Index: src/compiler/simplified-lowering.cc |
diff --git a/src/compiler/simplified-lowering.cc b/src/compiler/simplified-lowering.cc |
index de5fd3efded468b0eaf9cac62057ee1e727cdd67..3ef9d30fcd123e98755c9cbfd6cfebb1e2433da7 100644 |
--- a/src/compiler/simplified-lowering.cc |
+++ b/src/compiler/simplified-lowering.cc |
@@ -4,14 +4,706 @@ |
#include "src/compiler/simplified-lowering.h" |
+#include <deque> |
+#include <queue> |
+ |
+#include "src/compiler/common-operator.h" |
#include "src/compiler/graph-inl.h" |
#include "src/compiler/node-properties-inl.h" |
+#include "src/compiler/representation-change.h" |
+#include "src/compiler/simplified-lowering.h" |
+#include "src/compiler/simplified-operator.h" |
#include "src/objects.h" |
namespace v8 { |
namespace internal { |
namespace compiler { |
+// Macro for outputting trace information from representation inference. |
+#define TRACE(x) \ |
+ if (FLAG_trace_representation) PrintF x |
+ |
+// Representation selection and lowering of {Simplified} operators to machine |
+// operators are interwined. We use a fixpoint calculation to compute both the |
+// output representation and the best possible lowering for {Simplified} nodes. |
+// Representation change insertion ensures that all values are in the correct |
+// machine representation after this phase, as dictated by the machine |
+// operators themselves. |
+enum Phase { |
+ // 1.) PROPAGATE: Traverse the graph from the end, pushing usage information |
+ // backwards from uses to definitions, around cycles in phis, according |
+ // to local rules for each operator. |
+ // During this phase, the usage information for a node determines the best |
+ // possible lowering for each operator so far, and that in turn determines |
+ // the output representation. |
+ // Therefore, to be correct, this phase must iterate to a fixpoint before |
+ // the next phase can begin. |
+ PROPAGATE, |
+ |
+ // 2.) LOWER: perform lowering for all {Simplified} nodes by replacing some |
+ // operators for some nodes, expanding some nodes to multiple nodes, or |
+ // removing some (redundant) nodes. |
+ // During this phase, use the {RepresentationChanger} to insert |
+ // representation changes between uses that demand a particular |
+ // representation and nodes that produce a different representation. |
+ LOWER |
+}; |
+ |
+ |
+class RepresentationSelector { |
+ public: |
+ // Information for each node tracked during the fixpoint. |
+ struct NodeInfo { |
+ RepTypeUnion use : 14; // Union of all usages for the node. |
+ bool queued : 1; // Bookkeeping for the traversal. |
+ bool visited : 1; // Bookkeeping for the traversal. |
+ RepTypeUnion output : 14; // Output type of the node. |
+ }; |
+ |
+ RepresentationSelector(JSGraph* jsgraph, Zone* zone, |
+ RepresentationChanger* changer) |
+ : jsgraph_(jsgraph), |
+ count_(jsgraph->graph()->NodeCount()), |
+ info_(zone->NewArray<NodeInfo>(count_)), |
+ nodes_(NodeVector::allocator_type(zone)), |
+ replacements_(NodeVector::allocator_type(zone)), |
+ contains_js_nodes_(false), |
+ phase_(PROPAGATE), |
+ changer_(changer), |
+ queue_(std::deque<Node*, NodePtrZoneAllocator>( |
+ NodePtrZoneAllocator(zone))) { |
+ memset(info_, 0, sizeof(NodeInfo) * count_); |
+ } |
+ |
+ void Run(SimplifiedLowering* lowering) { |
+ // Run propagation phase to a fixpoint. |
+ TRACE(("--{Propagation phase}--\n")); |
+ phase_ = PROPAGATE; |
+ Enqueue(jsgraph_->graph()->end()); |
+ // Process nodes from the queue until it is empty. |
