Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(223)

Side by Side Diff: src/heap-inl.h

Issue 437993003: Move a bunch of GC related files to heap/ subdirectory (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: make presubmit happy Created 6 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « src/heap.cc ('k') | src/heap/gc-tracer.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_HEAP_INL_H_
6 #define V8_HEAP_INL_H_
7
8 #include <cmath>
9
10 #include "src/base/platform/platform.h"
11 #include "src/cpu-profiler.h"
12 #include "src/heap.h"
13 #include "src/heap-profiler.h"
14 #include "src/isolate.h"
15 #include "src/list-inl.h"
16 #include "src/objects.h"
17 #include "src/store-buffer.h"
18 #include "src/store-buffer-inl.h"
19
20 namespace v8 {
21 namespace internal {
22
23 void PromotionQueue::insert(HeapObject* target, int size) {
24 if (emergency_stack_ != NULL) {
25 emergency_stack_->Add(Entry(target, size));
26 return;
27 }
28
29 if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(rear_))) {
30 NewSpacePage* rear_page =
31 NewSpacePage::FromAddress(reinterpret_cast<Address>(rear_));
32 DCHECK(!rear_page->prev_page()->is_anchor());
33 rear_ = reinterpret_cast<intptr_t*>(rear_page->prev_page()->area_end());
34 ActivateGuardIfOnTheSamePage();
35 }
36
37 if (guard_) {
38 DCHECK(GetHeadPage() ==
39 Page::FromAllocationTop(reinterpret_cast<Address>(limit_)));
40
41 if ((rear_ - 2) < limit_) {
42 RelocateQueueHead();
43 emergency_stack_->Add(Entry(target, size));
44 return;
45 }
46 }
47
48 *(--rear_) = reinterpret_cast<intptr_t>(target);
49 *(--rear_) = size;
50 // Assert no overflow into live objects.
51 #ifdef DEBUG
52 SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(),
53 reinterpret_cast<Address>(rear_));
54 #endif
55 }
56
57
58 void PromotionQueue::ActivateGuardIfOnTheSamePage() {
59 guard_ = guard_ ||
60 heap_->new_space()->active_space()->current_page()->address() ==
61 GetHeadPage()->address();
62 }
63
64
65 template<>
66 bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
67 // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
68 // ASCII only check.
69 return chars == str.length();
70 }
71
72
73 template<>
74 bool inline Heap::IsOneByte(String* str, int chars) {
75 return str->IsOneByteRepresentation();
76 }
77
78
79 AllocationResult Heap::AllocateInternalizedStringFromUtf8(
80 Vector<const char> str, int chars, uint32_t hash_field) {
81 if (IsOneByte(str, chars)) {
82 return AllocateOneByteInternalizedString(
83 Vector<const uint8_t>::cast(str), hash_field);
84 }
85 return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
86 }
87
88
89 template<typename T>
90 AllocationResult Heap::AllocateInternalizedStringImpl(
91 T t, int chars, uint32_t hash_field) {
92 if (IsOneByte(t, chars)) {
93 return AllocateInternalizedStringImpl<true>(t, chars, hash_field);
94 }
95 return AllocateInternalizedStringImpl<false>(t, chars, hash_field);
96 }
97
98
99 AllocationResult Heap::AllocateOneByteInternalizedString(
100 Vector<const uint8_t> str,
101 uint32_t hash_field) {
102 CHECK_GE(String::kMaxLength, str.length());
103 // Compute map and object size.
104 Map* map = ascii_internalized_string_map();
105 int size = SeqOneByteString::SizeFor(str.length());
106 AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
107
108 // Allocate string.
109 HeapObject* result;
110 { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
111 if (!allocation.To(&result)) return allocation;
112 }
113
114 // String maps are all immortal immovable objects.
115 result->set_map_no_write_barrier(map);
116 // Set length and hash fields of the allocated string.
117 String* answer = String::cast(result);
118 answer->set_length(str.length());
119 answer->set_hash_field(hash_field);
120
121 DCHECK_EQ(size, answer->Size());
122
123 // Fill in the characters.
