| Index: src/mark-compact.h
|
| diff --git a/src/mark-compact.h b/src/mark-compact.h
|
| deleted file mode 100644
|
| index 468495e9052e33439151f098dc4cf9552e897894..0000000000000000000000000000000000000000
|
| --- a/src/mark-compact.h
|
| +++ /dev/null
|
| @@ -1,992 +0,0 @@
|
| -// Copyright 2012 the V8 project authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#ifndef V8_MARK_COMPACT_H_
|
| -#define V8_MARK_COMPACT_H_
|
| -
|
| -#include "src/compiler-intrinsics.h"
|
| -#include "src/spaces.h"
|
| -
|
| -namespace v8 {
|
| -namespace internal {
|
| -
|
| -// Callback function, returns whether an object is alive. The heap size
|
| -// of the object is returned in size. It optionally updates the offset
|
| -// to the first live object in the page (only used for old and map objects).
|
| -typedef bool (*IsAliveFunction)(HeapObject* obj, int* size, int* offset);
|
| -
|
| -// Forward declarations.
|
| -class CodeFlusher;
|
| -class MarkCompactCollector;
|
| -class MarkingVisitor;
|
| -class RootMarkingVisitor;
|
| -
|
| -
|
| -class Marking {
|
| - public:
|
| - explicit Marking(Heap* heap)
|
| - : heap_(heap) {
|
| - }
|
| -
|
| - INLINE(static MarkBit MarkBitFrom(Address addr));
|
| -
|
| - INLINE(static MarkBit MarkBitFrom(HeapObject* obj)) {
|
| - return MarkBitFrom(reinterpret_cast<Address>(obj));
|
| - }
|
| -
|
| - // Impossible markbits: 01
|
| - static const char* kImpossibleBitPattern;
|
| - INLINE(static bool IsImpossible(MarkBit mark_bit)) {
|
| - return !mark_bit.Get() && mark_bit.Next().Get();
|
| - }
|
| -
|
| - // Black markbits: 10 - this is required by the sweeper.
|
| - static const char* kBlackBitPattern;
|
| - INLINE(static bool IsBlack(MarkBit mark_bit)) {
|
| - return mark_bit.Get() && !mark_bit.Next().Get();
|
| - }
|
| -
|
| - // White markbits: 00 - this is required by the mark bit clearer.
|
| - static const char* kWhiteBitPattern;
|
| - INLINE(static bool IsWhite(MarkBit mark_bit)) {
|
| - return !mark_bit.Get();
|
| - }
|
| -
|
| - // Grey markbits: 11
|
| - static const char* kGreyBitPattern;
|
| - INLINE(static bool IsGrey(MarkBit mark_bit)) {
|
| - return mark_bit.Get() && mark_bit.Next().Get();
|
| - }
|
| -
|
| - INLINE(static void MarkBlack(MarkBit mark_bit)) {
|
| - mark_bit.Set();
|
| - mark_bit.Next().Clear();
|
| - }
|
| -
|
| - INLINE(static void BlackToGrey(MarkBit markbit)) {
|
| - markbit.Next().Set();
|
| - }
|
| -
|
| - INLINE(static void WhiteToGrey(MarkBit markbit)) {
|
| - markbit.Set();
|
| - markbit.Next().Set();
|
| - }
|
| -
|
| - INLINE(static void GreyToBlack(MarkBit markbit)) {
|
| - markbit.Next().Clear();
|
| - }
|
| -
|
| - INLINE(static void BlackToGrey(HeapObject* obj)) {
|
| - BlackToGrey(MarkBitFrom(obj));
|
| - }
|
| -
|
| - INLINE(static void AnyToGrey(MarkBit markbit)) {
|
| - markbit.Set();
|
| - markbit.Next().Set();
|
| - }
|
| -
|
| - void TransferMark(Address old_start, Address new_start);
|
| -
|
| -#ifdef DEBUG
|
| - enum ObjectColor {
|
| - BLACK_OBJECT,
|
| - WHITE_OBJECT,
|
| - GREY_OBJECT,
|
| - IMPOSSIBLE_COLOR
|
| - };
|
| -
|
| - static const char* ColorName(ObjectColor color) {
|
| - switch (color) {
|
| - case BLACK_OBJECT: return "black";
|
| - case WHITE_OBJECT: return "white";
|
| - case GREY_OBJECT: return "grey";
|
| - case IMPOSSIBLE_COLOR: return "impossible";
|
| - }
|
| - return "error";
|
| - }
|
| -
|
| - static ObjectColor Color(HeapObject* obj) {
|
| - return Color(Marking::MarkBitFrom(obj));
|
| - }
|
| -
|
| - static ObjectColor Color(MarkBit mark_bit) {
|
| - if (IsBlack(mark_bit)) return BLACK_OBJECT;
|
| - if (IsWhite(mark_bit)) return WHITE_OBJECT;
|
| - if (IsGrey(mark_bit)) return GREY_OBJECT;
|
| - UNREACHABLE();
|
| - return IMPOSSIBLE_COLOR;
|
| - }
|
| -#endif
|
| -
|
| - // Returns true if the transferred color is black.
