OLD | NEW |
| (Empty) |
1 // Copyright 2013 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "google_apis/cup/client_update_protocol.h" | |
6 | |
7 #include "base/base64.h" | |
8 #include "base/logging.h" | |
9 #include "base/memory/scoped_ptr.h" | |
10 #include "base/sha1.h" | |
11 #include "base/strings/string_util.h" | |
12 #include "base/strings/stringprintf.h" | |
13 #include "crypto/hmac.h" | |
14 #include "crypto/random.h" | |
15 | |
16 namespace { | |
17 | |
18 base::StringPiece ByteVectorToSP(const std::vector<uint8>& vec) { | |
19 if (vec.empty()) | |
20 return base::StringPiece(); | |
21 | |
22 return base::StringPiece(reinterpret_cast<const char*>(&vec[0]), vec.size()); | |
23 } | |
24 | |
25 // This class needs to implement the same hashing and signing functions as the | |
26 // Google Update server; for now, this is SHA-1 and HMAC-SHA1, but this may | |
27 // change to SHA-256 in the near future. For this reason, all primitives are | |
28 // wrapped. The name "SymSign" is used to mirror the CUP specification. | |
29 size_t HashDigestSize() { | |
30 return base::kSHA1Length; | |
31 } | |
32 | |
33 std::vector<uint8> Hash(const std::vector<uint8>& data) { | |
34 std::vector<uint8> result(HashDigestSize()); | |
35 base::SHA1HashBytes(data.empty() ? NULL : &data[0], | |
36 data.size(), | |
37 &result[0]); | |
38 return result; | |
39 } | |
40 | |
41 std::vector<uint8> Hash(const base::StringPiece& sdata) { | |
42 std::vector<uint8> result(HashDigestSize()); | |
43 base::SHA1HashBytes(sdata.empty() ? | |
44 NULL : | |
45 reinterpret_cast<const unsigned char*>(sdata.data()), | |
46 sdata.length(), | |
47 &result[0]); | |
48 return result; | |
49 } | |
50 | |
51 std::vector<uint8> SymConcat(uint8 id, | |
52 const std::vector<uint8>* h1, | |
53 const std::vector<uint8>* h2, | |
54 const std::vector<uint8>* h3) { | |
55 std::vector<uint8> result; | |
56 result.push_back(id); | |
57 const std::vector<uint8>* args[] = { h1, h2, h3 }; | |
58 for (size_t i = 0; i != arraysize(args); ++i) { | |
59 if (args[i]) { | |
60 DCHECK_EQ(args[i]->size(), HashDigestSize()); | |
61 result.insert(result.end(), args[i]->begin(), args[i]->end()); | |
62 } | |
63 } | |
64 | |
65 return result; | |
66 } | |
67 | |
68 std::vector<uint8> SymSign(const std::vector<uint8>& key, | |
69 const std::vector<uint8>& hashes) { | |
70 DCHECK(!key.empty()); | |
71 DCHECK(!hashes.empty()); | |
72 | |
73 crypto::HMAC hmac(crypto::HMAC::SHA1); | |
74 if (!hmac.Init(&key[0], key.size())) | |
75 return std::vector<uint8>(); | |
76 | |
77 std::vector<uint8> result(hmac.DigestLength()); | |
78 if (!hmac.Sign(ByteVectorToSP(hashes), &result[0], result.size())) | |
79 return std::vector<uint8>(); | |
80 | |
81 return result; | |
82 } | |
83 | |
84 bool SymSignVerify(const std::vector<uint8>& key, | |
85 const std::vector<uint8>& hashes, | |
86 const std::vector<uint8>& server_proof) { | |
87 DCHECK(!key.empty()); | |
88 DCHECK(!hashes.empty()); | |
89 DCHECK(!server_proof.empty()); | |
90 | |
91 crypto::HMAC hmac(crypto::HMAC::SHA1); | |
92 if (!hmac.Init(&key[0], key.size())) | |
93 return false; | |
94 | |
95 return hmac.Verify(ByteVectorToSP(hashes), ByteVectorToSP(server_proof)); | |
96 } | |
97 | |
98 // RsaPad() is implemented as described in the CUP spec. It is NOT a general | |
99 // purpose padding algorithm. | |
100 std::vector<uint8> RsaPad(size_t rsa_key_size, | |
101 const std::vector<uint8>& entropy) { | |
102 DCHECK_GE(rsa_key_size, HashDigestSize()); | |
103 | |
104 // The result gets padded with zeros if the result size is greater than | |
105 // the size of the buffer provided by the caller. | |
106 std::vector<uint8> result(entropy); | |
