| Index: tools/bisect-perf-regression.py
|
| diff --git a/tools/bisect-perf-regression.py b/tools/bisect-perf-regression.py
|
| index b1aa1309c4033696f6608bd1b1f5ee10227d1c1c..bbdb6422e27290d585ab35b6d155c01cafffcf44 100755
|
| --- a/tools/bisect-perf-regression.py
|
| +++ b/tools/bisect-perf-regression.py
|
| @@ -286,6 +286,8 @@ def ConfidenceScore(good_results_lists, bad_results_lists):
|
| # Flatten the lists of results lists.
|
| sample1 = sum(good_results_lists, [])
|
| sample2 = sum(bad_results_lists, [])
|
| + if not sample1 or not sample2:
|
| + return 0.0
|
|
|
| # The p-value is approximately the probability of obtaining the given set
|
| # of good and bad values just by chance.
|
| @@ -3054,6 +3056,12 @@ class BisectPerformanceMetrics(object):
|
| last_broken_revision = None
|
| last_broken_revision_index = -1
|
|
|
| + culprit_revisions = []
|
| + other_regressions = []
|
| + regression_size = 0.0
|
| + regression_std_err = 0.0
|
| + confidence = 0.0
|
| +
|
| for i in xrange(len(revision_data_sorted)):
|
| k, v = revision_data_sorted[i]
|
| if v['passed'] == 1:
|
|
|