|
| - INLINE(static bool TransferColor(HeapObject* from,
|
| - HeapObject* to)) {
|
| - MarkBit from_mark_bit = MarkBitFrom(from);
|
| - MarkBit to_mark_bit = MarkBitFrom(to);
|
| - bool is_black = false;
|
| - if (from_mark_bit.Get()) {
|
| - to_mark_bit.Set();
|
| - is_black = true; // Looks black so far.
|
| - }
|
| - if (from_mark_bit.Next().Get()) {
|
| - to_mark_bit.Next().Set();
|
| - is_black = false; // Was actually gray.
|
| - }
|
| - return is_black;
|
| - }
|
| -
|
| - private:
|
| - Heap* heap_;
|
| -};
|
| -
|
| -// ----------------------------------------------------------------------------
|
| -// Marking deque for tracing live objects.
|
| -class MarkingDeque {
|
| - public:
|
| - MarkingDeque()
|
| - : array_(NULL), top_(0), bottom_(0), mask_(0), overflowed_(false) { }
|
| -
|
| - void Initialize(Address low, Address high) {
|
| - HeapObject** obj_low = reinterpret_cast<HeapObject**>(low);
|
| - HeapObject** obj_high = reinterpret_cast<HeapObject**>(high);
|
| - array_ = obj_low;
|
| - mask_ = RoundDownToPowerOf2(static_cast<int>(obj_high - obj_low)) - 1;
|
| - top_ = bottom_ = 0;
|
| - overflowed_ = false;
|
| - }
|
| -
|
| - inline bool IsFull() { return ((top_ + 1) & mask_) == bottom_; }
|
| -
|
| - inline bool IsEmpty() { return top_ == bottom_; }
|
| -
|
| - bool overflowed() const { return overflowed_; }
|
| -
|
| - void ClearOverflowed() { overflowed_ = false; }
|
| -
|
| - void SetOverflowed() { overflowed_ = true; }
|
| -
|
| - // Push the (marked) object on the marking stack if there is room,
|
| - // otherwise mark the object as overflowed and wait for a rescan of the
|
| - // heap.
|
| - INLINE(void PushBlack(HeapObject* object)) {
|
| - DCHECK(object->IsHeapObject());
|
| - if (IsFull()) {
|
| - Marking::BlackToGrey(object);
|
| - MemoryChunk::IncrementLiveBytesFromGC(object->address(), -object->Size());
|
| - SetOverflowed();
|
| - } else {
|
| - array_[top_] = object;
|
| - top_ = ((top_ + 1) & mask_);
|
| - }
|
| - }
|
| -
|
| - INLINE(void PushGrey(HeapObject* object)) {
|
| - DCHECK(object->IsHeapObject());
|
| - if (IsFull()) {
|
| - SetOverflowed();
|
| - } else {
|
| - array_[top_] = object;
|
| - top_ = ((top_ + 1) & mask_);
|
| - }
|
| - }
|
| -
|
| - INLINE(HeapObject* Pop()) {
|
| - DCHECK(!IsEmpty());
|
| - top_ = ((top_ - 1) & mask_);
|
| - HeapObject* object = array_[top_];
|
| - DCHECK(object->IsHeapObject());
|
| - return object;
|
| - }
|
| -
|
| - INLINE(void UnshiftGrey(HeapObject* object)) {
|
| - DCHECK(object->IsHeapObject());
|
| - if (IsFull()) {
|
| - SetOverflowed();
|
| - } else {
|
| - bottom_ = ((bottom_ - 1) & mask_);
|
| - array_[bottom_] = object;
|
| - }
|
| - }
|
| -
|
| - HeapObject** array() { return array_; }
|
| - int bottom() { return bottom_; }
|
| - int top() { return top_; }
|
| - int mask() { return mask_; }
|
| - void set_top(int top) { top_ = top; }
|
| -
|
| - private:
|
| - HeapObject** array_;
|
| - // array_[(top - 1) & mask_] is the top element in the deque. The Deque is
|
| - // empty when top_ == bottom_. It is full when top_ + 1 == bottom
|
| - // (mod mask + 1).
|
| - int top_;
|
| - int bottom_;
|
| - int mask_;
|
| - bool overflowed_;
|
| -
|
| - DISALLOW_COPY_AND_ASSIGN(MarkingDeque);
|
| -};
|
| -
|
| -
|
| -class SlotsBufferAllocator {
|
| - public:
|
| - SlotsBuffer* AllocateBuffer(SlotsBuffer* next_buffer);
|
| - void DeallocateBuffer(SlotsBuffer* buffer);
|
| -
|
| - void DeallocateChain(SlotsBuffer** buffer_address);
|
| -};
|
| -
|
| -
|
| -// SlotsBuffer records a sequence of slots that has to be updated
|
| -// after live objects were relocated from evacuation candidates.
|
| -// All slots are either untyped or typed:
|
| -// - Untyped slots are expected to contain a tagged object pointer.
|
| -// They are recorded by an address.
|
| -// - Typed slots are expected to contain an encoded pointer to a heap
|
| -// object where the way of encoding depends on the type of the slot.
|
| -// They are recorded as a pair (SlotType, slot address).
|
| -// We assume that zero-page is never mapped this allows us to distinguish
|
| -// untyped slots from typed slots during iteration by a simple comparison:
|
| -// if element of slots buffer is less than NUMBER_OF_SLOT_TYPES then it
|
| -// is the first element of typed slot's pair.