124 MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(),
125 str.length());
126
127 return answer;
128 }
129
130
131 AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
132 uint32_t hash_field) {
133 CHECK_GE(String::kMaxLength, str.length());
134 // Compute map and object size.
135 Map* map = internalized_string_map();
136 int size = SeqTwoByteString::SizeFor(str.length());
137 AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
138
139 // Allocate string.
140 HeapObject* result;
141 { AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
142 if (!allocation.To(&result)) return allocation;
143 }
144
145 result->set_map(map);
146 // Set length and hash fields of the allocated string.
147 String* answer = String::cast(result);
148 answer->set_length(str.length());
149 answer->set_hash_field(hash_field);
150
151 DCHECK_EQ(size, answer->Size());
152
153 // Fill in the characters.
154 MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(),
155 str.length() * kUC16Size);
156
157 return answer;
158 }
159
160 AllocationResult Heap::CopyFixedArray(FixedArray* src) {
161 if (src->length() == 0) return src;
162 return CopyFixedArrayWithMap(src, src->map());
163 }
164
165
166 AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
167 if (src->length() == 0) return src;
168 return CopyFixedDoubleArrayWithMap(src, src->map());
169 }
170
171
172 AllocationResult Heap::CopyConstantPoolArray(ConstantPoolArray* src) {
173 if (src->length() == 0) return src;
174 return CopyConstantPoolArrayWithMap(src, src->map());
175 }
176
177
178 AllocationResult Heap::AllocateRaw(int size_in_bytes,
179 AllocationSpace space,
180 AllocationSpace retry_space) {
181 DCHECK(AllowHandleAllocation::IsAllowed());
182 DCHECK(AllowHeapAllocation::IsAllowed());
183 DCHECK(gc_state_ == NOT_IN_GC);
184 #ifdef DEBUG
185 if (FLAG_gc_interval >= 0 &&
186 AllowAllocationFailure::IsAllowed(isolate_) &&
187 Heap::allocation_timeout_-- <= 0) {
188 return AllocationResult::Retry(space);
189 }
190 isolate_->counters()->objs_since_last_full()->Increment();
191 isolate_->counters()->objs_since_last_young()->Increment();
192 #endif
193
194 HeapObject* object;
195 AllocationResult allocation;
196 if (NEW_SPACE == space) {
197 allocation = new_space_.AllocateRaw(size_in_bytes);
198 if (always_allocate() &&
199 allocation.IsRetry() &&
200 retry_space != NEW_SPACE) {
201 space = retry_space;
202 } else {
203 if (allocation.To(&object)) {
204 OnAllocationEvent(object, size_in_bytes);
205 }
206 return allocation;
207 }
208 }
209
210 if (OLD_POINTER_SPACE == space) {
211 allocation = old_pointer_space_->AllocateRaw(size_in_bytes);
212 } else if (OLD_DATA_SPACE == space) {
213 allocation = old_data_space_->AllocateRaw(size_in_bytes);
214 } else if (CODE_SPACE == space) {
215 if (size_in_bytes <= code_space()->AreaSize()) {
216 allocation = code_space_->AllocateRaw(size_in_bytes);
217 } else {
218 // Large code objects are allocated in large object space.
