| OLD | NEW |
| 1 // Copyright 2006-2008 the V8 project authors. All rights reserved. | 1 // Copyright 2006-2008 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
| 4 // met: | 4 // met: |
| 5 // | 5 // |
| 6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
| (...skipping 33 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 44 uint32_t hash_field) { | 44 uint32_t hash_field) { |
| 45 unibrow::Utf8InputBuffer<> buffer(str.start(), | 45 unibrow::Utf8InputBuffer<> buffer(str.start(), |
| 46 static_cast<unsigned>(str.length())); | 46 static_cast<unsigned>(str.length())); |
| 47 return AllocateInternalSymbol(&buffer, chars, hash_field); | 47 return AllocateInternalSymbol(&buffer, chars, hash_field); |
| 48 } | 48 } |
| 49 | 49 |
| 50 | 50 |
| 51 Object* Heap::AllocateRaw(int size_in_bytes, | 51 Object* Heap::AllocateRaw(int size_in_bytes, |
| 52 AllocationSpace space, | 52 AllocationSpace space, |
| 53 AllocationSpace retry_space) { | 53 AllocationSpace retry_space) { |
| 54 ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC); | 54 HeapData& heap_data = v8_context()->heap_data_; |
| 55 ASSERT(heap_data.allocation_allowed_ && heap_data.gc_state_ == NOT_IN_GC); |
| 55 ASSERT(space != NEW_SPACE || | 56 ASSERT(space != NEW_SPACE || |
| 56 retry_space == OLD_POINTER_SPACE || | 57 retry_space == OLD_POINTER_SPACE || |
| 57 retry_space == OLD_DATA_SPACE); | 58 retry_space == OLD_DATA_SPACE); |
| 58 #ifdef DEBUG | 59 #ifdef DEBUG |
| 59 if (FLAG_gc_interval >= 0 && | 60 if (FLAG_gc_interval >= 0 && |
| 60 !disallow_allocation_failure_ && | 61 !heap_data.disallow_allocation_failure_ && |
| 61 Heap::allocation_timeout_-- <= 0) { | 62 heap_data.allocation_timeout_-- <= 0) { |
| 62 return Failure::RetryAfterGC(size_in_bytes, space); | 63 return Failure::RetryAfterGC(size_in_bytes, space); |
| 63 } | 64 } |
| 64 Counters::objs_since_last_full.Increment(); | 65 INC_COUNTER(objs_since_last_full); |
| 65 Counters::objs_since_last_young.Increment(); | 66 INC_COUNTER(objs_since_last_young); |
| 66 #endif | 67 #endif |
| 67 Object* result; | 68 Object* result; |
| 68 if (NEW_SPACE == space) { | 69 if (NEW_SPACE == space) { |
| 69 result = new_space_.AllocateRaw(size_in_bytes); | 70 result = heap_data.new_space_.AllocateRaw(size_in_bytes); |
| 70 if (always_allocate() && result->IsFailure()) { | 71 if (always_allocate() && result->IsFailure()) { |
| 71 space = retry_space; | 72 space = retry_space; |
| 72 } else { | 73 } else { |
| 73 return result; | 74 return result; |
| 74 } | 75 } |
| 75 } | 76 } |
| 76 | 77 |
| 77 if (OLD_POINTER_SPACE == space) { | 78 if (OLD_POINTER_SPACE == space) { |
| 78 result = old_pointer_space_->AllocateRaw(size_in_bytes); | 79 result = heap_data.old_pointer_space_->AllocateRaw(size_in_bytes); |
| 79 } else if (OLD_DATA_SPACE == space) { | 80 } else if (OLD_DATA_SPACE == space) { |
| 80 result = old_data_space_->AllocateRaw(size_in_bytes); | 81 result = heap_data.old_data_space_->AllocateRaw(size_in_bytes); |
| 81 } else if (CODE_SPACE == space) { | 82 } else if (CODE_SPACE == space) { |
| 82 result = code_space_->AllocateRaw(size_in_bytes); | 83 result = heap_data.code_space_->AllocateRaw(size_in_bytes); |
| 83 } else if (LO_SPACE == space) { | 84 } else if (LO_SPACE == space) { |
| 84 result = lo_space_->AllocateRaw(size_in_bytes); | 85 result = heap_data.lo_space_->AllocateRaw(size_in_bytes); |
| 85 } else if (CELL_SPACE == space) { | 86 } else if (CELL_SPACE == space) { |
