| OLD | NEW |
| 1 // Copyright 2012 the V8 project authors. All rights reserved. | 1 // Copyright 2012 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include "src/v8.h" | 5 #include "src/v8.h" |
| 6 | 6 |
| 7 #include "src/arm/lithium-codegen-arm.h" | 7 #include "src/arm/lithium-codegen-arm.h" |
| 8 #include "src/arm/lithium-gap-resolver-arm.h" | 8 #include "src/arm/lithium-gap-resolver-arm.h" |
| 9 | 9 |
| 10 namespace v8 { | 10 namespace v8 { |
| (...skipping 11 matching lines...) Expand all Loading... |
| 22 | 22 |
| 23 LGapResolver::LGapResolver(LCodeGen* owner) | 23 LGapResolver::LGapResolver(LCodeGen* owner) |
| 24 : cgen_(owner), moves_(32, owner->zone()), root_index_(0), in_cycle_(false), | 24 : cgen_(owner), moves_(32, owner->zone()), root_index_(0), in_cycle_(false), |
| 25 saved_destination_(NULL), need_to_restore_root_(false) { } | 25 saved_destination_(NULL), need_to_restore_root_(false) { } |
| 26 | 26 |
| 27 | 27 |
| 28 #define __ ACCESS_MASM(cgen_->masm()) | 28 #define __ ACCESS_MASM(cgen_->masm()) |
| 29 | 29 |
| 30 | 30 |
| 31 void LGapResolver::Resolve(LParallelMove* parallel_move) { | 31 void LGapResolver::Resolve(LParallelMove* parallel_move) { |
| 32 ASSERT(moves_.is_empty()); | 32 DCHECK(moves_.is_empty()); |
| 33 // Build up a worklist of moves. | 33 // Build up a worklist of moves. |
| 34 BuildInitialMoveList(parallel_move); | 34 BuildInitialMoveList(parallel_move); |
| 35 | 35 |
| 36 for (int i = 0; i < moves_.length(); ++i) { | 36 for (int i = 0; i < moves_.length(); ++i) { |
| 37 LMoveOperands move = moves_[i]; | 37 LMoveOperands move = moves_[i]; |
| 38 // Skip constants to perform them last. They don't block other moves | 38 // Skip constants to perform them last. They don't block other moves |
| 39 // and skipping such moves with register destinations keeps those | 39 // and skipping such moves with register destinations keeps those |
| 40 // registers free for the whole algorithm. | 40 // registers free for the whole algorithm. |
| 41 if (!move.IsEliminated() && !move.source()->IsConstantOperand()) { | 41 if (!move.IsEliminated() && !move.source()->IsConstantOperand()) { |
| 42 root_index_ = i; // Any cycle is found when by reaching this move again. | 42 root_index_ = i; // Any cycle is found when by reaching this move again. |
| 43 PerformMove(i); | 43 PerformMove(i); |
| 44 if (in_cycle_) { | 44 if (in_cycle_) { |
| 45 RestoreValue(); | 45 RestoreValue(); |
| 46 } | 46 } |
| 47 } | 47 } |
| 48 } | 48 } |
| 49 | 49 |
| 50 // Perform the moves with constant sources. | 50 // Perform the moves with constant sources. |
| 51 for (int i = 0; i < moves_.length(); ++i) { | 51 for (int i = 0; i < moves_.length(); ++i) { |
| 52 if (!moves_[i].IsEliminated()) { | 52 if (!moves_[i].IsEliminated()) { |
| 53 ASSERT(moves_[i].source()->IsConstantOperand()); | 53 DCHECK(moves_[i].source()->IsConstantOperand()); |
| 54 EmitMove(i); | 54 EmitMove(i); |
| 55 } | 55 } |
| 56 } | 56 } |
| 57 | 57 |
| 58 if (need_to_restore_root_) { | 58 if (need_to_restore_root_) { |
| 59 ASSERT(kSavedValueRegister.is(kRootRegister)); | 59 DCHECK(kSavedValueRegister.is(kRootRegister)); |
| 60 __ InitializeRootRegister(); | 60 __ InitializeRootRegister(); |
| 61 need_to_restore_root_ = false; | 61 need_to_restore_root_ = false; |
| 62 } | 62 } |
| 63 | 63 |
| 64 moves_.Rewind(0); | 64 moves_.Rewind(0); |
| 65 } | 65 } |
| 66 | 66 |
| 67 | 67 |
| 68 void LGapResolver::BuildInitialMoveList(LParallelMove* parallel_move) { | 68 void LGapResolver::BuildInitialMoveList(LParallelMove* parallel_move) { |