107 result.resize(rsa_key_size - HashDigestSize()); | |
108 | |
109 // For use with RSA, the input needs to be smaller than the RSA modulus, | |
110 // which has always the msb set. | |
111 result[0] &= 127; // Reset msb | |
112 result[0] |= 64; // Set second highest bit. | |
113 | |
114 std::vector<uint8> digest = Hash(result); | |
115 result.insert(result.end(), digest.begin(), digest.end()); | |
116 DCHECK_EQ(result.size(), rsa_key_size); | |
117 return result; | |
118 } | |
119 | |
120 // CUP passes the versioned secret in the query portion of the URL for the | |
121 // update check service -- and that means that a URL-safe variant of Base64 is | |
122 // needed. Call the standard Base64 encoder/decoder and then apply fixups. | |
123 std::string UrlSafeB64Encode(const std::vector<uint8>& data) { | |
124 std::string result; | |
125 base::Base64Encode(ByteVectorToSP(data), &result); | |
126 | |
127 // Do an tr|+/|-_| on the output, and strip any '=' padding. | |
128 for (std::string::iterator it = result.begin(); it != result.end(); ++it) { | |
129 switch (*it) { | |
130 case '+': | |
131 *it = '-'; | |
132 break; | |
133 case '/': | |
134 *it = '_'; | |
135 break; | |
136 default: | |
137 break; | |
138 } | |
139 } | |
140 base::TrimString(result, "=", &result); | |
141 | |
142 return result; | |
143 } | |
144 | |
145 std::vector<uint8> UrlSafeB64Decode(const base::StringPiece& input) { | |
146 std::string unsafe(input.begin(), input.end()); | |
147 for (std::string::iterator it = unsafe.begin(); it != unsafe.end(); ++it) { | |
148 switch (*it) { | |
149 case '-': | |
150 *it = '+'; | |
151 break; | |
152 case '_': | |
153 *it = '/'; | |
154 break; | |
155 default: | |
156 break; | |
157 } | |
158 } | |
159 if (unsafe.length() % 4) | |
160 unsafe.append(4 - (unsafe.length() % 4), '='); | |
161 | |
162 std::string decoded; | |
163 if (!base::Base64Decode(unsafe, &decoded)) | |
164 return std::vector<uint8>(); | |
165 | |
166 return std::vector<uint8>(decoded.begin(), decoded.end()); | |
167 } | |
168 | |
169 } // end namespace | |
170 | |
171 ClientUpdateProtocol::ClientUpdateProtocol(int key_version) | |
172 : pub_key_version_(key_version) { | |
173 } | |
174 | |
175 scoped_ptr<ClientUpdateProtocol> ClientUpdateProtocol::Create( | |
176 int key_version, | |
177 const base::StringPiece& public_key) { | |
178 DCHECK_GT(key_version, 0); | |
179 DCHECK(!public_key.empty()); | |
180 | |
181 scoped_ptr<ClientUpdateProtocol> result( | |
182 new ClientUpdateProtocol(key_version)); | |
183 if (!result) | |
184 return scoped_ptr<ClientUpdateProtocol>(); | |
185 | |
186 if (!result->LoadPublicKey(public_key)) | |
187 return scoped_ptr<ClientUpdateProtocol>(); | |
188 | |
189 if (!result->BuildRandomSharedKey()) | |
190 return scoped_ptr<ClientUpdateProtocol>(); | |
191 | |
192 return result.Pass(); | |
193 } | |
194 | |
195 std::string ClientUpdateProtocol::GetVersionedSecret() const { | |
196 return base::StringPrintf("%d:%s", | |
197 pub_key_version_, | |
198 UrlSafeB64Encode(encrypted_key_source_).c_str()); | |
199 } | |
200 | |
201 bool ClientUpdateProtocol::SignRequest(const base::StringPiece& url, | |
202 const base::StringPiece& request_body, | |
203 std::string* client_proof) { | |
204 DCHECK(!encrypted_key_source_.empty()); | |
205 DCHECK(!url.empty()); | |
206 DCHECK(!request_body.empty()); | |
207 DCHECK(client_proof); | |
208 | |
209 // Compute the challenge hash: | |
210 // hw = HASH(HASH(v|w)|HASH(request_url)|HASH(body)). | |
211 // Keep the challenge hash for later to validate the server's response. | |
212 std::vector<uint8> internal_hashes; | |
213 | |
214 std::vector<uint8> h; | |
215 h = Hash(GetVersionedSecret()); | |
