Index: src/fast-dtoa.cc |
diff --git a/src/fast-dtoa.cc b/src/fast-dtoa.cc |
index ce124125009ff30ef62d1de12f3460caec276fa7..13b04634de7685c749850dc676a196d4c6f4383e 100644 |
--- a/src/fast-dtoa.cc |
+++ b/src/fast-dtoa.cc |
@@ -120,7 +120,7 @@ static bool RoundWeed(Vector<char> buffer, |
// Conceptually rest ~= too_high - buffer |
// We need to do the following tests in this order to avoid over- and |
// underflows. |
- ASSERT(rest <= unsafe_interval); |
+ DCHECK(rest <= unsafe_interval); |
while (rest < small_distance && // Negated condition 1 |
unsafe_interval - rest >= ten_kappa && // Negated condition 2 |
(rest + ten_kappa < small_distance || // buffer{-1} > w_high |
@@ -166,7 +166,7 @@ static bool RoundWeedCounted(Vector<char> buffer, |
uint64_t ten_kappa, |
uint64_t unit, |
int* kappa) { |
- ASSERT(rest < ten_kappa); |
+ DCHECK(rest < ten_kappa); |
// The following tests are done in a specific order to avoid overflows. They |
// will work correctly with any uint64 values of rest < ten_kappa and unit. |
// |
@@ -365,9 +365,9 @@ static bool DigitGen(DiyFp low, |
Vector<char> buffer, |
int* length, |
int* kappa) { |
- ASSERT(low.e() == w.e() && w.e() == high.e()); |
- ASSERT(low.f() + 1 <= high.f() - 1); |
- ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); |
+ DCHECK(low.e() == w.e() && w.e() == high.e()); |
+ DCHECK(low.f() + 1 <= high.f() - 1); |
+ DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); |
// low, w and high are imprecise, but by less than one ulp (unit in the last |
// place). |
// If we remove (resp. add) 1 ulp from low (resp. high) we are certain that |
@@ -435,9 +435,9 @@ static bool DigitGen(DiyFp low, |
// data (like the interval or 'unit'), too. |
// Note that the multiplication by 10 does not overflow, because w.e >= -60 |
// and thus one.e >= -60. |
- ASSERT(one.e() >= -60); |
- ASSERT(fractionals < one.f()); |
- ASSERT(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); |
+ DCHECK(one.e() >= -60); |
+ DCHECK(fractionals < one.f()); |
+ DCHECK(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); |
while (true) { |
fractionals *= 10; |
unit *= 10; |
@@ -490,9 +490,9 @@ static bool DigitGenCounted(DiyFp w, |
Vector<char> buffer, |
int* length, |
int* kappa) { |
- ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); |
- ASSERT(kMinimalTargetExponent >= -60); |
- ASSERT(kMaximalTargetExponent <= -32); |
+ DCHECK(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); |
+ DCHECK(kMinimalTargetExponent >= -60); |
+ DCHECK(kMaximalTargetExponent <= -32); |
// w is assumed to have an error less than 1 unit. Whenever w is scaled we |
// also scale its error. |
uint64_t w_error = 1; |
@@ -543,9 +543,9 @@ static bool DigitGenCounted(DiyFp w, |
// data (the 'unit'), too. |
// Note that the multiplication by 10 does not overflow, because w.e >= -60 |
// and thus one.e >= -60. |
- ASSERT(one.e() >= -60); |
- ASSERT(fractionals < one.f()); |
- ASSERT(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); |
+ DCHECK(one.e() >= -60); |
+ DCHECK(fractionals < one.f()); |
+ DCHECK(V8_2PART_UINT64_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); |
while (requested_digits > 0 && fractionals > w_error) { |
fractionals *= 10; |
w_error *= 10; |
@@ -585,7 +585,7 @@ static bool Grisu3(double v, |
// Grisu3 will never output representations that lie exactly on a boundary. |
DiyFp boundary_minus, boundary_plus; |
Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
- ASSERT(boundary_plus.e() == w.e()); |
+ DCHECK(boundary_plus.e() == w.e()); |
DiyFp ten_mk; // Cached power of ten: 10^-k |
int mk; // -k |
int ten_mk_minimal_binary_exponent = |
@@ -596,7 +596,7 @@ static bool Grisu3(double v, |
ten_mk_minimal_binary_exponent, |
ten_mk_maximal_binary_exponent, |
&ten_mk, &mk); |
- ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + |
+ DCHECK((kMinimalTargetExponent <= w.e() + ten_mk.e() + |
DiyFp::kSignificandSize) && |
(kMaximalTargetExponent >= w.e() + ten_mk.e() + |
DiyFp::kSignificandSize)); |
@@ -610,7 +610,7 @@ static bool Grisu3(double v, |
// In other words: let f = scaled_w.f() and e = scaled_w.e(), then |
// (f-1) * 2^e < w*10^k < (f+1) * 2^e |
DiyFp scaled_w = DiyFp::Times(w, ten_mk); |
- ASSERT(scaled_w.e() == |
+ DCHECK(scaled_w.e() == |
boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); |
// In theory it would be possible to avoid some recomputations by computing |
// the difference between w and boundary_minus/plus (a power of 2) and to |
@@ -655,7 +655,7 @@ static bool Grisu3Counted(double v, |
ten_mk_minimal_binary_exponent, |
ten_mk_maximal_binary_exponent, |
&ten_mk, &mk); |
- ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + |
+ DCHECK((kMinimalTargetExponent <= w.e() + ten_mk.e() + |
DiyFp::kSignificandSize) && |
(kMaximalTargetExponent >= w.e() + ten_mk.e() + |
DiyFp::kSignificandSize)); |
@@ -689,8 +689,8 @@ bool FastDtoa(double v, |
Vector<char> buffer, |
int* length, |
int* decimal_point) { |
- ASSERT(v > 0); |
- ASSERT(!Double(v).IsSpecial()); |
+ DCHECK(v > 0); |
+ DCHECK(!Double(v).IsSpecial()); |
bool result = false; |
int decimal_exponent = 0; |