219 allocation = lo_space_->AllocateRaw(size_in_bytes, EXECUTABLE);
220 }
221 } else if (LO_SPACE == space) {
222 allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
223 } else if (CELL_SPACE == space) {
224 allocation = cell_space_->AllocateRaw(size_in_bytes);
225 } else if (PROPERTY_CELL_SPACE == space) {
226 allocation = property_cell_space_->AllocateRaw(size_in_bytes);
227 } else {
228 DCHECK(MAP_SPACE == space);
229 allocation = map_space_->AllocateRaw(size_in_bytes);
230 }
231 if (allocation.To(&object)) {
232 OnAllocationEvent(object, size_in_bytes);
233 } else {
234 old_gen_exhausted_ = true;
235 }
236 return allocation;
237 }
238
239
240 void Heap::OnAllocationEvent(HeapObject* object, int size_in_bytes) {
241 HeapProfiler* profiler = isolate_->heap_profiler();
242 if (profiler->is_tracking_allocations()) {
243 profiler->AllocationEvent(object->address(), size_in_bytes);
244 }
245
246 if (FLAG_verify_predictable) {
247 ++allocations_count_;
248
249 UpdateAllocationsHash(object);
250 UpdateAllocationsHash(size_in_bytes);
251
252 if ((FLAG_dump_allocations_digest_at_alloc > 0) &&
253 (--dump_allocations_hash_countdown_ == 0)) {
254 dump_allocations_hash_countdown_ = FLAG_dump_allocations_digest_at_alloc;
255 PrintAlloctionsHash();
256 }
257 }
258 }
259
260
261 void Heap::OnMoveEvent(HeapObject* target,
262 HeapObject* source,
263 int size_in_bytes) {
264 HeapProfiler* heap_profiler = isolate_->heap_profiler();
265 if (heap_profiler->is_tracking_object_moves()) {
266 heap_profiler->ObjectMoveEvent(source->address(), target->address(),
267 size_in_bytes);
268 }
269
270 if (isolate_->logger()->is_logging_code_events() ||
271 isolate_->cpu_profiler()->is_profiling()) {
272 if (target->IsSharedFunctionInfo()) {
273 PROFILE(isolate_, SharedFunctionInfoMoveEvent(
274 source->address(), target->address()));
275 }
276 }
277
278 if (FLAG_verify_predictable) {
279 ++allocations_count_;
280
281 UpdateAllocationsHash(source);
282 UpdateAllocationsHash(target);
283 UpdateAllocationsHash(size_in_bytes);
284
285 if ((FLAG_dump_allocations_digest_at_alloc > 0) &&
286 (--dump_allocations_hash_countdown_ == 0)) {
287 dump_allocations_hash_countdown_ = FLAG_dump_allocations_digest_at_alloc;
288 PrintAlloctionsHash();
289 }
290 }
291 }
292
293
294 void Heap::UpdateAllocationsHash(HeapObject* object) {
295 Address object_address = object->address();
296 MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address);
297 AllocationSpace allocation_space = memory_chunk->owner()->identity();
298
299 STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32);
300 uint32_t value =
301 static_cast<uint32_t>(object_address - memory_chunk->address()) |
302 (static_cast<uint32_t>(allocation_space) << kPageSizeBits);
303
304 UpdateAllocationsHash(value);
305 }
306
307
308 void Heap::UpdateAllocationsHash(uint32_t value) {
309 uint16_t c1 = static_cast<uint16_t>(value);
310 uint16_t c2 = static_cast<uint16_t>(value >> 16);
311 raw_allocations_hash_ =
312 StringHasher::AddCharacterCore(raw_allocations_hash_, c1);
313 raw_allocations_hash_ =
314 StringHasher::AddCharacterCore(raw_allocations_hash_, c2);
315 }
316
317
318 void Heap::PrintAlloctionsHash() {
319 uint32_t hash = StringHasher::GetHashCore(raw_allocations_hash_);
320 PrintF("\n### Allocations = %u, hash = 0x%08x\n", allocations_count_, hash);
321 }
322
323
324 void Heap::FinalizeExternalString(String* string) {
325 DCHECK(string->IsExternalString());
326 v8::String::ExternalStringResourceBase** resource_addr =
327 reinterpret_cast<v8::String::ExternalStringResourceBase**>(
328 reinterpret_cast<byte*>(string) +
329 ExternalString::kResourceOffset -
330 kHeapObjectTag);
331
332 // Dispose of the C++ object if it has not already been disposed.
