Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(4)

Side by Side Diff: src/mark-compact.cc

Issue 437993003: Move a bunch of GC related files to heap/ subdirectory (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: make presubmit happy Created 6 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/mark-compact.h ('k') | src/mark-compact-inl.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #include "src/base/atomicops.h"
8 #include "src/code-stubs.h"
9 #include "src/compilation-cache.h"
10 #include "src/cpu-profiler.h"
11 #include "src/deoptimizer.h"
12 #include "src/execution.h"
13 #include "src/gdb-jit.h"
14 #include "src/global-handles.h"
15 #include "src/heap-profiler.h"
16 #include "src/ic-inl.h"
17 #include "src/incremental-marking.h"
18 #include "src/mark-compact.h"
19 #include "src/objects-visiting.h"
20 #include "src/objects-visiting-inl.h"
21 #include "src/spaces-inl.h"
22 #include "src/stub-cache.h"
23 #include "src/sweeper-thread.h"
24
25 namespace v8 {
26 namespace internal {
27
28
29 const char* Marking::kWhiteBitPattern = "00";
30 const char* Marking::kBlackBitPattern = "10";
31 const char* Marking::kGreyBitPattern = "11";
32 const char* Marking::kImpossibleBitPattern = "01";
33
34
35 // -------------------------------------------------------------------------
36 // MarkCompactCollector
37
38 MarkCompactCollector::MarkCompactCollector(Heap* heap) : // NOLINT
39 #ifdef DEBUG
40 state_(IDLE),
41 #endif
42 sweep_precisely_(false),
43 reduce_memory_footprint_(false),
44 abort_incremental_marking_(false),
45 marking_parity_(ODD_MARKING_PARITY),
46 compacting_(false),
47 was_marked_incrementally_(false),
48 sweeping_in_progress_(false),
49 pending_sweeper_jobs_semaphore_(0),
50 sequential_sweeping_(false),
51 migration_slots_buffer_(NULL),
52 heap_(heap),
53 code_flusher_(NULL),
54 have_code_to_deoptimize_(false) { }
55
56 #ifdef VERIFY_HEAP
57 class VerifyMarkingVisitor: public ObjectVisitor {
58 public:
59 explicit VerifyMarkingVisitor(Heap* heap) : heap_(heap) {}
60
61 void VisitPointers(Object** start, Object** end) {
62 for (Object** current = start; current < end; current++) {
63 if ((*current)->IsHeapObject()) {
64 HeapObject* object = HeapObject::cast(*current);
65 CHECK(heap_->mark_compact_collector()->IsMarked(object));
66 }
67 }
68 }
69
70 void VisitEmbeddedPointer(RelocInfo* rinfo) {
71 DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
72 if (!rinfo->host()->IsWeakObject(rinfo->target_object())) {
73 Object* p = rinfo->target_object();
74 VisitPointer(&p);
75 }
76 }
77
78 void VisitCell(RelocInfo* rinfo) {
79 Code* code = rinfo->host();
80 DCHECK(rinfo->rmode() == RelocInfo::CELL);
81 if (!code->IsWeakObject(rinfo->target_cell())) {
82 ObjectVisitor::VisitCell(rinfo);
83 }
84 }
85
86 private:
87 Heap* heap_;
88 };
89
90
91 static void VerifyMarking(Heap* heap, Address bottom, Address top) {
92 VerifyMarkingVisitor visitor(heap);
93 HeapObject* object;
94 Address next_object_must_be_here_or_later = bottom;
95
96 for (Address current = bottom;
97 current < top;
98 current += kPointerSize) {
99 object = HeapObject::FromAddress(current);
100 if (MarkCompactCollector::IsMarked(object)) {
101 CHECK(current >= next_object_must_be_here_or_later);
102 object->Iterate(&visitor);
103 next_object_must_be_here_or_later = current + object->Size();
104 }
105 }
106 }
107
108
109 static void VerifyMarking(NewSpace* space) {
110 Address end = space->top();
111 NewSpacePageIterator it(space->bottom(), end);
112 // The bottom position is at the start of its page. Allows us to use
113 // page->area_start() as start of range on all pages.
114 CHECK_EQ(space->bottom(),
115 NewSpacePage::FromAddress(space->bottom())->area_start());
116 while (it.has_next()) {
117 NewSpacePage* page = it.next();
118 Address limit = it.has_next() ? page->area_end() : end;
119 CHECK(limit == end || !page->Contains(end));
120 VerifyMarking(space->heap(), page->area_start(), limit);
121 }
122 }
123
124
125 static void VerifyMarking(PagedSpace* space) {
126 PageIterator it(space);
127
128 while (it.has_next()) {
129 Page* p = it.next();
130 VerifyMarking(space->heap(), p->area_start(), p->area_end());
131 }
132 }
133
134
135 static void VerifyMarking(Heap* heap) {
136 VerifyMarking(heap->old_pointer_space());
137 VerifyMarking(heap->old_data_space());
138 VerifyMarking(heap->code_space());
139 VerifyMarking(heap->cell_space());
140 VerifyMarking(heap->property_cell_space());
141 VerifyMarking(heap->map_space());
142 VerifyMarking(heap->new_space());
143
144 VerifyMarkingVisitor visitor(heap);
145
146 LargeObjectIterator it(heap->lo_space());
147 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
148 if (MarkCompactCollector::IsMarked(obj)) {
149 obj->Iterate(&visitor);
150 }
151 }
152
153 heap->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG);
154 }
155
156
157 class VerifyEvacuationVisitor: public ObjectVisitor {
158 public:
159 void VisitPointers(Object** start, Object** end) {
160 for (Object** current = start; current < end; current++) {
161 if ((*current)->IsHeapObject()) {
162 HeapObject* object = HeapObject::cast(*current);
163 CHECK(!MarkCompactCollector::IsOnEvacuationCandidate(object));
164 }
165 }
166 }
167 };
168
169
170 static void VerifyEvacuation(Page* page) {
171 VerifyEvacuationVisitor visitor;
172 HeapObjectIterator iterator(page, NULL);
173 for (HeapObject* heap_object = iterator.Next(); heap_object != NULL;
174 heap_object = iterator.Next()) {
175 // We skip free space objects.
176 if (!heap_object->IsFiller()) {
177 heap_object->Iterate(&visitor);
178 }
179 }
180 }
181
182
183 static void VerifyEvacuation(NewSpace* space) {
184 NewSpacePageIterator it(space->bottom(), space->top());
185 VerifyEvacuationVisitor visitor;
186
187 while (it.has_next()) {
188 NewSpacePage* page = it.next();
189 Address current = page->area_start();
190 Address limit = it.has_next() ? page->area_end() : space->top();
191 CHECK(limit == space->top() || !page->Contains(space->top()));
192 while (current < limit) {
193 HeapObject* object = HeapObject::FromAddress(current);
194 object->Iterate(&visitor);
195 current += object->Size();
196 }
197 }
198 }
199
200
201 static void VerifyEvacuation(Heap* heap, PagedSpace* space) {
202 if (!space->swept_precisely()) return;
203 if (FLAG_use_allocation_folding &&
204 (space == heap->old_pointer_space() || space == heap->old_data_space())) {
205 return;
206 }
207 PageIterator it(space);
208
209 while (it.has_next()) {
210 Page* p = it.next();
211 if (p->IsEvacuationCandidate()) continue;
212 VerifyEvacuation(p);
213 }
214 }
215
216
217 static void VerifyEvacuation(Heap* heap) {
218 VerifyEvacuation(heap, heap->old_pointer_space());
219 VerifyEvacuation(heap, heap->old_data_space());
220 VerifyEvacuation(heap, heap->code_space());
221 VerifyEvacuation(heap, heap->cell_space());
222 VerifyEvacuation(heap, heap->property_cell_space());
223 VerifyEvacuation(heap, heap->map_space());
224 VerifyEvacuation(heap->new_space());
225
226 VerifyEvacuationVisitor visitor;
227 heap->IterateStrongRoots(&visitor, VISIT_ALL);
228 }
229 #endif // VERIFY_HEAP
230
231
232 #ifdef DEBUG
233 class VerifyNativeContextSeparationVisitor: public ObjectVisitor {
234 public:
235 VerifyNativeContextSeparationVisitor() : current_native_context_(NULL) {}
236
237 void VisitPointers(Object** start, Object** end) {
238 for (Object** current = start; current < end; current++) {
239 if ((*current)->IsHeapObject()) {
240 HeapObject* object = HeapObject::cast(*current);
241 if (object->IsString()) continue;
242 switch (object->map()->instance_type()) {
243 case JS_FUNCTION_TYPE:
244 CheckContext(JSFunction::cast(object)->context());
245 break;
246 case JS_GLOBAL_PROXY_TYPE:
247 CheckContext(JSGlobalProxy::cast(object)->native_context());
248 break;
249 case JS_GLOBAL_OBJECT_TYPE:
250 case JS_BUILTINS_OBJECT_TYPE:
251 CheckContext(GlobalObject::cast(object)->native_context());
252 break;
253 case JS_ARRAY_TYPE:
254 case JS_DATE_TYPE:
255 case JS_OBJECT_TYPE:
256 case JS_REGEXP_TYPE:
257 VisitPointer(HeapObject::RawField(object, JSObject::kMapOffset));
258 break;
259 case MAP_TYPE:
260 VisitPointer(HeapObject::RawField(object, Map::kPrototypeOffset));
261 VisitPointer(HeapObject::RawField(object, Map::kConstructorOffset));
262 break;
263 case FIXED_ARRAY_TYPE:
264 if (object->IsContext()) {
265 CheckContext(object);
266 } else {
267 FixedArray* array = FixedArray::cast(object);
268 int length = array->length();
269 // Set array length to zero to prevent cycles while iterating
270 // over array bodies, this is easier than intrusive marking.
271 array->set_length(0);
272 array->IterateBody(
273 FIXED_ARRAY_TYPE, FixedArray::SizeFor(length), this);
274 array->set_length(length);
275 }
276 break;
277 case CELL_TYPE:
278 case JS_PROXY_TYPE:
279 case JS_VALUE_TYPE:
280 case TYPE_FEEDBACK_INFO_TYPE:
281 object->Iterate(this);
282 break;
283 case DECLARED_ACCESSOR_INFO_TYPE:
284 case EXECUTABLE_ACCESSOR_INFO_TYPE:
285 case BYTE_ARRAY_TYPE:
286 case CALL_HANDLER_INFO_TYPE:
287 case CODE_TYPE:
288 case FIXED_DOUBLE_ARRAY_TYPE:
289 case HEAP_NUMBER_TYPE:
290 case MUTABLE_HEAP_NUMBER_TYPE:
291 case INTERCEPTOR_INFO_TYPE:
292 case ODDBALL_TYPE:
293 case SCRIPT_TYPE:
294 case SHARED_FUNCTION_INFO_TYPE:
295 break;
296 default:
297 UNREACHABLE();
298 }
299 }
300 }
301 }
302
303 private:
304 void CheckContext(Object* context) {
305 if (!context->IsContext()) return;
306 Context* native_context = Context::cast(context)->native_context();
307 if (current_native_context_ == NULL) {
308 current_native_context_ = native_context;
309 } else {
310 CHECK_EQ(current_native_context_, native_context);
311 }
312 }
313
314 Context* current_native_context_;
315 };
316
317
318 static void VerifyNativeContextSeparation(Heap* heap) {
319 HeapObjectIterator it(heap->code_space());
320
321 for (Object* object = it.Next(); object != NULL; object = it.Next()) {
322 VerifyNativeContextSeparationVisitor visitor;
323 Code::cast(object)->CodeIterateBody(&visitor);
324 }
325 }
326 #endif
327
328
329 void MarkCompactCollector::SetUp() {
330 free_list_old_data_space_.Reset(new FreeList(heap_->old_data_space()));
331 free_list_old_pointer_space_.Reset(new FreeList(heap_->old_pointer_space()));
332 }
333
334
335 void MarkCompactCollector::TearDown() {
336 AbortCompaction();
337 }
338
339
340 void MarkCompactCollector::AddEvacuationCandidate(Page* p) {
341 p->MarkEvacuationCandidate();
342 evacuation_candidates_.Add(p);
343 }
344
345
346 static void TraceFragmentation(PagedSpace* space) {
347 int number_of_pages = space->CountTotalPages();
348 intptr_t reserved = (number_of_pages * space->AreaSize());
349 intptr_t free = reserved - space->SizeOfObjects();
350 PrintF("[%s]: %d pages, %d (%.1f%%) free\n",
351 AllocationSpaceName(space->identity()),
352 number_of_pages,
353 static_cast<int>(free),
354 static_cast<double>(free) * 100 / reserved);
355 }
356
357
358 bool MarkCompactCollector::StartCompaction(CompactionMode mode) {
359 if (!compacting_) {
360 DCHECK(evacuation_candidates_.length() == 0);
361
362 #ifdef ENABLE_GDB_JIT_INTERFACE
363 // If GDBJIT interface is active disable compaction.
364 if (FLAG_gdbjit) return false;
365 #endif
366
367 CollectEvacuationCandidates(heap()->old_pointer_space());
368 CollectEvacuationCandidates(heap()->old_data_space());
369
370 if (FLAG_compact_code_space &&
371 (mode == NON_INCREMENTAL_COMPACTION ||
372 FLAG_incremental_code_compaction)) {
373 CollectEvacuationCandidates(heap()->code_space());
374 } else if (FLAG_trace_fragmentation) {
375 TraceFragmentation(heap()->code_space());
376 }
377
378 if (FLAG_trace_fragmentation) {
379 TraceFragmentation(heap()->map_space());
380 TraceFragmentation(heap()->cell_space());
381 TraceFragmentation(heap()->property_cell_space());
382 }
383
384 heap()->old_pointer_space()->EvictEvacuationCandidatesFromFreeLists();
385 heap()->old_data_space()->EvictEvacuationCandidatesFromFreeLists();
386 heap()->code_space()->EvictEvacuationCandidatesFromFreeLists();
387
388 compacting_ = evacuation_candidates_.length() > 0;
389 }
390
391 return compacting_;
392 }
393
394
395 void MarkCompactCollector::CollectGarbage() {
396 // Make sure that Prepare() has been called. The individual steps below will
397 // update the state as they proceed.
398 DCHECK(state_ == PREPARE_GC);
399
400 MarkLiveObjects();
401 DCHECK(heap_->incremental_marking()->IsStopped());
402
403 if (FLAG_collect_maps) ClearNonLiveReferences();
404
405 ClearWeakCollections();
406
407 #ifdef VERIFY_HEAP
408 if (FLAG_verify_heap) {
409 VerifyMarking(heap_);
410 }
411 #endif
412
413 SweepSpaces();
414
415 #ifdef DEBUG
416 if (FLAG_verify_native_context_separation) {
417 VerifyNativeContextSeparation(heap_);
418 }
419 #endif
420
421 #ifdef VERIFY_HEAP
422 if (heap()->weak_embedded_objects_verification_enabled()) {
423 VerifyWeakEmbeddedObjectsInCode();
424 }
425 if (FLAG_collect_maps && FLAG_omit_map_checks_for_leaf_maps) {
426 VerifyOmittedMapChecks();
427 }
428 #endif
429
430 Finish();
431
432 if (marking_parity_ == EVEN_MARKING_PARITY) {
433 marking_parity_ = ODD_MARKING_PARITY;
434 } else {
435 DCHECK(marking_parity_ == ODD_MARKING_PARITY);
436 marking_parity_ = EVEN_MARKING_PARITY;
437 }
438 }
439
440
441 #ifdef VERIFY_HEAP
442 void MarkCompactCollector::VerifyMarkbitsAreClean(PagedSpace* space) {
443 PageIterator it(space);
444
445 while (it.has_next()) {
446 Page* p = it.next();
447 CHECK(p->markbits()->IsClean());
448 CHECK_EQ(0, p->LiveBytes());
449 }
450 }
451
452
453 void MarkCompactCollector::VerifyMarkbitsAreClean(NewSpace* space) {
454 NewSpacePageIterator it(space->bottom(), space->top());
455
456 while (it.has_next()) {
457 NewSpacePage* p = it.next();
458 CHECK(p->markbits()->IsClean());
459 CHECK_EQ(0, p->LiveBytes());
460 }
461 }
462
463
464 void MarkCompactCollector::VerifyMarkbitsAreClean() {
465 VerifyMarkbitsAreClean(heap_->old_pointer_space());
466 VerifyMarkbitsAreClean(heap_->old_data_space());
467 VerifyMarkbitsAreClean(heap_->code_space());
468 VerifyMarkbitsAreClean(heap_->cell_space());
469 VerifyMarkbitsAreClean(heap_->property_cell_space());
470 VerifyMarkbitsAreClean(heap_->map_space());
471 VerifyMarkbitsAreClean(heap_->new_space());
472
473 LargeObjectIterator it(heap_->lo_space());
474 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
475 MarkBit mark_bit = Marking::MarkBitFrom(obj);
476 CHECK(Marking::IsWhite(mark_bit));
477 CHECK_EQ(0, Page::FromAddress(obj->address())->LiveBytes());
478 }
479 }
480
481
482 void MarkCompactCollector::VerifyWeakEmbeddedObjectsInCode() {
483 HeapObjectIterator code_iterator(heap()->code_space());
484 for (HeapObject* obj = code_iterator.Next();
485 obj != NULL;
486 obj = code_iterator.Next()) {
487 Code* code = Code::cast(obj);
488 if (!code->is_optimized_code() && !code->is_weak_stub()) continue;
489 if (WillBeDeoptimized(code)) continue;
490 code->VerifyEmbeddedObjectsDependency();
491 }
492 }
493
494
495 void MarkCompactCollector::VerifyOmittedMapChecks() {
496 HeapObjectIterator iterator(heap()->map_space());
497 for (HeapObject* obj = iterator.Next();
498 obj != NULL;
499 obj = iterator.Next()) {
500 Map* map = Map::cast(obj);
501 map->VerifyOmittedMapChecks();
502 }
503 }
504 #endif // VERIFY_HEAP
505
506
507 static void ClearMarkbitsInPagedSpace(PagedSpace* space) {
508 PageIterator it(space);
509
510 while (it.has_next()) {
511 Bitmap::Clear(it.next());
512 }
513 }
514
515
516 static void ClearMarkbitsInNewSpace(NewSpace* space) {
517 NewSpacePageIterator it(space->ToSpaceStart(), space->ToSpaceEnd());
518
519 while (it.has_next()) {
520 Bitmap::Clear(it.next());
521 }
522 }
523
524
525 void MarkCompactCollector::ClearMarkbits() {
526 ClearMarkbitsInPagedSpace(heap_->code_space());
527 ClearMarkbitsInPagedSpace(heap_->map_space());
528 ClearMarkbitsInPagedSpace(heap_->old_pointer_space());
529 ClearMarkbitsInPagedSpace(heap_->old_data_space());
530 ClearMarkbitsInPagedSpace(heap_->cell_space());
531 ClearMarkbitsInPagedSpace(heap_->property_cell_space());
532 ClearMarkbitsInNewSpace(heap_->new_space());
533
534 LargeObjectIterator it(heap_->lo_space());
535 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
536 MarkBit mark_bit = Marking::MarkBitFrom(obj);
537 mark_bit.Clear();
538 mark_bit.Next().Clear();
539 Page::FromAddress(obj->address())->ResetProgressBar();
540 Page::FromAddress(obj->address())->ResetLiveBytes();
541 }
542 }
543
544
545 class MarkCompactCollector::SweeperTask : public v8::Task {
546 public:
547 SweeperTask(Heap* heap, PagedSpace* space)
548 : heap_(heap), space_(space) {}
549
550 virtual ~SweeperTask() {}
551
552 private:
553 // v8::Task overrides.
554 virtual void Run() V8_OVERRIDE {
555 heap_->mark_compact_collector()->SweepInParallel(space_, 0);
556 heap_->mark_compact_collector()->pending_sweeper_jobs_semaphore_.Signal();
557 }
558
559 Heap* heap_;
560 PagedSpace* space_;
561
562 DISALLOW_COPY_AND_ASSIGN(SweeperTask);
563 };
564
565
566 void MarkCompactCollector::StartSweeperThreads() {
567 DCHECK(free_list_old_pointer_space_.get()->IsEmpty());
568 DCHECK(free_list_old_data_space_.get()->IsEmpty());
569 sweeping_in_progress_ = true;
570 for (int i = 0; i < isolate()->num_sweeper_threads(); i++) {
571 isolate()->sweeper_threads()[i]->StartSweeping();
572 }
573 if (FLAG_job_based_sweeping) {
574 V8::GetCurrentPlatform()->CallOnBackgroundThread(
575 new SweeperTask(heap(), heap()->old_data_space()),
576 v8::Platform::kShortRunningTask);
577 V8::GetCurrentPlatform()->CallOnBackgroundThread(
578 new SweeperTask(heap(), heap()->old_pointer_space()),
579 v8::Platform::kShortRunningTask);
580 }
581 }
582
583
584 void MarkCompactCollector::EnsureSweepingCompleted() {
585 DCHECK(sweeping_in_progress_ == true);
586
587 // If sweeping is not completed, we try to complete it here. If we do not
588 // have sweeper threads we have to complete since we do not have a good
589 // indicator for a swept space in that case.
590 if (!AreSweeperThreadsActivated() || !IsSweepingCompleted()) {
591 SweepInParallel(heap()->paged_space(OLD_DATA_SPACE), 0);
592 SweepInParallel(heap()->paged_space(OLD_POINTER_SPACE), 0);
593 }
594
595 for (int i = 0; i < isolate()->num_sweeper_threads(); i++) {
596 isolate()->sweeper_threads()[i]->WaitForSweeperThread();
597 }
598 if (FLAG_job_based_sweeping) {
599 // Wait twice for both jobs.
600 pending_sweeper_jobs_semaphore_.Wait();
601 pending_sweeper_jobs_semaphore_.Wait();
602 }
603 ParallelSweepSpacesComplete();
604 sweeping_in_progress_ = false;
605 RefillFreeList(heap()->paged_space(OLD_DATA_SPACE));
606 RefillFreeList(heap()->paged_space(OLD_POINTER_SPACE));
607 heap()->paged_space(OLD_DATA_SPACE)->ResetUnsweptFreeBytes();
608 heap()->paged_space(OLD_POINTER_SPACE)->ResetUnsweptFreeBytes();
609
610 #ifdef VERIFY_HEAP
611 if (FLAG_verify_heap) {
612 VerifyEvacuation(heap_);
613 }
614 #endif
615 }
616
617
618 bool MarkCompactCollector::IsSweepingCompleted() {
619 for (int i = 0; i < isolate()->num_sweeper_threads(); i++) {
620 if (!isolate()->sweeper_threads()[i]->SweepingCompleted()) {
621 return false;
622 }
623 }
624
625 if (FLAG_job_based_sweeping) {
626 if (!pending_sweeper_jobs_semaphore_.WaitFor(
627 base::TimeDelta::FromSeconds(0))) {
628 return false;
629 }
630 pending_sweeper_jobs_semaphore_.Signal();
631 }
632
633 return true;
634 }
635
636
637 void MarkCompactCollector::RefillFreeList(PagedSpace* space) {
638 FreeList* free_list;
639
640 if (space == heap()->old_pointer_space()) {
641 free_list = free_list_old_pointer_space_.get();
642 } else if (space == heap()->old_data_space()) {
643 free_list = free_list_old_data_space_.get();
644 } else {
645 // Any PagedSpace might invoke RefillFreeLists, so we need to make sure
646 // to only refill them for old data and pointer spaces.