| 69 // Perform a linear sweep of the moves to add them to the initial list of | 69 // Perform a linear sweep of the moves to add them to the initial list of |
| (...skipping 17 matching lines...) Expand all Loading... |
| 87 | 87 |
| 88 // We can only find a cycle, when doing a depth-first traversal of moves, | 88 // We can only find a cycle, when doing a depth-first traversal of moves, |
| 89 // be encountering the starting move again. So by spilling the source of | 89 // be encountering the starting move again. So by spilling the source of |
| 90 // the starting move, we break the cycle. All moves are then unblocked, | 90 // the starting move, we break the cycle. All moves are then unblocked, |
| 91 // and the starting move is completed by writing the spilled value to | 91 // and the starting move is completed by writing the spilled value to |
| 92 // its destination. All other moves from the spilled source have been | 92 // its destination. All other moves from the spilled source have been |
| 93 // completed prior to breaking the cycle. | 93 // completed prior to breaking the cycle. |
| 94 // An additional complication is that moves to MemOperands with large | 94 // An additional complication is that moves to MemOperands with large |
| 95 // offsets (more than 1K or 4K) require us to spill this spilled value to | 95 // offsets (more than 1K or 4K) require us to spill this spilled value to |
| 96 // the stack, to free up the register. | 96 // the stack, to free up the register. |
| 97 ASSERT(!moves_[index].IsPending()); | 97 DCHECK(!moves_[index].IsPending()); |
| 98 ASSERT(!moves_[index].IsRedundant()); | 98 DCHECK(!moves_[index].IsRedundant()); |
| 99 | 99 |
| 100 // Clear this move's destination to indicate a pending move. The actual | 100 // Clear this move's destination to indicate a pending move. The actual |
| 101 // destination is saved in a stack allocated local. Multiple moves can | 101 // destination is saved in a stack allocated local. Multiple moves can |
| 102 // be pending because this function is recursive. | 102 // be pending because this function is recursive. |
| 103 ASSERT(moves_[index].source() != NULL); // Or else it will look eliminated. | 103 DCHECK(moves_[index].source() != NULL); // Or else it will look eliminated. |
| 104 LOperand* destination = moves_[index].destination(); | 104 LOperand* destination = moves_[index].destination(); |
| 105 moves_[index].set_destination(NULL); | 105 moves_[index].set_destination(NULL); |
| 106 | 106 |
| 107 // Perform a depth-first traversal of the move graph to resolve | 107 // Perform a depth-first traversal of the move graph to resolve |
| 108 // dependencies. Any unperformed, unpending move with a source the same | 108 // dependencies. Any unperformed, unpending move with a source the same |
| 109 // as this one's destination blocks this one so recursively perform all | 109 // as this one's destination blocks this one so recursively perform all |
| 110 // such moves. | 110 // such moves. |
| 111 for (int i = 0; i < moves_.length(); ++i) { | 111 for (int i = 0; i < moves_.length(); ++i) { |
| 112 LMoveOperands other_move = moves_[i]; | 112 LMoveOperands other_move = moves_[i]; |
| 113 if (other_move.Blocks(destination) && !other_move.IsPending()) { | 113 if (other_move.Blocks(destination) && !other_move.IsPending()) { |
| 114 PerformMove(i); | 114 PerformMove(i); |
| 115 // If there is a blocking, pending move it must be moves_[root_index_] | 115 // If there is a blocking, pending move it must be moves_[root_index_] |
| 116 // and all other moves with the same source as moves_[root_index_] are | 116 // and all other moves with the same source as moves_[root_index_] are |
