| Index: src/fast-dtoa.cc
|
| diff --git a/src/fast-dtoa.cc b/src/fast-dtoa.cc
|
| index ce124125009ff30ef62d1de12f3460caec276fa7..13b04634de7685c749850dc676a196d4c6f4383e 100644
|
| --- a/src/fast-dtoa.cc
|
| +++ b/src/fast-dtoa.cc
|
| @@ -120,7 +120,7 @@ static bool RoundWeed(Vector<char> buffer,
|
| // Conceptually rest ~= too_high - buffer
|
| // We need to do the following tests in this order to avoid over- and
|
| // underflows.
|
| - ASSERT(rest <= unsafe_interval);
|
| + DCHECK(rest <= unsafe_interval);
|
| while (rest < small_distance && // Negated condition 1
|
| unsafe_interval - rest >= ten_kappa && // Negated condition 2
|
| (rest + ten_kappa < small_distance || // buffer{-1} > w_high
|
| @@ -166,7 +166,7 @@ static bool RoundWeedCounted(Vector<char> buffer,
|
| uint64_t ten_kappa,
|
| uint64_t unit,
|
| int* kappa) {
|
| - ASSERT(rest < ten_kappa);
|
| + DCHECK(rest < ten_kappa);
|
| // The following tests are done in a specific order to avoid overflows. They
|
| // will work correctly with any uint64 values of rest < ten_kappa and unit.
|
| //
|
| @@ -365,9 +365,9 @@ static bool DigitGen(DiyFp low,
|
| Vector<char> buffer,
|
| int* length,
|
| int* kappa) {
|
| - ASSERT(low.e() == w.e() && w.e() == high.e());
|
| - ASSERT(low.f() + 1 <= high.f() - 1);
|
| - ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
|
| + DCHECK(low.e() == w.e() && w.e() == high.e());
|
| + DCHECK(low.f() + 1 <= high.f() - 1);
|
| + DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
|
| // low, w and high are imprecise, but by less than one ulp (unit in the last
|
| // place).
|
| // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
|
| @@ -435,9 +435,9 @@ static bool DigitGen(DiyFp low,
|
| // data (like the interval or 'unit'), too.
|
| // Note that the multiplication by 10 does not overflow, because w.e >= -60
|
| // and thus one.e >= -60.
|
| - ASSERT(one.e() >= -60);
|
| - ASSERT(fractionals < one.f());
|
| - ASSERT(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
|
| + DCHECK(one.e() >= -60);
|
| + DCHECK(fractionals < one.f());
|
| + DCHECK(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
|
| while (true) {
|
| fractionals *= 10;
|
| unit *= 10;
|
| @@ -490,9 +490,9 @@ static bool DigitGenCounted(DiyFp w,
|
| Vector<char> buffer,
|
| int* length,
|
| int* kappa) {
|
| - ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
|
| - ASSERT(kMinimalTargetExponent >= -60);
|
| - ASSERT(kMaximalTargetExponent <= -32);
|
| + DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
|
| + DCHECK(kMinimalTargetExponent >= -60);
|
| + DCHECK(kMaximalTargetExponent <= -32);
|
| // w is assumed to have an error less than 1 unit. Whenever w is scaled we
|
| // also scale its error.
|
| uint64_t w_error = 1;
|
| @@ -543,9 +543,9 @@ static bool DigitGenCounted(DiyFp w,
|
| // data (the 'unit'), too.
|
| // Note that the multiplication by 10 does not overflow, because w.e >= -60
|
| // and thus one.e >= -60.
|
| - ASSERT(one.e() >= -60);
|
| - ASSERT(fractionals < one.f());
|
| - ASSERT(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
|
| + DCHECK(one.e() >= -60);
|
| + DCHECK(fractionals < one.f());
|
| + DCHECK(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
|
| while (requested_digits > 0 && fractionals > w_error) {
|
| fractionals *= 10;
|
| w_error *= 10;
|
| @@ -585,7 +585,7 @@ static bool Grisu3(double v,
|
| // Grisu3 will never output representations that lie exactly on a boundary.
|
| DiyFp boundary_minus, boundary_plus;
|
| Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
|
| - ASSERT(boundary_plus.e() == w.e());
|
| + DCHECK(boundary_plus.e() == w.e());
|
| DiyFp ten_mk; // Cached power of ten: 10^-k
|
| int mk; // -k
|
| int ten_mk_minimal_binary_exponent =
|
| @@ -596,7 +596,7 @@ static bool Grisu3(double v,
|
| ten_mk_minimal_binary_exponent,
|
| ten_mk_maximal_binary_exponent,
|
| &ten_mk, &mk);
|
| - ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
|
| + DCHECK((kMinimalTargetExponent <= w.e() + ten_mk.e() +
|
| DiyFp::kSignificandSize) &&
|
| (kMaximalTargetExponent >= w.e() + ten_mk.e() +
|
| DiyFp::kSignificandSize));
|
| @@ -610,7 +610,7 @@ static bool Grisu3(double v,
|
| // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
|
| // (f-1) * 2^e < w*10^k < (f+1) * 2^e
|
| DiyFp scaled_w = DiyFp::Times(w, ten_mk);
|
| - ASSERT(scaled_w.e() ==
|
| + DCHECK(scaled_w.e() ==
|
| boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
|
| // In theory it would be possible to avoid some recomputations by computing
|
| // the difference between w and boundary_minus/plus (a power of 2) and to
|
| @@ -655,7 +655,7 @@ static bool Grisu3Counted(double v,
|
| ten_mk_minimal_binary_exponent,
|
| ten_mk_maximal_binary_exponent,
|
| &ten_mk, &mk);
|
| - ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
|
| + DCHECK((kMinimalTargetExponent <= w.e() + ten_mk.e() +
|
| DiyFp::kSignificandSize) &&
|
| (kMaximalTargetExponent >= w.e() + ten_mk.e() +
|
| DiyFp::kSignificandSize));
|
| @@ -689,8 +689,8 @@ bool FastDtoa(double v,
|
| Vector<char> buffer,
|
| int* length,
|
| int* decimal_point) {
|
| - ASSERT(v > 0);
|
| - ASSERT(!Double(v).IsSpecial());
|
| + DCHECK(v > 0);
|
| + DCHECK(!Double(v).IsSpecial());
|
|
|
| bool result = false;
|
| int decimal_exponent = 0;
|
|
|