+ while (!queue_.empty()) { |
+ Node* node = queue_.front(); |
+ NodeInfo* info = GetInfo(node); |
+ queue_.pop(); |
+ info->queued = false; |
+ TRACE((" visit #%d: %s\n", node->id(), node->op()->mnemonic())); |
+ VisitNode(node, info->use, NULL); |
+ TRACE((" ==> output ")); |
+ PrintInfo(info->output); |
+ TRACE(("\n")); |
+ } |
+ |
+ // Run lowering and change insertion phase. |
+ TRACE(("--{Simplified lowering phase}--\n")); |
+ phase_ = LOWER; |
+ // Process nodes from the collected {nodes_} vector. |
+ for (NodeVector::iterator i = nodes_.begin(); i != nodes_.end(); ++i) { |
+ Node* node = *i; |
+ TRACE((" visit #%d: %s\n", node->id(), node->op()->mnemonic())); |
+ // Reuse {VisitNode()} so the representation rules are in one place. |
+ VisitNode(node, GetUseInfo(node), lowering); |
+ } |
+ |
+ // Perform the final replacements. |
+ for (NodeVector::iterator i = replacements_.begin(); |
+ i != replacements_.end(); ++i) { |
+ Node* node = *i; |
+ Node* replacement = *(++i); |
+ node->ReplaceUses(replacement); |
+ } |
+ } |
+ |
+ // Enqueue {node} if the {use} contains new information for that node. |
+ // Add {node} to {nodes_} if this is the first time it's been visited. |
+ void Enqueue(Node* node, RepTypeUnion use = 0) { |
+ if (phase_ != PROPAGATE) return; |
+ NodeInfo* info = GetInfo(node); |
+ if (!info->visited) { |
+ // First visit of this node. |
+ info->visited = true; |
+ info->queued = true; |
+ nodes_.push_back(node); |
+ queue_.push(node); |
+ TRACE((" initial: ")); |
+ info->use |= use; |
+ PrintUseInfo(node); |
+ return; |
+ } |
+ TRACE((" queue?: ")); |
+ PrintUseInfo(node); |
+ if ((info->use & use) != use) { |
+ // New usage information for the node is available. |
+ if (!info->queued) { |
+ queue_.push(node); |
+ info->queued = true; |
+ TRACE((" added: ")); |
+ } else { |
+ TRACE((" inqueue: ")); |
+ } |
+ info->use |= use; |
+ PrintUseInfo(node); |
+ } |
+ } |
+ |
+ bool lower() { return phase_ == LOWER; } |
+ |
+ void Enqueue(Node* node, RepType use) { |
+ Enqueue(node, static_cast<RepTypeUnion>(use)); |
+ } |
+ |
+ void SetOutput(Node* node, RepTypeUnion output) { |
+ // Every node should have at most one output representation. Note that |
+ // phis can have 0, if they have not been used in a representation-inducing |
+ // instruction. |
+ DCHECK((output & rMask) == 0 || IsPowerOf2(output & rMask)); |
+ GetInfo(node)->output = output; |
+ } |
+ |
+ bool BothInputsAre(Node* node, Type* type) { |
+ DCHECK_EQ(2, node->InputCount()); |
+ return NodeProperties::GetBounds(node->InputAt(0)).upper->Is(type) && |
+ NodeProperties::GetBounds(node->InputAt(1)).upper->Is(type); |
+ } |
+ |
+ void ProcessInput(Node* node, int index, RepTypeUnion use) { |
+ Node* input = node->InputAt(index); |
+ if (phase_ == PROPAGATE) { |
+ // In the propagate phase, propagate the usage information backward. |
+ Enqueue(input, use); |
+ } else { |
+ // In the change phase, insert a change before the use if necessary. |
+ if ((use & rMask) == 0) return; // No input requirement on the use. |
+ RepTypeUnion output = GetInfo(input)->output; |
+ if ((output & rMask & use) == 0) { |
+ // Output representation doesn't match usage. |
+ TRACE((" change: #%d:%s(@%d #%d:%s) ", node->id(), |
+ node->op()->mnemonic(), index, input->id(), |
+ input->op()->mnemonic())); |
+ TRACE((" from ")); |
+ PrintInfo(output); |
+ TRACE((" to ")); |
+ PrintInfo(use); |
+ TRACE(("\n")); |