647 return;
648 }
649
650 intptr_t freed_bytes = space->free_list()->Concatenate(free_list);
651 space->AddToAccountingStats(freed_bytes);
652 space->DecrementUnsweptFreeBytes(freed_bytes);
653 }
654
655
656 bool MarkCompactCollector::AreSweeperThreadsActivated() {
657 return isolate()->sweeper_threads() != NULL || FLAG_job_based_sweeping;
658 }
659
660
661 void Marking::TransferMark(Address old_start, Address new_start) {
662 // This is only used when resizing an object.
663 DCHECK(MemoryChunk::FromAddress(old_start) ==
664 MemoryChunk::FromAddress(new_start));
665
666 if (!heap_->incremental_marking()->IsMarking()) return;
667
668 // If the mark doesn't move, we don't check the color of the object.
669 // It doesn't matter whether the object is black, since it hasn't changed
670 // size, so the adjustment to the live data count will be zero anyway.
671 if (old_start == new_start) return;
672
673 MarkBit new_mark_bit = MarkBitFrom(new_start);
674 MarkBit old_mark_bit = MarkBitFrom(old_start);
675
676 #ifdef DEBUG
677 ObjectColor old_color = Color(old_mark_bit);
678 #endif
679
680 if (Marking::IsBlack(old_mark_bit)) {
681 old_mark_bit.Clear();
682 DCHECK(IsWhite(old_mark_bit));
683 Marking::MarkBlack(new_mark_bit);
684 return;
685 } else if (Marking::IsGrey(old_mark_bit)) {
686 old_mark_bit.Clear();
687 old_mark_bit.Next().Clear();
688 DCHECK(IsWhite(old_mark_bit));
689 heap_->incremental_marking()->WhiteToGreyAndPush(
690 HeapObject::FromAddress(new_start), new_mark_bit);
691 heap_->incremental_marking()->RestartIfNotMarking();
692 }
693
694 #ifdef DEBUG
695 ObjectColor new_color = Color(new_mark_bit);
696 DCHECK(new_color == old_color);
697 #endif
698 }
699
700
701 const char* AllocationSpaceName(AllocationSpace space) {
702 switch (space) {
703 case NEW_SPACE: return "NEW_SPACE";
704 case OLD_POINTER_SPACE: return "OLD_POINTER_SPACE";
705 case OLD_DATA_SPACE: return "OLD_DATA_SPACE";
706 case CODE_SPACE: return "CODE_SPACE";
707 case MAP_SPACE: return "MAP_SPACE";
708 case CELL_SPACE: return "CELL_SPACE";
709 case PROPERTY_CELL_SPACE:
710 return "PROPERTY_CELL_SPACE";
711 case LO_SPACE: return "LO_SPACE";
712 default:
713 UNREACHABLE();
714 }
715
716 return NULL;
717 }
718
719
720 // Returns zero for pages that have so little fragmentation that it is not
721 // worth defragmenting them. Otherwise a positive integer that gives an
722 // estimate of fragmentation on an arbitrary scale.
723 static int FreeListFragmentation(PagedSpace* space, Page* p) {
724 // If page was not swept then there are no free list items on it.
725 if (!p->WasSwept()) {
726 if (FLAG_trace_fragmentation) {
727 PrintF("%p [%s]: %d bytes live (unswept)\n",
728 reinterpret_cast<void*>(p),
729 AllocationSpaceName(space->identity()),
730 p->LiveBytes());
731 }
732 return 0;
733 }
734
735 PagedSpace::SizeStats sizes;
736 space->ObtainFreeListStatistics(p, &sizes);
737
738 intptr_t ratio;
739 intptr_t ratio_threshold;
740 intptr_t area_size = space->AreaSize();
741 if (space->identity() == CODE_SPACE) {
742 ratio = (sizes.medium_size_ * 10 + sizes.large_size_ * 2) * 100 /
743 area_size;
744 ratio_threshold = 10;
745 } else {
746 ratio = (sizes.small_size_ * 5 + sizes.medium_size_) * 100 /
747 area_size;
748 ratio_threshold = 15;
749 }
750
751 if (FLAG_trace_fragmentation) {
752 PrintF("%p [%s]: %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %s\n",
753 reinterpret_cast<void*>(p),
754 AllocationSpaceName(space->identity()),
755 static_cast<int>(sizes.small_size_),
756 static_cast<double>(sizes.small_size_ * 100) /
757 area_size,
758 static_cast<int>(sizes.medium_size_),
759 static_cast<double>(sizes.medium_size_ * 100) /
760 area_size,
761 static_cast<int>(sizes.large_size_),
762 static_cast<double>(sizes.large_size_ * 100) /
763 area_size,
764 static_cast<int>(sizes.huge_size_),
765 static_cast<double>(sizes.huge_size_ * 100) /
766 area_size,
767 (ratio > ratio_threshold) ? "[fragmented]" : "");
768 }
769
770 if (FLAG_always_compact && sizes.Total() != area_size) {
771 return 1;
772 }
773
774 if (ratio <= ratio_threshold) return 0; // Not fragmented.
775
776 return static_cast<int>(ratio - ratio_threshold);
777 }
778
779
780 void MarkCompactCollector::CollectEvacuationCandidates(PagedSpace* space) {
781 DCHECK(space->identity() == OLD_POINTER_SPACE ||
782 space->identity() == OLD_DATA_SPACE ||
783 space->identity() == CODE_SPACE);
784
785 static const int kMaxMaxEvacuationCandidates = 1000;
786 int number_of_pages = space->CountTotalPages();
787 int max_evacuation_candidates =
788 static_cast<int>(std::sqrt(number_of_pages / 2.0) + 1);
789
790 if (FLAG_stress_compaction || FLAG_always_compact) {
791 max_evacuation_candidates = kMaxMaxEvacuationCandidates;
792 }
793
794 class Candidate {
795 public:
796 Candidate() : fragmentation_(0), page_(NULL) { }
797 Candidate(int f, Page* p) : fragmentation_(f), page_(p) { }
798
799 int fragmentation() { return fragmentation_; }
800 Page* page() { return page_; }
801
802 private:
803 int fragmentation_;
804 Page* page_;
805 };
806
807 enum CompactionMode {
808 COMPACT_FREE_LISTS,
809 REDUCE_MEMORY_FOOTPRINT
810 };
811
812 CompactionMode mode = COMPACT_FREE_LISTS;
813
814 intptr_t reserved = number_of_pages * space->AreaSize();
815 intptr_t over_reserved = reserved - space->SizeOfObjects();
816 static const intptr_t kFreenessThreshold = 50;
817
818 if (reduce_memory_footprint_ && over_reserved >= space->AreaSize()) {
819 // If reduction of memory footprint was requested, we are aggressive
820 // about choosing pages to free. We expect that half-empty pages
821 // are easier to compact so slightly bump the limit.
822 mode = REDUCE_MEMORY_FOOTPRINT;
823 max_evacuation_candidates += 2;
824 }
825
826
827 if (over_reserved > reserved / 3 && over_reserved >= 2 * space->AreaSize()) {
828 // If over-usage is very high (more than a third of the space), we
829 // try to free all mostly empty pages. We expect that almost empty
830 // pages are even easier to compact so bump the limit even more.
831 mode = REDUCE_MEMORY_FOOTPRINT;
832 max_evacuation_candidates *= 2;
833 }
834
835 if (FLAG_trace_fragmentation && mode == REDUCE_MEMORY_FOOTPRINT) {
836 PrintF("Estimated over reserved memory: %.1f / %.1f MB (threshold %d), "
837 "evacuation candidate limit: %d\n",
838 static_cast<double>(over_reserved) / MB,
839 static_cast<double>(reserved) / MB,
840 static_cast<int>(kFreenessThreshold),
841 max_evacuation_candidates);
842 }
843
844 intptr_t estimated_release = 0;
845
846 Candidate candidates[kMaxMaxEvacuationCandidates];
847
848 max_evacuation_candidates =
849 Min(kMaxMaxEvacuationCandidates, max_evacuation_candidates);
850
851 int count = 0;
852 int fragmentation = 0;
853 Candidate* least = NULL;
854
855 PageIterator it(space);
856 if (it.has_next()) it.next(); // Never compact the first page.
857
858 while (it.has_next()) {
859 Page* p = it.next();
860 p->ClearEvacuationCandidate();
861
862 if (FLAG_stress_compaction) {
863 unsigned int counter = space->heap()->ms_count();
864 uintptr_t page_number = reinterpret_cast<uintptr_t>(p) >> kPageSizeBits;
865 if ((counter & 1) == (page_number & 1)) fragmentation = 1;
866 } else if (mode == REDUCE_MEMORY_FOOTPRINT) {
867 // Don't try to release too many pages.
868 if (estimated_release >= over_reserved) {
869 continue;
870 }
871
872 intptr_t free_bytes = 0;
873
874 if (!p->WasSwept()) {
875 free_bytes = (p->area_size() - p->LiveBytes());
876 } else {
877 PagedSpace::SizeStats sizes;
878 space->ObtainFreeListStatistics(p, &sizes);
879 free_bytes = sizes.Total();
880 }
881
882 int free_pct = static_cast<int>(free_bytes * 100) / p->area_size();
883
884 if (free_pct >= kFreenessThreshold) {
885 estimated_release += free_bytes;
886 fragmentation = free_pct;
887 } else {
888 fragmentation = 0;
889 }
890
891 if (FLAG_trace_fragmentation) {
892 PrintF("%p [%s]: %d (%.2f%%) free %s\n",
893 reinterpret_cast<void*>(p),
894 AllocationSpaceName(space->identity()),
895 static_cast<int>(free_bytes),
896 static_cast<double>(free_bytes * 100) / p->area_size(),
897 (fragmentation > 0) ? "[fragmented]" : "");
898 }
899 } else {
900 fragmentation = FreeListFragmentation(space, p);
901 }
902
903 if (fragmentation != 0) {
904 if (count < max_evacuation_candidates) {
905 candidates[count++] = Candidate(fragmentation, p);
906 } else {
907 if (least == NULL) {
908 for (int i = 0; i < max_evacuation_candidates; i++) {
909 if (least == NULL ||
910 candidates[i].fragmentation() < least->fragmentation()) {
911 least = candidates + i;
912 }
913 }
914 }
915 if (least->fragmentation() < fragmentation) {
916 *least = Candidate(fragmentation, p);
917 least = NULL;
918 }
919 }
920 }
921 }
922
923 for (int i = 0; i < count; i++) {
924 AddEvacuationCandidate(candidates[i].page());
925 }
926
927 if (count > 0 && FLAG_trace_fragmentation) {
928 PrintF("Collected %d evacuation candidates for space %s\n",
929 count,
930 AllocationSpaceName(space->identity()));
931 }
932 }
933
934
935 void MarkCompactCollector::AbortCompaction() {
936 if (compacting_) {
937 int npages = evacuation_candidates_.length();
938 for (int i = 0; i < npages; i++) {
939 Page* p = evacuation_candidates_[i];
940 slots_buffer_allocator_.DeallocateChain(p->slots_buffer_address());
941 p->ClearEvacuationCandidate();
942 p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION);
943 }
944 compacting_ = false;
945 evacuation_candidates_.Rewind(0);
946 invalidated_code_.Rewind(0);
947 }
948 DCHECK_EQ(0, evacuation_candidates_.length());
949 }
950
951
952 void MarkCompactCollector::Prepare() {
953 was_marked_incrementally_ = heap()->incremental_marking()->IsMarking();
954
955 #ifdef DEBUG
956 DCHECK(state_ == IDLE);
957 state_ = PREPARE_GC;
958 #endif
959
960 DCHECK(!FLAG_never_compact || !FLAG_always_compact);
961
962 if (sweeping_in_progress()) {
963 // Instead of waiting we could also abort the sweeper threads here.
964 EnsureSweepingCompleted();
965 }
966
967 // Clear marking bits if incremental marking is aborted.
968 if (was_marked_incrementally_ && abort_incremental_marking_) {
969 heap()->incremental_marking()->Abort();
970 ClearMarkbits();
971 AbortCompaction();
972 was_marked_incrementally_ = false;
973 }
974
975 // Don't start compaction if we are in the middle of incremental
976 // marking cycle. We did not collect any slots.
977 if (!FLAG_never_compact && !was_marked_incrementally_) {
978 StartCompaction(NON_INCREMENTAL_COMPACTION);
979 }
980
981 PagedSpaces spaces(heap());
982 for (PagedSpace* space = spaces.next();
983 space != NULL;
984 space = spaces.next()) {
985 space->PrepareForMarkCompact();
986 }
987
988 #ifdef VERIFY_HEAP
989 if (!was_marked_incrementally_ && FLAG_verify_heap) {
990 VerifyMarkbitsAreClean();
991 }
992 #endif
993 }
994
995
996 void MarkCompactCollector::Finish() {
997 #ifdef DEBUG
998 DCHECK(state_ == SWEEP_SPACES || state_ == RELOCATE_OBJECTS);
999 state_ = IDLE;
1000 #endif
1001 // The stub cache is not traversed during GC; clear the cache to
1002 // force lazy re-initialization of it. This must be done after the
1003 // GC, because it relies on the new address of certain old space
1004 // objects (empty string, illegal builtin).
1005 isolate()->stub_cache()->Clear();
1006
1007 if (have_code_to_deoptimize_) {
1008 // Some code objects were marked for deoptimization during the GC.
1009 Deoptimizer::DeoptimizeMarkedCode(isolate());
1010 have_code_to_deoptimize_ = false;
1011 }
1012 }
1013
1014
1015 // -------------------------------------------------------------------------
1016 // Phase 1: tracing and marking live objects.
1017 // before: all objects are in normal state.
1018 // after: a live object's map pointer is marked as '00'.
1019
1020 // Marking all live objects in the heap as part of mark-sweep or mark-compact
1021 // collection. Before marking, all objects are in their normal state. After
1022 // marking, live objects' map pointers are marked indicating that the object
1023 // has been found reachable.
1024 //
1025 // The marking algorithm is a (mostly) depth-first (because of possible stack
1026 // overflow) traversal of the graph of objects reachable from the roots. It
1027 // uses an explicit stack of pointers rather than recursion. The young
1028 // generation's inactive ('from') space is used as a marking stack. The
1029 // objects in the marking stack are the ones that have been reached and marked
1030 // but their children have not yet been visited.
1031 //
1032 // The marking stack can overflow during traversal. In that case, we set an
1033 // overflow flag. When the overflow flag is set, we continue marking objects
1034 // reachable from the objects on the marking stack, but no longer push them on
1035 // the marking stack. Instead, we mark them as both marked and overflowed.
1036 // When the stack is in the overflowed state, objects marked as overflowed
1037 // have been reached and marked but their children have not been visited yet.
1038 // After emptying the marking stack, we clear the overflow flag and traverse
1039 // the heap looking for objects marked as overflowed, push them on the stack,
1040 // and continue with marking. This process repeats until all reachable
1041 // objects have been marked.
1042
1043 void CodeFlusher::ProcessJSFunctionCandidates() {
1044 Code* lazy_compile =
1045 isolate_->builtins()->builtin(Builtins::kCompileUnoptimized);
1046 Object* undefined = isolate_->heap()->undefined_value();
1047
1048 JSFunction* candidate = jsfunction_candidates_head_;
1049 JSFunction* next_candidate;
1050 while (candidate != NULL) {
1051 next_candidate = GetNextCandidate(candidate);
1052 ClearNextCandidate(candidate, undefined);
1053
1054 SharedFunctionInfo* shared = candidate->shared();
1055
1056 Code* code = shared->code();
1057 MarkBit code_mark = Marking::MarkBitFrom(code);
1058 if (!code_mark.Get()) {
1059 if (FLAG_trace_code_flushing && shared->is_compiled()) {
1060 PrintF("[code-flushing clears: ");
1061 shared->ShortPrint();
1062 PrintF(" - age: %d]\n", code->GetAge());
1063 }
1064 shared->set_code(lazy_compile);
1065 candidate->set_code(lazy_compile);
1066 } else {
1067 candidate->set_code(code);
1068 }
1069
1070 // We are in the middle of a GC cycle so the write barrier in the code
1071 // setter did not record the slot update and we have to do that manually.
1072 Address slot = candidate->address() + JSFunction::kCodeEntryOffset;
1073 Code* target = Code::cast(Code::GetObjectFromEntryAddress(slot));
1074 isolate_->heap()->mark_compact_collector()->
1075 RecordCodeEntrySlot(slot, target);
1076
1077 Object** shared_code_slot =
1078 HeapObject::RawField(shared, SharedFunctionInfo::kCodeOffset);
1079 isolate_->heap()->mark_compact_collector()->
1080 RecordSlot(shared_code_slot, shared_code_slot, *shared_code_slot);
1081
1082 candidate = next_candidate;
1083 }
1084
1085 jsfunction_candidates_head_ = NULL;
1086 }
1087
1088
1089 void CodeFlusher::ProcessSharedFunctionInfoCandidates() {
1090 Code* lazy_compile =
1091 isolate_->builtins()->builtin(Builtins::kCompileUnoptimized);
1092
1093 SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
1094 SharedFunctionInfo* next_candidate;
1095 while (candidate != NULL) {
1096 next_candidate = GetNextCandidate(candidate);
1097 ClearNextCandidate(candidate);
1098
1099 Code* code = candidate->code();
1100 MarkBit code_mark = Marking::MarkBitFrom(code);
1101 if (!code_mark.Get()) {
1102 if (FLAG_trace_code_flushing && candidate->is_compiled()) {
1103 PrintF("[code-flushing clears: ");
1104 candidate->ShortPrint();
1105 PrintF(" - age: %d]\n", code->GetAge());
1106 }
1107 candidate->set_code(lazy_compile);
1108 }
1109
1110 Object** code_slot =
1111 HeapObject::RawField(candidate, SharedFunctionInfo::kCodeOffset);
1112 isolate_->heap()->mark_compact_collector()->
1113 RecordSlot(code_slot, code_slot, *code_slot);
1114
1115 candidate = next_candidate;
1116 }
1117
1118 shared_function_info_candidates_head_ = NULL;
1119 }
1120
1121
1122 void CodeFlusher::ProcessOptimizedCodeMaps() {
1123 STATIC_ASSERT(SharedFunctionInfo::kEntryLength == 4);
1124
1125 SharedFunctionInfo* holder = optimized_code_map_holder_head_;
1126 SharedFunctionInfo* next_holder;
1127
1128 while (holder != NULL) {
1129 next_holder = GetNextCodeMap(holder);
1130 ClearNextCodeMap(holder);
1131
1132 FixedArray* code_map = FixedArray::cast(holder->optimized_code_map());
1133 int new_length = SharedFunctionInfo::kEntriesStart;
1134 int old_length = code_map->length();
1135 for (int i = SharedFunctionInfo::kEntriesStart;
1136 i < old_length;
1137 i += SharedFunctionInfo::kEntryLength) {
1138 Code* code =
1139 Code::cast(code_map->get(i + SharedFunctionInfo::kCachedCodeOffset));
1140 if (!Marking::MarkBitFrom(code).Get()) continue;
1141
1142 // Move every slot in the entry.
1143 for (int j = 0; j < SharedFunctionInfo::kEntryLength; j++) {
1144 int dst_index = new_length++;
1145 Object** slot = code_map->RawFieldOfElementAt(dst_index);
1146 Object* object = code_map->get(i + j);
1147 code_map->set(dst_index, object);
1148 if (j == SharedFunctionInfo::kOsrAstIdOffset) {
1149 DCHECK(object->IsSmi());
1150 } else {
1151 DCHECK(Marking::IsBlack(
1152 Marking::MarkBitFrom(HeapObject::cast(*slot))));
1153 isolate_->heap()->mark_compact_collector()->
1154 RecordSlot(slot, slot, *slot);
1155 }
1156 }
1157 }
1158
1159 // Trim the optimized code map if entries have been removed.
1160 if (new_length < old_length) {
1161 holder->TrimOptimizedCodeMap(old_length - new_length);
1162 }
1163
1164 holder = next_holder;
1165 }
1166
1167 optimized_code_map_holder_head_ = NULL;
1168 }
1169
1170
1171 void CodeFlusher::EvictCandidate(SharedFunctionInfo* shared_info) {
1172 // Make sure previous flushing decisions are revisited.
1173 isolate_->heap()->incremental_marking()->RecordWrites(shared_info);
1174
1175 if (FLAG_trace_code_flushing) {
1176 PrintF("[code-flushing abandons function-info: ");
1177 shared_info->ShortPrint();
1178 PrintF("]\n");
1179 }
1180
1181 SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
1182 SharedFunctionInfo* next_candidate;
1183 if (candidate == shared_info) {
1184 next_candidate = GetNextCandidate(shared_info);
1185 shared_function_info_candidates_head_ = next_candidate;
1186 ClearNextCandidate(shared_info);
1187 } else {
1188 while (candidate != NULL) {
1189 next_candidate = GetNextCandidate(candidate);
1190
1191 if (next_candidate == shared_info) {
1192 next_candidate = GetNextCandidate(shared_info);
1193 SetNextCandidate(candidate, next_candidate);
1194 ClearNextCandidate(shared_info);
1195 break;
1196 }
1197
1198 candidate = next_candidate;
1199 }
1200 }
1201 }
1202
1203
1204 void CodeFlusher::EvictCandidate(JSFunction* function) {
1205 DCHECK(!function->next_function_link()->IsUndefined());
1206 Object* undefined = isolate_->heap()->undefined_value();
1207
1208 // Make sure previous flushing decisions are revisited.
1209 isolate_->heap()->incremental_marking()->RecordWrites(function);
1210 isolate_->heap()->incremental_marking()->RecordWrites(function->shared());
1211
1212 if (FLAG_trace_code_flushing) {
1213 PrintF("[code-flushing abandons closure: ");
1214 function->shared()->ShortPrint();
1215 PrintF("]\n");
1216 }
1217
1218 JSFunction* candidate = jsfunction_candidates_head_;
1219 JSFunction* next_candidate;
1220 if (candidate == function) {
1221 next_candidate = GetNextCandidate(function);
1222 jsfunction_candidates_head_ = next_candidate;
1223 ClearNextCandidate(function, undefined);
1224 } else {
1225 while (candidate != NULL) {
1226 next_candidate = GetNextCandidate(candidate);
1227
1228 if (next_candidate == function) {
1229 next_candidate = GetNextCandidate(function);
1230 SetNextCandidate(candidate, next_candidate);
1231 ClearNextCandidate(function, undefined);
1232 break;
1233 }
1234
1235 candidate = next_candidate;
1236 }
1237 }
1238 }
1239
1240
1241 void CodeFlusher::EvictOptimizedCodeMap(SharedFunctionInfo* code_map_holder) {
1242 DCHECK(!FixedArray::cast(code_map_holder->optimized_code_map())->
1243 get(SharedFunctionInfo::kNextMapIndex)->IsUndefined());
1244
1245 // Make sure previous flushing decisions are revisited.