| 117 // sucessfully executed (because they are cycle-free) by this loop. | 117 // sucessfully executed (because they are cycle-free) by this loop. |
| 118 } | 118 } |
| 119 } | 119 } |
| 120 | 120 |
| 121 // We are about to resolve this move and don't need it marked as | 121 // We are about to resolve this move and don't need it marked as |
| 122 // pending, so restore its destination. | 122 // pending, so restore its destination. |
| 123 moves_[index].set_destination(destination); | 123 moves_[index].set_destination(destination); |
| 124 | 124 |
| 125 // The move may be blocked on a pending move, which must be the starting move. | 125 // The move may be blocked on a pending move, which must be the starting move. |
| 126 // In this case, we have a cycle, and we save the source of this move to | 126 // In this case, we have a cycle, and we save the source of this move to |
| 127 // a scratch register to break it. | 127 // a scratch register to break it. |
| 128 LMoveOperands other_move = moves_[root_index_]; | 128 LMoveOperands other_move = moves_[root_index_]; |
| 129 if (other_move.Blocks(destination)) { | 129 if (other_move.Blocks(destination)) { |
| 130 ASSERT(other_move.IsPending()); | 130 DCHECK(other_move.IsPending()); |
| 131 BreakCycle(index); | 131 BreakCycle(index); |
| 132 return; | 132 return; |
| 133 } | 133 } |
| 134 | 134 |
| 135 // This move is no longer blocked. | 135 // This move is no longer blocked. |
| 136 EmitMove(index); | 136 EmitMove(index); |
| 137 } | 137 } |
| 138 | 138 |
| 139 | 139 |
| 140 void LGapResolver::Verify() { | 140 void LGapResolver::Verify() { |
| 141 #ifdef ENABLE_SLOW_ASSERTS | 141 #ifdef ENABLE_SLOW_DCHECKS |
| 142 // No operand should be the destination for more than one move. | 142 // No operand should be the destination for more than one move. |
| 143 for (int i = 0; i < moves_.length(); ++i) { | 143 for (int i = 0; i < moves_.length(); ++i) { |
| 144 LOperand* destination = moves_[i].destination(); | 144 LOperand* destination = moves_[i].destination(); |
| 145 for (int j = i + 1; j < moves_.length(); ++j) { | 145 for (int j = i + 1; j < moves_.length(); ++j) { |
| 146 SLOW_ASSERT(!destination->Equals(moves_[j].destination())); | 146 SLOW_DCHECK(!destination->Equals(moves_[j].destination())); |
| 147 } | 147 } |
| 148 } | 148 } |
| 149 #endif | 149 #endif |
| 150 } | 150 } |
| 151 | 151 |
| 152 | 152 |
| 153 void LGapResolver::BreakCycle(int index) { | 153 void LGapResolver::BreakCycle(int index) { |
| 154 // We save in a register the source of that move and we remember its | 154 // We save in a register the source of that move and we remember its |
| 155 // destination. Then we mark this move as resolved so the cycle is | 155 // destination. Then we mark this move as resolved so the cycle is |
| 156 // broken and we can perform the other moves. | 156 // broken and we can perform the other moves. |
| 157 ASSERT(moves_[index].destination()->Equals(moves_[root_index_].source())); | 157 DCHECK(moves_[index].destination()->Equals(moves_[root_index_].source())); |
| 158 ASSERT(!in_cycle_); | 158 DCHECK(!in_cycle_); |
| 159 in_cycle_ = true; | 159 in_cycle_ = true; |
| 160 LOperand* source = moves_[index].source(); | 160 LOperand* source = moves_[index].source(); |
| 161 saved_destination_ = moves_[index].destination(); | 161 saved_destination_ = moves_[index].destination(); |
| 162 if (source->IsRegister()) { | 162 if (source->IsRegister()) { |
| 163 need_to_restore_root_ = true; | 163 need_to_restore_root_ = true; |