|
| -class SlotsBuffer {
|
| - public:
|
| - typedef Object** ObjectSlot;
|
| -
|
| - explicit SlotsBuffer(SlotsBuffer* next_buffer)
|
| - : idx_(0), chain_length_(1), next_(next_buffer) {
|
| - if (next_ != NULL) {
|
| - chain_length_ = next_->chain_length_ + 1;
|
| - }
|
| - }
|
| -
|
| - ~SlotsBuffer() {
|
| - }
|
| -
|
| - void Add(ObjectSlot slot) {
|
| - DCHECK(0 <= idx_ && idx_ < kNumberOfElements);
|
| - slots_[idx_++] = slot;
|
| - }
|
| -
|
| - enum SlotType {
|
| - EMBEDDED_OBJECT_SLOT,
|
| - RELOCATED_CODE_OBJECT,
|
| - CODE_TARGET_SLOT,
|
| - CODE_ENTRY_SLOT,
|
| - DEBUG_TARGET_SLOT,
|
| - JS_RETURN_SLOT,
|
| - NUMBER_OF_SLOT_TYPES
|
| - };
|
| -
|
| - static const char* SlotTypeToString(SlotType type) {
|
| - switch (type) {
|
| - case EMBEDDED_OBJECT_SLOT:
|
| - return "EMBEDDED_OBJECT_SLOT";
|
| - case RELOCATED_CODE_OBJECT:
|
| - return "RELOCATED_CODE_OBJECT";
|
| - case CODE_TARGET_SLOT:
|
| - return "CODE_TARGET_SLOT";
|
| - case CODE_ENTRY_SLOT:
|
| - return "CODE_ENTRY_SLOT";
|
| - case DEBUG_TARGET_SLOT:
|
| - return "DEBUG_TARGET_SLOT";
|
| - case JS_RETURN_SLOT:
|
| - return "JS_RETURN_SLOT";
|
| - case NUMBER_OF_SLOT_TYPES:
|
| - return "NUMBER_OF_SLOT_TYPES";
|
| - }
|
| - return "UNKNOWN SlotType";
|
| - }
|
| -
|
| - void UpdateSlots(Heap* heap);
|
| -
|
| - void UpdateSlotsWithFilter(Heap* heap);
|
| -
|
| - SlotsBuffer* next() { return next_; }
|
| -
|
| - static int SizeOfChain(SlotsBuffer* buffer) {
|
| - if (buffer == NULL) return 0;
|
| - return static_cast<int>(buffer->idx_ +
|
| - (buffer->chain_length_ - 1) * kNumberOfElements);
|
| - }
|
| -
|
| - inline bool IsFull() {
|
| - return idx_ == kNumberOfElements;
|
| - }
|
| -
|
| - inline bool HasSpaceForTypedSlot() {
|
| - return idx_ < kNumberOfElements - 1;
|
| - }
|
| -
|
| - static void UpdateSlotsRecordedIn(Heap* heap,
|
| - SlotsBuffer* buffer,
|
| - bool code_slots_filtering_required) {
|
| - while (buffer != NULL) {
|
| - if (code_slots_filtering_required) {
|
| - buffer->UpdateSlotsWithFilter(heap);
|
| - } else {
|
| - buffer->UpdateSlots(heap);
|
| - }
|
| - buffer = buffer->next();
|
| - }
|
| - }
|
| -
|
| - enum AdditionMode {
|
| - FAIL_ON_OVERFLOW,
|
| - IGNORE_OVERFLOW
|
| - };
|
| -
|
| - static bool ChainLengthThresholdReached(SlotsBuffer* buffer) {
|
| - return buffer != NULL && buffer->chain_length_ >= kChainLengthThreshold;
|
| - }
|
| -
|
| - INLINE(static bool AddTo(SlotsBufferAllocator* allocator,
|
| - SlotsBuffer** buffer_address,
|
| - ObjectSlot slot,
|
| - AdditionMode mode)) {
|
| - SlotsBuffer* buffer = *buffer_address;
|
| - if (buffer == NULL || buffer->IsFull()) {
|
| - if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) {
|
| - allocator->DeallocateChain(buffer_address);
|
| - return false;
|
| - }
|
| - buffer = allocator->AllocateBuffer(buffer);
|
| - *buffer_address = buffer;
|
| - }
|
| - buffer->Add(slot);
|
| - return true;
|
| - }
|
| -
|
| - static bool IsTypedSlot(ObjectSlot slot);
|
| -
|
| - static bool AddTo(SlotsBufferAllocator* allocator,
|
| - SlotsBuffer** buffer_address,
|
| - SlotType type,
|
| - Address addr,
|
| - AdditionMode mode);
|
| -
|
| - static const int kNumberOfElements = 1021;
|
| -
|
| - private:
|
| - static const int kChainLengthThreshold = 15;
|
| -
|
| - intptr_t idx_;
|
| - intptr_t chain_length_;
|
| - SlotsBuffer* next_;
|
| - ObjectSlot slots_[kNumberOfElements];
|
| -};
|
| -
|
| -
|
| -// CodeFlusher collects candidates for code flushing during marking and
|
| -// processes those candidates after marking has completed in order to
|
| -// reset those functions referencing code objects that would otherwise
|
| -// be unreachable. Code objects can be referenced in three ways:
|
| -// - SharedFunctionInfo references unoptimized code.