1246 isolate_->heap()->incremental_marking()->RecordWrites(code_map_holder);
1247
1248 if (FLAG_trace_code_flushing) {
1249 PrintF("[code-flushing abandons code-map: ");
1250 code_map_holder->ShortPrint();
1251 PrintF("]\n");
1252 }
1253
1254 SharedFunctionInfo* holder = optimized_code_map_holder_head_;
1255 SharedFunctionInfo* next_holder;
1256 if (holder == code_map_holder) {
1257 next_holder = GetNextCodeMap(code_map_holder);
1258 optimized_code_map_holder_head_ = next_holder;
1259 ClearNextCodeMap(code_map_holder);
1260 } else {
1261 while (holder != NULL) {
1262 next_holder = GetNextCodeMap(holder);
1263
1264 if (next_holder == code_map_holder) {
1265 next_holder = GetNextCodeMap(code_map_holder);
1266 SetNextCodeMap(holder, next_holder);
1267 ClearNextCodeMap(code_map_holder);
1268 break;
1269 }
1270
1271 holder = next_holder;
1272 }
1273 }
1274 }
1275
1276
1277 void CodeFlusher::EvictJSFunctionCandidates() {
1278 JSFunction* candidate = jsfunction_candidates_head_;
1279 JSFunction* next_candidate;
1280 while (candidate != NULL) {
1281 next_candidate = GetNextCandidate(candidate);
1282 EvictCandidate(candidate);
1283 candidate = next_candidate;
1284 }
1285 DCHECK(jsfunction_candidates_head_ == NULL);
1286 }
1287
1288
1289 void CodeFlusher::EvictSharedFunctionInfoCandidates() {
1290 SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
1291 SharedFunctionInfo* next_candidate;
1292 while (candidate != NULL) {
1293 next_candidate = GetNextCandidate(candidate);
1294 EvictCandidate(candidate);
1295 candidate = next_candidate;
1296 }
1297 DCHECK(shared_function_info_candidates_head_ == NULL);
1298 }
1299
1300
1301 void CodeFlusher::EvictOptimizedCodeMaps() {
1302 SharedFunctionInfo* holder = optimized_code_map_holder_head_;
1303 SharedFunctionInfo* next_holder;
1304 while (holder != NULL) {
1305 next_holder = GetNextCodeMap(holder);
1306 EvictOptimizedCodeMap(holder);
1307 holder = next_holder;
1308 }
1309 DCHECK(optimized_code_map_holder_head_ == NULL);
1310 }
1311
1312
1313 void CodeFlusher::IteratePointersToFromSpace(ObjectVisitor* v) {
1314 Heap* heap = isolate_->heap();
1315
1316 JSFunction** slot = &jsfunction_candidates_head_;
1317 JSFunction* candidate = jsfunction_candidates_head_;
1318 while (candidate != NULL) {
1319 if (heap->InFromSpace(candidate)) {
1320 v->VisitPointer(reinterpret_cast<Object**>(slot));
1321 }
1322 candidate = GetNextCandidate(*slot);
1323 slot = GetNextCandidateSlot(*slot);
1324 }
1325 }
1326
1327
1328 MarkCompactCollector::~MarkCompactCollector() {
1329 if (code_flusher_ != NULL) {
1330 delete code_flusher_;
1331 code_flusher_ = NULL;
1332 }
1333 }
1334
1335
1336 static inline HeapObject* ShortCircuitConsString(Object** p) {
1337 // Optimization: If the heap object pointed to by p is a non-internalized
1338 // cons string whose right substring is HEAP->empty_string, update
1339 // it in place to its left substring. Return the updated value.
1340 //
1341 // Here we assume that if we change *p, we replace it with a heap object
1342 // (i.e., the left substring of a cons string is always a heap object).
1343 //
1344 // The check performed is:
1345 // object->IsConsString() && !object->IsInternalizedString() &&
1346 // (ConsString::cast(object)->second() == HEAP->empty_string())
1347 // except the maps for the object and its possible substrings might be
1348 // marked.
1349 HeapObject* object = HeapObject::cast(*p);
1350 if (!FLAG_clever_optimizations) return object;
1351 Map* map = object->map();
1352 InstanceType type = map->instance_type();
1353 if (!IsShortcutCandidate(type)) return object;
1354
1355 Object* second = reinterpret_cast<ConsString*>(object)->second();
1356 Heap* heap = map->GetHeap();
1357 if (second != heap->empty_string()) {
1358 return object;
1359 }
1360
1361 // Since we don't have the object's start, it is impossible to update the
1362 // page dirty marks. Therefore, we only replace the string with its left
1363 // substring when page dirty marks do not change.
1364 Object* first = reinterpret_cast<ConsString*>(object)->first();
1365 if (!heap->InNewSpace(object) && heap->InNewSpace(first)) return object;
1366
1367 *p = first;
1368 return HeapObject::cast(first);
1369 }
1370
1371
1372 class MarkCompactMarkingVisitor
1373 : public StaticMarkingVisitor<MarkCompactMarkingVisitor> {
1374 public:
1375 static void ObjectStatsVisitBase(StaticVisitorBase::VisitorId id,
1376 Map* map, HeapObject* obj);
1377
1378 static void ObjectStatsCountFixedArray(
1379 FixedArrayBase* fixed_array,
1380 FixedArraySubInstanceType fast_type,
1381 FixedArraySubInstanceType dictionary_type);
1382
1383 template<MarkCompactMarkingVisitor::VisitorId id>
1384 class ObjectStatsTracker {
1385 public:
1386 static inline void Visit(Map* map, HeapObject* obj);
1387 };
1388
1389 static void Initialize();
1390
1391 INLINE(static void VisitPointer(Heap* heap, Object** p)) {
1392 MarkObjectByPointer(heap->mark_compact_collector(), p, p);
1393 }
1394
1395 INLINE(static void VisitPointers(Heap* heap, Object** start, Object** end)) {
1396 // Mark all objects pointed to in [start, end).
1397 const int kMinRangeForMarkingRecursion = 64;
1398 if (end - start >= kMinRangeForMarkingRecursion) {
1399 if (VisitUnmarkedObjects(heap, start, end)) return;
1400 // We are close to a stack overflow, so just mark the objects.
1401 }
1402 MarkCompactCollector* collector = heap->mark_compact_collector();
1403 for (Object** p = start; p < end; p++) {
1404 MarkObjectByPointer(collector, start, p);
1405 }
1406 }
1407
1408 // Marks the object black and pushes it on the marking stack.
1409 INLINE(static void MarkObject(Heap* heap, HeapObject* object)) {
1410 MarkBit mark = Marking::MarkBitFrom(object);
1411 heap->mark_compact_collector()->MarkObject(object, mark);
1412 }
1413
1414 // Marks the object black without pushing it on the marking stack.
1415 // Returns true if object needed marking and false otherwise.
1416 INLINE(static bool MarkObjectWithoutPush(Heap* heap, HeapObject* object)) {
1417 MarkBit mark_bit = Marking::MarkBitFrom(object);
1418 if (!mark_bit.Get()) {
1419 heap->mark_compact_collector()->SetMark(object, mark_bit);
1420 return true;
1421 }
1422 return false;
1423 }
1424
1425 // Mark object pointed to by p.
1426 INLINE(static void MarkObjectByPointer(MarkCompactCollector* collector,
1427 Object** anchor_slot,
1428 Object** p)) {
1429 if (!(*p)->IsHeapObject()) return;
1430 HeapObject* object = ShortCircuitConsString(p);
1431 collector->RecordSlot(anchor_slot, p, object);
1432 MarkBit mark = Marking::MarkBitFrom(object);
1433 collector->MarkObject(object, mark);
1434 }
1435
1436
1437 // Visit an unmarked object.
1438 INLINE(static void VisitUnmarkedObject(MarkCompactCollector* collector,
1439 HeapObject* obj)) {
1440 #ifdef DEBUG
1441 DCHECK(collector->heap()->Contains(obj));
1442 DCHECK(!collector->heap()->mark_compact_collector()->IsMarked(obj));
1443 #endif
1444 Map* map = obj->map();
1445 Heap* heap = obj->GetHeap();
1446 MarkBit mark = Marking::MarkBitFrom(obj);
1447 heap->mark_compact_collector()->SetMark(obj, mark);
1448 // Mark the map pointer and the body.
1449 MarkBit map_mark = Marking::MarkBitFrom(map);
1450 heap->mark_compact_collector()->MarkObject(map, map_mark);
1451 IterateBody(map, obj);
1452 }
1453
1454 // Visit all unmarked objects pointed to by [start, end).
1455 // Returns false if the operation fails (lack of stack space).
1456 INLINE(static bool VisitUnmarkedObjects(Heap* heap,
1457 Object** start,
1458 Object** end)) {
1459 // Return false is we are close to the stack limit.
1460 StackLimitCheck check(heap->isolate());
1461 if (check.HasOverflowed()) return false;
1462
1463 MarkCompactCollector* collector = heap->mark_compact_collector();
1464 // Visit the unmarked objects.
1465 for (Object** p = start; p < end; p++) {
1466 Object* o = *p;
1467 if (!o->IsHeapObject()) continue;
1468 collector->RecordSlot(start, p, o);
1469 HeapObject* obj = HeapObject::cast(o);
1470 MarkBit mark = Marking::MarkBitFrom(obj);
1471 if (mark.Get()) continue;
1472 VisitUnmarkedObject(collector, obj);
1473 }
1474 return true;
1475 }
1476
1477 private:
1478 template<int id>
1479 static inline void TrackObjectStatsAndVisit(Map* map, HeapObject* obj);
1480
1481 // Code flushing support.
1482
1483 static const int kRegExpCodeThreshold = 5;
1484
1485 static void UpdateRegExpCodeAgeAndFlush(Heap* heap,
1486 JSRegExp* re,
1487 bool is_ascii) {
1488 // Make sure that the fixed array is in fact initialized on the RegExp.
1489 // We could potentially trigger a GC when initializing the RegExp.
1490 if (HeapObject::cast(re->data())->map()->instance_type() !=
1491 FIXED_ARRAY_TYPE) return;
1492
1493 // Make sure this is a RegExp that actually contains code.
1494 if (re->TypeTag() != JSRegExp::IRREGEXP) return;
1495
1496 Object* code = re->DataAt(JSRegExp::code_index(is_ascii));
1497 if (!code->IsSmi() &&
1498 HeapObject::cast(code)->map()->instance_type() == CODE_TYPE) {
1499 // Save a copy that can be reinstated if we need the code again.
1500 re->SetDataAt(JSRegExp::saved_code_index(is_ascii), code);
1501
1502 // Saving a copy might create a pointer into compaction candidate
1503 // that was not observed by marker. This might happen if JSRegExp data
1504 // was marked through the compilation cache before marker reached JSRegExp
1505 // object.
1506 FixedArray* data = FixedArray::cast(re->data());
1507 Object** slot = data->data_start() + JSRegExp::saved_code_index(is_ascii);
1508 heap->mark_compact_collector()->
1509 RecordSlot(slot, slot, code);
1510
1511 // Set a number in the 0-255 range to guarantee no smi overflow.
1512 re->SetDataAt(JSRegExp::code_index(is_ascii),
1513 Smi::FromInt(heap->sweep_generation() & 0xff));
1514 } else if (code->IsSmi()) {
1515 int value = Smi::cast(code)->value();
1516 // The regexp has not been compiled yet or there was a compilation error.
1517 if (value == JSRegExp::kUninitializedValue ||
1518 value == JSRegExp::kCompilationErrorValue) {
1519 return;
1520 }
1521
1522 // Check if we should flush now.
1523 if (value == ((heap->sweep_generation() - kRegExpCodeThreshold) & 0xff)) {
1524 re->SetDataAt(JSRegExp::code_index(is_ascii),
1525 Smi::FromInt(JSRegExp::kUninitializedValue));
1526 re->SetDataAt(JSRegExp::saved_code_index(is_ascii),
1527 Smi::FromInt(JSRegExp::kUninitializedValue));
1528 }
1529 }
1530 }
1531
1532
1533 // Works by setting the current sweep_generation (as a smi) in the
1534 // code object place in the data array of the RegExp and keeps a copy
1535 // around that can be reinstated if we reuse the RegExp before flushing.
1536 // If we did not use the code for kRegExpCodeThreshold mark sweep GCs
1537 // we flush the code.
1538 static void VisitRegExpAndFlushCode(Map* map, HeapObject* object) {
1539 Heap* heap = map->GetHeap();
1540 MarkCompactCollector* collector = heap->mark_compact_collector();
1541 if (!collector->is_code_flushing_enabled()) {
1542 VisitJSRegExp(map, object);
1543 return;
1544 }
1545 JSRegExp* re = reinterpret_cast<JSRegExp*>(object);
1546 // Flush code or set age on both ASCII and two byte code.
1547 UpdateRegExpCodeAgeAndFlush(heap, re, true);
1548 UpdateRegExpCodeAgeAndFlush(heap, re, false);
1549 // Visit the fields of the RegExp, including the updated FixedArray.
1550 VisitJSRegExp(map, object);
1551 }
1552
1553 static VisitorDispatchTable<Callback> non_count_table_;
1554 };
1555
1556
1557 void MarkCompactMarkingVisitor::ObjectStatsCountFixedArray(
1558 FixedArrayBase* fixed_array,
1559 FixedArraySubInstanceType fast_type,
1560 FixedArraySubInstanceType dictionary_type) {
1561 Heap* heap = fixed_array->map()->GetHeap();
1562 if (fixed_array->map() != heap->fixed_cow_array_map() &&
1563 fixed_array->map() != heap->fixed_double_array_map() &&
1564 fixed_array != heap->empty_fixed_array()) {
1565 if (fixed_array->IsDictionary()) {
1566 heap->RecordFixedArraySubTypeStats(dictionary_type,
1567 fixed_array->Size());
1568 } else {
1569 heap->RecordFixedArraySubTypeStats(fast_type,
1570 fixed_array->Size());
1571 }
1572 }
1573 }
1574
1575
1576 void MarkCompactMarkingVisitor::ObjectStatsVisitBase(
1577 MarkCompactMarkingVisitor::VisitorId id, Map* map, HeapObject* obj) {
1578 Heap* heap = map->GetHeap();
1579 int object_size = obj->Size();
1580 heap->RecordObjectStats(map->instance_type(), object_size);
1581 non_count_table_.GetVisitorById(id)(map, obj);
1582 if (obj->IsJSObject()) {
1583 JSObject* object = JSObject::cast(obj);
1584 ObjectStatsCountFixedArray(object->elements(),
1585 DICTIONARY_ELEMENTS_SUB_TYPE,
1586 FAST_ELEMENTS_SUB_TYPE);
1587 ObjectStatsCountFixedArray(object->properties(),
1588 DICTIONARY_PROPERTIES_SUB_TYPE,
1589 FAST_PROPERTIES_SUB_TYPE);
1590 }
1591 }
1592
1593
1594 template<MarkCompactMarkingVisitor::VisitorId id>
1595 void MarkCompactMarkingVisitor::ObjectStatsTracker<id>::Visit(
1596 Map* map, HeapObject* obj) {
1597 ObjectStatsVisitBase(id, map, obj);
1598 }
1599
1600
1601 template<>
1602 class MarkCompactMarkingVisitor::ObjectStatsTracker<
1603 MarkCompactMarkingVisitor::kVisitMap> {
1604 public:
1605 static inline void Visit(Map* map, HeapObject* obj) {
1606 Heap* heap = map->GetHeap();
1607 Map* map_obj = Map::cast(obj);
1608 DCHECK(map->instance_type() == MAP_TYPE);
1609 DescriptorArray* array = map_obj->instance_descriptors();
1610 if (map_obj->owns_descriptors() &&
1611 array != heap->empty_descriptor_array()) {
1612 int fixed_array_size = array->Size();
1613 heap->RecordFixedArraySubTypeStats(DESCRIPTOR_ARRAY_SUB_TYPE,
1614 fixed_array_size);
1615 }
1616 if (map_obj->HasTransitionArray()) {
1617 int fixed_array_size = map_obj->transitions()->Size();
1618 heap->RecordFixedArraySubTypeStats(TRANSITION_ARRAY_SUB_TYPE,
1619 fixed_array_size);
1620 }
1621 if (map_obj->has_code_cache()) {
1622 CodeCache* cache = CodeCache::cast(map_obj->code_cache());
1623 heap->RecordFixedArraySubTypeStats(MAP_CODE_CACHE_SUB_TYPE,
1624 cache->default_cache()->Size());
1625 if (!cache->normal_type_cache()->IsUndefined()) {
1626 heap->RecordFixedArraySubTypeStats(
1627 MAP_CODE_CACHE_SUB_TYPE,
1628 FixedArray::cast(cache->normal_type_cache())->Size());
1629 }
1630 }
1631 ObjectStatsVisitBase(kVisitMap, map, obj);
1632 }
1633 };
1634
1635
1636 template<>
1637 class MarkCompactMarkingVisitor::ObjectStatsTracker<
1638 MarkCompactMarkingVisitor::kVisitCode> {
1639 public:
1640 static inline void Visit(Map* map, HeapObject* obj) {
1641 Heap* heap = map->GetHeap();
1642 int object_size = obj->Size();
1643 DCHECK(map->instance_type() == CODE_TYPE);
1644 Code* code_obj = Code::cast(obj);
1645 heap->RecordCodeSubTypeStats(code_obj->kind(), code_obj->GetRawAge(),
1646 object_size);
1647 ObjectStatsVisitBase(kVisitCode, map, obj);
1648 }
1649 };
1650
1651
1652 template<>
1653 class MarkCompactMarkingVisitor::ObjectStatsTracker<
1654 MarkCompactMarkingVisitor::kVisitSharedFunctionInfo> {
1655 public:
1656 static inline void Visit(Map* map, HeapObject* obj) {
1657 Heap* heap = map->GetHeap();
1658 SharedFunctionInfo* sfi = SharedFunctionInfo::cast(obj);
1659 if (sfi->scope_info() != heap->empty_fixed_array()) {
1660 heap->RecordFixedArraySubTypeStats(
1661 SCOPE_INFO_SUB_TYPE,
1662 FixedArray::cast(sfi->scope_info())->Size());
1663 }
1664 ObjectStatsVisitBase(kVisitSharedFunctionInfo, map, obj);
1665 }
1666 };
1667
1668
1669 template<>
1670 class MarkCompactMarkingVisitor::ObjectStatsTracker<
1671 MarkCompactMarkingVisitor::kVisitFixedArray> {
1672 public:
1673 static inline void Visit(Map* map, HeapObject* obj) {
1674 Heap* heap = map->GetHeap();
1675 FixedArray* fixed_array = FixedArray::cast(obj);
1676 if (fixed_array == heap->string_table()) {
1677 heap->RecordFixedArraySubTypeStats(
1678 STRING_TABLE_SUB_TYPE,
1679 fixed_array->Size());
1680 }
1681 ObjectStatsVisitBase(kVisitFixedArray, map, obj);
1682 }
1683 };
1684
1685
1686 void MarkCompactMarkingVisitor::Initialize() {
1687 StaticMarkingVisitor<MarkCompactMarkingVisitor>::Initialize();
1688
1689 table_.Register(kVisitJSRegExp,
1690 &VisitRegExpAndFlushCode);
1691
1692 if (FLAG_track_gc_object_stats) {
1693 // Copy the visitor table to make call-through possible.
1694 non_count_table_.CopyFrom(&table_);
1695 #define VISITOR_ID_COUNT_FUNCTION(id) \
1696 table_.Register(kVisit##id, ObjectStatsTracker<kVisit##id>::Visit);
1697 VISITOR_ID_LIST(VISITOR_ID_COUNT_FUNCTION)
1698 #undef VISITOR_ID_COUNT_FUNCTION
1699 }
1700 }
1701
1702
1703 VisitorDispatchTable<MarkCompactMarkingVisitor::Callback>
1704 MarkCompactMarkingVisitor::non_count_table_;
1705
1706
1707 class CodeMarkingVisitor : public ThreadVisitor {
1708 public:
1709 explicit CodeMarkingVisitor(MarkCompactCollector* collector)
1710 : collector_(collector) {}
1711
1712 void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
1713 collector_->PrepareThreadForCodeFlushing(isolate, top);
1714 }
1715
1716 private:
1717 MarkCompactCollector* collector_;
1718 };
1719
1720
1721 class SharedFunctionInfoMarkingVisitor : public ObjectVisitor {
1722 public:
1723 explicit SharedFunctionInfoMarkingVisitor(MarkCompactCollector* collector)
1724 : collector_(collector) {}
1725
1726 void VisitPointers(Object** start, Object** end) {
1727 for (Object** p = start; p < end; p++) VisitPointer(p);
1728 }
1729
1730 void VisitPointer(Object** slot) {
1731 Object* obj = *slot;
1732 if (obj->IsSharedFunctionInfo()) {
1733 SharedFunctionInfo* shared = reinterpret_cast<SharedFunctionInfo*>(obj);
1734 MarkBit shared_mark = Marking::MarkBitFrom(shared);
1735 MarkBit code_mark = Marking::MarkBitFrom(shared->code());
1736 collector_->MarkObject(shared->code(), code_mark);
1737 collector_->MarkObject(shared, shared_mark);
1738 }
1739 }
1740
1741 private:
1742 MarkCompactCollector* collector_;
1743 };
1744
1745
1746 void MarkCompactCollector::PrepareThreadForCodeFlushing(Isolate* isolate,
1747 ThreadLocalTop* top) {
1748 for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) {
1749 // Note: for the frame that has a pending lazy deoptimization
1750 // StackFrame::unchecked_code will return a non-optimized code object for
1751 // the outermost function and StackFrame::LookupCode will return
1752 // actual optimized code object.
1753 StackFrame* frame = it.frame();
1754 Code* code = frame->unchecked_code();
1755 MarkBit code_mark = Marking::MarkBitFrom(code);
1756 MarkObject(code, code_mark);
1757 if (frame->is_optimized()) {
1758 MarkCompactMarkingVisitor::MarkInlinedFunctionsCode(heap(),
1759 frame->LookupCode());
1760 }
1761 }
1762 }
1763
1764
1765 void MarkCompactCollector::PrepareForCodeFlushing() {
1766 // Enable code flushing for non-incremental cycles.
1767 if (FLAG_flush_code && !FLAG_flush_code_incrementally) {
1768 EnableCodeFlushing(!was_marked_incrementally_);
1769 }
1770
1771 // If code flushing is disabled, there is no need to prepare for it.
1772 if (!is_code_flushing_enabled()) return;
1773
1774 // Ensure that empty descriptor array is marked. Method MarkDescriptorArray
1775 // relies on it being marked before any other descriptor array.
1776 HeapObject* descriptor_array = heap()->empty_descriptor_array();
1777 MarkBit descriptor_array_mark = Marking::MarkBitFrom(descriptor_array);
1778 MarkObject(descriptor_array, descriptor_array_mark);
1779
1780 // Make sure we are not referencing the code from the stack.
1781 DCHECK(this == heap()->mark_compact_collector());
1782 PrepareThreadForCodeFlushing(heap()->isolate(),
1783 heap()->isolate()->thread_local_top());
1784
1785 // Iterate the archived stacks in all threads to check if
1786 // the code is referenced.
1787 CodeMarkingVisitor code_marking_visitor(this);
1788 heap()->isolate()->thread_manager()->IterateArchivedThreads(
1789 &code_marking_visitor);
1790
1791 SharedFunctionInfoMarkingVisitor visitor(this);
1792 heap()->isolate()->compilation_cache()->IterateFunctions(&visitor);
1793 heap()->isolate()->handle_scope_implementer()->Iterate(&visitor);
1794
1795 ProcessMarkingDeque();
1796 }
1797
1798
1799 // Visitor class for marking heap roots.
1800 class RootMarkingVisitor : public ObjectVisitor {
1801 public:
1802 explicit RootMarkingVisitor(Heap* heap)
1803 : collector_(heap->mark_compact_collector()) { }
1804
1805 void VisitPointer(Object** p) {
1806 MarkObjectByPointer(p);
1807 }
1808
1809 void VisitPointers(Object** start, Object** end) {
1810 for (Object** p = start; p < end; p++) MarkObjectByPointer(p);
1811 }
1812
1813 // Skip the weak next code link in a code object, which is visited in
1814 // ProcessTopOptimizedFrame.