333 if (*resource_addr != NULL) {
334 (*resource_addr)->Dispose();
335 *resource_addr = NULL;
336 }
337 }
338
339
340 bool Heap::InNewSpace(Object* object) {
341 bool result = new_space_.Contains(object);
342 DCHECK(!result || // Either not in new space
343 gc_state_ != NOT_IN_GC || // ... or in the middle of GC
344 InToSpace(object)); // ... or in to-space (where we allocate).
345 return result;
346 }
347
348
349 bool Heap::InNewSpace(Address address) {
350 return new_space_.Contains(address);
351 }
352
353
354 bool Heap::InFromSpace(Object* object) {
355 return new_space_.FromSpaceContains(object);
356 }
357
358
359 bool Heap::InToSpace(Object* object) {
360 return new_space_.ToSpaceContains(object);
361 }
362
363
364 bool Heap::InOldPointerSpace(Address address) {
365 return old_pointer_space_->Contains(address);
366 }
367
368
369 bool Heap::InOldPointerSpace(Object* object) {
370 return InOldPointerSpace(reinterpret_cast<Address>(object));
371 }
372
373
374 bool Heap::InOldDataSpace(Address address) {
375 return old_data_space_->Contains(address);
376 }
377
378
379 bool Heap::InOldDataSpace(Object* object) {
380 return InOldDataSpace(reinterpret_cast<Address>(object));
381 }
382
383
384 bool Heap::OldGenerationAllocationLimitReached() {
385 if (!incremental_marking()->IsStopped()) return false;
386 return OldGenerationSpaceAvailable() < 0;
387 }
388
389
390 bool Heap::ShouldBePromoted(Address old_address, int object_size) {
391 NewSpacePage* page = NewSpacePage::FromAddress(old_address);
392 Address age_mark = new_space_.age_mark();
393 return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
394 (!page->ContainsLimit(age_mark) || old_address < age_mark);
395 }
396
397
398 void Heap::RecordWrite(Address address, int offset) {
399 if (!InNewSpace(address)) store_buffer_.Mark(address + offset);
400 }
401
402
403 void Heap::RecordWrites(Address address, int start, int len) {
404 if (!InNewSpace(address)) {
405 for (int i = 0; i < len; i++) {
406 store_buffer_.Mark(address + start + i * kPointerSize);
407 }
408 }
409 }
410
411
412 OldSpace* Heap::TargetSpace(HeapObject* object) {
413 InstanceType type = object->map()->instance_type();
414 AllocationSpace space = TargetSpaceId(type);
415 return (space == OLD_POINTER_SPACE)
416 ? old_pointer_space_
417 : old_data_space_;
418 }
419
420
421 AllocationSpace Heap::TargetSpaceId(InstanceType type) {
422 // Heap numbers and sequential strings are promoted to old data space, all
423 // other object types are promoted to old pointer space. We do not use
424 // object->IsHeapNumber() and object->IsSeqString() because we already
425 // know that object has the heap object tag.
426
427 // These objects are never allocated in new space.
428 DCHECK(type != MAP_TYPE);
429 DCHECK(type != CODE_TYPE);
430 DCHECK(type != ODDBALL_TYPE);
431 DCHECK(type != CELL_TYPE);
432 DCHECK(type != PROPERTY_CELL_TYPE);
433
434 if (type <= LAST_NAME_TYPE) {
435 if (type == SYMBOL_TYPE) return OLD_POINTER_SPACE;
436 DCHECK(type < FIRST_NONSTRING_TYPE);
437 // There are four string representations: sequential strings, external
438 // strings, cons strings, and sliced strings.
439 // Only the latter two contain non-map-word pointers to heap objects.
440 return ((type & kIsIndirectStringMask) == kIsIndirectStringTag)
441 ? OLD_POINTER_SPACE
442 : OLD_DATA_SPACE;
443 } else {
444 return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
445 }
446 }
447
448
449 bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) {
450 // Object migration is governed by the following rules:
451 //
452 // 1) Objects in new-space can be migrated to one of the old spaces
453 // that matches their target space or they stay in new-space.
454 // 2) Objects in old-space stay in the same space when migrating.
455 // 3) Fillers (two or more words) can migrate due to left-trimming of
456 // fixed arrays in new-space, old-data-space and old-pointer-space.
457 // 4) Fillers (one word) can never migrate, they are skipped by
458 // incremental marking explicitly to prevent invalid pattern.
459 // 5) Short external strings can end up in old pointer space when a cons
460 // string in old pointer space is made external (String::MakeExternal).
461 //
462 // Since this function is used for debugging only, we do not place
463 // asserts here, but check everything explicitly.