| 86 result = cell_space_->AllocateRaw(size_in_bytes); | 87 result = heap_data.cell_space_->AllocateRaw(size_in_bytes); |
| 87 } else { | 88 } else { |
| 88 ASSERT(MAP_SPACE == space); | 89 ASSERT(MAP_SPACE == space); |
| 89 result = map_space_->AllocateRaw(size_in_bytes); | 90 result = heap_data.map_space_->AllocateRaw(size_in_bytes); |
| 90 } | 91 } |
| 91 if (result->IsFailure()) old_gen_exhausted_ = true; | 92 if (result->IsFailure()) heap_data.old_gen_exhausted_ = true; |
| 92 return result; | 93 return result; |
| 93 } | 94 } |
| 94 | 95 |
| 95 | 96 |
| 96 Object* Heap::NumberFromInt32(int32_t value) { | 97 Object* Heap::NumberFromInt32(int32_t value) { |
| 97 if (Smi::IsValid(value)) return Smi::FromInt(value); | 98 if (Smi::IsValid(value)) return Smi::FromInt(value); |
| 98 // Bypass NumberFromDouble to avoid various redundant checks. | 99 // Bypass NumberFromDouble to avoid various redundant checks. |
| 99 return AllocateHeapNumber(FastI2D(value)); | 100 return AllocateHeapNumber(FastI2D(value)); |
| 100 } | 101 } |
| 101 | 102 |
| 102 | 103 |
| 103 Object* Heap::NumberFromUint32(uint32_t value) { | 104 Object* Heap::NumberFromUint32(uint32_t value) { |
| 104 if ((int32_t)value >= 0 && Smi::IsValid((int32_t)value)) { | 105 if ((int32_t)value >= 0 && Smi::IsValid((int32_t)value)) { |
| 105 return Smi::FromInt((int32_t)value); | 106 return Smi::FromInt((int32_t)value); |
| 106 } | 107 } |
| 107 // Bypass NumberFromDouble to avoid various redundant checks. | 108 // Bypass NumberFromDouble to avoid various redundant checks. |
| 108 return AllocateHeapNumber(FastUI2D(value)); | 109 return AllocateHeapNumber(FastUI2D(value)); |
| 109 } | 110 } |
| 110 | 111 |
| 111 | 112 |
| 112 Object* Heap::AllocateRawMap() { | 113 Object* Heap::AllocateRawMap() { |
| 113 #ifdef DEBUG | 114 #ifdef DEBUG |
| 114 Counters::objs_since_last_full.Increment(); | 115 INC_COUNTER(objs_since_last_full); |
| 115 Counters::objs_since_last_young.Increment(); | 116 INC_COUNTER(objs_since_last_young); |
| 116 #endif | 117 #endif |
| 117 Object* result = map_space_->AllocateRaw(Map::kSize); | 118 HeapData& heap_data = v8_context()->heap_data_; |
| 118 if (result->IsFailure()) old_gen_exhausted_ = true; | 119 Object* result = heap_data.map_space_->AllocateRaw(Map::kSize); |
| 120 if (result->IsFailure()) heap_data.old_gen_exhausted_ = true; |
| 119 return result; | 121 return result; |
| 120 } | 122 } |
| 121 | 123 |
| 122 | 124 |
| 123 Object* Heap::AllocateRawCell() { | 125 Object* Heap::AllocateRawCell() { |
| 124 #ifdef DEBUG | 126 #ifdef DEBUG |
| 125 Counters::objs_since_last_full.Increment(); | 127 INC_COUNTER(objs_since_last_full); |
| 126 Counters::objs_since_last_young.Increment(); | 128 INC_COUNTER(objs_since_last_young); |
| 127 #endif | 129 #endif |
| 128 Object* result = cell_space_->AllocateRaw(JSGlobalPropertyCell::kSize); | 130 HeapData& heap_data = v8_context()->heap_data_; |
| 129 if (result->IsFailure()) old_gen_exhausted_ = true; | 131 Object* result = heap_data.cell_space_->AllocateRaw( |
| 132 JSGlobalPropertyCell::kSize); |
| 133 if (result->IsFailure()) heap_data.old_gen_exhausted_ = true; |
| 130 return result; | 134 return result; |
| 131 } | 135 } |
| 132 | 136 |
| 133 | 137 |
| 134 bool Heap::InNewSpace(Object* object) { | 138 bool Heap::InNewSpace(Object* object) { |
| 135 return new_space_.Contains(object); | 139 return v8_context()->heap_data_.new_space_.Contains(object); |