1815 void VisitNextCodeLink(Object** p) { }
1816
1817 private:
1818 void MarkObjectByPointer(Object** p) {
1819 if (!(*p)->IsHeapObject()) return;
1820
1821 // Replace flat cons strings in place.
1822 HeapObject* object = ShortCircuitConsString(p);
1823 MarkBit mark_bit = Marking::MarkBitFrom(object);
1824 if (mark_bit.Get()) return;
1825
1826 Map* map = object->map();
1827 // Mark the object.
1828 collector_->SetMark(object, mark_bit);
1829
1830 // Mark the map pointer and body, and push them on the marking stack.
1831 MarkBit map_mark = Marking::MarkBitFrom(map);
1832 collector_->MarkObject(map, map_mark);
1833 MarkCompactMarkingVisitor::IterateBody(map, object);
1834
1835 // Mark all the objects reachable from the map and body. May leave
1836 // overflowed objects in the heap.
1837 collector_->EmptyMarkingDeque();
1838 }
1839
1840 MarkCompactCollector* collector_;
1841 };
1842
1843
1844 // Helper class for pruning the string table.
1845 template<bool finalize_external_strings>
1846 class StringTableCleaner : public ObjectVisitor {
1847 public:
1848 explicit StringTableCleaner(Heap* heap)
1849 : heap_(heap), pointers_removed_(0) { }
1850
1851 virtual void VisitPointers(Object** start, Object** end) {
1852 // Visit all HeapObject pointers in [start, end).
1853 for (Object** p = start; p < end; p++) {
1854 Object* o = *p;
1855 if (o->IsHeapObject() &&
1856 !Marking::MarkBitFrom(HeapObject::cast(o)).Get()) {
1857 if (finalize_external_strings) {
1858 DCHECK(o->IsExternalString());
1859 heap_->FinalizeExternalString(String::cast(*p));
1860 } else {
1861 pointers_removed_++;
1862 }
1863 // Set the entry to the_hole_value (as deleted).
1864 *p = heap_->the_hole_value();
1865 }
1866 }
1867 }
1868
1869 int PointersRemoved() {
1870 DCHECK(!finalize_external_strings);
1871 return pointers_removed_;
1872 }
1873
1874 private:
1875 Heap* heap_;
1876 int pointers_removed_;
1877 };
1878
1879
1880 typedef StringTableCleaner<false> InternalizedStringTableCleaner;
1881 typedef StringTableCleaner<true> ExternalStringTableCleaner;
1882
1883
1884 // Implementation of WeakObjectRetainer for mark compact GCs. All marked objects
1885 // are retained.
1886 class MarkCompactWeakObjectRetainer : public WeakObjectRetainer {
1887 public:
1888 virtual Object* RetainAs(Object* object) {
1889 if (Marking::MarkBitFrom(HeapObject::cast(object)).Get()) {
1890 return object;
1891 } else if (object->IsAllocationSite() &&
1892 !(AllocationSite::cast(object)->IsZombie())) {
1893 // "dead" AllocationSites need to live long enough for a traversal of new
1894 // space. These sites get a one-time reprieve.
1895 AllocationSite* site = AllocationSite::cast(object);
1896 site->MarkZombie();
1897 site->GetHeap()->mark_compact_collector()->MarkAllocationSite(site);
1898 return object;
1899 } else {
1900 return NULL;
1901 }
1902 }
1903 };
1904
1905
1906 // Fill the marking stack with overflowed objects returned by the given
1907 // iterator. Stop when the marking stack is filled or the end of the space
1908 // is reached, whichever comes first.
1909 template<class T>
1910 static void DiscoverGreyObjectsWithIterator(Heap* heap,
1911 MarkingDeque* marking_deque,
1912 T* it) {
1913 // The caller should ensure that the marking stack is initially not full,
1914 // so that we don't waste effort pointlessly scanning for objects.
1915 DCHECK(!marking_deque->IsFull());
1916
1917 Map* filler_map = heap->one_pointer_filler_map();
1918 for (HeapObject* object = it->Next();
1919 object != NULL;
1920 object = it->Next()) {
1921 MarkBit markbit = Marking::MarkBitFrom(object);
1922 if ((object->map() != filler_map) && Marking::IsGrey(markbit)) {
1923 Marking::GreyToBlack(markbit);
1924 MemoryChunk::IncrementLiveBytesFromGC(object->address(), object->Size());
1925 marking_deque->PushBlack(object);
1926 if (marking_deque->IsFull()) return;
1927 }
1928 }
1929 }
1930
1931
1932 static inline int MarkWordToObjectStarts(uint32_t mark_bits, int* starts);
1933
1934
1935 static void DiscoverGreyObjectsOnPage(MarkingDeque* marking_deque,
1936 MemoryChunk* p) {
1937 DCHECK(!marking_deque->IsFull());
1938 DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
1939 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
1940 DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
1941 DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
1942
1943 for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
1944 Address cell_base = it.CurrentCellBase();
1945 MarkBit::CellType* cell = it.CurrentCell();
1946
1947 const MarkBit::CellType current_cell = *cell;
1948 if (current_cell == 0) continue;
1949
1950 MarkBit::CellType grey_objects;
1951 if (it.HasNext()) {
1952 const MarkBit::CellType next_cell = *(cell+1);
1953 grey_objects = current_cell &
1954 ((current_cell >> 1) | (next_cell << (Bitmap::kBitsPerCell - 1)));
1955 } else {
1956 grey_objects = current_cell & (current_cell >> 1);
1957 }
1958
1959 int offset = 0;
1960 while (grey_objects != 0) {
1961 int trailing_zeros = CompilerIntrinsics::CountTrailingZeros(grey_objects);
1962 grey_objects >>= trailing_zeros;
1963 offset += trailing_zeros;
1964 MarkBit markbit(cell, 1 << offset, false);
1965 DCHECK(Marking::IsGrey(markbit));
1966 Marking::GreyToBlack(markbit);
1967 Address addr = cell_base + offset * kPointerSize;
1968 HeapObject* object = HeapObject::FromAddress(addr);
1969 MemoryChunk::IncrementLiveBytesFromGC(object->address(), object->Size());
1970 marking_deque->PushBlack(object);
1971 if (marking_deque->IsFull()) return;
1972 offset += 2;
1973 grey_objects >>= 2;
1974 }
1975
1976 grey_objects >>= (Bitmap::kBitsPerCell - 1);
1977 }
1978 }
1979
1980
1981 int MarkCompactCollector::DiscoverAndEvacuateBlackObjectsOnPage(
1982 NewSpace* new_space,
1983 NewSpacePage* p) {
1984 DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
1985 DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
1986 DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
1987 DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
1988
1989 MarkBit::CellType* cells = p->markbits()->cells();
1990 int survivors_size = 0;
1991
1992 for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
1993 Address cell_base = it.CurrentCellBase();
1994 MarkBit::CellType* cell = it.CurrentCell();
1995
1996 MarkBit::CellType current_cell = *cell;
1997 if (current_cell == 0) continue;
1998
1999 int offset = 0;
2000 while (current_cell != 0) {
2001 int trailing_zeros = CompilerIntrinsics::CountTrailingZeros(current_cell);
2002 current_cell >>= trailing_zeros;
2003 offset += trailing_zeros;
2004 Address address = cell_base + offset * kPointerSize;
2005 HeapObject* object = HeapObject::FromAddress(address);
2006
2007 int size = object->Size();
2008 survivors_size += size;
2009
2010 Heap::UpdateAllocationSiteFeedback(object, Heap::RECORD_SCRATCHPAD_SLOT);
2011
2012 offset++;
2013 current_cell >>= 1;
2014
2015 // TODO(hpayer): Refactor EvacuateObject and call this function instead.
2016 if (heap()->ShouldBePromoted(object->address(), size) &&
2017 TryPromoteObject(object, size)) {
2018 continue;
2019 }
2020
2021 AllocationResult allocation = new_space->AllocateRaw(size);
2022 if (allocation.IsRetry()) {
2023 if (!new_space->AddFreshPage()) {
2024 // Shouldn't happen. We are sweeping linearly, and to-space
2025 // has the same number of pages as from-space, so there is
2026 // always room.
2027 UNREACHABLE();
2028 }
2029 allocation = new_space->AllocateRaw(size);
2030 DCHECK(!allocation.IsRetry());
2031 }
2032 Object* target = allocation.ToObjectChecked();
2033
2034 MigrateObject(HeapObject::cast(target),
2035 object,
2036 size,
2037 NEW_SPACE);
2038 heap()->IncrementSemiSpaceCopiedObjectSize(size);
2039 }
2040 *cells = 0;
2041 }
2042 return survivors_size;
2043 }
2044
2045
2046 static void DiscoverGreyObjectsInSpace(Heap* heap,
2047 MarkingDeque* marking_deque,
2048 PagedSpace* space) {
2049 if (space->swept_precisely()) {
2050 HeapObjectIterator it(space);
2051 DiscoverGreyObjectsWithIterator(heap, marking_deque, &it);
2052 } else {
2053 PageIterator it(space);
2054 while (it.has_next()) {
2055 Page* p = it.next();
2056 DiscoverGreyObjectsOnPage(marking_deque, p);
2057 if (marking_deque->IsFull()) return;
2058 }
2059 }
2060 }
2061
2062
2063 static void DiscoverGreyObjectsInNewSpace(Heap* heap,
2064 MarkingDeque* marking_deque) {
2065 NewSpace* space = heap->new_space();
2066 NewSpacePageIterator it(space->bottom(), space->top());
2067 while (it.has_next()) {
2068 NewSpacePage* page = it.next();
2069 DiscoverGreyObjectsOnPage(marking_deque, page);
2070 if (marking_deque->IsFull()) return;
2071 }
2072 }
2073
2074
2075 bool MarkCompactCollector::IsUnmarkedHeapObject(Object** p) {
2076 Object* o = *p;
2077 if (!o->IsHeapObject()) return false;
2078 HeapObject* heap_object = HeapObject::cast(o);
2079 MarkBit mark = Marking::MarkBitFrom(heap_object);
2080 return !mark.Get();
2081 }
2082
2083
2084 bool MarkCompactCollector::IsUnmarkedHeapObjectWithHeap(Heap* heap,
2085 Object** p) {
2086 Object* o = *p;
2087 DCHECK(o->IsHeapObject());
2088 HeapObject* heap_object = HeapObject::cast(o);
2089 MarkBit mark = Marking::MarkBitFrom(heap_object);
2090 return !mark.Get();
2091 }
2092
2093
2094 void MarkCompactCollector::MarkStringTable(RootMarkingVisitor* visitor) {
2095 StringTable* string_table = heap()->string_table();
2096 // Mark the string table itself.
2097 MarkBit string_table_mark = Marking::MarkBitFrom(string_table);
2098 if (!string_table_mark.Get()) {
2099 // String table could have already been marked by visiting the handles list.
2100 SetMark(string_table, string_table_mark);
2101 }
2102 // Explicitly mark the prefix.
2103 string_table->IteratePrefix(visitor);
2104 ProcessMarkingDeque();
2105 }
2106
2107
2108 void MarkCompactCollector::MarkAllocationSite(AllocationSite* site) {
2109 MarkBit mark_bit = Marking::MarkBitFrom(site);
2110 SetMark(site, mark_bit);
2111 }
2112
2113
2114 void MarkCompactCollector::MarkRoots(RootMarkingVisitor* visitor) {
2115 // Mark the heap roots including global variables, stack variables,
2116 // etc., and all objects reachable from them.
2117 heap()->IterateStrongRoots(visitor, VISIT_ONLY_STRONG);
2118
2119 // Handle the string table specially.
2120 MarkStringTable(visitor);
2121
2122 MarkWeakObjectToCodeTable();
2123
2124 // There may be overflowed objects in the heap. Visit them now.
2125 while (marking_deque_.overflowed()) {
2126 RefillMarkingDeque();
2127 EmptyMarkingDeque();
2128 }
2129 }
2130
2131
2132 void MarkCompactCollector::MarkImplicitRefGroups() {
2133 List<ImplicitRefGroup*>* ref_groups =
2134 isolate()->global_handles()->implicit_ref_groups();
2135
2136 int last = 0;
2137 for (int i = 0; i < ref_groups->length(); i++) {
2138 ImplicitRefGroup* entry = ref_groups->at(i);
2139 DCHECK(entry != NULL);
2140
2141 if (!IsMarked(*entry->parent)) {
2142 (*ref_groups)[last++] = entry;
2143 continue;
2144 }
2145
2146 Object*** children = entry->children;
2147 // A parent object is marked, so mark all child heap objects.
2148 for (size_t j = 0; j < entry->length; ++j) {
2149 if ((*children[j])->IsHeapObject()) {
2150 HeapObject* child = HeapObject::cast(*children[j]);
2151 MarkBit mark = Marking::MarkBitFrom(child);
2152 MarkObject(child, mark);
2153 }
2154 }
2155
2156 // Once the entire group has been marked, dispose it because it's
2157 // not needed anymore.
2158 delete entry;
2159 }
2160 ref_groups->Rewind(last);
2161 }
2162
2163
2164 void MarkCompactCollector::MarkWeakObjectToCodeTable() {
2165 HeapObject* weak_object_to_code_table =
2166 HeapObject::cast(heap()->weak_object_to_code_table());
2167 if (!IsMarked(weak_object_to_code_table)) {
2168 MarkBit mark = Marking::MarkBitFrom(weak_object_to_code_table);
2169 SetMark(weak_object_to_code_table, mark);
2170 }
2171 }
2172
2173
2174 // Mark all objects reachable from the objects on the marking stack.
2175 // Before: the marking stack contains zero or more heap object pointers.
2176 // After: the marking stack is empty, and all objects reachable from the
2177 // marking stack have been marked, or are overflowed in the heap.
2178 void MarkCompactCollector::EmptyMarkingDeque() {
2179 while (!marking_deque_.IsEmpty()) {
2180 HeapObject* object = marking_deque_.Pop();
2181 DCHECK(object->IsHeapObject());
2182 DCHECK(heap()->Contains(object));
2183 DCHECK(Marking::IsBlack(Marking::MarkBitFrom(object)));
2184
2185 Map* map = object->map();
2186 MarkBit map_mark = Marking::MarkBitFrom(map);
2187 MarkObject(map, map_mark);
2188
2189 MarkCompactMarkingVisitor::IterateBody(map, object);
2190 }
2191 }
2192
2193
2194 // Sweep the heap for overflowed objects, clear their overflow bits, and
2195 // push them on the marking stack. Stop early if the marking stack fills
2196 // before sweeping completes. If sweeping completes, there are no remaining
2197 // overflowed objects in the heap so the overflow flag on the markings stack
2198 // is cleared.
2199 void MarkCompactCollector::RefillMarkingDeque() {
2200 DCHECK(marking_deque_.overflowed());
2201
2202 DiscoverGreyObjectsInNewSpace(heap(), &marking_deque_);
2203 if (marking_deque_.IsFull()) return;
2204
2205 DiscoverGreyObjectsInSpace(heap(),
2206 &marking_deque_,
2207 heap()->old_pointer_space());
2208 if (marking_deque_.IsFull()) return;
2209
2210 DiscoverGreyObjectsInSpace(heap(),
2211 &marking_deque_,
2212 heap()->old_data_space());
2213 if (marking_deque_.IsFull()) return;
2214
2215 DiscoverGreyObjectsInSpace(heap(),
2216 &marking_deque_,
2217 heap()->code_space());
2218 if (marking_deque_.IsFull()) return;
2219
2220 DiscoverGreyObjectsInSpace(heap(),
2221 &marking_deque_,
2222 heap()->map_space());
2223 if (marking_deque_.IsFull()) return;
2224
2225 DiscoverGreyObjectsInSpace(heap(),
2226 &marking_deque_,
2227 heap()->cell_space());
2228 if (marking_deque_.IsFull()) return;
2229
2230 DiscoverGreyObjectsInSpace(heap(),
2231 &marking_deque_,
2232 heap()->property_cell_space());
2233 if (marking_deque_.IsFull()) return;
2234
2235 LargeObjectIterator lo_it(heap()->lo_space());
2236 DiscoverGreyObjectsWithIterator(heap(),
2237 &marking_deque_,
2238 &lo_it);
2239 if (marking_deque_.IsFull()) return;
2240
2241 marking_deque_.ClearOverflowed();
2242 }
2243
2244
2245 // Mark all objects reachable (transitively) from objects on the marking
2246 // stack. Before: the marking stack contains zero or more heap object
2247 // pointers. After: the marking stack is empty and there are no overflowed
2248 // objects in the heap.
2249 void MarkCompactCollector::ProcessMarkingDeque() {
2250 EmptyMarkingDeque();
2251 while (marking_deque_.overflowed()) {
2252 RefillMarkingDeque();
2253 EmptyMarkingDeque();
2254 }
2255 }
2256
2257
2258 // Mark all objects reachable (transitively) from objects on the marking
2259 // stack including references only considered in the atomic marking pause.
2260 void MarkCompactCollector::ProcessEphemeralMarking(ObjectVisitor* visitor) {
2261 bool work_to_do = true;
2262 DCHECK(marking_deque_.IsEmpty());
2263 while (work_to_do) {
2264 isolate()->global_handles()->IterateObjectGroups(
2265 visitor, &IsUnmarkedHeapObjectWithHeap);
2266 MarkImplicitRefGroups();
2267 ProcessWeakCollections();
2268 work_to_do = !marking_deque_.IsEmpty();
2269 ProcessMarkingDeque();
2270 }
2271 }
2272
2273
2274 void MarkCompactCollector::ProcessTopOptimizedFrame(ObjectVisitor* visitor) {
2275 for (StackFrameIterator it(isolate(), isolate()->thread_local_top());
2276 !it.done(); it.Advance()) {
2277 if (it.frame()->type() == StackFrame::JAVA_SCRIPT) {
2278 return;
2279 }
2280 if (it.frame()->type() == StackFrame::OPTIMIZED) {
2281 Code* code = it.frame()->LookupCode();
2282 if (!code->CanDeoptAt(it.frame()->pc())) {
2283 code->CodeIterateBody(visitor);
2284 }
2285 ProcessMarkingDeque();
2286 return;
2287 }
2288 }
2289 }
2290
2291
2292 void MarkCompactCollector::MarkLiveObjects() {
2293 GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_MARK);
2294 double start_time = 0.0;
2295 if (FLAG_print_cumulative_gc_stat) {
2296 start_time = base::OS::TimeCurrentMillis();
2297 }
2298 // The recursive GC marker detects when it is nearing stack overflow,
2299 // and switches to a different marking system. JS interrupts interfere
2300 // with the C stack limit check.
2301 PostponeInterruptsScope postpone(isolate());
2302
2303 bool incremental_marking_overflowed = false;
2304 IncrementalMarking* incremental_marking = heap_->incremental_marking();
2305 if (was_marked_incrementally_) {
2306 // Finalize the incremental marking and check whether we had an overflow.
2307 // Both markers use grey color to mark overflowed objects so
2308 // non-incremental marker can deal with them as if overflow
2309 // occured during normal marking.
2310 // But incremental marker uses a separate marking deque
2311 // so we have to explicitly copy its overflow state.
2312 incremental_marking->Finalize();
2313 incremental_marking_overflowed =
2314 incremental_marking->marking_deque()->overflowed();
2315 incremental_marking->marking_deque()->ClearOverflowed();
2316 } else {
2317 // Abort any pending incremental activities e.g. incremental sweeping.
2318 incremental_marking->Abort();
2319 }
2320
2321 #ifdef DEBUG
2322 DCHECK(state_ == PREPARE_GC);
2323 state_ = MARK_LIVE_OBJECTS;
2324 #endif
2325 // The to space contains live objects, a page in from space is used as a
2326 // marking stack.
2327 Address marking_deque_start = heap()->new_space()->FromSpacePageLow();
2328 Address marking_deque_end = heap()->new_space()->FromSpacePageHigh();
2329 if (FLAG_force_marking_deque_overflows) {
2330 marking_deque_end = marking_deque_start + 64 * kPointerSize;
2331 }
2332 marking_deque_.Initialize(marking_deque_start,
2333 marking_deque_end);
2334 DCHECK(!marking_deque_.overflowed());
2335
2336 if (incremental_marking_overflowed) {
2337 // There are overflowed objects left in the heap after incremental marking.
2338 marking_deque_.SetOverflowed();
2339 }
2340
2341 PrepareForCodeFlushing();
2342
2343 if (was_marked_incrementally_) {
2344 // There is no write barrier on cells so we have to scan them now at the end
2345 // of the incremental marking.
2346 {
2347 HeapObjectIterator cell_iterator(heap()->cell_space());
2348 HeapObject* cell;
2349 while ((cell = cell_iterator.Next()) != NULL) {
2350 DCHECK(cell->IsCell());
2351 if (IsMarked(cell)) {
2352 int offset = Cell::kValueOffset;
2353 MarkCompactMarkingVisitor::VisitPointer(
2354 heap(),
2355 reinterpret_cast<Object**>(cell->address() + offset));
2356 }
2357 }
2358 }
2359 {
2360 HeapObjectIterator js_global_property_cell_iterator(
2361 heap()->property_cell_space());
2362 HeapObject* cell;
2363 while ((cell = js_global_property_cell_iterator.Next()) != NULL) {
2364 DCHECK(cell->IsPropertyCell());
2365 if (IsMarked(cell)) {
2366 MarkCompactMarkingVisitor::VisitPropertyCell(cell->map(), cell);
2367 }
2368 }
2369 }
2370 }
2371
2372 RootMarkingVisitor root_visitor(heap());
2373 MarkRoots(&root_visitor);
2374
2375 ProcessTopOptimizedFrame(&root_visitor);
2376
2377 // The objects reachable from the roots are marked, yet unreachable
2378 // objects are unmarked. Mark objects reachable due to host
2379 // application specific logic or through Harmony weak maps.
2380 ProcessEphemeralMarking(&root_visitor);
2381
2382 // The objects reachable from the roots, weak maps or object groups
2383 // are marked, yet unreachable objects are unmarked. Mark objects
2384 // reachable only from weak global handles.
2385 //
2386 // First we identify nonlive weak handles and mark them as pending
2387 // destruction.
2388 heap()->isolate()->global_handles()->IdentifyWeakHandles(
2389 &IsUnmarkedHeapObject);
2390 // Then we mark the objects and process the transitive closure.
2391 heap()->isolate()->global_handles()->IterateWeakRoots(&root_visitor);
2392 while (marking_deque_.overflowed()) {
2393 RefillMarkingDeque();
2394 EmptyMarkingDeque();
2395 }
2396
2397 // Repeat host application specific and Harmony weak maps marking to
2398 // mark unmarked objects reachable from the weak roots.
2399 ProcessEphemeralMarking(&root_visitor);
2400
2401 AfterMarking();
2402
2403 if (FLAG_print_cumulative_gc_stat) {
2404 heap_->tracer()->AddMarkingTime(base::OS::TimeCurrentMillis() - start_time);
2405 }
2406 }
2407
2408
2409 void MarkCompactCollector::AfterMarking() {
2410 // Object literal map caches reference strings (cache keys) and maps
2411 // (cache values). At this point still useful maps have already been
2412 // marked. Mark the keys for the alive values before we process the
2413 // string table.
2414 ProcessMapCaches();
2415
2416 // Prune the string table removing all strings only pointed to by the
2417 // string table. Cannot use string_table() here because the string
2418 // table is marked.