464 if (obj->map() == one_pointer_filler_map()) return false;
465 InstanceType type = obj->map()->instance_type();
466 MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
467 AllocationSpace src = chunk->owner()->identity();
468 switch (src) {
469 case NEW_SPACE:
470 return dst == src || dst == TargetSpaceId(type);
471 case OLD_POINTER_SPACE:
472 return dst == src && (dst == TargetSpaceId(type) || obj->IsFiller() ||
473 (obj->IsExternalString() &&
474 ExternalString::cast(obj)->is_short()));
475 case OLD_DATA_SPACE:
476 return dst == src && dst == TargetSpaceId(type);
477 case CODE_SPACE:
478 return dst == src && type == CODE_TYPE;
479 case MAP_SPACE:
480 case CELL_SPACE:
481 case PROPERTY_CELL_SPACE:
482 case LO_SPACE:
483 return false;
484 case INVALID_SPACE:
485 break;
486 }
487 UNREACHABLE();
488 return false;
489 }
490
491
492 void Heap::CopyBlock(Address dst, Address src, int byte_size) {
493 CopyWords(reinterpret_cast<Object**>(dst),
494 reinterpret_cast<Object**>(src),
495 static_cast<size_t>(byte_size / kPointerSize));
496 }
497
498
499 void Heap::MoveBlock(Address dst, Address src, int byte_size) {
500 DCHECK(IsAligned(byte_size, kPointerSize));
501
502 int size_in_words = byte_size / kPointerSize;
503
504 if ((dst < src) || (dst >= (src + byte_size))) {
505 Object** src_slot = reinterpret_cast<Object**>(src);
506 Object** dst_slot = reinterpret_cast<Object**>(dst);
507 Object** end_slot = src_slot + size_in_words;
508
509 while (src_slot != end_slot) {
510 *dst_slot++ = *src_slot++;
511 }
512 } else {
513 MemMove(dst, src, static_cast<size_t>(byte_size));
514 }
515 }
516
517
518 void Heap::ScavengePointer(HeapObject** p) {
519 ScavengeObject(p, *p);
520 }
521
522
523 AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) {
524 // Check if there is potentially a memento behind the object. If
525 // the last word of the momento is on another page we return
526 // immediately.
527 Address object_address = object->address();
528 Address memento_address = object_address + object->Size();
529 Address last_memento_word_address = memento_address + kPointerSize;
530 if (!NewSpacePage::OnSamePage(object_address,
531 last_memento_word_address)) {
532 return NULL;
533 }
534
535 HeapObject* candidate = HeapObject::FromAddress(memento_address);
536 if (candidate->map() != allocation_memento_map()) return NULL;
537
538 // Either the object is the last object in the new space, or there is another
539 // object of at least word size (the header map word) following it, so
540 // suffices to compare ptr and top here. Note that technically we do not have
541 // to compare with the current top pointer of the from space page during GC,
542 // since we always install filler objects above the top pointer of a from
543 // space page when performing a garbage collection. However, always performing
544 // the test makes it possible to have a single, unified version of
545 // FindAllocationMemento that is used both by the GC and the mutator.
546 Address top = NewSpaceTop();
547 DCHECK(memento_address == top ||
548 memento_address + HeapObject::kHeaderSize <= top ||
549 !NewSpacePage::OnSamePage(memento_address, top));
550 if (memento_address == top) return NULL;
551
552 AllocationMemento* memento = AllocationMemento::cast(candidate);
553 if (!memento->IsValid()) return NULL;
554 return memento;
555 }
556
557
558 void Heap::UpdateAllocationSiteFeedback(HeapObject* object,
559 ScratchpadSlotMode mode) {
560 Heap* heap = object->GetHeap();
561 DCHECK(heap->InFromSpace(object));
562
563 if (!FLAG_allocation_site_pretenuring ||
564 !AllocationSite::CanTrack(object->map()->instance_type())) return;
565
566 AllocationMemento* memento = heap->FindAllocationMemento(object);
567 if (memento == NULL) return;
568
569 if (memento->GetAllocationSite()->IncrementMementoFoundCount()) {
570 heap->AddAllocationSiteToScratchpad(memento->GetAllocationSite(), mode);
571 }
572 }
573
574
575 void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
576 DCHECK(object->GetIsolate()->heap()->InFromSpace(object));
577
578 // We use the first word (where the map pointer usually is) of a heap
579 // object to record the forwarding pointer. A forwarding pointer can
580 // point to an old space, the code space, or the to space of the new
581 // generation.
