|
OLD | NEW |
---|---|
(Empty) | |
1 /* | |
2 * Copyright (C) 2007 Apple Inc. All rights reserved. | |
3 * | |
4 * Redistribution and use in source and binary forms, with or without | |
5 * modification, are permitted provided that the following conditions | |
6 * are met: | |
7 * 1. Redistributions of source code must retain the above copyright | |
8 * notice, this list of conditions and the following disclaimer. | |
9 * 2. Redistributions in binary form must reproduce the above copyright | |
10 * notice, this list of conditions and the following disclaimer in the | |
11 * documentation and/or other materials provided with the distribution. | |
12 * | |
13 * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY | |
14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | |
16 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR | |
17 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
18 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
19 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
20 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
21 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
23 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
24 */ | |
25 | |
26 var count = output.length; | |
27 | |
28 var itemTotals = {}; | |
29 itemTotals.length = count; | |
30 | |
31 var total = 0; | |
32 var categoryTotals = {}; | |
33 var testTotalsByCategory = {}; | |
34 | |
35 var mean = 0; | |
36 var categoryMeans = {}; | |
37 var testMeansByCategory = {}; | |
38 | |
39 var stdDev = 0; | |
40 var categoryStdDevs = {}; | |
41 var testStdDevsByCategory = {}; | |
42 | |
43 var stdErr = 0; | |
44 var categoryStdErrs = {}; | |
45 var testStdErrsByCategory = {}; | |
46 | |
47 function initialize() | |
48 { | |
49 itemTotals = {total: []}; | |
50 | |
51 for (var i = 0; i < categories.length; i++) { | |
52 var category = categories[i]; | |
53 itemTotals[category] = []; | |
54 categoryTotals[category] = 0; | |
55 testTotalsByCategory[category] = {}; | |
56 categoryMeans[category] = 0; | |
57 testMeansByCategory[category] = {}; | |
58 categoryStdDevs[category] = 0; | |
59 testStdDevsByCategory[category] = {}; | |
60 categoryStdErrs[category] = 0; | |
61 testStdErrsByCategory[category] = {}; | |
62 } | |
63 | |
64 for (var i = 0; i < tests.length; i++) { | |
65 var test = tests[i]; | |
66 itemTotals[test] = []; | |
67 var category = test.replace(/-.*/, ""); | |
68 testTotalsByCategory[category][test] = 0; | |
69 testMeansByCategory[category][test] = 0; | |
70 testStdDevsByCategory[category][test] = 0; | |
71 testStdErrsByCategory[category][test] = 0; | |
72 } | |
73 | |
74 for (var i = 0; i < count; i++) { | |
75 itemTotals["total"][i] = 0; | |
76 for (var category in categoryTotals) { | |
77 itemTotals[category][i] = 0; | |
78 for (var test in testTotalsByCategory[category]) { | |
79 itemTotals[test][i] = 0; | |
80 } | |
81 } | |
82 } | |
83 } | |
84 | |
85 function computeItemTotals() | |
86 { | |
87 for (var i = 0; i < output.length; i++) { | |
88 var result = output[i]; | |
89 for (var test in result) { | |
90 var time = result[test]; | |
91 var category = test.replace(/-.*/, ""); | |
92 itemTotals["total"][i] += time; | |
93 itemTotals[category][i] += time; | |
94 itemTotals[test][i] += time; | |
95 } | |
96 } | |
97 } | |
98 | |
99 function computeTotals() | |
100 { | |
101 for (var i = 0; i < output.length; i++) { | |
102 var result = output[i]; | |
103 for (var test in result) { | |
104 var time = result[test]; | |
105 var category = test.replace(/-.*/, ""); | |
106 total += time; | |
107 categoryTotals[category] += time; | |
108 testTotalsByCategory[category][test] += time; | |
109 } | |
110 } | |
111 } | |
112 | |
113 function computeMeans() | |
114 { | |
115 mean = total / count; | |
116 for (var category in categoryTotals) { | |
117 categoryMeans[category] = categoryTotals[category] / count; | |
118 for (var test in testTotalsByCategory[category]) { | |
119 testMeansByCategory[category][test] = testTotalsByCategory[category] [test] / count; | |
120 } | |
121 } | |
122 } | |
123 | |
124 function standardDeviation(mean, items) | |
125 { | |
126 var deltaSquaredSum = 0; | |
127 for (var i = 0; i < items.length; i++) { | |
128 var delta = items[i] - mean; | |
129 deltaSquaredSum += delta * delta; | |
130 } | |
131 variance = deltaSquaredSum / (items.length - 1); | |
132 return Math.sqrt(variance); | |
133 } | |
134 | |
135 function computeStdDevs() | |
136 { | |
137 stdDev = standardDeviation(mean, itemTotals["total"]); | |
138 for (var category in categoryStdDevs) { | |
139 categoryStdDevs[category] = standardDeviation(categoryMeans[category], i temTotals[category]); | |
140 } | |
141 for (var category in categoryStdDevs) { | |
142 for (var test in testStdDevsByCategory[category]) { | |
143 testStdDevsByCategory[category][test] = standardDeviation(testMeansB yCategory[category][test], itemTotals[test]); | |
144 } | |
145 } | |
146 } | |
147 | |
148 function computeStdErrors() | |
149 { | |
150 var sqrtCount = Math.sqrt(count); | |
151 | |
152 stdErr = stdDev / sqrtCount; | |
153 for (var category in categoryStdErrs) { | |
154 categoryStdErrs[category] = categoryStdDevs[category] / sqrtCount; | |