2419 StringTable* string_table = heap()->string_table();
2420 InternalizedStringTableCleaner internalized_visitor(heap());
2421 string_table->IterateElements(&internalized_visitor);
2422 string_table->ElementsRemoved(internalized_visitor.PointersRemoved());
2423
2424 ExternalStringTableCleaner external_visitor(heap());
2425 heap()->external_string_table_.Iterate(&external_visitor);
2426 heap()->external_string_table_.CleanUp();
2427
2428 // Process the weak references.
2429 MarkCompactWeakObjectRetainer mark_compact_object_retainer;
2430 heap()->ProcessWeakReferences(&mark_compact_object_retainer);
2431
2432 // Remove object groups after marking phase.
2433 heap()->isolate()->global_handles()->RemoveObjectGroups();
2434 heap()->isolate()->global_handles()->RemoveImplicitRefGroups();
2435
2436 // Flush code from collected candidates.
2437 if (is_code_flushing_enabled()) {
2438 code_flusher_->ProcessCandidates();
2439 // If incremental marker does not support code flushing, we need to
2440 // disable it before incremental marking steps for next cycle.
2441 if (FLAG_flush_code && !FLAG_flush_code_incrementally) {
2442 EnableCodeFlushing(false);
2443 }
2444 }
2445
2446 if (FLAG_track_gc_object_stats) {
2447 heap()->CheckpointObjectStats();
2448 }
2449 }
2450
2451
2452 void MarkCompactCollector::ProcessMapCaches() {
2453 Object* raw_context = heap()->native_contexts_list();
2454 while (raw_context != heap()->undefined_value()) {
2455 Context* context = reinterpret_cast<Context*>(raw_context);
2456 if (IsMarked(context)) {
2457 HeapObject* raw_map_cache =
2458 HeapObject::cast(context->get(Context::MAP_CACHE_INDEX));
2459 // A map cache may be reachable from the stack. In this case
2460 // it's already transitively marked and it's too late to clean
2461 // up its parts.
2462 if (!IsMarked(raw_map_cache) &&
2463 raw_map_cache != heap()->undefined_value()) {
2464 MapCache* map_cache = reinterpret_cast<MapCache*>(raw_map_cache);
2465 int existing_elements = map_cache->NumberOfElements();
2466 int used_elements = 0;
2467 for (int i = MapCache::kElementsStartIndex;
2468 i < map_cache->length();
2469 i += MapCache::kEntrySize) {
2470 Object* raw_key = map_cache->get(i);
2471 if (raw_key == heap()->undefined_value() ||
2472 raw_key == heap()->the_hole_value()) continue;
2473 STATIC_ASSERT(MapCache::kEntrySize == 2);
2474 Object* raw_map = map_cache->get(i + 1);
2475 if (raw_map->IsHeapObject() && IsMarked(raw_map)) {
2476 ++used_elements;
2477 } else {
2478 // Delete useless entries with unmarked maps.
2479 DCHECK(raw_map->IsMap());
2480 map_cache->set_the_hole(i);
2481 map_cache->set_the_hole(i + 1);
2482 }
2483 }
2484 if (used_elements == 0) {
2485 context->set(Context::MAP_CACHE_INDEX, heap()->undefined_value());
2486 } else {
2487 // Note: we don't actually shrink the cache here to avoid
2488 // extra complexity during GC. We rely on subsequent cache
2489 // usages (EnsureCapacity) to do this.
2490 map_cache->ElementsRemoved(existing_elements - used_elements);
2491 MarkBit map_cache_markbit = Marking::MarkBitFrom(map_cache);
2492 MarkObject(map_cache, map_cache_markbit);
2493 }
2494 }
2495 }
2496 // Move to next element in the list.
2497 raw_context = context->get(Context::NEXT_CONTEXT_LINK);
2498 }
2499 ProcessMarkingDeque();
2500 }
2501
2502
2503 void MarkCompactCollector::ClearNonLiveReferences() {
2504 // Iterate over the map space, setting map transitions that go from
2505 // a marked map to an unmarked map to null transitions. This action
2506 // is carried out only on maps of JSObjects and related subtypes.
2507 HeapObjectIterator map_iterator(heap()->map_space());
2508 for (HeapObject* obj = map_iterator.Next();
2509 obj != NULL;
2510 obj = map_iterator.Next()) {
2511 Map* map = Map::cast(obj);
2512
2513 if (!map->CanTransition()) continue;
2514
2515 MarkBit map_mark = Marking::MarkBitFrom(map);
2516 ClearNonLivePrototypeTransitions(map);
2517 ClearNonLiveMapTransitions(map, map_mark);
2518
2519 if (map_mark.Get()) {
2520 ClearNonLiveDependentCode(map->dependent_code());
2521 } else {
2522 ClearDependentCode(map->dependent_code());
2523 map->set_dependent_code(DependentCode::cast(heap()->empty_fixed_array()));
2524 }
2525 }
2526
2527 // Iterate over property cell space, removing dependent code that is not
2528 // otherwise kept alive by strong references.
2529 HeapObjectIterator cell_iterator(heap_->property_cell_space());
2530 for (HeapObject* cell = cell_iterator.Next();
2531 cell != NULL;
2532 cell = cell_iterator.Next()) {
2533 if (IsMarked(cell)) {
2534 ClearNonLiveDependentCode(PropertyCell::cast(cell)->dependent_code());
2535 }
2536 }
2537
2538 // Iterate over allocation sites, removing dependent code that is not
2539 // otherwise kept alive by strong references.
2540 Object* undefined = heap()->undefined_value();
2541 for (Object* site = heap()->allocation_sites_list();
2542 site != undefined;
2543 site = AllocationSite::cast(site)->weak_next()) {
2544 if (IsMarked(site)) {
2545 ClearNonLiveDependentCode(AllocationSite::cast(site)->dependent_code());
2546 }
2547 }
2548
2549 if (heap_->weak_object_to_code_table()->IsHashTable()) {
2550 WeakHashTable* table =
2551 WeakHashTable::cast(heap_->weak_object_to_code_table());
2552 uint32_t capacity = table->Capacity();
2553 for (uint32_t i = 0; i < capacity; i++) {
2554 uint32_t key_index = table->EntryToIndex(i);
2555 Object* key = table->get(key_index);
2556 if (!table->IsKey(key)) continue;
2557 uint32_t value_index = table->EntryToValueIndex(i);
2558 Object* value = table->get(value_index);
2559 if (key->IsCell() && !IsMarked(key)) {
2560 Cell* cell = Cell::cast(key);
2561 Object* object = cell->value();
2562 if (IsMarked(object)) {
2563 MarkBit mark = Marking::MarkBitFrom(cell);
2564 SetMark(cell, mark);
2565 Object** value_slot = HeapObject::RawField(cell, Cell::kValueOffset);
2566 RecordSlot(value_slot, value_slot, *value_slot);
2567 }
2568 }
2569 if (IsMarked(key)) {
2570 if (!IsMarked(value)) {
2571 HeapObject* obj = HeapObject::cast(value);
2572 MarkBit mark = Marking::MarkBitFrom(obj);
2573 SetMark(obj, mark);
2574 }
2575 ClearNonLiveDependentCode(DependentCode::cast(value));
2576 } else {
2577 ClearDependentCode(DependentCode::cast(value));
2578 table->set(key_index, heap_->the_hole_value());
2579 table->set(value_index, heap_->the_hole_value());
2580 table->ElementRemoved();
2581 }
2582 }
2583 }
2584 }
2585
2586
2587 void MarkCompactCollector::ClearNonLivePrototypeTransitions(Map* map) {
2588 int number_of_transitions = map->NumberOfProtoTransitions();
2589 FixedArray* prototype_transitions = map->GetPrototypeTransitions();
2590
2591 int new_number_of_transitions = 0;
2592 const int header = Map::kProtoTransitionHeaderSize;
2593 const int proto_offset = header + Map::kProtoTransitionPrototypeOffset;
2594 const int map_offset = header + Map::kProtoTransitionMapOffset;
2595 const int step = Map::kProtoTransitionElementsPerEntry;
2596 for (int i = 0; i < number_of_transitions; i++) {
2597 Object* prototype = prototype_transitions->get(proto_offset + i * step);
2598 Object* cached_map = prototype_transitions->get(map_offset + i * step);
2599 if (IsMarked(prototype) && IsMarked(cached_map)) {
2600 DCHECK(!prototype->IsUndefined());
2601 int proto_index = proto_offset + new_number_of_transitions * step;
2602 int map_index = map_offset + new_number_of_transitions * step;
2603 if (new_number_of_transitions != i) {
2604 prototype_transitions->set(
2605 proto_index,
2606 prototype,
2607 UPDATE_WRITE_BARRIER);
2608 prototype_transitions->set(
2609 map_index,
2610 cached_map,
2611 SKIP_WRITE_BARRIER);
2612 }
2613 Object** slot = prototype_transitions->RawFieldOfElementAt(proto_index);
2614 RecordSlot(slot, slot, prototype);
2615 new_number_of_transitions++;
2616 }
2617 }
2618
2619 if (new_number_of_transitions != number_of_transitions) {
2620 map->SetNumberOfProtoTransitions(new_number_of_transitions);
2621 }
2622
2623 // Fill slots that became free with undefined value.
2624 for (int i = new_number_of_transitions * step;
2625 i < number_of_transitions * step;
2626 i++) {
2627 prototype_transitions->set_undefined(header + i);
2628 }
2629 }
2630
2631
2632 void MarkCompactCollector::ClearNonLiveMapTransitions(Map* map,
2633 MarkBit map_mark) {
2634 Object* potential_parent = map->GetBackPointer();
2635 if (!potential_parent->IsMap()) return;
2636 Map* parent = Map::cast(potential_parent);
2637
2638 // Follow back pointer, check whether we are dealing with a map transition
2639 // from a live map to a dead path and in case clear transitions of parent.
2640 bool current_is_alive = map_mark.Get();
2641 bool parent_is_alive = Marking::MarkBitFrom(parent).Get();
2642 if (!current_is_alive && parent_is_alive) {
2643 parent->ClearNonLiveTransitions(heap());
2644 }
2645 }
2646
2647
2648 void MarkCompactCollector::ClearDependentICList(Object* head) {
2649 Object* current = head;
2650 Object* undefined = heap()->undefined_value();
2651 while (current != undefined) {
2652 Code* code = Code::cast(current);
2653 if (IsMarked(code)) {
2654 DCHECK(code->is_weak_stub());
2655 IC::InvalidateMaps(code);
2656 }
2657 current = code->next_code_link();
2658 code->set_next_code_link(undefined);
2659 }
2660 }
2661
2662
2663 void MarkCompactCollector::ClearDependentCode(
2664 DependentCode* entries) {
2665 DisallowHeapAllocation no_allocation;
2666 DependentCode::GroupStartIndexes starts(entries);
2667 int number_of_entries = starts.number_of_entries();
2668 if (number_of_entries == 0) return;
2669 int g = DependentCode::kWeakICGroup;
2670 if (starts.at(g) != starts.at(g + 1)) {
2671 int i = starts.at(g);
2672 DCHECK(i + 1 == starts.at(g + 1));
2673 Object* head = entries->object_at(i);
2674 ClearDependentICList(head);
2675 }
2676 g = DependentCode::kWeakCodeGroup;
2677 for (int i = starts.at(g); i < starts.at(g + 1); i++) {
2678 // If the entry is compilation info then the map must be alive,
2679 // and ClearDependentCode shouldn't be called.
2680 DCHECK(entries->is_code_at(i));
2681 Code* code = entries->code_at(i);
2682 if (IsMarked(code) && !code->marked_for_deoptimization()) {
2683 code->set_marked_for_deoptimization(true);
2684 code->InvalidateEmbeddedObjects();
2685 have_code_to_deoptimize_ = true;
2686 }
2687 }
2688 for (int i = 0; i < number_of_entries; i++) {
2689 entries->clear_at(i);
2690 }
2691 }
2692
2693
2694 int MarkCompactCollector::ClearNonLiveDependentCodeInGroup(
2695 DependentCode* entries, int group, int start, int end, int new_start) {
2696 int survived = 0;
2697 if (group == DependentCode::kWeakICGroup) {
2698 // Dependent weak IC stubs form a linked list and only the head is stored
2699 // in the dependent code array.
2700 if (start != end) {
2701 DCHECK(start + 1 == end);
2702 Object* old_head = entries->object_at(start);
2703 MarkCompactWeakObjectRetainer retainer;
2704 Object* head = VisitWeakList<Code>(heap(), old_head, &retainer);
2705 entries->set_object_at(new_start, head);
2706 Object** slot = entries->slot_at(new_start);
2707 RecordSlot(slot, slot, head);
2708 // We do not compact this group even if the head is undefined,
2709 // more dependent ICs are likely to be added later.
2710 survived = 1;
2711 }
2712 } else {
2713 for (int i = start; i < end; i++) {
2714 Object* obj = entries->object_at(i);
2715 DCHECK(obj->IsCode() || IsMarked(obj));
2716 if (IsMarked(obj) &&
2717 (!obj->IsCode() || !WillBeDeoptimized(Code::cast(obj)))) {
2718 if (new_start + survived != i) {
2719 entries->set_object_at(new_start + survived, obj);
2720 }
2721 Object** slot = entries->slot_at(new_start + survived);
2722 RecordSlot(slot, slot, obj);
2723 survived++;
2724 }
2725 }
2726 }
2727 entries->set_number_of_entries(
2728 static_cast<DependentCode::DependencyGroup>(group), survived);
2729 return survived;
2730 }
2731
2732
2733 void MarkCompactCollector::ClearNonLiveDependentCode(DependentCode* entries) {
2734 DisallowHeapAllocation no_allocation;
2735 DependentCode::GroupStartIndexes starts(entries);
2736 int number_of_entries = starts.number_of_entries();
2737 if (number_of_entries == 0) return;
2738 int new_number_of_entries = 0;
2739 // Go through all groups, remove dead codes and compact.
2740 for (int g = 0; g < DependentCode::kGroupCount; g++) {
2741 int survived = ClearNonLiveDependentCodeInGroup(
2742 entries, g, starts.at(g), starts.at(g + 1), new_number_of_entries);
2743 new_number_of_entries += survived;
2744 }
2745 for (int i = new_number_of_entries; i < number_of_entries; i++) {
2746 entries->clear_at(i);
2747 }
2748 }
2749
2750
2751 void MarkCompactCollector::ProcessWeakCollections() {
2752 GCTracer::Scope gc_scope(heap()->tracer(),
2753 GCTracer::Scope::MC_WEAKCOLLECTION_PROCESS);
2754 Object* weak_collection_obj = heap()->encountered_weak_collections();
2755 while (weak_collection_obj != Smi::FromInt(0)) {
2756 JSWeakCollection* weak_collection =
2757 reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
2758 DCHECK(MarkCompactCollector::IsMarked(weak_collection));
2759 if (weak_collection->table()->IsHashTable()) {
2760 ObjectHashTable* table = ObjectHashTable::cast(weak_collection->table());
2761 Object** anchor = reinterpret_cast<Object**>(table->address());
2762 for (int i = 0; i < table->Capacity(); i++) {
2763 if (MarkCompactCollector::IsMarked(HeapObject::cast(table->KeyAt(i)))) {
2764 Object** key_slot =
2765 table->RawFieldOfElementAt(ObjectHashTable::EntryToIndex(i));
2766 RecordSlot(anchor, key_slot, *key_slot);
2767 Object** value_slot =
2768 table->RawFieldOfElementAt(ObjectHashTable::EntryToValueIndex(i));
2769 MarkCompactMarkingVisitor::MarkObjectByPointer(
2770 this, anchor, value_slot);
2771 }
2772 }
2773 }
2774 weak_collection_obj = weak_collection->next();
2775 }
2776 }
2777
2778
2779 void MarkCompactCollector::ClearWeakCollections() {
2780 GCTracer::Scope gc_scope(heap()->tracer(),
2781 GCTracer::Scope::MC_WEAKCOLLECTION_CLEAR);
2782 Object* weak_collection_obj = heap()->encountered_weak_collections();
2783 while (weak_collection_obj != Smi::FromInt(0)) {
2784 JSWeakCollection* weak_collection =
2785 reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
2786 DCHECK(MarkCompactCollector::IsMarked(weak_collection));
2787 if (weak_collection->table()->IsHashTable()) {
2788 ObjectHashTable* table = ObjectHashTable::cast(weak_collection->table());
2789 for (int i = 0; i < table->Capacity(); i++) {
2790 HeapObject* key = HeapObject::cast(table->KeyAt(i));
2791 if (!MarkCompactCollector::IsMarked(key)) {
2792 table->RemoveEntry(i);
2793 }
2794 }
2795 }
2796 weak_collection_obj = weak_collection->next();
2797 weak_collection->set_next(heap()->undefined_value());
2798 }
2799 heap()->set_encountered_weak_collections(Smi::FromInt(0));
2800 }
2801
2802
2803 void MarkCompactCollector::RecordMigratedSlot(Object* value, Address slot) {
2804 if (heap_->InNewSpace(value)) {
2805 heap_->store_buffer()->Mark(slot);
2806 } else if (value->IsHeapObject() && IsOnEvacuationCandidate(value)) {
2807 SlotsBuffer::AddTo(&slots_buffer_allocator_,
2808 &migration_slots_buffer_,
2809 reinterpret_cast<Object**>(slot),
2810 SlotsBuffer::IGNORE_OVERFLOW);
2811 }
2812 }
2813
2814
2815
2816 // We scavange new space simultaneously with sweeping. This is done in two
2817 // passes.
2818 //
2819 // The first pass migrates all alive objects from one semispace to another or
2820 // promotes them to old space. Forwarding address is written directly into
2821 // first word of object without any encoding. If object is dead we write
2822 // NULL as a forwarding address.
2823 //
2824 // The second pass updates pointers to new space in all spaces. It is possible
2825 // to encounter pointers to dead new space objects during traversal of pointers
2826 // to new space. We should clear them to avoid encountering them during next
2827 // pointer iteration. This is an issue if the store buffer overflows and we
2828 // have to scan the entire old space, including dead objects, looking for
2829 // pointers to new space.
2830 void MarkCompactCollector::MigrateObject(HeapObject* dst,
2831 HeapObject* src,
2832 int size,
2833 AllocationSpace dest) {
2834 Address dst_addr = dst->address();
2835 Address src_addr = src->address();
2836 DCHECK(heap()->AllowedToBeMigrated(src, dest));
2837 DCHECK(dest != LO_SPACE && size <= Page::kMaxRegularHeapObjectSize);
2838 if (dest == OLD_POINTER_SPACE) {
2839 Address src_slot = src_addr;
2840 Address dst_slot = dst_addr;
2841 DCHECK(IsAligned(size, kPointerSize));
2842
2843 for (int remaining = size / kPointerSize; remaining > 0; remaining--) {
2844 Object* value = Memory::Object_at(src_slot);
2845
2846 Memory::Object_at(dst_slot) = value;
2847
2848 // We special case ConstantPoolArrays below since they could contain
2849 // integers value entries which look like tagged pointers.
2850 // TODO(mstarzinger): restructure this code to avoid this special-casing.
2851 if (!src->IsConstantPoolArray()) {
2852 RecordMigratedSlot(value, dst_slot);
2853 }
2854
2855 src_slot += kPointerSize;
2856 dst_slot += kPointerSize;
2857 }
2858
2859 if (compacting_ && dst->IsJSFunction()) {
2860 Address code_entry_slot = dst_addr + JSFunction::kCodeEntryOffset;
2861 Address code_entry = Memory::Address_at(code_entry_slot);
2862
2863 if (Page::FromAddress(code_entry)->IsEvacuationCandidate()) {
2864 SlotsBuffer::AddTo(&slots_buffer_allocator_,
2865 &migration_slots_buffer_,
2866 SlotsBuffer::CODE_ENTRY_SLOT,
2867 code_entry_slot,
2868 SlotsBuffer::IGNORE_OVERFLOW);
2869 }
2870 } else if (dst->IsConstantPoolArray()) {
2871 ConstantPoolArray* array = ConstantPoolArray::cast(dst);
2872 ConstantPoolArray::Iterator code_iter(array, ConstantPoolArray::CODE_PTR);
2873 while (!code_iter.is_finished()) {
2874 Address code_entry_slot =
2875 dst_addr + array->OffsetOfElementAt(code_iter.next_index());
2876 Address code_entry = Memory::Address_at(code_entry_slot);
2877
2878 if (Page::FromAddress(code_entry)->IsEvacuationCandidate()) {
2879 SlotsBuffer::AddTo(&slots_buffer_allocator_,
2880 &migration_slots_buffer_,
2881 SlotsBuffer::CODE_ENTRY_SLOT,
2882 code_entry_slot,
2883 SlotsBuffer::IGNORE_OVERFLOW);
2884 }
2885 }
2886 ConstantPoolArray::Iterator heap_iter(array, ConstantPoolArray::HEAP_PTR);
2887 while (!heap_iter.is_finished()) {
2888 Address heap_slot =
2889 dst_addr + array->OffsetOfElementAt(heap_iter.next_index());
2890 Object* value = Memory::Object_at(heap_slot);
2891 RecordMigratedSlot(value, heap_slot);
2892 }
2893 }
2894 } else if (dest == CODE_SPACE) {
2895 PROFILE(isolate(), CodeMoveEvent(src_addr, dst_addr));
2896 heap()->MoveBlock(dst_addr, src_addr, size);
2897 SlotsBuffer::AddTo(&slots_buffer_allocator_,
2898 &migration_slots_buffer_,
2899 SlotsBuffer::RELOCATED_CODE_OBJECT,
2900 dst_addr,
2901 SlotsBuffer::IGNORE_OVERFLOW);
2902 Code::cast(dst)->Relocate(dst_addr - src_addr);
2903 } else {
2904 DCHECK(dest == OLD_DATA_SPACE || dest == NEW_SPACE);
2905 heap()->MoveBlock(dst_addr, src_addr, size);
2906 }
2907 heap()->OnMoveEvent(dst, src, size);
2908 Memory::Address_at(src_addr) = dst_addr;
2909 }
2910
2911
2912 // Visitor for updating pointers from live objects in old spaces to new space.
2913 // It does not expect to encounter pointers to dead objects.
2914 class PointersUpdatingVisitor: public ObjectVisitor {
2915 public:
2916 explicit PointersUpdatingVisitor(Heap* heap) : heap_(heap) { }
2917
2918 void VisitPointer(Object** p) {
2919 UpdatePointer(p);
2920 }
2921
2922 void VisitPointers(Object** start, Object** end) {
2923 for (Object** p = start; p < end; p++) UpdatePointer(p);
2924 }
2925
2926 void VisitEmbeddedPointer(RelocInfo* rinfo) {
2927 DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
2928 Object* target = rinfo->target_object();
2929 Object* old_target = target;
2930 VisitPointer(&target);
2931 // Avoid unnecessary changes that might unnecessary flush the instruction
2932 // cache.