582 MapWord first_word = object->map_word();
583
584 // If the first word is a forwarding address, the object has already been
585 // copied.
586 if (first_word.IsForwardingAddress()) {
587 HeapObject* dest = first_word.ToForwardingAddress();
588 DCHECK(object->GetIsolate()->heap()->InFromSpace(*p));
589 *p = dest;
590 return;
591 }
592
593 UpdateAllocationSiteFeedback(object, IGNORE_SCRATCHPAD_SLOT);
594
595 // AllocationMementos are unrooted and shouldn't survive a scavenge
596 DCHECK(object->map() != object->GetHeap()->allocation_memento_map());
597 // Call the slow part of scavenge object.
598 return ScavengeObjectSlow(p, object);
599 }
600
601
602 bool Heap::CollectGarbage(AllocationSpace space,
603 const char* gc_reason,
604 const v8::GCCallbackFlags callbackFlags) {
605 const char* collector_reason = NULL;
606 GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
607 return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags);
608 }
609
610
611 Isolate* Heap::isolate() {
612 return reinterpret_cast<Isolate*>(reinterpret_cast<intptr_t>(this) -
613 reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(4)->heap()) + 4);
614 }
615
616
617 // Calls the FUNCTION_CALL function and retries it up to three times
618 // to guarantee that any allocations performed during the call will
619 // succeed if there's enough memory.
620
621 // Warning: Do not use the identifiers __object__, __maybe_object__ or
622 // __scope__ in a call to this macro.
623
624 #define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
625 if (__allocation__.To(&__object__)) { \
626 DCHECK(__object__ != (ISOLATE)->heap()->exception()); \
627 RETURN_VALUE; \
628 }
629
630 #define CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \
631 do { \
632 AllocationResult __allocation__ = FUNCTION_CALL; \
633 Object* __object__ = NULL; \
634 RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
635 (ISOLATE)->heap()->CollectGarbage(__allocation__.RetrySpace(), \
636 "allocation failure"); \
637 __allocation__ = FUNCTION_CALL; \
638 RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
639 (ISOLATE)->counters()->gc_last_resort_from_handles()->Increment(); \
640 (ISOLATE)->heap()->CollectAllAvailableGarbage("last resort gc"); \
641 { \
642 AlwaysAllocateScope __scope__(ISOLATE); \
643 __allocation__ = FUNCTION_CALL; \
644 } \
645 RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
646 /* TODO(1181417): Fix this. */ \
647 v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \
648 RETURN_EMPTY; \
649 } while (false)
650
651 #define CALL_AND_RETRY_OR_DIE( \
652 ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \
653 CALL_AND_RETRY( \
654 ISOLATE, \
655 FUNCTION_CALL, \
656 RETURN_VALUE, \
657 RETURN_EMPTY)
658
659 #define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE) \
660 CALL_AND_RETRY_OR_DIE(ISOLATE, \
661 FUNCTION_CALL, \
662 return Handle<TYPE>(TYPE::cast(__object__), ISOLATE), \
663 return Handle<TYPE>()) \
664
665
666 #define CALL_HEAP_FUNCTION_VOID(ISOLATE, FUNCTION_CALL) \
667 CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, return, return)
668
669
670 void ExternalStringTable::AddString(String* string) {
671 DCHECK(string->IsExternalString());
672 if (heap_->InNewSpace(string)) {
673 new_space_strings_.Add(string);
674 } else {
675 old_space_strings_.Add(string);
676 }
677 }
678
679
680 void ExternalStringTable::Iterate(ObjectVisitor* v) {
681 if (!new_space_strings_.is_empty()) {
682 Object** start = &new_space_strings_[0];
683 v->VisitPointers(start, start + new_space_strings_.length());
684 }
685 if (!old_space_strings_.is_empty()) {
686 Object** start = &old_space_strings_[0];
687 v->VisitPointers(start, start + old_space_strings_.length());
688 }
689 }
690
691
692 // Verify() is inline to avoid ifdef-s around its calls in release
693 // mode.