|
| -// - JSFunction references either unoptimized or optimized code.
|
| -// - OptimizedCodeMap references optimized code.
|
| -// We are not allowed to flush unoptimized code for functions that got
|
| -// optimized or inlined into optimized code, because we might bailout
|
| -// into the unoptimized code again during deoptimization.
|
| -class CodeFlusher {
|
| - public:
|
| - explicit CodeFlusher(Isolate* isolate)
|
| - : isolate_(isolate),
|
| - jsfunction_candidates_head_(NULL),
|
| - shared_function_info_candidates_head_(NULL),
|
| - optimized_code_map_holder_head_(NULL) {}
|
| -
|
| - void AddCandidate(SharedFunctionInfo* shared_info) {
|
| - if (GetNextCandidate(shared_info) == NULL) {
|
| - SetNextCandidate(shared_info, shared_function_info_candidates_head_);
|
| - shared_function_info_candidates_head_ = shared_info;
|
| - }
|
| - }
|
| -
|
| - void AddCandidate(JSFunction* function) {
|
| - DCHECK(function->code() == function->shared()->code());
|
| - if (GetNextCandidate(function)->IsUndefined()) {
|
| - SetNextCandidate(function, jsfunction_candidates_head_);
|
| - jsfunction_candidates_head_ = function;
|
| - }
|
| - }
|
| -
|
| - void AddOptimizedCodeMap(SharedFunctionInfo* code_map_holder) {
|
| - if (GetNextCodeMap(code_map_holder)->IsUndefined()) {
|
| - SetNextCodeMap(code_map_holder, optimized_code_map_holder_head_);
|
| - optimized_code_map_holder_head_ = code_map_holder;
|
| - }
|
| - }
|
| -
|
| - void EvictOptimizedCodeMap(SharedFunctionInfo* code_map_holder);
|
| - void EvictCandidate(SharedFunctionInfo* shared_info);
|
| - void EvictCandidate(JSFunction* function);
|
| -
|
| - void ProcessCandidates() {
|
| - ProcessOptimizedCodeMaps();
|
| - ProcessSharedFunctionInfoCandidates();
|
| - ProcessJSFunctionCandidates();
|
| - }
|
| -
|
| - void EvictAllCandidates() {
|
| - EvictOptimizedCodeMaps();
|
| - EvictJSFunctionCandidates();
|
| - EvictSharedFunctionInfoCandidates();
|
| - }
|
| -
|
| - void IteratePointersToFromSpace(ObjectVisitor* v);
|
| -
|
| - private:
|
| - void ProcessOptimizedCodeMaps();
|
| - void ProcessJSFunctionCandidates();
|
| - void ProcessSharedFunctionInfoCandidates();
|
| - void EvictOptimizedCodeMaps();
|
| - void EvictJSFunctionCandidates();
|
| - void EvictSharedFunctionInfoCandidates();
|
| -
|
| - static JSFunction** GetNextCandidateSlot(JSFunction* candidate) {
|
| - return reinterpret_cast<JSFunction**>(
|
| - HeapObject::RawField(candidate, JSFunction::kNextFunctionLinkOffset));
|
| - }
|
| -
|
| - static JSFunction* GetNextCandidate(JSFunction* candidate) {
|
| - Object* next_candidate = candidate->next_function_link();
|
| - return reinterpret_cast<JSFunction*>(next_candidate);
|
| - }
|
| -
|
| - static void SetNextCandidate(JSFunction* candidate,
|
| - JSFunction* next_candidate) {
|
| - candidate->set_next_function_link(next_candidate);
|
| - }
|
| -
|
| - static void ClearNextCandidate(JSFunction* candidate, Object* undefined) {
|
| - DCHECK(undefined->IsUndefined());
|
| - candidate->set_next_function_link(undefined, SKIP_WRITE_BARRIER);
|
| - }
|
| -
|
| - static SharedFunctionInfo* GetNextCandidate(SharedFunctionInfo* candidate) {
|
| - Object* next_candidate = candidate->code()->gc_metadata();
|
| - return reinterpret_cast<SharedFunctionInfo*>(next_candidate);
|
| - }
|
| -
|
| - static void SetNextCandidate(SharedFunctionInfo* candidate,
|
| - SharedFunctionInfo* next_candidate) {
|
| - candidate->code()->set_gc_metadata(next_candidate);
|
| - }
|
| -
|
| - static void ClearNextCandidate(SharedFunctionInfo* candidate) {
|
| - candidate->code()->set_gc_metadata(NULL, SKIP_WRITE_BARRIER);
|
| - }
|
| -
|
| - static SharedFunctionInfo* GetNextCodeMap(SharedFunctionInfo* holder) {
|
| - FixedArray* code_map = FixedArray::cast(holder->optimized_code_map());
|
| - Object* next_map = code_map->get(SharedFunctionInfo::kNextMapIndex);
|
| - return reinterpret_cast<SharedFunctionInfo*>(next_map);
|
| - }
|
| -
|
| - static void SetNextCodeMap(SharedFunctionInfo* holder,
|
| - SharedFunctionInfo* next_holder) {
|
| - FixedArray* code_map = FixedArray::cast(holder->optimized_code_map());
|
| - code_map->set(SharedFunctionInfo::kNextMapIndex, next_holder);
|
| - }
|
| -
|
| - static void ClearNextCodeMap(SharedFunctionInfo* holder) {
|
| - FixedArray* code_map = FixedArray::cast(holder->optimized_code_map());
|
| - code_map->set_undefined(SharedFunctionInfo::kNextMapIndex);
|
| - }
|
| -
|
| - Isolate* isolate_;
|
| - JSFunction* jsfunction_candidates_head_;
|
| - SharedFunctionInfo* shared_function_info_candidates_head_;
|
| - SharedFunctionInfo* optimized_code_map_holder_head_;
|
| -
|
| - DISALLOW_COPY_AND_ASSIGN(CodeFlusher);
|
| -};
|
| -
|
| -
|
| -// Defined in isolate.h.