2933 if (target != old_target) {
2934 rinfo->set_target_object(target);
2935 }
2936 }
2937
2938 void VisitCodeTarget(RelocInfo* rinfo) {
2939 DCHECK(RelocInfo::IsCodeTarget(rinfo->rmode()));
2940 Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
2941 Object* old_target = target;
2942 VisitPointer(&target);
2943 if (target != old_target) {
2944 rinfo->set_target_address(Code::cast(target)->instruction_start());
2945 }
2946 }
2947
2948 void VisitCodeAgeSequence(RelocInfo* rinfo) {
2949 DCHECK(RelocInfo::IsCodeAgeSequence(rinfo->rmode()));
2950 Object* stub = rinfo->code_age_stub();
2951 DCHECK(stub != NULL);
2952 VisitPointer(&stub);
2953 if (stub != rinfo->code_age_stub()) {
2954 rinfo->set_code_age_stub(Code::cast(stub));
2955 }
2956 }
2957
2958 void VisitDebugTarget(RelocInfo* rinfo) {
2959 DCHECK((RelocInfo::IsJSReturn(rinfo->rmode()) &&
2960 rinfo->IsPatchedReturnSequence()) ||
2961 (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
2962 rinfo->IsPatchedDebugBreakSlotSequence()));
2963 Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address());
2964 VisitPointer(&target);
2965 rinfo->set_call_address(Code::cast(target)->instruction_start());
2966 }
2967
2968 static inline void UpdateSlot(Heap* heap, Object** slot) {
2969 Object* obj = *slot;
2970
2971 if (!obj->IsHeapObject()) return;
2972
2973 HeapObject* heap_obj = HeapObject::cast(obj);
2974
2975 MapWord map_word = heap_obj->map_word();
2976 if (map_word.IsForwardingAddress()) {
2977 DCHECK(heap->InFromSpace(heap_obj) ||
2978 MarkCompactCollector::IsOnEvacuationCandidate(heap_obj));
2979 HeapObject* target = map_word.ToForwardingAddress();
2980 *slot = target;
2981 DCHECK(!heap->InFromSpace(target) &&
2982 !MarkCompactCollector::IsOnEvacuationCandidate(target));
2983 }
2984 }
2985
2986 private:
2987 inline void UpdatePointer(Object** p) {
2988 UpdateSlot(heap_, p);
2989 }
2990
2991 Heap* heap_;
2992 };
2993
2994
2995 static void UpdatePointer(HeapObject** address, HeapObject* object) {
2996 Address new_addr = Memory::Address_at(object->address());
2997
2998 // The new space sweep will overwrite the map word of dead objects
2999 // with NULL. In this case we do not need to transfer this entry to
3000 // the store buffer which we are rebuilding.
3001 // We perform the pointer update with a no barrier compare-and-swap. The
3002 // compare and swap may fail in the case where the pointer update tries to
3003 // update garbage memory which was concurrently accessed by the sweeper.
3004 if (new_addr != NULL) {
3005 base::NoBarrier_CompareAndSwap(
3006 reinterpret_cast<base::AtomicWord*>(address),
3007 reinterpret_cast<base::AtomicWord>(object),
3008 reinterpret_cast<base::AtomicWord>(HeapObject::FromAddress(new_addr)));
3009 } else {
3010 // We have to zap this pointer, because the store buffer may overflow later,
3011 // and then we have to scan the entire heap and we don't want to find
3012 // spurious newspace pointers in the old space.
3013 // TODO(mstarzinger): This was changed to a sentinel value to track down
3014 // rare crashes, change it back to Smi::FromInt(0) later.
3015 base::NoBarrier_CompareAndSwap(
3016 reinterpret_cast<base::AtomicWord*>(address),
3017 reinterpret_cast<base::AtomicWord>(object),
3018 reinterpret_cast<base::AtomicWord>(Smi::FromInt(0x0f100d00 >> 1)));
3019 }
3020 }
3021
3022
3023 static String* UpdateReferenceInExternalStringTableEntry(Heap* heap,
3024 Object** p) {
3025 MapWord map_word = HeapObject::cast(*p)->map_word();
3026
3027 if (map_word.IsForwardingAddress()) {
3028 return String::cast(map_word.ToForwardingAddress());
3029 }
3030
3031 return String::cast(*p);
3032 }
3033
3034
3035 bool MarkCompactCollector::TryPromoteObject(HeapObject* object,
3036 int object_size) {
3037 DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
3038
3039 OldSpace* target_space = heap()->TargetSpace(object);
3040
3041 DCHECK(target_space == heap()->old_pointer_space() ||
3042 target_space == heap()->old_data_space());
3043 HeapObject* target;
3044 AllocationResult allocation = target_space->AllocateRaw(object_size);
3045 if (allocation.To(&target)) {
3046 MigrateObject(target,
3047 object,
3048 object_size,
3049 target_space->identity());
3050 heap()->IncrementPromotedObjectsSize(object_size);
3051 return true;
3052 }
3053
3054 return false;
3055 }
3056
3057
3058 void MarkCompactCollector::EvacuateNewSpace() {
3059 // There are soft limits in the allocation code, designed trigger a mark
3060 // sweep collection by failing allocations. But since we are already in
3061 // a mark-sweep allocation, there is no sense in trying to trigger one.
3062 AlwaysAllocateScope scope(isolate());
3063
3064 NewSpace* new_space = heap()->new_space();
3065
3066 // Store allocation range before flipping semispaces.
3067 Address from_bottom = new_space->bottom();
3068 Address from_top = new_space->top();
3069
3070 // Flip the semispaces. After flipping, to space is empty, from space has
3071 // live objects.
3072 new_space->Flip();
3073 new_space->ResetAllocationInfo();
3074
3075 int survivors_size = 0;
3076
3077 // First pass: traverse all objects in inactive semispace, remove marks,
3078 // migrate live objects and write forwarding addresses. This stage puts
3079 // new entries in the store buffer and may cause some pages to be marked
3080 // scan-on-scavenge.
3081 NewSpacePageIterator it(from_bottom, from_top);
3082 while (it.has_next()) {
3083 NewSpacePage* p = it.next();
3084 survivors_size += DiscoverAndEvacuateBlackObjectsOnPage(new_space, p);
3085 }
3086
3087 heap_->IncrementYoungSurvivorsCounter(survivors_size);
3088 new_space->set_age_mark(new_space->top());
3089 }
3090
3091
3092 void MarkCompactCollector::EvacuateLiveObjectsFromPage(Page* p) {
3093 AlwaysAllocateScope always_allocate(isolate());
3094 PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3095 DCHECK(p->IsEvacuationCandidate() && !p->WasSwept());
3096 p->MarkSweptPrecisely();
3097
3098 int offsets[16];
3099
3100 for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
3101 Address cell_base = it.CurrentCellBase();
3102 MarkBit::CellType* cell = it.CurrentCell();
3103
3104 if (*cell == 0) continue;
3105
3106 int live_objects = MarkWordToObjectStarts(*cell, offsets);
3107 for (int i = 0; i < live_objects; i++) {
3108 Address object_addr = cell_base + offsets[i] * kPointerSize;
3109 HeapObject* object = HeapObject::FromAddress(object_addr);
3110 DCHECK(Marking::IsBlack(Marking::MarkBitFrom(object)));
3111
3112 int size = object->Size();
3113
3114 HeapObject* target_object;
3115 AllocationResult allocation = space->AllocateRaw(size);
3116 if (!allocation.To(&target_object)) {
3117 // If allocation failed, use emergency memory and re-try allocation.
3118 CHECK(space->HasEmergencyMemory());
3119 space->UseEmergencyMemory();
3120 allocation = space->AllocateRaw(size);
3121 }
3122 if (!allocation.To(&target_object)) {
3123 // OS refused to give us memory.
3124 V8::FatalProcessOutOfMemory("Evacuation");
3125 return;
3126 }
3127
3128 MigrateObject(target_object, object, size, space->identity());
3129 DCHECK(object->map_word().IsForwardingAddress());
3130 }
3131
3132 // Clear marking bits for current cell.
3133 *cell = 0;
3134 }
3135 p->ResetLiveBytes();
3136 }
3137
3138
3139 void MarkCompactCollector::EvacuatePages() {
3140 int npages = evacuation_candidates_.length();
3141 for (int i = 0; i < npages; i++) {
3142 Page* p = evacuation_candidates_[i];
3143 DCHECK(p->IsEvacuationCandidate() ||
3144 p->IsFlagSet(Page::RESCAN_ON_EVACUATION));
3145 DCHECK(static_cast<int>(p->parallel_sweeping()) ==
3146 MemoryChunk::SWEEPING_DONE);
3147 PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3148 // Allocate emergency memory for the case when compaction fails due to out
3149 // of memory.
3150 if (!space->HasEmergencyMemory()) {
3151 space->CreateEmergencyMemory();
3152 }
3153 if (p->IsEvacuationCandidate()) {
3154 // During compaction we might have to request a new page. Check that we
3155 // have an emergency page and the space still has room for that.
3156 if (space->HasEmergencyMemory() && space->CanExpand()) {
3157 EvacuateLiveObjectsFromPage(p);
3158 } else {
3159 // Without room for expansion evacuation is not guaranteed to succeed.
3160 // Pessimistically abandon unevacuated pages.
3161 for (int j = i; j < npages; j++) {
3162 Page* page = evacuation_candidates_[j];
3163 slots_buffer_allocator_.DeallocateChain(page->slots_buffer_address());
3164 page->ClearEvacuationCandidate();
3165 page->SetFlag(Page::RESCAN_ON_EVACUATION);
3166 }
3167 break;
3168 }
3169 }
3170 }
3171 if (npages > 0) {
3172 // Release emergency memory.
3173 PagedSpaces spaces(heap());
3174 for (PagedSpace* space = spaces.next(); space != NULL;
3175 space = spaces.next()) {
3176 if (space->HasEmergencyMemory()) {
3177 space->FreeEmergencyMemory();
3178 }
3179 }
3180 }
3181 }
3182
3183
3184 class EvacuationWeakObjectRetainer : public WeakObjectRetainer {
3185 public:
3186 virtual Object* RetainAs(Object* object) {
3187 if (object->IsHeapObject()) {
3188 HeapObject* heap_object = HeapObject::cast(object);
3189 MapWord map_word = heap_object->map_word();
3190 if (map_word.IsForwardingAddress()) {
3191 return map_word.ToForwardingAddress();
3192 }
3193 }
3194 return object;
3195 }
3196 };
3197
3198
3199 static inline void UpdateSlot(Isolate* isolate,
3200 ObjectVisitor* v,
3201 SlotsBuffer::SlotType slot_type,
3202 Address addr) {
3203 switch (slot_type) {
3204 case SlotsBuffer::CODE_TARGET_SLOT: {
3205 RelocInfo rinfo(addr, RelocInfo::CODE_TARGET, 0, NULL);
3206 rinfo.Visit(isolate, v);
3207 break;
3208 }
3209 case SlotsBuffer::CODE_ENTRY_SLOT: {
3210 v->VisitCodeEntry(addr);
3211 break;
3212 }
3213 case SlotsBuffer::RELOCATED_CODE_OBJECT: {
3214 HeapObject* obj = HeapObject::FromAddress(addr);
3215 Code::cast(obj)->CodeIterateBody(v);
3216 break;
3217 }
3218 case SlotsBuffer::DEBUG_TARGET_SLOT: {
3219 RelocInfo rinfo(addr, RelocInfo::DEBUG_BREAK_SLOT, 0, NULL);
3220 if (rinfo.IsPatchedDebugBreakSlotSequence()) rinfo.Visit(isolate, v);
3221 break;
3222 }
3223 case SlotsBuffer::JS_RETURN_SLOT: {
3224 RelocInfo rinfo(addr, RelocInfo::JS_RETURN, 0, NULL);
3225 if (rinfo.IsPatchedReturnSequence()) rinfo.Visit(isolate, v);
3226 break;
3227 }
3228 case SlotsBuffer::EMBEDDED_OBJECT_SLOT: {
3229 RelocInfo rinfo(addr, RelocInfo::EMBEDDED_OBJECT, 0, NULL);
3230 rinfo.Visit(isolate, v);
3231 break;
3232 }
3233 default:
3234 UNREACHABLE();
3235 break;
3236 }
3237 }
3238
3239
3240 enum SweepingMode {
3241 SWEEP_ONLY,
3242 SWEEP_AND_VISIT_LIVE_OBJECTS
3243 };
3244
3245
3246 enum SkipListRebuildingMode {
3247 REBUILD_SKIP_LIST,
3248 IGNORE_SKIP_LIST
3249 };
3250
3251
3252 enum FreeSpaceTreatmentMode {
3253 IGNORE_FREE_SPACE,
3254 ZAP_FREE_SPACE
3255 };
3256
3257
3258 template<MarkCompactCollector::SweepingParallelism mode>
3259 static intptr_t Free(PagedSpace* space,
3260 FreeList* free_list,
3261 Address start,
3262 int size) {
3263 if (mode == MarkCompactCollector::SWEEP_ON_MAIN_THREAD) {
3264 DCHECK(free_list == NULL);
3265 return space->Free(start, size);
3266 } else {
3267 // TODO(hpayer): account for wasted bytes in concurrent sweeping too.
3268 return size - free_list->Free(start, size);
3269 }
3270 }
3271
3272
3273 // Sweep a space precisely. After this has been done the space can
3274 // be iterated precisely, hitting only the live objects. Code space
3275 // is always swept precisely because we want to be able to iterate
3276 // over it. Map space is swept precisely, because it is not compacted.
3277 // Slots in live objects pointing into evacuation candidates are updated
3278 // if requested.
3279 // Returns the size of the biggest continuous freed memory chunk in bytes.
3280 template<SweepingMode sweeping_mode,
3281 MarkCompactCollector::SweepingParallelism parallelism,
3282 SkipListRebuildingMode skip_list_mode,
3283 FreeSpaceTreatmentMode free_space_mode>
3284 static int SweepPrecisely(PagedSpace* space,
3285 FreeList* free_list,
3286 Page* p,
3287 ObjectVisitor* v) {
3288 DCHECK(!p->IsEvacuationCandidate() && !p->WasSwept());
3289 DCHECK_EQ(skip_list_mode == REBUILD_SKIP_LIST,
3290 space->identity() == CODE_SPACE);
3291 DCHECK((p->skip_list() == NULL) || (skip_list_mode == REBUILD_SKIP_LIST));
3292 DCHECK(parallelism == MarkCompactCollector::SWEEP_ON_MAIN_THREAD ||
3293 sweeping_mode == SWEEP_ONLY);
3294
3295 Address free_start = p->area_start();
3296 DCHECK(reinterpret_cast<intptr_t>(free_start) % (32 * kPointerSize) == 0);
3297 int offsets[16];
3298
3299 SkipList* skip_list = p->skip_list();
3300 int curr_region = -1;
3301 if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list) {
3302 skip_list->Clear();
3303 }
3304
3305 intptr_t freed_bytes = 0;
3306 intptr_t max_freed_bytes = 0;
3307
3308 for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
3309 Address cell_base = it.CurrentCellBase();
3310 MarkBit::CellType* cell = it.CurrentCell();
3311 int live_objects = MarkWordToObjectStarts(*cell, offsets);
3312 int live_index = 0;
3313 for ( ; live_objects != 0; live_objects--) {
3314 Address free_end = cell_base + offsets[live_index++] * kPointerSize;
3315 if (free_end != free_start) {
3316 int size = static_cast<int>(free_end - free_start);
3317 if (free_space_mode == ZAP_FREE_SPACE) {
3318 memset(free_start, 0xcc, size);
3319 }
3320 freed_bytes = Free<parallelism>(space, free_list, free_start, size);
3321 max_freed_bytes = Max(freed_bytes, max_freed_bytes);
3322 #ifdef ENABLE_GDB_JIT_INTERFACE
3323 if (FLAG_gdbjit && space->identity() == CODE_SPACE) {
3324 GDBJITInterface::RemoveCodeRange(free_start, free_end);
3325 }
3326 #endif
3327 }
3328 HeapObject* live_object = HeapObject::FromAddress(free_end);
3329 DCHECK(Marking::IsBlack(Marking::MarkBitFrom(live_object)));
3330 Map* map = live_object->map();
3331 int size = live_object->SizeFromMap(map);
3332 if (sweeping_mode == SWEEP_AND_VISIT_LIVE_OBJECTS) {
3333 live_object->IterateBody(map->instance_type(), size, v);
3334 }
3335 if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list != NULL) {
3336 int new_region_start =
3337 SkipList::RegionNumber(free_end);
3338 int new_region_end =
3339 SkipList::RegionNumber(free_end + size - kPointerSize);
3340 if (new_region_start != curr_region ||
3341 new_region_end != curr_region) {
3342 skip_list->AddObject(free_end, size);
3343 curr_region = new_region_end;
3344 }
3345 }
3346 free_start = free_end + size;
3347 }
3348 // Clear marking bits for current cell.
3349 *cell = 0;
3350 }
3351 if (free_start != p->area_end()) {
3352 int size = static_cast<int>(p->area_end() - free_start);
3353 if (free_space_mode == ZAP_FREE_SPACE) {
3354 memset(free_start, 0xcc, size);
3355 }
3356 freed_bytes = Free<parallelism>(space, free_list, free_start, size);
3357 max_freed_bytes = Max(freed_bytes, max_freed_bytes);
3358 #ifdef ENABLE_GDB_JIT_INTERFACE
3359 if (FLAG_gdbjit && space->identity() == CODE_SPACE) {
3360 GDBJITInterface::RemoveCodeRange(free_start, p->area_end());
3361 }
3362 #endif
3363 }
3364 p->ResetLiveBytes();
3365
3366 if (parallelism == MarkCompactCollector::SWEEP_IN_PARALLEL) {
3367 // When concurrent sweeping is active, the page will be marked after
3368 // sweeping by the main thread.
3369 p->set_parallel_sweeping(MemoryChunk::SWEEPING_FINALIZE);
3370 } else {
3371 p->MarkSweptPrecisely();
3372 }
3373 return FreeList::GuaranteedAllocatable(static_cast<int>(max_freed_bytes));
3374 }
3375
3376
3377 static bool SetMarkBitsUnderInvalidatedCode(Code* code, bool value) {
3378 Page* p = Page::FromAddress(code->address());
3379
3380 if (p->IsEvacuationCandidate() ||
3381 p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) {
3382 return false;
3383 }
3384
3385 Address code_start = code->address();
3386 Address code_end = code_start + code->Size();
3387
3388 uint32_t start_index = MemoryChunk::FastAddressToMarkbitIndex(code_start);
3389 uint32_t end_index =
3390 MemoryChunk::FastAddressToMarkbitIndex(code_end - kPointerSize);
3391
3392 Bitmap* b = p->markbits();
3393
3394 MarkBit start_mark_bit = b->MarkBitFromIndex(start_index);
3395 MarkBit end_mark_bit = b->MarkBitFromIndex(end_index);
3396
3397 MarkBit::CellType* start_cell = start_mark_bit.cell();
3398 MarkBit::CellType* end_cell = end_mark_bit.cell();
3399
3400 if (value) {
3401 MarkBit::CellType start_mask = ~(start_mark_bit.mask() - 1);
3402 MarkBit::CellType end_mask = (end_mark_bit.mask() << 1) - 1;
3403
3404 if (start_cell == end_cell) {
3405 *start_cell |= start_mask & end_mask;
3406 } else {
3407 *start_cell |= start_mask;
3408 for (MarkBit::CellType* cell = start_cell + 1; cell < end_cell; cell++) {
3409 *cell = ~0;
3410 }
3411 *end_cell |= end_mask;
3412 }
3413 } else {
3414 for (MarkBit::CellType* cell = start_cell ; cell <= end_cell; cell++) {
3415 *cell = 0;
3416 }
3417 }
3418
3419 return true;
3420 }
3421
3422
3423 static bool IsOnInvalidatedCodeObject(Address addr) {
3424 // We did not record any slots in large objects thus
3425 // we can safely go to the page from the slot address.
3426 Page* p = Page::FromAddress(addr);
3427
3428 // First check owner's identity because old pointer and old data spaces
3429 // are swept lazily and might still have non-zero mark-bits on some
3430 // pages.
3431 if (p->owner()->identity() != CODE_SPACE) return false;
3432
3433 // In code space only bits on evacuation candidates (but we don't record
3434 // any slots on them) and under invalidated code objects are non-zero.
3435 MarkBit mark_bit =
3436 p->markbits()->MarkBitFromIndex(Page::FastAddressToMarkbitIndex(addr));
3437
3438 return mark_bit.Get();
3439 }
3440
3441
3442 void MarkCompactCollector::InvalidateCode(Code* code) {
3443 if (heap_->incremental_marking()->IsCompacting() &&
3444 !ShouldSkipEvacuationSlotRecording(code)) {
3445 DCHECK(compacting_);
3446
3447 // If the object is white than no slots were recorded on it yet.
3448 MarkBit mark_bit = Marking::MarkBitFrom(code);
3449 if (Marking::IsWhite(mark_bit)) return;
3450
3451 invalidated_code_.Add(code);
3452 }
3453 }
3454
3455
3456 // Return true if the given code is deoptimized or will be deoptimized.
3457 bool MarkCompactCollector::WillBeDeoptimized(Code* code) {
3458 return code->is_optimized_code() && code->marked_for_deoptimization();
3459 }
3460
3461
3462 bool MarkCompactCollector::MarkInvalidatedCode() {
3463 bool code_marked = false;
3464
3465 int length = invalidated_code_.length();
3466 for (int i = 0; i < length; i++) {
3467 Code* code = invalidated_code_[i];
3468
3469 if (SetMarkBitsUnderInvalidatedCode(code, true)) {
3470 code_marked = true;
3471 }
3472 }
3473
3474 return code_marked;
3475 }
3476
3477
3478 void MarkCompactCollector::RemoveDeadInvalidatedCode() {
3479 int length = invalidated_code_.length();
3480 for (int i = 0; i < length; i++) {
3481 if (!IsMarked(invalidated_code_[i])) invalidated_code_[i] = NULL;
3482 }
3483 }
3484
3485
3486 void MarkCompactCollector::ProcessInvalidatedCode(ObjectVisitor* visitor) {
3487 int length = invalidated_code_.length();
3488 for (int i = 0; i < length; i++) {
3489 Code* code = invalidated_code_[i];
3490 if (code != NULL) {
3491 code->Iterate(visitor);
3492 SetMarkBitsUnderInvalidatedCode(code, false);
3493 }
3494 }
3495 invalidated_code_.Rewind(0);
3496 }
3497
3498
3499 void MarkCompactCollector::EvacuateNewSpaceAndCandidates() {
3500 Heap::RelocationLock relocation_lock(heap());
3501
3502 bool code_slots_filtering_required;
3503 { GCTracer::Scope gc_scope(heap()->tracer(),
3504 GCTracer::Scope::MC_SWEEP_NEWSPACE);
3505 code_slots_filtering_required = MarkInvalidatedCode();
3506 EvacuateNewSpace();
3507 }
3508
3509 { GCTracer::Scope gc_scope(heap()->tracer(),
3510 GCTracer::Scope::MC_EVACUATE_PAGES);
3511 EvacuatePages();
3512 }
3513
3514 // Second pass: find pointers to new space and update them.
3515 PointersUpdatingVisitor updating_visitor(heap());
3516
3517 { GCTracer::Scope gc_scope(heap()->tracer(),
3518 GCTracer::Scope::MC_UPDATE_NEW_TO_NEW_POINTERS);
3519 // Update pointers in to space.
3520 SemiSpaceIterator to_it(heap()->new_space()->bottom(),
3521 heap()->new_space()->top());
3522 for (HeapObject* object = to_it.Next();
3523 object != NULL;
3524 object = to_it.Next()) {
3525 Map* map = object->map();
3526 object->IterateBody(map->instance_type(),
3527 object->SizeFromMap(map),
3528 &updating_visitor);
3529 }
3530 }
3531
3532 { GCTracer::Scope gc_scope(heap()->tracer(),
3533 GCTracer::Scope::MC_UPDATE_ROOT_TO_NEW_POINTERS);
3534 // Update roots.