| 136 } | 140 } |
| 137 | 141 |
| 138 | 142 |
| 139 bool Heap::InFromSpace(Object* object) { | 143 bool Heap::InFromSpace(Object* object) { |
| 140 return new_space_.FromSpaceContains(object); | 144 return v8_context()->heap_data_.new_space_.FromSpaceContains(object); |
| 141 } | 145 } |
| 142 | 146 |
| 143 | 147 |
| 144 bool Heap::InToSpace(Object* object) { | 148 bool Heap::InToSpace(Object* object) { |
| 145 return new_space_.ToSpaceContains(object); | 149 return v8_context()->heap_data_.new_space_.ToSpaceContains(object); |
| 146 } | 150 } |
| 147 | 151 |
| 148 | 152 |
| 149 bool Heap::ShouldBePromoted(Address old_address, int object_size) { | 153 bool Heap::ShouldBePromoted(Address old_address, int object_size) { |
| 154 HeapData& heap_data = v8_context()->heap_data_; |
| 150 // An object should be promoted if: | 155 // An object should be promoted if: |
| 151 // - the object has survived a scavenge operation or | 156 // - the object has survived a scavenge operation or |
| 152 // - to space is already 25% full. | 157 // - to space is already 25% full. |
| 153 return old_address < new_space_.age_mark() | 158 return old_address < heap_data.new_space_.age_mark() |
| 154 || (new_space_.Size() + object_size) >= (new_space_.Capacity() >> 2); | 159 || ((heap_data.new_space_.Size() + object_size) >= |
| 160 (heap_data.new_space_.Capacity() >> 2)); |
| 155 } | 161 } |
| 156 | 162 |
| 157 | 163 |
| 158 void Heap::RecordWrite(Address address, int offset) { | 164 void Heap::RecordWrite(Address address, int offset) { |
| 159 if (new_space_.Contains(address)) return; | 165 HeapData& heap_data = v8_context()->heap_data_; |
| 160 ASSERT(!new_space_.FromSpaceContains(address)); | 166 if (heap_data.new_space_.Contains(address)) return; |
| 167 ASSERT(!heap_data.new_space_.FromSpaceContains(address)); |
| 161 SLOW_ASSERT(Contains(address + offset)); | 168 SLOW_ASSERT(Contains(address + offset)); |
| 162 Page::SetRSet(address, offset); | 169 Page::SetRSet(address, offset); |
| 163 } | 170 } |
| 164 | 171 |
| 165 | 172 |
| 166 OldSpace* Heap::TargetSpace(HeapObject* object) { | 173 OldSpace* Heap::TargetSpace(HeapObject* object) { |
| 167 InstanceType type = object->map()->instance_type(); | 174 InstanceType type = object->map()->instance_type(); |
| 168 AllocationSpace space = TargetSpaceId(type); | 175 AllocationSpace space = TargetSpaceId(type); |
| 169 return (space == OLD_POINTER_SPACE) | 176 return (space == OLD_POINTER_SPACE) |
| 170 ? old_pointer_space_ | 177 ? v8_context()->heap_data_.old_pointer_space_ |
| 171 : old_data_space_; | 178 : v8_context()->heap_data_.old_data_space_; |
| 172 } | 179 } |
| 173 | 180 |
| 174 | 181 |
| 175 AllocationSpace Heap::TargetSpaceId(InstanceType type) { | 182 AllocationSpace Heap::TargetSpaceId(InstanceType type) { |
| 176 // Heap numbers and sequential strings are promoted to old data space, all | 183 // Heap numbers and sequential strings are promoted to old data space, all |
| 177 // other object types are promoted to old pointer space. We do not use | 184 // other object types are promoted to old pointer space. We do not use |
| 178 // object->IsHeapNumber() and object->IsSeqString() because we already | 185 // object->IsHeapNumber() and object->IsSeqString() because we already |
| 179 // know that object has the heap object tag. | 186 // know that object has the heap object tag. |