|
| -class ThreadLocalTop;
|
| -
|
| -
|
| -// -------------------------------------------------------------------------
|
| -// Mark-Compact collector
|
| -class MarkCompactCollector {
|
| - public:
|
| - // Set the global flags, it must be called before Prepare to take effect.
|
| - inline void SetFlags(int flags);
|
| -
|
| - static void Initialize();
|
| -
|
| - void SetUp();
|
| -
|
| - void TearDown();
|
| -
|
| - void CollectEvacuationCandidates(PagedSpace* space);
|
| -
|
| - void AddEvacuationCandidate(Page* p);
|
| -
|
| - // Prepares for GC by resetting relocation info in old and map spaces and
|
| - // choosing spaces to compact.
|
| - void Prepare();
|
| -
|
| - // Performs a global garbage collection.
|
| - void CollectGarbage();
|
| -
|
| - enum CompactionMode {
|
| - INCREMENTAL_COMPACTION,
|
| - NON_INCREMENTAL_COMPACTION
|
| - };
|
| -
|
| - bool StartCompaction(CompactionMode mode);
|
| -
|
| - void AbortCompaction();
|
| -
|
| -#ifdef DEBUG
|
| - // Checks whether performing mark-compact collection.
|
| - bool in_use() { return state_ > PREPARE_GC; }
|
| - bool are_map_pointers_encoded() { return state_ == UPDATE_POINTERS; }
|
| -#endif
|
| -
|
| - // Determine type of object and emit deletion log event.
|
| - static void ReportDeleteIfNeeded(HeapObject* obj, Isolate* isolate);
|
| -
|
| - // Distinguishable invalid map encodings (for single word and multiple words)
|
| - // that indicate free regions.
|
| - static const uint32_t kSingleFreeEncoding = 0;
|
| - static const uint32_t kMultiFreeEncoding = 1;
|
| -
|
| - static inline bool IsMarked(Object* obj);
|
| -
|
| - inline Heap* heap() const { return heap_; }
|
| - inline Isolate* isolate() const;
|
| -
|
| - CodeFlusher* code_flusher() { return code_flusher_; }
|
| - inline bool is_code_flushing_enabled() const { return code_flusher_ != NULL; }
|
| - void EnableCodeFlushing(bool enable);
|
| -
|
| - enum SweeperType {
|
| - PARALLEL_CONSERVATIVE,
|
| - CONCURRENT_CONSERVATIVE,
|
| - PARALLEL_PRECISE,
|
| - CONCURRENT_PRECISE,
|
| - PRECISE
|
| - };
|
| -
|
| - enum SweepingParallelism {
|
| - SWEEP_ON_MAIN_THREAD,
|
| - SWEEP_IN_PARALLEL
|
| - };
|
| -
|
| -#ifdef VERIFY_HEAP
|
| - void VerifyMarkbitsAreClean();
|
| - static void VerifyMarkbitsAreClean(PagedSpace* space);
|
| - static void VerifyMarkbitsAreClean(NewSpace* space);
|
| - void VerifyWeakEmbeddedObjectsInCode();
|
| - void VerifyOmittedMapChecks();
|
| -#endif
|
| -
|
| - // Sweep a single page from the given space conservatively.
|
| - // Returns the size of the biggest continuous freed memory chunk in bytes.
|
| - template<SweepingParallelism type>
|
| - static int SweepConservatively(PagedSpace* space,
|
| - FreeList* free_list,
|
| - Page* p);
|
| -
|
| - INLINE(static bool ShouldSkipEvacuationSlotRecording(Object** anchor)) {
|
| - return Page::FromAddress(reinterpret_cast<Address>(anchor))->
|
| - ShouldSkipEvacuationSlotRecording();
|
| - }
|
| -
|
| - INLINE(static bool ShouldSkipEvacuationSlotRecording(Object* host)) {
|
| - return Page::FromAddress(reinterpret_cast<Address>(host))->
|
| - ShouldSkipEvacuationSlotRecording();
|
| - }
|
| -
|
| - INLINE(static bool IsOnEvacuationCandidate(Object* obj)) {
|
| - return Page::FromAddress(reinterpret_cast<Address>(obj))->
|
| - IsEvacuationCandidate();
|
| - }
|
| -
|
| - INLINE(void EvictEvacuationCandidate(Page* page)) {
|
| - if (FLAG_trace_fragmentation) {
|
| - PrintF("Page %p is too popular. Disabling evacuation.\n",
|
| - reinterpret_cast<void*>(page));
|
| - }
|
| -
|
| - // TODO(gc) If all evacuation candidates are too popular we
|
| - // should stop slots recording entirely.