3535 heap_->IterateRoots(&updating_visitor, VISIT_ALL_IN_SWEEP_NEWSPACE);
3536 }
3537
3538 { GCTracer::Scope gc_scope(heap()->tracer(),
3539 GCTracer::Scope::MC_UPDATE_OLD_TO_NEW_POINTERS);
3540 StoreBufferRebuildScope scope(heap_,
3541 heap_->store_buffer(),
3542 &Heap::ScavengeStoreBufferCallback);
3543 heap_->store_buffer()->IteratePointersToNewSpaceAndClearMaps(
3544 &UpdatePointer);
3545 }
3546
3547 { GCTracer::Scope gc_scope(heap()->tracer(),
3548 GCTracer::Scope::MC_UPDATE_POINTERS_TO_EVACUATED);
3549 SlotsBuffer::UpdateSlotsRecordedIn(heap_,
3550 migration_slots_buffer_,
3551 code_slots_filtering_required);
3552 if (FLAG_trace_fragmentation) {
3553 PrintF(" migration slots buffer: %d\n",
3554 SlotsBuffer::SizeOfChain(migration_slots_buffer_));
3555 }
3556
3557 if (compacting_ && was_marked_incrementally_) {
3558 // It's difficult to filter out slots recorded for large objects.
3559 LargeObjectIterator it(heap_->lo_space());
3560 for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
3561 // LargeObjectSpace is not swept yet thus we have to skip
3562 // dead objects explicitly.
3563 if (!IsMarked(obj)) continue;
3564
3565 Page* p = Page::FromAddress(obj->address());
3566 if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) {
3567 obj->Iterate(&updating_visitor);
3568 p->ClearFlag(Page::RESCAN_ON_EVACUATION);
3569 }
3570 }
3571 }
3572 }
3573
3574 int npages = evacuation_candidates_.length();
3575 { GCTracer::Scope gc_scope(
3576 heap()->tracer(), GCTracer::Scope::MC_UPDATE_POINTERS_BETWEEN_EVACUATED);
3577 for (int i = 0; i < npages; i++) {
3578 Page* p = evacuation_candidates_[i];
3579 DCHECK(p->IsEvacuationCandidate() ||
3580 p->IsFlagSet(Page::RESCAN_ON_EVACUATION));
3581
3582 if (p->IsEvacuationCandidate()) {
3583 SlotsBuffer::UpdateSlotsRecordedIn(heap_,
3584 p->slots_buffer(),
3585 code_slots_filtering_required);
3586 if (FLAG_trace_fragmentation) {
3587 PrintF(" page %p slots buffer: %d\n",
3588 reinterpret_cast<void*>(p),
3589 SlotsBuffer::SizeOfChain(p->slots_buffer()));
3590 }
3591
3592 // Important: skip list should be cleared only after roots were updated
3593 // because root iteration traverses the stack and might have to find
3594 // code objects from non-updated pc pointing into evacuation candidate.
3595 SkipList* list = p->skip_list();
3596 if (list != NULL) list->Clear();
3597 } else {
3598 if (FLAG_gc_verbose) {
3599 PrintF("Sweeping 0x%" V8PRIxPTR " during evacuation.\n",
3600 reinterpret_cast<intptr_t>(p));
3601 }
3602 PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3603 p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION);
3604
3605 switch (space->identity()) {
3606 case OLD_DATA_SPACE:
3607 SweepConservatively<SWEEP_ON_MAIN_THREAD>(space, NULL, p);
3608 break;
3609 case OLD_POINTER_SPACE:
3610 SweepPrecisely<SWEEP_AND_VISIT_LIVE_OBJECTS,
3611 SWEEP_ON_MAIN_THREAD,
3612 IGNORE_SKIP_LIST,
3613 IGNORE_FREE_SPACE>(
3614 space, NULL, p, &updating_visitor);
3615 break;
3616 case CODE_SPACE:
3617 if (FLAG_zap_code_space) {
3618 SweepPrecisely<SWEEP_AND_VISIT_LIVE_OBJECTS,
3619 SWEEP_ON_MAIN_THREAD,
3620 REBUILD_SKIP_LIST,
3621 ZAP_FREE_SPACE>(
3622 space, NULL, p, &updating_visitor);
3623 } else {
3624 SweepPrecisely<SWEEP_AND_VISIT_LIVE_OBJECTS,
3625 SWEEP_ON_MAIN_THREAD,
3626 REBUILD_SKIP_LIST,
3627 IGNORE_FREE_SPACE>(
3628 space, NULL, p, &updating_visitor);
3629 }
3630 break;
3631 default:
3632 UNREACHABLE();
3633 break;
3634 }
3635 }
3636 }
3637 }
3638
3639 GCTracer::Scope gc_scope(heap()->tracer(),
3640 GCTracer::Scope::MC_UPDATE_MISC_POINTERS);
3641
3642 // Update pointers from cells.
3643 HeapObjectIterator cell_iterator(heap_->cell_space());
3644 for (HeapObject* cell = cell_iterator.Next();
3645 cell != NULL;
3646 cell = cell_iterator.Next()) {
3647 if (cell->IsCell()) {
3648 Cell::BodyDescriptor::IterateBody(cell, &updating_visitor);
3649 }
3650 }
3651
3652 HeapObjectIterator js_global_property_cell_iterator(
3653 heap_->property_cell_space());
3654 for (HeapObject* cell = js_global_property_cell_iterator.Next();
3655 cell != NULL;
3656 cell = js_global_property_cell_iterator.Next()) {
3657 if (cell->IsPropertyCell()) {
3658 PropertyCell::BodyDescriptor::IterateBody(cell, &updating_visitor);
3659 }
3660 }
3661
3662 heap_->string_table()->Iterate(&updating_visitor);
3663 updating_visitor.VisitPointer(heap_->weak_object_to_code_table_address());
3664 if (heap_->weak_object_to_code_table()->IsHashTable()) {
3665 WeakHashTable* table =
3666 WeakHashTable::cast(heap_->weak_object_to_code_table());
3667 table->Iterate(&updating_visitor);
3668 table->Rehash(heap_->isolate()->factory()->undefined_value());
3669 }
3670
3671 // Update pointers from external string table.
3672 heap_->UpdateReferencesInExternalStringTable(
3673 &UpdateReferenceInExternalStringTableEntry);
3674
3675 EvacuationWeakObjectRetainer evacuation_object_retainer;
3676 heap()->ProcessWeakReferences(&evacuation_object_retainer);
3677
3678 // Visit invalidated code (we ignored all slots on it) and clear mark-bits
3679 // under it.
3680 ProcessInvalidatedCode(&updating_visitor);
3681
3682 heap_->isolate()->inner_pointer_to_code_cache()->Flush();
3683
3684 slots_buffer_allocator_.DeallocateChain(&migration_slots_buffer_);
3685 DCHECK(migration_slots_buffer_ == NULL);
3686 }
3687
3688
3689 void MarkCompactCollector::MoveEvacuationCandidatesToEndOfPagesList() {
3690 int npages = evacuation_candidates_.length();
3691 for (int i = 0; i < npages; i++) {
3692 Page* p = evacuation_candidates_[i];
3693 if (!p->IsEvacuationCandidate()) continue;
3694 p->Unlink();
3695 PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3696 p->InsertAfter(space->LastPage());
3697 }
3698 }
3699
3700
3701 void MarkCompactCollector::ReleaseEvacuationCandidates() {
3702 int npages = evacuation_candidates_.length();
3703 for (int i = 0; i < npages; i++) {
3704 Page* p = evacuation_candidates_[i];
3705 if (!p->IsEvacuationCandidate()) continue;
3706 PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3707 space->Free(p->area_start(), p->area_size());
3708 p->set_scan_on_scavenge(false);
3709 slots_buffer_allocator_.DeallocateChain(p->slots_buffer_address());
3710 p->ResetLiveBytes();
3711 space->ReleasePage(p);
3712 }
3713 evacuation_candidates_.Rewind(0);
3714 compacting_ = false;
3715 heap()->FreeQueuedChunks();
3716 }
3717
3718
3719 static const int kStartTableEntriesPerLine = 5;
3720 static const int kStartTableLines = 171;
3721 static const int kStartTableInvalidLine = 127;
3722 static const int kStartTableUnusedEntry = 126;
3723
3724 #define _ kStartTableUnusedEntry
3725 #define X kStartTableInvalidLine
3726 // Mark-bit to object start offset table.
3727 //
3728 // The line is indexed by the mark bits in a byte. The first number on
3729 // the line describes the number of live object starts for the line and the
3730 // other numbers on the line describe the offsets (in words) of the object
3731 // starts.
3732 //
3733 // Since objects are at least 2 words large we don't have entries for two
3734 // consecutive 1 bits. All entries after 170 have at least 2 consecutive bits.
3735 char kStartTable[kStartTableLines * kStartTableEntriesPerLine] = {
3736 0, _, _, _, _, // 0
3737 1, 0, _, _, _, // 1
3738 1, 1, _, _, _, // 2
3739 X, _, _, _, _, // 3
3740 1, 2, _, _, _, // 4
3741 2, 0, 2, _, _, // 5
3742 X, _, _, _, _, // 6
3743 X, _, _, _, _, // 7
3744 1, 3, _, _, _, // 8
3745 2, 0, 3, _, _, // 9
3746 2, 1, 3, _, _, // 10
3747 X, _, _, _, _, // 11
3748 X, _, _, _, _, // 12
3749 X, _, _, _, _, // 13
3750 X, _, _, _, _, // 14
3751 X, _, _, _, _, // 15
3752 1, 4, _, _, _, // 16
3753 2, 0, 4, _, _, // 17
3754 2, 1, 4, _, _, // 18
3755 X, _, _, _, _, // 19
3756 2, 2, 4, _, _, // 20
3757 3, 0, 2, 4, _, // 21
3758 X, _, _, _, _, // 22
3759 X, _, _, _, _, // 23
3760 X, _, _, _, _, // 24
3761 X, _, _, _, _, // 25
3762 X, _, _, _, _, // 26
3763 X, _, _, _, _, // 27
3764 X, _, _, _, _, // 28
3765 X, _, _, _, _, // 29
3766 X, _, _, _, _, // 30
3767 X, _, _, _, _, // 31
3768 1, 5, _, _, _, // 32
3769 2, 0, 5, _, _, // 33
3770 2, 1, 5, _, _, // 34
3771 X, _, _, _, _, // 35
3772 2, 2, 5, _, _, // 36
3773 3, 0, 2, 5, _, // 37
3774 X, _, _, _, _, // 38
3775 X, _, _, _, _, // 39
3776 2, 3, 5, _, _, // 40
3777 3, 0, 3, 5, _, // 41
3778 3, 1, 3, 5, _, // 42
3779 X, _, _, _, _, // 43
3780 X, _, _, _, _, // 44
3781 X, _, _, _, _, // 45
3782 X, _, _, _, _, // 46
3783 X, _, _, _, _, // 47
3784 X, _, _, _, _, // 48
3785 X, _, _, _, _, // 49
3786 X, _, _, _, _, // 50
3787 X, _, _, _, _, // 51
3788 X, _, _, _, _, // 52
3789 X, _, _, _, _, // 53
3790 X, _, _, _, _, // 54
3791 X, _, _, _, _, // 55
3792 X, _, _, _, _, // 56
3793 X, _, _, _, _, // 57
3794 X, _, _, _, _, // 58
3795 X, _, _, _, _, // 59
3796 X, _, _, _, _, // 60
3797 X, _, _, _, _, // 61
3798 X, _, _, _, _, // 62
3799 X, _, _, _, _, // 63
3800 1, 6, _, _, _, // 64
3801 2, 0, 6, _, _, // 65
3802 2, 1, 6, _, _, // 66
3803 X, _, _, _, _, // 67
3804 2, 2, 6, _, _, // 68
3805 3, 0, 2, 6, _, // 69
3806 X, _, _, _, _, // 70
3807 X, _, _, _, _, // 71
3808 2, 3, 6, _, _, // 72
3809 3, 0, 3, 6, _, // 73
3810 3, 1, 3, 6, _, // 74
3811 X, _, _, _, _, // 75
3812 X, _, _, _, _, // 76
3813 X, _, _, _, _, // 77
3814 X, _, _, _, _, // 78
3815 X, _, _, _, _, // 79
3816 2, 4, 6, _, _, // 80
3817 3, 0, 4, 6, _, // 81
3818 3, 1, 4, 6, _, // 82
3819 X, _, _, _, _, // 83
3820 3, 2, 4, 6, _, // 84
3821 4, 0, 2, 4, 6, // 85
3822 X, _, _, _, _, // 86
3823 X, _, _, _, _, // 87
3824 X, _, _, _, _, // 88
3825 X, _, _, _, _, // 89
3826 X, _, _, _, _, // 90
3827 X, _, _, _, _, // 91
3828 X, _, _, _, _, // 92
3829 X, _, _, _, _, // 93
3830 X, _, _, _, _, // 94
3831 X, _, _, _, _, // 95
3832 X, _, _, _, _, // 96
3833 X, _, _, _, _, // 97
3834 X, _, _, _, _, // 98
3835 X, _, _, _, _, // 99
3836 X, _, _, _, _, // 100
3837 X, _, _, _, _, // 101
3838 X, _, _, _, _, // 102
3839 X, _, _, _, _, // 103
3840 X, _, _, _, _, // 104
3841 X, _, _, _, _, // 105
3842 X, _, _, _, _, // 106
3843 X, _, _, _, _, // 107
3844 X, _, _, _, _, // 108
3845 X, _, _, _, _, // 109
3846 X, _, _, _, _, // 110
3847 X, _, _, _, _, // 111
3848 X, _, _, _, _, // 112
3849 X, _, _, _, _, // 113
3850 X, _, _, _, _, // 114
3851 X, _, _, _, _, // 115
3852 X, _, _, _, _, // 116
3853 X, _, _, _, _, // 117
3854 X, _, _, _, _, // 118
3855 X, _, _, _, _, // 119
3856 X, _, _, _, _, // 120
3857 X, _, _, _, _, // 121
3858 X, _, _, _, _, // 122
3859 X, _, _, _, _, // 123
3860 X, _, _, _, _, // 124
3861 X, _, _, _, _, // 125
3862 X, _, _, _, _, // 126
3863 X, _, _, _, _, // 127
3864 1, 7, _, _, _, // 128
3865 2, 0, 7, _, _, // 129
3866 2, 1, 7, _, _, // 130
3867 X, _, _, _, _, // 131
3868 2, 2, 7, _, _, // 132
3869 3, 0, 2, 7, _, // 133
3870 X, _, _, _, _, // 134
3871 X, _, _, _, _, // 135
3872 2, 3, 7, _, _, // 136
3873 3, 0, 3, 7, _, // 137
3874 3, 1, 3, 7, _, // 138
3875 X, _, _, _, _, // 139
3876 X, _, _, _, _, // 140
3877 X, _, _, _, _, // 141
3878 X, _, _, _, _, // 142
3879 X, _, _, _, _, // 143
3880 2, 4, 7, _, _, // 144
3881 3, 0, 4, 7, _, // 145
3882 3, 1, 4, 7, _, // 146
3883 X, _, _, _, _, // 147
3884 3, 2, 4, 7, _, // 148
3885 4, 0, 2, 4, 7, // 149
3886 X, _, _, _, _, // 150
3887 X, _, _, _, _, // 151
3888 X, _, _, _, _, // 152
3889 X, _, _, _, _, // 153
3890 X, _, _, _, _, // 154
3891 X, _, _, _, _, // 155
3892 X, _, _, _, _, // 156
3893 X, _, _, _, _, // 157
3894 X, _, _, _, _, // 158
3895 X, _, _, _, _, // 159
3896 2, 5, 7, _, _, // 160
3897 3, 0, 5, 7, _, // 161
3898 3, 1, 5, 7, _, // 162
3899 X, _, _, _, _, // 163
3900 3, 2, 5, 7, _, // 164
3901 4, 0, 2, 5, 7, // 165
3902 X, _, _, _, _, // 166
3903 X, _, _, _, _, // 167
3904 3, 3, 5, 7, _, // 168
3905 4, 0, 3, 5, 7, // 169
3906 4, 1, 3, 5, 7 // 170
3907 };
3908 #undef _
3909 #undef X
3910
3911
3912 // Takes a word of mark bits. Returns the number of objects that start in the
3913 // range. Puts the offsets of the words in the supplied array.
3914 static inline int MarkWordToObjectStarts(uint32_t mark_bits, int* starts) {
3915 int objects = 0;
3916 int offset = 0;
3917
3918 // No consecutive 1 bits.
3919 DCHECK((mark_bits & 0x180) != 0x180);
3920 DCHECK((mark_bits & 0x18000) != 0x18000);
3921 DCHECK((mark_bits & 0x1800000) != 0x1800000);
3922
3923 while (mark_bits != 0) {
3924 int byte = (mark_bits & 0xff);
3925 mark_bits >>= 8;
3926 if (byte != 0) {
3927 DCHECK(byte < kStartTableLines); // No consecutive 1 bits.
3928 char* table = kStartTable + byte * kStartTableEntriesPerLine;
3929 int objects_in_these_8_words = table[0];
3930 DCHECK(objects_in_these_8_words != kStartTableInvalidLine);
3931 DCHECK(objects_in_these_8_words < kStartTableEntriesPerLine);
3932 for (int i = 0; i < objects_in_these_8_words; i++) {
3933 starts[objects++] = offset + table[1 + i];
3934 }
3935 }
3936 offset += 8;
3937 }
3938 return objects;
3939 }
3940
3941
3942 static inline Address DigestFreeStart(Address approximate_free_start,
3943 uint32_t free_start_cell) {
3944 DCHECK(free_start_cell != 0);
3945
3946 // No consecutive 1 bits.
3947 DCHECK((free_start_cell & (free_start_cell << 1)) == 0);
3948
3949 int offsets[16];
3950 uint32_t cell = free_start_cell;
3951 int offset_of_last_live;
3952 if ((cell & 0x80000000u) != 0) {
3953 // This case would overflow below.
3954 offset_of_last_live = 31;
3955 } else {
3956 // Remove all but one bit, the most significant. This is an optimization
3957 // that may or may not be worthwhile.
3958 cell |= cell >> 16;
3959 cell |= cell >> 8;
3960 cell |= cell >> 4;
3961 cell |= cell >> 2;
3962 cell |= cell >> 1;
3963 cell = (cell + 1) >> 1;
3964 int live_objects = MarkWordToObjectStarts(cell, offsets);
3965 DCHECK(live_objects == 1);
3966 offset_of_last_live = offsets[live_objects - 1];
3967 }
3968 Address last_live_start =
3969 approximate_free_start + offset_of_last_live * kPointerSize;
3970 HeapObject* last_live = HeapObject::FromAddress(last_live_start);
3971 Address free_start = last_live_start + last_live->Size();
3972 return free_start;
3973 }
3974
3975
3976 static inline Address StartOfLiveObject(Address block_address, uint32_t cell) {
3977 DCHECK(cell != 0);
3978
3979 // No consecutive 1 bits.
3980 DCHECK((cell & (cell << 1)) == 0);
3981
3982 int offsets[16];
3983 if (cell == 0x80000000u) { // Avoid overflow below.
3984 return block_address + 31 * kPointerSize;
3985 }
3986 uint32_t first_set_bit = ((cell ^ (cell - 1)) + 1) >> 1;
3987 DCHECK((first_set_bit & cell) == first_set_bit);
3988 int live_objects = MarkWordToObjectStarts(first_set_bit, offsets);
3989 DCHECK(live_objects == 1);
3990 USE(live_objects);
3991 return block_address + offsets[0] * kPointerSize;
3992 }
3993
3994
3995 // Force instantiation of templatized SweepConservatively method for
3996 // SWEEP_ON_MAIN_THREAD mode.
3997 template int MarkCompactCollector::
3998 SweepConservatively<MarkCompactCollector::SWEEP_ON_MAIN_THREAD>(
3999 PagedSpace*, FreeList*, Page*);
4000
4001
4002 // Force instantiation of templatized SweepConservatively method for
4003 // SWEEP_IN_PARALLEL mode.
4004 template int MarkCompactCollector::
4005 SweepConservatively<MarkCompactCollector::SWEEP_IN_PARALLEL>(
4006 PagedSpace*, FreeList*, Page*);
4007
4008
4009 // Sweeps a space conservatively. After this has been done the larger free
4010 // spaces have been put on the free list and the smaller ones have been
4011 // ignored and left untouched. A free space is always either ignored or put
4012 // on the free list, never split up into two parts. This is important
4013 // because it means that any FreeSpace maps left actually describe a region of
4014 // memory that can be ignored when scanning. Dead objects other than free
4015 // spaces will not contain the free space map.
4016 template<MarkCompactCollector::SweepingParallelism mode>
4017 int MarkCompactCollector::SweepConservatively(PagedSpace* space,
4018 FreeList* free_list,
4019 Page* p) {
4020 DCHECK(!p->IsEvacuationCandidate() && !p->WasSwept());
4021 DCHECK((mode == MarkCompactCollector::SWEEP_IN_PARALLEL &&
4022 free_list != NULL) ||
4023 (mode == MarkCompactCollector::SWEEP_ON_MAIN_THREAD &&
4024 free_list == NULL));
4025
4026 intptr_t freed_bytes = 0;
4027 intptr_t max_freed_bytes = 0;
4028 size_t size = 0;
4029
4030 // Skip over all the dead objects at the start of the page and mark them free.
4031 Address cell_base = 0;
4032 MarkBit::CellType* cell = NULL;
4033 MarkBitCellIterator it(p);
4034 for (; !it.Done(); it.Advance()) {
4035 cell_base = it.CurrentCellBase();
4036 cell = it.CurrentCell();
4037 if (*cell != 0) break;
4038 }
4039
4040 if (it.Done()) {
4041 size = p->area_end() - p->area_start();
4042 freed_bytes = Free<mode>(space, free_list, p->area_start(),
4043 static_cast<int>(size));
4044 max_freed_bytes = Max(freed_bytes, max_freed_bytes);
4045 DCHECK_EQ(0, p->LiveBytes());
4046 if (mode == MarkCompactCollector::SWEEP_IN_PARALLEL) {
4047 // When concurrent sweeping is active, the page will be marked after
4048 // sweeping by the main thread.
4049 p->set_parallel_sweeping(MemoryChunk::SWEEPING_FINALIZE);
4050 } else {
4051 p->MarkSweptConservatively();
4052 }
4053 return FreeList::GuaranteedAllocatable(static_cast<int>(max_freed_bytes));
4054 }
4055
4056 // Grow the size of the start-of-page free space a little to get up to the
4057 // first live object.
4058 Address free_end = StartOfLiveObject(cell_base, *cell);
4059 // Free the first free space.
4060 size = free_end - p->area_start();
4061 freed_bytes = Free<mode>(space, free_list, p->area_start(),
4062 static_cast<int>(size));
4063 max_freed_bytes = Max(freed_bytes, max_freed_bytes);
4064
4065 // The start of the current free area is represented in undigested form by
4066 // the address of the last 32-word section that contained a live object and
4067 // the marking bitmap for that cell, which describes where the live object
4068 // started. Unless we find a large free space in the bitmap we will not
4069 // digest this pair into a real address. We start the iteration here at the
4070 // first word in the marking bit map that indicates a live object.
4071 Address free_start = cell_base;
4072 MarkBit::CellType free_start_cell = *cell;
4073
4074 for (; !it.Done(); it.Advance()) {
4075 cell_base = it.CurrentCellBase();
4076 cell = it.CurrentCell();
4077 if (*cell != 0) {
4078 // We have a live object. Check approximately whether it is more than 32
4079 // words since the last live object.
4080 if (cell_base - free_start > 32 * kPointerSize) {
4081 free_start = DigestFreeStart(free_start, free_start_cell);
4082 if (cell_base - free_start > 32 * kPointerSize) {
4083 // Now that we know the exact start of the free space it still looks
4084 // like we have a large enough free space to be worth bothering with.