| 180 ASSERT((type != CODE_TYPE) && (type != MAP_TYPE)); | 187 ASSERT((type != CODE_TYPE) && (type != MAP_TYPE)); |
| 181 bool has_pointers = | 188 bool has_pointers = |
| (...skipping 39 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 221 return; | 228 return; |
| 222 } | 229 } |
| 223 | 230 |
| 224 // Call the slow part of scavenge object. | 231 // Call the slow part of scavenge object. |
| 225 return ScavengeObjectSlow(p, object); | 232 return ScavengeObjectSlow(p, object); |
| 226 } | 233 } |
| 227 | 234 |
| 228 | 235 |
| 229 int Heap::AdjustAmountOfExternalAllocatedMemory(int change_in_bytes) { | 236 int Heap::AdjustAmountOfExternalAllocatedMemory(int change_in_bytes) { |
| 230 ASSERT(HasBeenSetup()); | 237 ASSERT(HasBeenSetup()); |
| 231 int amount = amount_of_external_allocated_memory_ + change_in_bytes; | 238 HeapData& heap_data = v8_context()->heap_data_; |
| 239 int amount = heap_data.amount_of_external_allocated_memory_ + change_in_bytes; |
| 232 if (change_in_bytes >= 0) { | 240 if (change_in_bytes >= 0) { |
| 233 // Avoid overflow. | 241 // Avoid overflow. |
| 234 if (amount > amount_of_external_allocated_memory_) { | 242 if (amount > heap_data.amount_of_external_allocated_memory_) { |
| 235 amount_of_external_allocated_memory_ = amount; | 243 heap_data.amount_of_external_allocated_memory_ = amount; |
| 236 } | 244 } |
| 237 int amount_since_last_global_gc = | 245 int amount_since_last_global_gc = |
| 238 amount_of_external_allocated_memory_ - | 246 heap_data.amount_of_external_allocated_memory_ - |
| 239 amount_of_external_allocated_memory_at_last_global_gc_; | 247 heap_data.amount_of_external_allocated_memory_at_last_global_gc_; |
| 240 if (amount_since_last_global_gc > external_allocation_limit_) { | 248 if (amount_since_last_global_gc > heap_data.external_allocation_limit_) { |
| 241 CollectAllGarbage(false); | 249 CollectAllGarbage(false); |
| 242 } | 250 } |
| 243 } else { | 251 } else { |
| 244 // Avoid underflow. | 252 // Avoid underflow. |
| 245 if (amount >= 0) { | 253 if (amount >= 0) { |
| 246 amount_of_external_allocated_memory_ = amount; | 254 heap_data.amount_of_external_allocated_memory_ = amount; |
| 247 } | 255 } |
| 248 } | 256 } |
| 249 ASSERT(amount_of_external_allocated_memory_ >= 0); | 257 ASSERT(heap_data.amount_of_external_allocated_memory_ >= 0); |
| 250 return amount_of_external_allocated_memory_; | 258 return heap_data.amount_of_external_allocated_memory_; |
| 251 } | 259 } |
| 252 | 260 |
| 253 | 261 |
| 254 void Heap::SetLastScriptId(Object* last_script_id) { | 262 void Heap::SetLastScriptId(Object* last_script_id) { |
| 255 roots_[kLastScriptIdRootIndex] = last_script_id; | 263 v8_context()->heap_data_.roots_[kLastScriptIdRootIndex] = last_script_id; |
| 256 } | 264 } |
| 257 | 265 |
| 258 | 266 |
| 259 #define GC_GREEDY_CHECK() \ | 267 #define GC_GREEDY_CHECK() \ |
| 260 ASSERT(!FLAG_gc_greedy || v8::internal::Heap::GarbageCollectionGreedyCheck()) | 268 ASSERT(!FLAG_gc_greedy || v8::internal::Heap::GarbageCollectionGreedyCheck()) |
| 261 | 269 |
| 262 | 270 |
| 263 // Calls the FUNCTION_CALL function and retries it up to three times | 271 // Calls the FUNCTION_CALL function and retries it up to three times |
| 264 // to guarantee that any allocations performed during the call will | 272 // to guarantee that any allocations performed during the call will |
| 265 // succeed if there's enough memory. | 273 // succeed if there's enough memory. |