155 } | |
156 for (var category in categoryStdDevs) { | |
157 for (var test in testStdErrsByCategory[category]) { | |
158 testStdErrsByCategory[category][test] = testStdDevsByCategory[catego ry][test] / sqrtCount; | |
159 } | |
160 } | |
161 | |
162 } | |
163 | |
164 var tDistribution = [NaN, NaN, 12.71, 4.30, 3.18, 2.78, 2.57, 2.45, 2.36, 2.31, 2.26, 2.23, 2.20, 2.18, 2.16, 2.14, 2.13, 2.12, 2.11, 2.10, 2.09, 2.09, 2.08, 2. 07, 2.07, 2.06, 2.06, 2.06, 2.05, 2.05, 2.05, 2.04, 2.04, 2.04, 2.03, 2.03, 2.03 , 2.03, 2.03, 2.02, 2.02, 2.02, 2.02, 2.02, 2.02, 2.02, 2.01, 2.01, 2.01, 2.01, 2.01, 2.01, 2.01, 2.01, 2.01, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2. 00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99 , 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1. 98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98 , 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1. 98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98 , 1.98, 1.98, 1.98, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1. 97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97 , 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1. 97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97 , 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1. 97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97 , 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1. 97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97 , 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1. 97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97 , 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1. 97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97 , 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1. 97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97 , 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1. 97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.96]; | |
165 var tMax = tDistribution.length; | |
166 var tLimit = 1.96; | |
167 | |
168 function tDist(n) | |
169 { | |
170 if (n > tMax) | |
171 return tLimit; | |
172 return tDistribution[n]; | |
173 } | |
174 | |
175 | |
176 function formatResult(meanWidth, mean, stdErr, n) | |
177 { | |
178 var meanString = mean.toFixed(1).toString(); | |
179 while (meanString.length < meanWidth) { | |
180 meanString = " " + meanString; | |
181 } | |
182 | |
183 if (n == 1) | |
184 return meanString + "ms"; | |
185 | |
186 return meanString + "ms +/- " + ((tDist(n) * stdErr / mean) * 100).toFixed(1 ) + "%"; | |
187 } | |
188 | |
189 function computeLabelWidth() | |
190 { | |
191 var width = "Total".length; | |
192 for (var category in categoryMeans) { | |
193 if (category.length + 2 > width) | |
194 width = category.length + 2; | |
195 } | |
196 for (var i = 0; i < tests.length; i++) { | |
197 var shortName = tests[i].replace(/^[^-]*-/, ""); | |
198 if (shortName.length + 4 > width) | |
199 width = shortName.length + 4; | |
200 } | |
201 | |
202 return width; | |
203 } | |
204 | |
205 function computeMeanWidth() | |
206 { | |
207 var width = mean.toFixed(1).toString().length; | |
208 for (var category in categoryMeans) { | |
209 var candidate = categoryMeans[category].toFixed(2).toString().length; | |
210 if (candidate > width) | |
211 width = candidate; | |
212 for (var test in testMeansByCategory[category]) { | |
213 var candidate = testMeansByCategory[category][test].toFixed(2).toStr ing().length; | |
214 if (candidate > width) | |
215 width = candidate; | |
216 } | |
217 } | |
218 | |
219 return width; | |
220 } | |
221 | |
222 function resultLine(labelWidth, indent, label, meanWidth, mean, stdErr) | |
223 { | |
224 var result = ""; | |
225 for (i = 0; i < indent; i++) { | |
226 result += " "; | |
227 } | |
228 | |
229 result += label + ": "; | |
230 | |
231 for (i = 0; i < (labelWidth - (label.length + indent)); i++) { | |
232 result += " "; | |
233 } | |
234 | |
235 return result + formatResult(meanWidth, mean, stdErr, count); | |
236 } | |
237 | |
238 function printOutput() | |
239 { | |
240 var labelWidth = computeLabelWidth(); | |
241 var meanWidth = computeMeanWidth(); | |
242 | |
243 print("\n"); | |
244 print("============================================"); | |
245 if (count == 1) | |
246 print("RESULTS"); | |
247 else | |
248 print("RESULTS (means and 95% confidence intervals)"); | |
249 print("--------------------------------------------"); | |
250 print(resultLine(labelWidth, 0, "Total", meanWidth, mean, stdErr)); | |
251 print("--------------------------------------------"); | |
252 for (var category in categoryMeans) { | |
253 print(""); | |
254 print(resultLine(labelWidth, 2, category, meanWidth, categoryMeans[categ ory], categoryStdErrs[category])); | |
255 for (var test in testMeansByCategory[category]) { | |
256 var shortName = test.replace(/^[^-]*-/, ""); | |
257 print(resultLine(labelWidth, 4, shortName, meanWidth, testMeansByCat egory[category][test], testStdErrsByCategory[category][test])); | |
258 } | |
259 } | |
260 } | |
261 | |
262 initialize(); | |
263 computeItemTotals(); | |
264 computeTotals(); | |
265 computeMeans(); | |
266 computeStdDevs(); | |
267 computeStdErrors(); | |
268 printOutput(); | |
OLD | NEW |