4085 // so now we need to find the start of the first live object at the
4086 // end of the free space.
4087 free_end = StartOfLiveObject(cell_base, *cell);
4088 freed_bytes = Free<mode>(space, free_list, free_start,
4089 static_cast<int>(free_end - free_start));
4090 max_freed_bytes = Max(freed_bytes, max_freed_bytes);
4091 }
4092 }
4093 // Update our undigested record of where the current free area started.
4094 free_start = cell_base;
4095 free_start_cell = *cell;
4096 // Clear marking bits for current cell.
4097 *cell = 0;
4098 }
4099 }
4100
4101 // Handle the free space at the end of the page.
4102 if (cell_base - free_start > 32 * kPointerSize) {
4103 free_start = DigestFreeStart(free_start, free_start_cell);
4104 freed_bytes = Free<mode>(space, free_list, free_start,
4105 static_cast<int>(p->area_end() - free_start));
4106 max_freed_bytes = Max(freed_bytes, max_freed_bytes);
4107 }
4108
4109 p->ResetLiveBytes();
4110 if (mode == MarkCompactCollector::SWEEP_IN_PARALLEL) {
4111 // When concurrent sweeping is active, the page will be marked after
4112 // sweeping by the main thread.
4113 p->set_parallel_sweeping(MemoryChunk::SWEEPING_FINALIZE);
4114 } else {
4115 p->MarkSweptConservatively();
4116 }
4117 return FreeList::GuaranteedAllocatable(static_cast<int>(max_freed_bytes));
4118 }
4119
4120
4121 int MarkCompactCollector::SweepInParallel(PagedSpace* space,
4122 int required_freed_bytes) {
4123 int max_freed = 0;
4124 int max_freed_overall = 0;
4125 PageIterator it(space);
4126 while (it.has_next()) {
4127 Page* p = it.next();
4128 max_freed = SweepInParallel(p, space);
4129 DCHECK(max_freed >= 0);
4130 if (required_freed_bytes > 0 && max_freed >= required_freed_bytes) {
4131 return max_freed;
4132 }
4133 max_freed_overall = Max(max_freed, max_freed_overall);
4134 if (p == space->end_of_unswept_pages()) break;
4135 }
4136 return max_freed_overall;
4137 }
4138
4139
4140 int MarkCompactCollector::SweepInParallel(Page* page, PagedSpace* space) {
4141 int max_freed = 0;
4142 if (page->TryParallelSweeping()) {
4143 FreeList* free_list = space == heap()->old_pointer_space()
4144 ? free_list_old_pointer_space_.get()
4145 : free_list_old_data_space_.get();
4146 FreeList private_free_list(space);
4147 if (space->swept_precisely()) {
4148 max_freed = SweepPrecisely<SWEEP_ONLY, SWEEP_IN_PARALLEL,
4149 IGNORE_SKIP_LIST, IGNORE_FREE_SPACE>(
4150 space, &private_free_list, page, NULL);
4151 } else {
4152 max_freed = SweepConservatively<SWEEP_IN_PARALLEL>(
4153 space, &private_free_list, page);
4154 }
4155 free_list->Concatenate(&private_free_list);
4156 }
4157 return max_freed;
4158 }
4159
4160
4161 void MarkCompactCollector::SweepSpace(PagedSpace* space, SweeperType sweeper) {
4162 space->set_swept_precisely(sweeper == PRECISE ||
4163 sweeper == CONCURRENT_PRECISE ||
4164 sweeper == PARALLEL_PRECISE);
4165 space->ClearStats();
4166
4167 // We defensively initialize end_of_unswept_pages_ here with the first page
4168 // of the pages list.
4169 space->set_end_of_unswept_pages(space->FirstPage());
4170
4171 PageIterator it(space);
4172
4173 int pages_swept = 0;
4174 bool unused_page_present = false;
4175 bool parallel_sweeping_active = false;
4176
4177 while (it.has_next()) {
4178 Page* p = it.next();
4179 DCHECK(p->parallel_sweeping() == MemoryChunk::SWEEPING_DONE);
4180
4181 // Clear sweeping flags indicating that marking bits are still intact.
4182 p->ClearSweptPrecisely();
4183 p->ClearSweptConservatively();
4184
4185 if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION) ||
4186 p->IsEvacuationCandidate()) {
4187 // Will be processed in EvacuateNewSpaceAndCandidates.
4188 DCHECK(evacuation_candidates_.length() > 0);
4189 continue;
4190 }
4191
4192 // One unused page is kept, all further are released before sweeping them.
4193 if (p->LiveBytes() == 0) {
4194 if (unused_page_present) {
4195 if (FLAG_gc_verbose) {
4196 PrintF("Sweeping 0x%" V8PRIxPTR " released page.\n",
4197 reinterpret_cast<intptr_t>(p));
4198 }
4199 // Adjust unswept free bytes because releasing a page expects said
4200 // counter to be accurate for unswept pages.
4201 space->IncreaseUnsweptFreeBytes(p);
4202 space->ReleasePage(p);
4203 continue;
4204 }
4205 unused_page_present = true;
4206 }
4207
4208 switch (sweeper) {
4209 case CONCURRENT_CONSERVATIVE:
4210 case PARALLEL_CONSERVATIVE: {
4211 if (!parallel_sweeping_active) {
4212 if (FLAG_gc_verbose) {
4213 PrintF("Sweeping 0x%" V8PRIxPTR " conservatively.\n",
4214 reinterpret_cast<intptr_t>(p));
4215 }
4216 SweepConservatively<SWEEP_ON_MAIN_THREAD>(space, NULL, p);
4217 pages_swept++;
4218 parallel_sweeping_active = true;
4219 } else {
4220 if (FLAG_gc_verbose) {
4221 PrintF("Sweeping 0x%" V8PRIxPTR " conservatively in parallel.\n",
4222 reinterpret_cast<intptr_t>(p));
4223 }
4224 p->set_parallel_sweeping(MemoryChunk::SWEEPING_PENDING);
4225 space->IncreaseUnsweptFreeBytes(p);
4226 }
4227 space->set_end_of_unswept_pages(p);
4228 break;
4229 }
4230 case CONCURRENT_PRECISE:
4231 case PARALLEL_PRECISE:
4232 if (!parallel_sweeping_active) {
4233 if (FLAG_gc_verbose) {
4234 PrintF("Sweeping 0x%" V8PRIxPTR " precisely.\n",
4235 reinterpret_cast<intptr_t>(p));
4236 }
4237 SweepPrecisely<SWEEP_ONLY,
4238 SWEEP_ON_MAIN_THREAD,
4239 IGNORE_SKIP_LIST,
4240 IGNORE_FREE_SPACE>(space, NULL, p, NULL);
4241 pages_swept++;
4242 parallel_sweeping_active = true;
4243 } else {
4244 if (FLAG_gc_verbose) {
4245 PrintF("Sweeping 0x%" V8PRIxPTR " conservatively in parallel.\n",
4246 reinterpret_cast<intptr_t>(p));
4247 }
4248 p->set_parallel_sweeping(MemoryChunk::SWEEPING_PENDING);
4249 space->IncreaseUnsweptFreeBytes(p);
4250 }
4251 space->set_end_of_unswept_pages(p);
4252 break;
4253 case PRECISE: {
4254 if (FLAG_gc_verbose) {
4255 PrintF("Sweeping 0x%" V8PRIxPTR " precisely.\n",
4256 reinterpret_cast<intptr_t>(p));
4257 }
4258 if (space->identity() == CODE_SPACE && FLAG_zap_code_space) {
4259 SweepPrecisely<SWEEP_ONLY,
4260 SWEEP_ON_MAIN_THREAD,
4261 REBUILD_SKIP_LIST,
4262 ZAP_FREE_SPACE>(space, NULL, p, NULL);
4263 } else if (space->identity() == CODE_SPACE) {
4264 SweepPrecisely<SWEEP_ONLY,
4265 SWEEP_ON_MAIN_THREAD,
4266 REBUILD_SKIP_LIST,
4267 IGNORE_FREE_SPACE>(space, NULL, p, NULL);
4268 } else {
4269 SweepPrecisely<SWEEP_ONLY,
4270 SWEEP_ON_MAIN_THREAD,
4271 IGNORE_SKIP_LIST,
4272 IGNORE_FREE_SPACE>(space, NULL, p, NULL);
4273 }
4274 pages_swept++;
4275 break;
4276 }
4277 default: {
4278 UNREACHABLE();
4279 }
4280 }
4281 }
4282
4283 if (FLAG_gc_verbose) {
4284 PrintF("SweepSpace: %s (%d pages swept)\n",
4285 AllocationSpaceName(space->identity()),
4286 pages_swept);
4287 }
4288
4289 // Give pages that are queued to be freed back to the OS.
4290 heap()->FreeQueuedChunks();
4291 }
4292
4293
4294 static bool ShouldStartSweeperThreads(MarkCompactCollector::SweeperType type) {
4295 return type == MarkCompactCollector::PARALLEL_CONSERVATIVE ||
4296 type == MarkCompactCollector::CONCURRENT_CONSERVATIVE ||
4297 type == MarkCompactCollector::PARALLEL_PRECISE ||
4298 type == MarkCompactCollector::CONCURRENT_PRECISE;
4299 }
4300
4301
4302 static bool ShouldWaitForSweeperThreads(
4303 MarkCompactCollector::SweeperType type) {
4304 return type == MarkCompactCollector::PARALLEL_CONSERVATIVE ||
4305 type == MarkCompactCollector::PARALLEL_PRECISE;
4306 }
4307
4308
4309 void MarkCompactCollector::SweepSpaces() {
4310 GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_SWEEP);
4311 double start_time = 0.0;
4312 if (FLAG_print_cumulative_gc_stat) {
4313 start_time = base::OS::TimeCurrentMillis();
4314 }
4315
4316 #ifdef DEBUG
4317 state_ = SWEEP_SPACES;
4318 #endif
4319 SweeperType how_to_sweep = CONCURRENT_CONSERVATIVE;
4320 if (FLAG_parallel_sweeping) how_to_sweep = PARALLEL_CONSERVATIVE;
4321 if (FLAG_concurrent_sweeping) how_to_sweep = CONCURRENT_CONSERVATIVE;
4322 if (FLAG_always_precise_sweeping && FLAG_parallel_sweeping) {
4323 how_to_sweep = PARALLEL_PRECISE;
4324 }
4325 if (FLAG_always_precise_sweeping && FLAG_concurrent_sweeping) {
4326 how_to_sweep = CONCURRENT_PRECISE;
4327 }
4328 if (sweep_precisely_) how_to_sweep = PRECISE;
4329
4330 MoveEvacuationCandidatesToEndOfPagesList();
4331
4332 // Noncompacting collections simply sweep the spaces to clear the mark
4333 // bits and free the nonlive blocks (for old and map spaces). We sweep
4334 // the map space last because freeing non-live maps overwrites them and
4335 // the other spaces rely on possibly non-live maps to get the sizes for
4336 // non-live objects.
4337 { GCTracer::Scope sweep_scope(heap()->tracer(),
4338 GCTracer::Scope::MC_SWEEP_OLDSPACE);
4339 { SequentialSweepingScope scope(this);
4340 SweepSpace(heap()->old_pointer_space(), how_to_sweep);
4341 SweepSpace(heap()->old_data_space(), how_to_sweep);
4342 }
4343
4344 if (ShouldStartSweeperThreads(how_to_sweep)) {
4345 StartSweeperThreads();
4346 }
4347
4348 if (ShouldWaitForSweeperThreads(how_to_sweep)) {
4349 EnsureSweepingCompleted();
4350 }
4351 }
4352 RemoveDeadInvalidatedCode();
4353
4354 { GCTracer::Scope sweep_scope(heap()->tracer(),
4355 GCTracer::Scope::MC_SWEEP_CODE);
4356 SweepSpace(heap()->code_space(), PRECISE);
4357 }
4358
4359 { GCTracer::Scope sweep_scope(heap()->tracer(),
4360 GCTracer::Scope::MC_SWEEP_CELL);
4361 SweepSpace(heap()->cell_space(), PRECISE);
4362 SweepSpace(heap()->property_cell_space(), PRECISE);
4363 }
4364
4365 EvacuateNewSpaceAndCandidates();
4366
4367 // ClearNonLiveTransitions depends on precise sweeping of map space to
4368 // detect whether unmarked map became dead in this collection or in one
4369 // of the previous ones.
4370 { GCTracer::Scope sweep_scope(heap()->tracer(),
4371 GCTracer::Scope::MC_SWEEP_MAP);
4372 SweepSpace(heap()->map_space(), PRECISE);
4373 }
4374
4375 // Deallocate unmarked objects and clear marked bits for marked objects.
4376 heap_->lo_space()->FreeUnmarkedObjects();
4377
4378 // Deallocate evacuated candidate pages.
4379 ReleaseEvacuationCandidates();
4380
4381 if (FLAG_print_cumulative_gc_stat) {
4382 heap_->tracer()->AddSweepingTime(base::OS::TimeCurrentMillis() -
4383 start_time);
4384 }
4385 }
4386
4387
4388 void MarkCompactCollector::ParallelSweepSpaceComplete(PagedSpace* space) {
4389 PageIterator it(space);
4390 while (it.has_next()) {
4391 Page* p = it.next();
4392 if (p->parallel_sweeping() == MemoryChunk::SWEEPING_FINALIZE) {
4393 p->set_parallel_sweeping(MemoryChunk::SWEEPING_DONE);
4394 if (space->swept_precisely()) {
4395 p->MarkSweptPrecisely();
4396 } else {
4397 p->MarkSweptConservatively();
4398 }
4399 }
4400 DCHECK(p->parallel_sweeping() == MemoryChunk::SWEEPING_DONE);
4401 }
4402 }
4403
4404
4405 void MarkCompactCollector::ParallelSweepSpacesComplete() {
4406 ParallelSweepSpaceComplete(heap()->old_pointer_space());
4407 ParallelSweepSpaceComplete(heap()->old_data_space());
4408 }
4409
4410
4411 void MarkCompactCollector::EnableCodeFlushing(bool enable) {
4412 if (isolate()->debug()->is_loaded() ||
4413 isolate()->debug()->has_break_points()) {
4414 enable = false;
4415 }
4416
4417 if (enable) {
4418 if (code_flusher_ != NULL) return;
4419 code_flusher_ = new CodeFlusher(isolate());
4420 } else {
4421 if (code_flusher_ == NULL) return;
4422 code_flusher_->EvictAllCandidates();
4423 delete code_flusher_;
4424 code_flusher_ = NULL;
4425 }
4426
4427 if (FLAG_trace_code_flushing) {
4428 PrintF("[code-flushing is now %s]\n", enable ? "on" : "off");
4429 }
4430 }
4431
4432
4433 // TODO(1466) ReportDeleteIfNeeded is not called currently.
4434 // Our profiling tools do not expect intersections between
4435 // code objects. We should either reenable it or change our tools.
4436 void MarkCompactCollector::ReportDeleteIfNeeded(HeapObject* obj,
4437 Isolate* isolate) {
4438 if (obj->IsCode()) {
4439 PROFILE(isolate, CodeDeleteEvent(obj->address()));
4440 }
4441 }
4442
4443
4444 Isolate* MarkCompactCollector::isolate() const {
4445 return heap_->isolate();
4446 }
4447
4448
4449 void MarkCompactCollector::Initialize() {
4450 MarkCompactMarkingVisitor::Initialize();
4451 IncrementalMarking::Initialize();
4452 }
4453
4454
4455 bool SlotsBuffer::IsTypedSlot(ObjectSlot slot) {
4456 return reinterpret_cast<uintptr_t>(slot) < NUMBER_OF_SLOT_TYPES;
4457 }
4458
4459
4460 bool SlotsBuffer::AddTo(SlotsBufferAllocator* allocator,
4461 SlotsBuffer** buffer_address,
4462 SlotType type,
4463 Address addr,
4464 AdditionMode mode) {
4465 SlotsBuffer* buffer = *buffer_address;
4466 if (buffer == NULL || !buffer->HasSpaceForTypedSlot()) {
4467 if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) {
4468 allocator->DeallocateChain(buffer_address);
4469 return false;
4470 }
4471 buffer = allocator->AllocateBuffer(buffer);
4472 *buffer_address = buffer;
4473 }
4474 DCHECK(buffer->HasSpaceForTypedSlot());
4475 buffer->Add(reinterpret_cast<ObjectSlot>(type));
4476 buffer->Add(reinterpret_cast<ObjectSlot>(addr));
4477 return true;
4478 }
4479
4480
4481 static inline SlotsBuffer::SlotType SlotTypeForRMode(RelocInfo::Mode rmode) {
4482 if (RelocInfo::IsCodeTarget(rmode)) {
4483 return SlotsBuffer::CODE_TARGET_SLOT;
4484 } else if (RelocInfo::IsEmbeddedObject(rmode)) {
4485 return SlotsBuffer::EMBEDDED_OBJECT_SLOT;
4486 } else if (RelocInfo::IsDebugBreakSlot(rmode)) {
4487 return SlotsBuffer::DEBUG_TARGET_SLOT;
4488 } else if (RelocInfo::IsJSReturn(rmode)) {
4489 return SlotsBuffer::JS_RETURN_SLOT;
4490 }
4491 UNREACHABLE();
4492 return SlotsBuffer::NUMBER_OF_SLOT_TYPES;
4493 }
4494
4495
4496 void MarkCompactCollector::RecordRelocSlot(RelocInfo* rinfo, Object* target) {
4497 Page* target_page = Page::FromAddress(reinterpret_cast<Address>(target));
4498 RelocInfo::Mode rmode = rinfo->rmode();
4499 if (target_page->IsEvacuationCandidate() &&
4500 (rinfo->host() == NULL ||
4501 !ShouldSkipEvacuationSlotRecording(rinfo->host()))) {
4502 bool success;
4503 if (RelocInfo::IsEmbeddedObject(rmode) && rinfo->IsInConstantPool()) {
4504 // This doesn't need to be typed since it is just a normal heap pointer.
4505 Object** target_pointer =
4506 reinterpret_cast<Object**>(rinfo->constant_pool_entry_address());
4507 success = SlotsBuffer::AddTo(&slots_buffer_allocator_,
4508 target_page->slots_buffer_address(),
4509 target_pointer,
4510 SlotsBuffer::FAIL_ON_OVERFLOW);
4511 } else if (RelocInfo::IsCodeTarget(rmode) && rinfo->IsInConstantPool()) {
4512 success = SlotsBuffer::AddTo(&slots_buffer_allocator_,
4513 target_page->slots_buffer_address(),
4514 SlotsBuffer::CODE_ENTRY_SLOT,
4515 rinfo->constant_pool_entry_address(),
4516 SlotsBuffer::FAIL_ON_OVERFLOW);
4517 } else {
4518 success = SlotsBuffer::AddTo(&slots_buffer_allocator_,
4519 target_page->slots_buffer_address(),
4520 SlotTypeForRMode(rmode),
4521 rinfo->pc(),
4522 SlotsBuffer::FAIL_ON_OVERFLOW);
4523 }
4524 if (!success) {
4525 EvictEvacuationCandidate(target_page);
4526 }
4527 }
4528 }
4529
4530
4531 void MarkCompactCollector::RecordCodeEntrySlot(Address slot, Code* target) {
4532 Page* target_page = Page::FromAddress(reinterpret_cast<Address>(target));
4533 if (target_page->IsEvacuationCandidate() &&
4534 !ShouldSkipEvacuationSlotRecording(reinterpret_cast<Object**>(slot))) {
4535 if (!SlotsBuffer::AddTo(&slots_buffer_allocator_,
4536 target_page->slots_buffer_address(),
4537 SlotsBuffer::CODE_ENTRY_SLOT,
4538 slot,
4539 SlotsBuffer::FAIL_ON_OVERFLOW)) {
4540 EvictEvacuationCandidate(target_page);
4541 }
4542 }
4543 }
4544
4545
4546 void MarkCompactCollector::RecordCodeTargetPatch(Address pc, Code* target) {
4547 DCHECK(heap()->gc_state() == Heap::MARK_COMPACT);
4548 if (is_compacting()) {
4549 Code* host = isolate()->inner_pointer_to_code_cache()->
4550 GcSafeFindCodeForInnerPointer(pc);
4551 MarkBit mark_bit = Marking::MarkBitFrom(host);
4552 if (Marking::IsBlack(mark_bit)) {
4553 RelocInfo rinfo(pc, RelocInfo::CODE_TARGET, 0, host);
4554 RecordRelocSlot(&rinfo, target);
4555 }
4556 }
4557 }
4558
4559
4560 static inline SlotsBuffer::SlotType DecodeSlotType(
4561 SlotsBuffer::ObjectSlot slot) {
4562 return static_cast<SlotsBuffer::SlotType>(reinterpret_cast<intptr_t>(slot));
4563 }
4564
4565
4566 void SlotsBuffer::UpdateSlots(Heap* heap) {
4567 PointersUpdatingVisitor v(heap);
4568
4569 for (int slot_idx = 0; slot_idx < idx_; ++slot_idx) {
4570 ObjectSlot slot = slots_[slot_idx];
4571 if (!IsTypedSlot(slot)) {
4572 PointersUpdatingVisitor::UpdateSlot(heap, slot);
4573 } else {
4574 ++slot_idx;
4575 DCHECK(slot_idx < idx_);
4576 UpdateSlot(heap->isolate(),
4577 &v,
4578 DecodeSlotType(slot),
4579 reinterpret_cast<Address>(slots_[slot_idx]));
4580 }
4581 }
4582 }
4583
4584
4585 void SlotsBuffer::UpdateSlotsWithFilter(Heap* heap) {
4586 PointersUpdatingVisitor v(heap);
4587
4588 for (int slot_idx = 0; slot_idx < idx_; ++slot_idx) {
4589 ObjectSlot slot = slots_[slot_idx];
4590 if (!IsTypedSlot(slot)) {
4591 if (!IsOnInvalidatedCodeObject(reinterpret_cast<Address>(slot))) {
4592 PointersUpdatingVisitor::UpdateSlot(heap, slot);
4593 }
4594 } else {
4595 ++slot_idx;
4596 DCHECK(slot_idx < idx_);
4597 Address pc = reinterpret_cast<Address>(slots_[slot_idx]);
4598 if (!IsOnInvalidatedCodeObject(pc)) {
4599 UpdateSlot(heap->isolate(),
4600 &v,
4601 DecodeSlotType(slot),
4602 reinterpret_cast<Address>(slots_[slot_idx]));
4603 }
4604 }
4605 }
4606 }
4607
4608
4609 SlotsBuffer* SlotsBufferAllocator::AllocateBuffer(SlotsBuffer* next_buffer) {
4610 return new SlotsBuffer(next_buffer);
4611 }
4612
4613
4614 void SlotsBufferAllocator::DeallocateBuffer(SlotsBuffer* buffer) {
4615 delete buffer;
4616 }
4617
4618
4619 void SlotsBufferAllocator::DeallocateChain(SlotsBuffer** buffer_address) {
4620 SlotsBuffer* buffer = *buffer_address;
4621 while (buffer != NULL) {
4622 SlotsBuffer* next_buffer = buffer->next();
4623 DeallocateBuffer(buffer);
4624 buffer = next_buffer;
4625 }
4626 *buffer_address = NULL;
4627 }
4628
4629
4630 } } // namespace v8::internal
OLDNEW
« no previous file with comments | « src/mark-compact.h ('k') | src/mark-compact-inl.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698