|
| - page->ClearEvacuationCandidate();
|
| -
|
| - // We were not collecting slots on this page that point
|
| - // to other evacuation candidates thus we have to
|
| - // rescan the page after evacuation to discover and update all
|
| - // pointers to evacuated objects.
|
| - if (page->owner()->identity() == OLD_DATA_SPACE) {
|
| - evacuation_candidates_.RemoveElement(page);
|
| - } else {
|
| - page->SetFlag(Page::RESCAN_ON_EVACUATION);
|
| - }
|
| - }
|
| -
|
| - void RecordRelocSlot(RelocInfo* rinfo, Object* target);
|
| - void RecordCodeEntrySlot(Address slot, Code* target);
|
| - void RecordCodeTargetPatch(Address pc, Code* target);
|
| -
|
| - INLINE(void RecordSlot(Object** anchor_slot,
|
| - Object** slot,
|
| - Object* object,
|
| - SlotsBuffer::AdditionMode mode =
|
| - SlotsBuffer::FAIL_ON_OVERFLOW));
|
| -
|
| - void MigrateObject(HeapObject* dst,
|
| - HeapObject* src,
|
| - int size,
|
| - AllocationSpace to_old_space);
|
| -
|
| - bool TryPromoteObject(HeapObject* object, int object_size);
|
| -
|
| - void InvalidateCode(Code* code);
|
| -
|
| - void ClearMarkbits();
|
| -
|
| - bool abort_incremental_marking() const { return abort_incremental_marking_; }
|
| -
|
| - bool is_compacting() const { return compacting_; }
|
| -
|
| - MarkingParity marking_parity() { return marking_parity_; }
|
| -
|
| - // Concurrent and parallel sweeping support. If required_freed_bytes was set
|
| - // to a value larger than 0, then sweeping returns after a block of at least
|
| - // required_freed_bytes was freed. If required_freed_bytes was set to zero
|
| - // then the whole given space is swept. It returns the size of the maximum
|
| - // continuous freed memory chunk.
|
| - int SweepInParallel(PagedSpace* space, int required_freed_bytes);
|
| -
|
| - // Sweeps a given page concurrently to the sweeper threads. It returns the
|
| - // size of the maximum continuous freed memory chunk.
|
| - int SweepInParallel(Page* page, PagedSpace* space);
|
| -
|
| - void EnsureSweepingCompleted();
|
| -
|
| - // If sweeper threads are not active this method will return true. If
|
| - // this is a latency issue we should be smarter here. Otherwise, it will
|
| - // return true if the sweeper threads are done processing the pages.
|
| - bool IsSweepingCompleted();
|
| -
|
| - void RefillFreeList(PagedSpace* space);
|
| -
|
| - bool AreSweeperThreadsActivated();
|
| -
|
| - // Checks if sweeping is in progress right now on any space.
|
| - bool sweeping_in_progress() { return sweeping_in_progress_; }
|
| -
|
| - void set_sequential_sweeping(bool sequential_sweeping) {
|
| - sequential_sweeping_ = sequential_sweeping;
|
| - }
|
| -
|
| - bool sequential_sweeping() const {
|
| - return sequential_sweeping_;
|
| - }
|
| -
|
| - // Mark the global table which maps weak objects to dependent code without
|
| - // marking its contents.
|
| - void MarkWeakObjectToCodeTable();
|
| -
|
| - // Special case for processing weak references in a full collection. We need
|
| - // to artificially keep AllocationSites alive for a time.
|
| - void MarkAllocationSite(AllocationSite* site);
|
| -
|
| - private:
|
| - class SweeperTask;
|
| -
|
| - explicit MarkCompactCollector(Heap* heap);
|
| - ~MarkCompactCollector();
|
| -
|
| - bool MarkInvalidatedCode();
|
| - bool WillBeDeoptimized(Code* code);
|
| - void RemoveDeadInvalidatedCode();
|
| - void ProcessInvalidatedCode(ObjectVisitor* visitor);
|
| -
|
| - void StartSweeperThreads();
|
| -
|
| -#ifdef DEBUG
|
| - enum CollectorState {
|
| - IDLE,
|
| - PREPARE_GC,
|
| - MARK_LIVE_OBJECTS,
|
| - SWEEP_SPACES,
|
| - ENCODE_FORWARDING_ADDRESSES,
|
| - UPDATE_POINTERS,
|
| - RELOCATE_OBJECTS
|
| - };
|
| -
|
| - // The current stage of the collector.
|
| - CollectorState state_;
|
| -#endif
|
| -
|
| - // Global flag that forces sweeping to be precise, so we can traverse the
|
| - // heap.
|
| - bool sweep_precisely_;
|
| -
|
| - bool reduce_memory_footprint_;
|
| -
|
| - bool abort_incremental_marking_;
|
| -
|
| - MarkingParity marking_parity_;
|
| -
|
| - // True if we are collecting slots to perform evacuation from evacuation
|
| - // candidates.
|
| - bool compacting_;
|
| -
|
| - bool was_marked_incrementally_;
|
| -
|
| - // True if concurrent or parallel sweeping is currently in progress.
