| Index: src/bignum-dtoa.cc
|
| diff --git a/src/bignum-dtoa.cc b/src/bignum-dtoa.cc
|
| index df911c745f8657988e4e1b965e578f2050af3bd7..53bf418f936407eeac0a2e282e96ba2e399c3a32 100644
|
| --- a/src/bignum-dtoa.cc
|
| +++ b/src/bignum-dtoa.cc
|
| @@ -17,7 +17,7 @@ namespace v8 {
|
| namespace internal {
|
|
|
| static int NormalizedExponent(uint64_t significand, int exponent) {
|
| - ASSERT(significand != 0);
|
| + DCHECK(significand != 0);
|
| while ((significand & Double::kHiddenBit) == 0) {
|
| significand = significand << 1;
|
| exponent = exponent - 1;
|
| @@ -68,8 +68,8 @@ static void GenerateCountedDigits(int count, int* decimal_point,
|
|
|
| void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
|
| Vector<char> buffer, int* length, int* decimal_point) {
|
| - ASSERT(v > 0);
|
| - ASSERT(!Double(v).IsSpecial());
|
| + DCHECK(v > 0);
|
| + DCHECK(!Double(v).IsSpecial());
|
| uint64_t significand = Double(v).Significand();
|
| bool is_even = (significand & 1) == 0;
|
| int exponent = Double(v).Exponent();
|
| @@ -99,7 +99,7 @@ void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
|
| // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
|
| // The maximum double is 1.7976931348623157e308 which needs fewer than
|
| // 308*4 binary digits.
|
| - ASSERT(Bignum::kMaxSignificantBits >= 324*4);
|
| + DCHECK(Bignum::kMaxSignificantBits >= 324*4);
|
| bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
|
| InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
|
| &numerator, &denominator,
|
| @@ -159,7 +159,7 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
|
| while (true) {
|
| uint16_t digit;
|
| digit = numerator->DivideModuloIntBignum(*denominator);
|
| - ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
|
| + DCHECK(digit <= 9); // digit is a uint16_t and therefore always positive.
|
| // digit = numerator / denominator (integer division).
|
| // numerator = numerator % denominator.
|
| buffer[(*length)++] = digit + '0';
|
| @@ -205,7 +205,7 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
|
| // loop would have stopped earlier.
|
| // We still have an assert here in case the preconditions were not
|
| // satisfied.
|
| - ASSERT(buffer[(*length) - 1] != '9');
|
| + DCHECK(buffer[(*length) - 1] != '9');
|
| buffer[(*length) - 1]++;
|
| } else {
|
| // Halfway case.
|
| @@ -216,7 +216,7 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
|
| if ((buffer[(*length) - 1] - '0') % 2 == 0) {
|
| // Round down => Do nothing.
|
| } else {
|
| - ASSERT(buffer[(*length) - 1] != '9');
|
| + DCHECK(buffer[(*length) - 1] != '9');
|
| buffer[(*length) - 1]++;
|
| }
|
| }
|
| @@ -228,9 +228,9 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
|
| // Round up.
|
| // Note again that the last digit could not be '9' since this would have
|
| // stopped the loop earlier.
|
| - // We still have an ASSERT here, in case the preconditions were not
|
| + // We still have an DCHECK here, in case the preconditions were not
|
| // satisfied.
|
| - ASSERT(buffer[(*length) -1] != '9');
|
| + DCHECK(buffer[(*length) -1] != '9');
|
| buffer[(*length) - 1]++;
|
| return;
|
| }
|
| @@ -247,11 +247,11 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
|
| static void GenerateCountedDigits(int count, int* decimal_point,
|
| Bignum* numerator, Bignum* denominator,
|
| Vector<char>(buffer), int* length) {
|
| - ASSERT(count >= 0);
|
| + DCHECK(count >= 0);
|
| for (int i = 0; i < count - 1; ++i) {
|
| uint16_t digit;
|
| digit = numerator->DivideModuloIntBignum(*denominator);
|
| - ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
|
| + DCHECK(digit <= 9); // digit is a uint16_t and therefore always positive.
|
| // digit = numerator / denominator (integer division).
|
| // numerator = numerator % denominator.
|
| buffer[i] = digit + '0';
|
| @@ -304,7 +304,7 @@ static void BignumToFixed(int requested_digits, int* decimal_point,
|
| } else if (-(*decimal_point) == requested_digits) {
|
| // We only need to verify if the number rounds down or up.
|
| // Ex: 0.04 and 0.06 with requested_digits == 1.
|
| - ASSERT(*decimal_point == -requested_digits);
|
| + DCHECK(*decimal_point == -requested_digits);
|
| // Initially the fraction lies in range (1, 10]. Multiply the denominator
|
| // by 10 so that we can compare more easily.
|
| denominator->Times10();
|
| @@ -383,7 +383,7 @@ static void InitialScaledStartValuesPositiveExponent(
|
| Bignum* numerator, Bignum* denominator,
|
| Bignum* delta_minus, Bignum* delta_plus) {
|
| // A positive exponent implies a positive power.
|
| - ASSERT(estimated_power >= 0);
|
| + DCHECK(estimated_power >= 0);
|
| // Since the estimated_power is positive we simply multiply the denominator
|
| // by 10^estimated_power.
|
|
|
| @@ -502,7 +502,7 @@ static void InitialScaledStartValuesNegativeExponentNegativePower(
|
| // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
|
| // Remember: numerator has been abused as power_ten. So no need to assign it
|
| // to itself.
|
| - ASSERT(numerator == power_ten);
|
| + DCHECK(numerator == power_ten);
|
| numerator->MultiplyByUInt64(significand);
|
|
|
| // denominator = 2 * 2^-exponent with exponent < 0.
|
|
|