Index: src/bignum-dtoa.cc |
diff --git a/src/bignum-dtoa.cc b/src/bignum-dtoa.cc |
index df911c745f8657988e4e1b965e578f2050af3bd7..53bf418f936407eeac0a2e282e96ba2e399c3a32 100644 |
--- a/src/bignum-dtoa.cc |
+++ b/src/bignum-dtoa.cc |
@@ -17,7 +17,7 @@ namespace v8 { |
namespace internal { |
static int NormalizedExponent(uint64_t significand, int exponent) { |
- ASSERT(significand != 0); |
+ DCHECK(significand != 0); |
while ((significand & Double::kHiddenBit) == 0) { |
significand = significand << 1; |
exponent = exponent - 1; |
@@ -68,8 +68,8 @@ static void GenerateCountedDigits(int count, int* decimal_point, |
void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, |
Vector<char> buffer, int* length, int* decimal_point) { |
- ASSERT(v > 0); |
- ASSERT(!Double(v).IsSpecial()); |
+ DCHECK(v > 0); |
+ DCHECK(!Double(v).IsSpecial()); |
uint64_t significand = Double(v).Significand(); |
bool is_even = (significand & 1) == 0; |
int exponent = Double(v).Exponent(); |
@@ -99,7 +99,7 @@ void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, |
// 4e-324. In this case the denominator needs fewer than 324*4 binary digits. |
// The maximum double is 1.7976931348623157e308 which needs fewer than |
// 308*4 binary digits. |
- ASSERT(Bignum::kMaxSignificantBits >= 324*4); |
+ DCHECK(Bignum::kMaxSignificantBits >= 324*4); |
bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST); |
InitialScaledStartValues(v, estimated_power, need_boundary_deltas, |
&numerator, &denominator, |
@@ -159,7 +159,7 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, |
while (true) { |
uint16_t digit; |
digit = numerator->DivideModuloIntBignum(*denominator); |
- ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. |
+ DCHECK(digit <= 9); // digit is a uint16_t and therefore always positive. |
// digit = numerator / denominator (integer division). |
// numerator = numerator % denominator. |
buffer[(*length)++] = digit + '0'; |
@@ -205,7 +205,7 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, |
// loop would have stopped earlier. |
// We still have an assert here in case the preconditions were not |
// satisfied. |
- ASSERT(buffer[(*length) - 1] != '9'); |
+ DCHECK(buffer[(*length) - 1] != '9'); |
buffer[(*length) - 1]++; |
} else { |
// Halfway case. |
@@ -216,7 +216,7 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, |
if ((buffer[(*length) - 1] - '0') % 2 == 0) { |
// Round down => Do nothing. |
} else { |
- ASSERT(buffer[(*length) - 1] != '9'); |
+ DCHECK(buffer[(*length) - 1] != '9'); |
buffer[(*length) - 1]++; |
} |
} |
@@ -228,9 +228,9 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, |
// Round up. |
// Note again that the last digit could not be '9' since this would have |
// stopped the loop earlier. |
- // We still have an ASSERT here, in case the preconditions were not |
+ // We still have an DCHECK here, in case the preconditions were not |
// satisfied. |
- ASSERT(buffer[(*length) -1] != '9'); |
+ DCHECK(buffer[(*length) -1] != '9'); |
buffer[(*length) - 1]++; |
return; |
} |
@@ -247,11 +247,11 @@ static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, |
static void GenerateCountedDigits(int count, int* decimal_point, |
Bignum* numerator, Bignum* denominator, |
Vector<char>(buffer), int* length) { |
- ASSERT(count >= 0); |
+ DCHECK(count >= 0); |
for (int i = 0; i < count - 1; ++i) { |
uint16_t digit; |
digit = numerator->DivideModuloIntBignum(*denominator); |
- ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive. |
+ DCHECK(digit <= 9); // digit is a uint16_t and therefore always positive. |
// digit = numerator / denominator (integer division). |
// numerator = numerator % denominator. |
buffer[i] = digit + '0'; |
@@ -304,7 +304,7 @@ static void BignumToFixed(int requested_digits, int* decimal_point, |
} else if (-(*decimal_point) == requested_digits) { |
// We only need to verify if the number rounds down or up. |
// Ex: 0.04 and 0.06 with requested_digits == 1. |
- ASSERT(*decimal_point == -requested_digits); |
+ DCHECK(*decimal_point == -requested_digits); |
// Initially the fraction lies in range (1, 10]. Multiply the denominator |
// by 10 so that we can compare more easily. |
denominator->Times10(); |
@@ -383,7 +383,7 @@ static void InitialScaledStartValuesPositiveExponent( |
Bignum* numerator, Bignum* denominator, |
Bignum* delta_minus, Bignum* delta_plus) { |
// A positive exponent implies a positive power. |
- ASSERT(estimated_power >= 0); |
+ DCHECK(estimated_power >= 0); |
// Since the estimated_power is positive we simply multiply the denominator |
// by 10^estimated_power. |
@@ -502,7 +502,7 @@ static void InitialScaledStartValuesNegativeExponentNegativePower( |
// numerator = v * 10^-estimated_power * 2 * 2^-exponent. |
// Remember: numerator has been abused as power_ten. So no need to assign it |
// to itself. |
- ASSERT(numerator == power_ten); |
+ DCHECK(numerator == power_ten); |
numerator->MultiplyByUInt64(significand); |
// denominator = 2 * 2^-exponent with exponent < 0. |