|
| - bool sweeping_in_progress_;
|
| -
|
| - base::Semaphore pending_sweeper_jobs_semaphore_;
|
| -
|
| - bool sequential_sweeping_;
|
| -
|
| - SlotsBufferAllocator slots_buffer_allocator_;
|
| -
|
| - SlotsBuffer* migration_slots_buffer_;
|
| -
|
| - // Finishes GC, performs heap verification if enabled.
|
| - void Finish();
|
| -
|
| - // -----------------------------------------------------------------------
|
| - // Phase 1: Marking live objects.
|
| - //
|
| - // Before: The heap has been prepared for garbage collection by
|
| - // MarkCompactCollector::Prepare() and is otherwise in its
|
| - // normal state.
|
| - //
|
| - // After: Live objects are marked and non-live objects are unmarked.
|
| -
|
| - friend class RootMarkingVisitor;
|
| - friend class MarkingVisitor;
|
| - friend class MarkCompactMarkingVisitor;
|
| - friend class CodeMarkingVisitor;
|
| - friend class SharedFunctionInfoMarkingVisitor;
|
| -
|
| - // Mark code objects that are active on the stack to prevent them
|
| - // from being flushed.
|
| - void PrepareThreadForCodeFlushing(Isolate* isolate, ThreadLocalTop* top);
|
| -
|
| - void PrepareForCodeFlushing();
|
| -
|
| - // Marking operations for objects reachable from roots.
|
| - void MarkLiveObjects();
|
| -
|
| - void AfterMarking();
|
| -
|
| - // Marks the object black and pushes it on the marking stack.
|
| - // This is for non-incremental marking only.
|
| - INLINE(void MarkObject(HeapObject* obj, MarkBit mark_bit));
|
| -
|
| - // Marks the object black assuming that it is not yet marked.
|
| - // This is for non-incremental marking only.
|
| - INLINE(void SetMark(HeapObject* obj, MarkBit mark_bit));
|
| -
|
| - // Mark the heap roots and all objects reachable from them.
|
| - void MarkRoots(RootMarkingVisitor* visitor);
|
| -
|
| - // Mark the string table specially. References to internalized strings from
|
| - // the string table are weak.
|
| - void MarkStringTable(RootMarkingVisitor* visitor);
|
| -
|
| - // Mark objects in implicit references groups if their parent object
|
| - // is marked.
|
| - void MarkImplicitRefGroups();
|
| -
|
| - // Mark objects reachable (transitively) from objects in the marking stack
|
| - // or overflowed in the heap.
|
| - void ProcessMarkingDeque();
|
| -
|
| - // Mark objects reachable (transitively) from objects in the marking stack
|
| - // or overflowed in the heap. This respects references only considered in
|
| - // the final atomic marking pause including the following:
|
| - // - Processing of objects reachable through Harmony WeakMaps.
|
| - // - Objects reachable due to host application logic like object groups
|
| - // or implicit references' groups.
|
| - void ProcessEphemeralMarking(ObjectVisitor* visitor);
|
| -
|
| - // If the call-site of the top optimized code was not prepared for
|
| - // deoptimization, then treat the maps in the code as strong pointers,
|
| - // otherwise a map can die and deoptimize the code.
|
| - void ProcessTopOptimizedFrame(ObjectVisitor* visitor);
|
| -
|
| - // Mark objects reachable (transitively) from objects in the marking
|
| - // stack. This function empties the marking stack, but may leave
|
| - // overflowed objects in the heap, in which case the marking stack's
|
| - // overflow flag will be set.
|
| - void EmptyMarkingDeque();
|
| -
|
| - // Refill the marking stack with overflowed objects from the heap. This
|
| - // function either leaves the marking stack full or clears the overflow
|
| - // flag on the marking stack.
|
| - void RefillMarkingDeque();
|
| -
|
| - // After reachable maps have been marked process per context object
|
| - // literal map caches removing unmarked entries.
|
| - void ProcessMapCaches();
|
| -
|
| - // Callback function for telling whether the object *p is an unmarked
|
| - // heap object.
|
| - static bool IsUnmarkedHeapObject(Object** p);
|
| - static bool IsUnmarkedHeapObjectWithHeap(Heap* heap, Object** p);
|
| -
|
| - // Map transitions from a live map to a dead map must be killed.
|
| - // We replace them with a null descriptor, with the same key.
|
| - void ClearNonLiveReferences();
|
| - void ClearNonLivePrototypeTransitions(Map* map);
|
| - void ClearNonLiveMapTransitions(Map* map, MarkBit map_mark);
|
| -
|
| - void ClearDependentCode(DependentCode* dependent_code);
|
| - void ClearDependentICList(Object* head);
|
| - void ClearNonLiveDependentCode(DependentCode* dependent_code);
|
| - int ClearNonLiveDependentCodeInGroup(DependentCode* dependent_code, int group,
|
| - int start, int end, int new_start);
|
| -
|
| - // Mark all values associated with reachable keys in weak collections
|
| - // encountered so far. This might push new object or even new weak maps onto
|
| - // the marking stack.
|
| - void ProcessWeakCollections();
|
| -
|
| - // After all reachable objects have been marked those weak map entries
|
| - // with an unreachable key are removed from all encountered weak maps.
|
| - // The linked list of all encountered weak maps is destroyed.
|
| - void ClearWeakCollections();
|
| -
|
| - // -----------------------------------------------------------------------
|
| - // Phase 2: Sweeping to clear mark bits and free non-live objects for
|
| - // a non-compacting collection.
