition()->range(); |
| 1884 if (input_range != NULL) { |
| 1885 bool is_smi = !input_range->min().LowerBound().OverflowedSmi() && |
| 1886 !input_range->max().UpperBound().OverflowedSmi(); |
| 1887 set_is_smi(is_smi); |
| 1888 // The output range is the same as the input range. |
| 1889 range_ = input_range; |
| 1890 } |
| 1891 } |
| 1892 |
| 1893 |
| 1894 bool CheckArrayBoundInstr::IsRedundant(const RangeBoundary& length) { |
| 1895 Range* index_range = index()->definition()->range(); |
| 1896 |
| 1897 // Range of the index is unknown can't decide if the check is redundant. |
| 1898 if (index_range == NULL) { |
| 1899 return false; |
| 1900 } |
| 1901 |
| 1902 // Range of the index is not positive. Check can't be redundant. |
| 1903 if (Range::ConstantMinSmi(index_range).ConstantValue() < 0) { |
| 1904 return false; |
| 1905 } |
| 1906 |
| 1907 RangeBoundary max = CanonicalizeBoundary(index_range->max(), |
| 1908 RangeBoundary::PositiveInfinity()); |
| 1909 |
| 1910 if (max.OverflowedSmi()) { |
| 1911 return false; |
| 1912 } |
| 1913 |
| 1914 |
| 1915 RangeBoundary max_upper = max.UpperBound(); |
| 1916 RangeBoundary length_lower = length.LowerBound(); |
| 1917 |
| 1918 if (max_upper.OverflowedSmi() || length_lower.OverflowedSmi()) { |
| 1919 return false; |
| 1920 } |
| 1921 |
| 1922 // Try to compare constant boundaries. |
| 1923 if (max_upper.ConstantValue() < length_lower.ConstantValue()) { |
| 1924 return true; |
| 1925 } |
| 1926 |
| 1927 RangeBoundary canonical_length = |
| 1928 CanonicalizeBoundary(length, RangeBoundary::PositiveInfinity()); |
| 1929 if (canonical_length.OverflowedSmi()) { |
| 1930 return false; |
| 1931 } |
| 1932 |
| 1933 // Try symbolic comparison. |
| 1934 do { |
| 1935 if (DependOnSameSymbol(max, canonical_length)) { |
| 1936 return max.offset() < canonical_length.offset(); |
| 1937 } |
| 1938 } while (CanonicalizeMaxBoundary(&max) || |
| 1939 CanonicalizeMinBoundary(&canonical_length)); |
| 1940 |
| 1941 // Failed to prove that maximum is bounded with array length. |
| 1942 return false; |
| 1943 } |
| 1944 |
| 1945 |
| 1946 } // namespace dart |
OLD | NEW |