| 164 __ mov(kSavedValueRegister, cgen_->ToRegister(source)); | 164 __ mov(kSavedValueRegister, cgen_->ToRegister(source)); |
| 165 } else if (source->IsStackSlot()) { | 165 } else if (source->IsStackSlot()) { |
| 166 need_to_restore_root_ = true; | 166 need_to_restore_root_ = true; |
| 167 __ ldr(kSavedValueRegister, cgen_->ToMemOperand(source)); | 167 __ ldr(kSavedValueRegister, cgen_->ToMemOperand(source)); |
| 168 } else if (source->IsDoubleRegister()) { | 168 } else if (source->IsDoubleRegister()) { |
| 169 __ vmov(kScratchDoubleReg, cgen_->ToDoubleRegister(source)); | 169 __ vmov(kScratchDoubleReg, cgen_->ToDoubleRegister(source)); |
| 170 } else if (source->IsDoubleStackSlot()) { | 170 } else if (source->IsDoubleStackSlot()) { |
| 171 __ vldr(kScratchDoubleReg, cgen_->ToMemOperand(source)); | 171 __ vldr(kScratchDoubleReg, cgen_->ToMemOperand(source)); |
| 172 } else { | 172 } else { |
| 173 UNREACHABLE(); | 173 UNREACHABLE(); |
| 174 } | 174 } |
| 175 // This move will be done by restoring the saved value to the destination. | 175 // This move will be done by restoring the saved value to the destination. |
| 176 moves_[index].Eliminate(); | 176 moves_[index].Eliminate(); |
| 177 } | 177 } |
| 178 | 178 |
| 179 | 179 |
| 180 void LGapResolver::RestoreValue() { | 180 void LGapResolver::RestoreValue() { |
| 181 ASSERT(in_cycle_); | 181 DCHECK(in_cycle_); |
| 182 ASSERT(saved_destination_ != NULL); | 182 DCHECK(saved_destination_ != NULL); |
| 183 | 183 |
| 184 if (saved_destination_->IsRegister()) { | 184 if (saved_destination_->IsRegister()) { |
| 185 __ mov(cgen_->ToRegister(saved_destination_), kSavedValueRegister); | 185 __ mov(cgen_->ToRegister(saved_destination_), kSavedValueRegister); |
| 186 } else if (saved_destination_->IsStackSlot()) { | 186 } else if (saved_destination_->IsStackSlot()) { |
| 187 __ str(kSavedValueRegister, cgen_->ToMemOperand(saved_destination_)); | 187 __ str(kSavedValueRegister, cgen_->ToMemOperand(saved_destination_)); |
| 188 } else if (saved_destination_->IsDoubleRegister()) { | 188 } else if (saved_destination_->IsDoubleRegister()) { |
| 189 __ vmov(cgen_->ToDoubleRegister(saved_destination_), kScratchDoubleReg); | 189 __ vmov(cgen_->ToDoubleRegister(saved_destination_), kScratchDoubleReg); |
| 190 } else if (saved_destination_->IsDoubleStackSlot()) { | 190 } else if (saved_destination_->IsDoubleStackSlot()) { |
| 191 __ vstr(kScratchDoubleReg, cgen_->ToMemOperand(saved_destination_)); | 191 __ vstr(kScratchDoubleReg, cgen_->ToMemOperand(saved_destination_)); |
| 192 } else { | 192 } else { |
| (...skipping 10 matching lines...) Expand all Loading... |
| 203 LOperand* destination = moves_[index].destination(); | 203 LOperand* destination = moves_[index].destination(); |
| 204 | 204 |
| 205 // Dispatch on the source and destination operand kinds. Not all | 205 // Dispatch on the source and destination operand kinds. Not all |
| 206 // combinations are possible. | 206 // combinations are possible. |
| 207 | 207 |
| 208 if (source->IsRegister()) { | 208 if (source->IsRegister()) { |
| 209 Register source_register = cgen_->ToRegister(source); | 209 Register source_register = cgen_->ToRegister(source); |
| 210 if (destination->IsRegister()) { | 210 if (destination->IsRegister()) { |
| 211 __ mov(cgen_->ToRegister(destination), source_register); | 211 __ mov(cgen_->ToRegister(destination), source_register); |
| 212 } else { | 212 } else { |
| 213 ASSERT(destination->IsStackSlot()); | 213 DCHECK(destination->IsStackSlot()); |
| 214 __ str(source_register, cgen_->ToMemOperand(destination)); | 214 __ str(source_register, cgen_->ToMemOperand(destination)); |