|
| - //
|
| - // Before: Live objects are marked and non-live objects are unmarked.
|
| - //
|
| - // After: Live objects are unmarked, non-live regions have been added to
|
| - // their space's free list. Active eden semispace is compacted by
|
| - // evacuation.
|
| - //
|
| -
|
| - // If we are not compacting the heap, we simply sweep the spaces except
|
| - // for the large object space, clearing mark bits and adding unmarked
|
| - // regions to each space's free list.
|
| - void SweepSpaces();
|
| -
|
| - int DiscoverAndEvacuateBlackObjectsOnPage(NewSpace* new_space,
|
| - NewSpacePage* p);
|
| -
|
| - void EvacuateNewSpace();
|
| -
|
| - void EvacuateLiveObjectsFromPage(Page* p);
|
| -
|
| - void EvacuatePages();
|
| -
|
| - void EvacuateNewSpaceAndCandidates();
|
| -
|
| - void ReleaseEvacuationCandidates();
|
| -
|
| - // Moves the pages of the evacuation_candidates_ list to the end of their
|
| - // corresponding space pages list.
|
| - void MoveEvacuationCandidatesToEndOfPagesList();
|
| -
|
| - void SweepSpace(PagedSpace* space, SweeperType sweeper);
|
| -
|
| - // Finalizes the parallel sweeping phase. Marks all the pages that were
|
| - // swept in parallel.
|
| - void ParallelSweepSpacesComplete();
|
| -
|
| - void ParallelSweepSpaceComplete(PagedSpace* space);
|
| -
|
| - // Updates store buffer and slot buffer for a pointer in a migrating object.
|
| - void RecordMigratedSlot(Object* value, Address slot);
|
| -
|
| -#ifdef DEBUG
|
| - friend class MarkObjectVisitor;
|
| - static void VisitObject(HeapObject* obj);
|
| -
|
| - friend class UnmarkObjectVisitor;
|
| - static void UnmarkObject(HeapObject* obj);
|
| -#endif
|
| -
|
| - Heap* heap_;
|
| - MarkingDeque marking_deque_;
|
| - CodeFlusher* code_flusher_;
|
| - bool have_code_to_deoptimize_;
|
| -
|
| - List<Page*> evacuation_candidates_;
|
| - List<Code*> invalidated_code_;
|
| -
|
| - SmartPointer<FreeList> free_list_old_data_space_;
|
| - SmartPointer<FreeList> free_list_old_pointer_space_;
|
| -
|
| - friend class Heap;
|
| -};
|
| -
|
| -
|
| -class MarkBitCellIterator BASE_EMBEDDED {
|
| - public:
|
| - explicit MarkBitCellIterator(MemoryChunk* chunk)
|
| - : chunk_(chunk) {
|
| - last_cell_index_ = Bitmap::IndexToCell(
|
| - Bitmap::CellAlignIndex(
|
| - chunk_->AddressToMarkbitIndex(chunk_->area_end())));
|
| - cell_base_ = chunk_->area_start();
|
| - cell_index_ = Bitmap::IndexToCell(
|
| - Bitmap::CellAlignIndex(
|
| - chunk_->AddressToMarkbitIndex(cell_base_)));
|
| - cells_ = chunk_->markbits()->cells();
|
| - }
|
| -
|
| - inline bool Done() { return cell_index_ == last_cell_index_; }
|
| -
|
| - inline bool HasNext() { return cell_index_ < last_cell_index_ - 1; }
|
| -
|
| - inline MarkBit::CellType* CurrentCell() {
|
| - DCHECK(cell_index_ == Bitmap::IndexToCell(Bitmap::CellAlignIndex(
|
| - chunk_->AddressToMarkbitIndex(cell_base_))));
|
| - return &cells_[cell_index_];
|
| - }
|
| -
|
| - inline Address CurrentCellBase() {
|
| - DCHECK(cell_index_ == Bitmap::IndexToCell(Bitmap::CellAlignIndex(
|
| - chunk_->AddressToMarkbitIndex(cell_base_))));
|
| - return cell_base_;
|
| - }
|
| -
|
| - inline void Advance() {
|
| - cell_index_++;
|
| - cell_base_ += 32 * kPointerSize;
|
| - }
|
| -
|
| - private:
|
| - MemoryChunk* chunk_;
|
| - MarkBit::CellType* cells_;
|
| - unsigned int last_cell_index_;
|
| - unsigned int cell_index_;
|
| - Address cell_base_;
|
| -};
|
| -
|
| -
|
| -class SequentialSweepingScope BASE_EMBEDDED {
|
| - public:
|
| - explicit SequentialSweepingScope(MarkCompactCollector *collector) :
|
| - collector_(collector) {
|
| - collector_->set_sequential_sweeping(true);
|
| - }
|
| -
|
| - ~SequentialSweepingScope() {
|
| - collector_->set_sequential_sweeping(false);
|
| - }
|
| -
|
| - private:
|
| - MarkCompactCollector* collector_;
|
| -};
|
| -
|
| -
|
| -const char* AllocationSpaceName(AllocationSpace space);
|
| -
|
| -} } // namespace v8::internal
|
| -
|
| -#endif // V8_MARK_COMPACT_H_
|
|
|