216 internal_hashes.insert(internal_hashes.end(), h.begin(), h.end()); | |
217 h = Hash(url); | |
218 internal_hashes.insert(internal_hashes.end(), h.begin(), h.end()); | |
219 h = Hash(request_body); | |
220 internal_hashes.insert(internal_hashes.end(), h.begin(), h.end()); | |
221 DCHECK_EQ(internal_hashes.size(), 3 * HashDigestSize()); | |
222 | |
223 client_challenge_hash_ = Hash(internal_hashes); | |
224 | |
225 // Sign the challenge hash (hw) using the shared key (sk) to produce the | |
226 // client proof (cp). | |
227 std::vector<uint8> raw_client_proof = | |
228 SymSign(shared_key_, SymConcat(3, &client_challenge_hash_, NULL, NULL)); | |
229 if (raw_client_proof.empty()) { | |
230 client_challenge_hash_.clear(); | |
231 return false; | |
232 } | |
233 | |
234 *client_proof = UrlSafeB64Encode(raw_client_proof); | |
235 return true; | |
236 } | |
237 | |
238 bool ClientUpdateProtocol::ValidateResponse( | |
239 const base::StringPiece& response_body, | |
240 const base::StringPiece& server_cookie, | |
241 const base::StringPiece& server_proof) { | |
242 DCHECK(!client_challenge_hash_.empty()); | |
243 | |
244 if (response_body.empty() || server_cookie.empty() || server_proof.empty()) | |
245 return false; | |
246 | |
247 // Decode the server proof from URL-safe Base64 to a binary HMAC for the | |
248 // response. | |
249 std::vector<uint8> sp_decoded = UrlSafeB64Decode(server_proof); | |
250 if (sp_decoded.empty()) | |
251 return false; | |
252 | |
253 // If the request was received by the server, the server will use its | |
254 // private key to decrypt |w_|, yielding the original contents of |r_|. | |
255 // The server can then recreate |sk_|, compute |hw_|, and SymSign(3|hw) | |
256 // to ensure that the cp matches the contents. It will then use |sk_| | |
257 // to sign its response, producing the server proof |sp|. | |
258 std::vector<uint8> hm = Hash(response_body); | |
259 std::vector<uint8> hc = Hash(server_cookie); | |
260 return SymSignVerify(shared_key_, | |
261 SymConcat(1, &client_challenge_hash_, &hm, &hc), | |
262 sp_decoded); | |
263 } | |
264 | |
265 bool ClientUpdateProtocol::BuildRandomSharedKey() { | |
266 DCHECK_GE(PublicKeyLength(), HashDigestSize()); | |
267 | |
268 // Start by generating some random bytes that are suitable to be encrypted; | |
269 // this will be the source of the shared HMAC key that client and server use. | |
270 // (CUP specification calls this "r".) | |
271 std::vector<uint8> key_source; | |
272 std::vector<uint8> entropy(PublicKeyLength() - HashDigestSize()); | |
273 crypto::RandBytes(&entropy[0], entropy.size()); | |
274 key_source = RsaPad(PublicKeyLength(), entropy); | |
275 | |
276 return DeriveSharedKey(key_source); | |
277 } | |
278 | |
279 bool ClientUpdateProtocol::SetSharedKeyForTesting( | |
280 const base::StringPiece& key_source) { | |
281 DCHECK_EQ(key_source.length(), PublicKeyLength()); | |
282 | |
283 return DeriveSharedKey(std::vector<uint8>(key_source.begin(), | |
284 key_source.end())); | |
285 } | |
286 | |
287 bool ClientUpdateProtocol::DeriveSharedKey(const std::vector<uint8>& source) { | |
288 DCHECK(!source.empty()); | |
289 DCHECK_GE(source.size(), HashDigestSize()); | |
290 DCHECK_EQ(source.size(), PublicKeyLength()); | |
291 | |
292 // Hash the key source (r) to generate a new shared HMAC key (sk'). | |
293 shared_key_ = Hash(source); | |
294 | |
295 // Encrypt the key source (r) using the public key (pk[v]) to generate the | |
296 // encrypted key source (w). | |
297 if (!EncryptKeySource(source)) | |
298 return false; | |
299 if (encrypted_key_source_.size() != PublicKeyLength()) | |
300 return false; | |
301 | |
302 return true; | |
303 } | |
OLD | NEW |