| (...skipping 11 matching lines...) Expand all Loading... |
| 277 } \ | 285 } \ |
| 278 if (!__object__->IsRetryAfterGC()) RETURN_EMPTY; \ | 286 if (!__object__->IsRetryAfterGC()) RETURN_EMPTY; \ |
| 279 Heap::CollectGarbage(Failure::cast(__object__)->requested(), \ | 287 Heap::CollectGarbage(Failure::cast(__object__)->requested(), \ |
| 280 Failure::cast(__object__)->allocation_space()); \ | 288 Failure::cast(__object__)->allocation_space()); \ |
| 281 __object__ = FUNCTION_CALL; \ | 289 __object__ = FUNCTION_CALL; \ |
| 282 if (!__object__->IsFailure()) RETURN_VALUE; \ | 290 if (!__object__->IsFailure()) RETURN_VALUE; \ |
| 283 if (__object__->IsOutOfMemoryFailure()) { \ | 291 if (__object__->IsOutOfMemoryFailure()) { \ |
| 284 v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_1"); \ | 292 v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_1"); \ |
| 285 } \ | 293 } \ |
| 286 if (!__object__->IsRetryAfterGC()) RETURN_EMPTY; \ | 294 if (!__object__->IsRetryAfterGC()) RETURN_EMPTY; \ |
| 287 Counters::gc_last_resort_from_handles.Increment(); \ | 295 INC_COUNTER(gc_last_resort_from_handles); \ |
| 288 Heap::CollectAllGarbage(false); \ | 296 Heap::CollectAllGarbage(false); \ |
| 289 { \ | 297 { \ |
| 290 AlwaysAllocateScope __scope__; \ | 298 AlwaysAllocateScope __scope__; \ |
| 291 __object__ = FUNCTION_CALL; \ | 299 __object__ = FUNCTION_CALL; \ |
| 292 } \ | 300 } \ |
| 293 if (!__object__->IsFailure()) RETURN_VALUE; \ | 301 if (!__object__->IsFailure()) RETURN_VALUE; \ |
| 294 if (__object__->IsOutOfMemoryFailure() || \ | 302 if (__object__->IsOutOfMemoryFailure() || \ |
| 295 __object__->IsRetryAfterGC()) { \ | 303 __object__->IsRetryAfterGC()) { \ |
| 296 /* TODO(1181417): Fix this. */ \ | 304 /* TODO(1181417): Fix this. */ \ |
| 297 v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_2"); \ | 305 v8::internal::V8::FatalProcessOutOfMemory("CALL_AND_RETRY_2"); \ |
| 298 } \ | 306 } \ |
| 299 RETURN_EMPTY; \ | 307 RETURN_EMPTY; \ |
| 300 } while (false) | 308 } while (false) |
| 301 | 309 |
| 302 | 310 |
| 303 #define CALL_HEAP_FUNCTION(FUNCTION_CALL, TYPE) \ | 311 #define CALL_HEAP_FUNCTION(FUNCTION_CALL, TYPE) \ |
| 304 CALL_AND_RETRY(FUNCTION_CALL, \ | 312 CALL_AND_RETRY(FUNCTION_CALL, \ |
| 305 return Handle<TYPE>(TYPE::cast(__object__)), \ | 313 return Handle<TYPE>(TYPE::cast(__object__)), \ |
| 306 return Handle<TYPE>()) | 314 return Handle<TYPE>()) |
| 307 | 315 |
| 308 | 316 |
| 309 #define CALL_HEAP_FUNCTION_VOID(FUNCTION_CALL) \ | 317 #define CALL_HEAP_FUNCTION_VOID(FUNCTION_CALL) \ |
| 310 CALL_AND_RETRY(FUNCTION_CALL, return, return) | 318 CALL_AND_RETRY(FUNCTION_CALL, return, return) |
| 311 | 319 |
| 312 | 320 |
| 313 #ifdef DEBUG | 321 #ifdef DEBUG |
| 314 | 322 |
| 315 inline bool Heap::allow_allocation(bool new_state) { | 323 inline bool Heap::allow_allocation(bool new_state) { |
| 316 bool old = allocation_allowed_; | 324 HeapData& heap_data = v8_context()->heap_data_; |
| 317 allocation_allowed_ = new_state; | 325 bool old = heap_data.allocation_allowed_; |
| 326 heap_data.allocation_allowed_ = new_state; |
| 318 return old; | 327 return old; |
| 319 } | 328 } |
| 320 | 329 |
| 321 #endif | 330 #endif |
| 322 | 331 |
| 323 | 332 |
| 324 } } // namespace v8::internal | 333 } } // namespace v8::internal |
| 325 | 334 |
| 326 #endif // V8_HEAP_INL_H_ | 335 #endif // V8_HEAP_INL_H_ |
| OLD | NEW |