| 215 } | 215 } |
| 216 } else if (source->IsStackSlot()) { | 216 } else if (source->IsStackSlot()) { |
| 217 MemOperand source_operand = cgen_->ToMemOperand(source); | 217 MemOperand source_operand = cgen_->ToMemOperand(source); |
| 218 if (destination->IsRegister()) { | 218 if (destination->IsRegister()) { |
| 219 __ ldr(cgen_->ToRegister(destination), source_operand); | 219 __ ldr(cgen_->ToRegister(destination), source_operand); |
| 220 } else { | 220 } else { |
| 221 ASSERT(destination->IsStackSlot()); | 221 DCHECK(destination->IsStackSlot()); |
| 222 MemOperand destination_operand = cgen_->ToMemOperand(destination); | 222 MemOperand destination_operand = cgen_->ToMemOperand(destination); |
| 223 if (!destination_operand.OffsetIsUint12Encodable()) { | 223 if (!destination_operand.OffsetIsUint12Encodable()) { |
| 224 // ip is overwritten while saving the value to the destination. | 224 // ip is overwritten while saving the value to the destination. |
| 225 // Therefore we can't use ip. It is OK if the read from the source | 225 // Therefore we can't use ip. It is OK if the read from the source |
| 226 // destroys ip, since that happens before the value is read. | 226 // destroys ip, since that happens before the value is read. |
| 227 __ vldr(kScratchDoubleReg.low(), source_operand); | 227 __ vldr(kScratchDoubleReg.low(), source_operand); |
| 228 __ vstr(kScratchDoubleReg.low(), destination_operand); | 228 __ vstr(kScratchDoubleReg.low(), destination_operand); |
| 229 } else { | 229 } else { |
| 230 __ ldr(ip, source_operand); | 230 __ ldr(ip, source_operand); |
| 231 __ str(ip, destination_operand); | 231 __ str(ip, destination_operand); |
| 232 } | 232 } |
| 233 } | 233 } |
| 234 | 234 |
| 235 } else if (source->IsConstantOperand()) { | 235 } else if (source->IsConstantOperand()) { |
| 236 LConstantOperand* constant_source = LConstantOperand::cast(source); | 236 LConstantOperand* constant_source = LConstantOperand::cast(source); |
| 237 if (destination->IsRegister()) { | 237 if (destination->IsRegister()) { |
| 238 Register dst = cgen_->ToRegister(destination); | 238 Register dst = cgen_->ToRegister(destination); |
| 239 Representation r = cgen_->IsSmi(constant_source) | 239 Representation r = cgen_->IsSmi(constant_source) |
| 240 ? Representation::Smi() : Representation::Integer32(); | 240 ? Representation::Smi() : Representation::Integer32(); |
| 241 if (cgen_->IsInteger32(constant_source)) { | 241 if (cgen_->IsInteger32(constant_source)) { |
| 242 __ mov(dst, Operand(cgen_->ToRepresentation(constant_source, r))); | 242 __ mov(dst, Operand(cgen_->ToRepresentation(constant_source, r))); |
| 243 } else { | 243 } else { |
| 244 __ Move(dst, cgen_->ToHandle(constant_source)); | 244 __ Move(dst, cgen_->ToHandle(constant_source)); |
| 245 } | 245 } |
| 246 } else if (destination->IsDoubleRegister()) { | 246 } else if (destination->IsDoubleRegister()) { |
| 247 DwVfpRegister result = cgen_->ToDoubleRegister(destination); | 247 DwVfpRegister result = cgen_->ToDoubleRegister(destination); |
| 248 double v = cgen_->ToDouble(constant_source); | 248 double v = cgen_->ToDouble(constant_source); |
| 249 __ Vmov(result, v, ip); | 249 __ Vmov(result, v, ip); |
| 250 } else { | 250 } else { |
| 251 ASSERT(destination->IsStackSlot()); | 251 DCHECK(destination->IsStackSlot()); |
| 252 ASSERT(!in_cycle_); // Constant moves happen after all cycles are gone. | 252 DCHECK(!in_cycle_); // Constant moves happen after all cycles are gone. |
| 253 need_to_restore_root_ = true; | 253 need_to_restore_root_ = true; |
| 254 Representation r = cgen_->IsSmi(constant_source) | 254 Representation r = cgen_->IsSmi(constant_source) |