694 void ExternalStringTable::Verify() {
695 #ifdef DEBUG
696 for (int i = 0; i < new_space_strings_.length(); ++i) {
697 Object* obj = Object::cast(new_space_strings_[i]);
698 DCHECK(heap_->InNewSpace(obj));
699 DCHECK(obj != heap_->the_hole_value());
700 }
701 for (int i = 0; i < old_space_strings_.length(); ++i) {
702 Object* obj = Object::cast(old_space_strings_[i]);
703 DCHECK(!heap_->InNewSpace(obj));
704 DCHECK(obj != heap_->the_hole_value());
705 }
706 #endif
707 }
708
709
710 void ExternalStringTable::AddOldString(String* string) {
711 DCHECK(string->IsExternalString());
712 DCHECK(!heap_->InNewSpace(string));
713 old_space_strings_.Add(string);
714 }
715
716
717 void ExternalStringTable::ShrinkNewStrings(int position) {
718 new_space_strings_.Rewind(position);
719 #ifdef VERIFY_HEAP
720 if (FLAG_verify_heap) {
721 Verify();
722 }
723 #endif
724 }
725
726
727 void Heap::ClearInstanceofCache() {
728 set_instanceof_cache_function(the_hole_value());
729 }
730
731
732 Object* Heap::ToBoolean(bool condition) {
733 return condition ? true_value() : false_value();
734 }
735
736
737 void Heap::CompletelyClearInstanceofCache() {
738 set_instanceof_cache_map(the_hole_value());
739 set_instanceof_cache_function(the_hole_value());
740 }
741
742
743 AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
744 : heap_(isolate->heap()), daf_(isolate) {
745 // We shouldn't hit any nested scopes, because that requires
746 // non-handle code to call handle code. The code still works but
747 // performance will degrade, so we want to catch this situation
748 // in debug mode.
749 DCHECK(heap_->always_allocate_scope_depth_ == 0);
750 heap_->always_allocate_scope_depth_++;
751 }
752
753
754 AlwaysAllocateScope::~AlwaysAllocateScope() {
755 heap_->always_allocate_scope_depth_--;
756 DCHECK(heap_->always_allocate_scope_depth_ == 0);
757 }
758
759
760 #ifdef VERIFY_HEAP
761 NoWeakObjectVerificationScope::NoWeakObjectVerificationScope() {
762 Isolate* isolate = Isolate::Current();
763 isolate->heap()->no_weak_object_verification_scope_depth_++;
764 }
765
766
767 NoWeakObjectVerificationScope::~NoWeakObjectVerificationScope() {
768 Isolate* isolate = Isolate::Current();
769 isolate->heap()->no_weak_object_verification_scope_depth_--;
770 }
771 #endif
772
773
774 GCCallbacksScope::GCCallbacksScope(Heap* heap) : heap_(heap) {
775 heap_->gc_callbacks_depth_++;
776 }
777
778
779 GCCallbacksScope::~GCCallbacksScope() {
780 heap_->gc_callbacks_depth_--;
781 }
782
783
784 bool GCCallbacksScope::CheckReenter() {
785 return heap_->gc_callbacks_depth_ == 1;
786 }
787
788
789 void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
790 for (Object** current = start; current < end; current++) {
791 if ((*current)->IsHeapObject()) {
792 HeapObject* object = HeapObject::cast(*current);
793 CHECK(object->GetIsolate()->heap()->Contains(object));
794 CHECK(object->map()->IsMap());
795 }
796 }
797 }
798
799
800 void VerifySmisVisitor::VisitPointers(Object** start, Object** end) {
801 for (Object** current = start; current < end; current++) {
802 CHECK((*current)->IsSmi());
803 }
804 }
805
806
807 } } // namespace v8::internal
808
809 #endif // V8_HEAP_INL_H_
OLDNEW
« no previous file with comments | « src/heap.cc ('k') | src/heap/gc-tracer.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698