| 255 ? Representation::Smi() : Representation::Integer32(); | 255 ? Representation::Smi() : Representation::Integer32(); |
| 256 if (cgen_->IsInteger32(constant_source)) { | 256 if (cgen_->IsInteger32(constant_source)) { |
| 257 __ mov(kSavedValueRegister, | 257 __ mov(kSavedValueRegister, |
| 258 Operand(cgen_->ToRepresentation(constant_source, r))); | 258 Operand(cgen_->ToRepresentation(constant_source, r))); |
| 259 } else { | 259 } else { |
| 260 __ Move(kSavedValueRegister, cgen_->ToHandle(constant_source)); | 260 __ Move(kSavedValueRegister, cgen_->ToHandle(constant_source)); |
| 261 } | 261 } |
| 262 __ str(kSavedValueRegister, cgen_->ToMemOperand(destination)); | 262 __ str(kSavedValueRegister, cgen_->ToMemOperand(destination)); |
| 263 } | 263 } |
| 264 | 264 |
| 265 } else if (source->IsDoubleRegister()) { | 265 } else if (source->IsDoubleRegister()) { |
| 266 DwVfpRegister source_register = cgen_->ToDoubleRegister(source); | 266 DwVfpRegister source_register = cgen_->ToDoubleRegister(source); |
| 267 if (destination->IsDoubleRegister()) { | 267 if (destination->IsDoubleRegister()) { |
| 268 __ vmov(cgen_->ToDoubleRegister(destination), source_register); | 268 __ vmov(cgen_->ToDoubleRegister(destination), source_register); |
| 269 } else { | 269 } else { |
| 270 ASSERT(destination->IsDoubleStackSlot()); | 270 DCHECK(destination->IsDoubleStackSlot()); |
| 271 __ vstr(source_register, cgen_->ToMemOperand(destination)); | 271 __ vstr(source_register, cgen_->ToMemOperand(destination)); |
| 272 } | 272 } |
| 273 | 273 |
| 274 } else if (source->IsDoubleStackSlot()) { | 274 } else if (source->IsDoubleStackSlot()) { |
| 275 MemOperand source_operand = cgen_->ToMemOperand(source); | 275 MemOperand source_operand = cgen_->ToMemOperand(source); |
| 276 if (destination->IsDoubleRegister()) { | 276 if (destination->IsDoubleRegister()) { |
| 277 __ vldr(cgen_->ToDoubleRegister(destination), source_operand); | 277 __ vldr(cgen_->ToDoubleRegister(destination), source_operand); |
| 278 } else { | 278 } else { |
| 279 ASSERT(destination->IsDoubleStackSlot()); | 279 DCHECK(destination->IsDoubleStackSlot()); |
| 280 MemOperand destination_operand = cgen_->ToMemOperand(destination); | 280 MemOperand destination_operand = cgen_->ToMemOperand(destination); |
| 281 if (in_cycle_) { | 281 if (in_cycle_) { |
| 282 // kScratchDoubleReg was used to break the cycle. | 282 // kScratchDoubleReg was used to break the cycle. |
| 283 __ vstm(db_w, sp, kScratchDoubleReg, kScratchDoubleReg); | 283 __ vstm(db_w, sp, kScratchDoubleReg, kScratchDoubleReg); |
| 284 __ vldr(kScratchDoubleReg, source_operand); | 284 __ vldr(kScratchDoubleReg, source_operand); |
| 285 __ vstr(kScratchDoubleReg, destination_operand); | 285 __ vstr(kScratchDoubleReg, destination_operand); |
| 286 __ vldm(ia_w, sp, kScratchDoubleReg, kScratchDoubleReg); | 286 __ vldm(ia_w, sp, kScratchDoubleReg, kScratchDoubleReg); |
| 287 } else { | 287 } else { |
| 288 __ vldr(kScratchDoubleReg, source_operand); | 288 __ vldr(kScratchDoubleReg, source_operand); |
| 289 __ vstr(kScratchDoubleReg, destination_operand); | 289 __ vstr(kScratchDoubleReg, destination_operand); |
| 290 } | 290 } |
| 291 } | 291 } |
| 292 } else { | 292 } else { |
| 293 UNREACHABLE(); | 293 UNREACHABLE(); |
| 294 } | 294 } |
| 295 | 295 |
| 296 moves_[index].Eliminate(); | 296 moves_[index].Eliminate(); |
| 297 } | 297 } |
| 298 | 298 |
| 299 | 299 |
| 300 #undef __ | 300 #undef __ |
| 301 | 301 |
| 302 } } // namespace v8::internal | 302 } } // namespace v8::internal |
| OLD | NEW |