+ Node* n = changer_->GetRepresentationFor(input, output, use); |
+ node->ReplaceInput(index, n); |
+ } |
+ } |
+ } |
+ |
+ static const RepTypeUnion kFloat64 = rFloat64 | tNumber; |
+ static const RepTypeUnion kInt32 = rWord32 | tInt32; |
+ static const RepTypeUnion kUint32 = rWord32 | tUint32; |
+ static const RepTypeUnion kInt64 = rWord64 | tInt64; |
+ static const RepTypeUnion kUint64 = rWord64 | tUint64; |
+ static const RepTypeUnion kAnyTagged = rTagged | tAny; |
+ |
+ // The default, most general visitation case. For {node}, process all value, |
+ // context, effect, and control inputs, assuming that value inputs should have |
+ // {rTagged} representation and can observe all output values {tAny}. |
+ void VisitInputs(Node* node) { |
+ InputIter i = node->inputs().begin(); |
+ for (int j = OperatorProperties::GetValueInputCount(node->op()); j > 0; |
+ ++i, j--) { |
+ ProcessInput(node, i.index(), kAnyTagged); // Value inputs |
+ } |
+ for (int j = OperatorProperties::GetContextInputCount(node->op()); j > 0; |
+ ++i, j--) { |
+ ProcessInput(node, i.index(), kAnyTagged); // Context inputs |
+ } |
+ for (int j = OperatorProperties::GetEffectInputCount(node->op()); j > 0; |
+ ++i, j--) { |
+ Enqueue(*i); // Effect inputs: just visit |
+ } |
+ for (int j = OperatorProperties::GetControlInputCount(node->op()); j > 0; |
+ ++i, j--) { |
+ Enqueue(*i); // Control inputs: just visit |
+ } |
+ SetOutput(node, kAnyTagged); |
+ } |
+ |
+ // Helper for binops of the I x I -> O variety. |
+ void VisitBinop(Node* node, RepTypeUnion input_use, RepTypeUnion output) { |
+ DCHECK_EQ(2, node->InputCount()); |
+ ProcessInput(node, 0, input_use); |
+ ProcessInput(node, 1, input_use); |
+ SetOutput(node, output); |
+ } |
+ |
+ // Helper for unops of the I -> O variety. |
+ void VisitUnop(Node* node, RepTypeUnion input_use, RepTypeUnion output) { |
+ DCHECK_EQ(1, node->InputCount()); |
+ ProcessInput(node, 0, input_use); |
+ SetOutput(node, output); |
+ } |
+ |
+ // Helper for leaf nodes. |
+ void VisitLeaf(Node* node, RepTypeUnion output) { |
+ DCHECK_EQ(0, node->InputCount()); |
+ SetOutput(node, output); |
+ } |
+ |
+ // Helpers for specific types of binops. |
+ void VisitFloat64Binop(Node* node) { VisitBinop(node, kFloat64, kFloat64); } |
+ void VisitInt32Binop(Node* node) { VisitBinop(node, kInt32, kInt32); } |
+ void VisitUint32Binop(Node* node) { VisitBinop(node, kUint32, kUint32); } |
+ void VisitInt64Binop(Node* node) { VisitBinop(node, kInt64, kInt64); } |
+ void VisitUint64Binop(Node* node) { VisitBinop(node, kUint64, kUint64); } |
+ void VisitFloat64Cmp(Node* node) { VisitBinop(node, kFloat64, rBit); } |
+ void VisitInt32Cmp(Node* node) { VisitBinop(node, kInt32, rBit); } |
+ void VisitUint32Cmp(Node* node) { VisitBinop(node, kUint32, rBit); } |
+ void VisitInt64Cmp(Node* node) { VisitBinop(node, kInt64, rBit); } |
+ void VisitUint64Cmp(Node* node) { VisitBinop(node, kUint64, rBit); } |
+ |
+ // Helper for handling phis. |
+ void VisitPhi(Node* node, RepTypeUnion use) { |
+ // First, propagate the usage information to inputs of the phi. |
+ int values = OperatorProperties::GetValueInputCount(node->op()); |
+ Node::Inputs inputs = node->inputs(); |
+ for (Node::Inputs::iterator iter(inputs.begin()); iter != inputs.end(); |
+ ++iter, --values) { |
+ // Propagate {use} of the phi to value inputs, and 0 to control. |
+ // TODO(titzer): it'd be nice to have distinguished edge kinds here. |
+ ProcessInput(node, iter.index(), values > 0 ? use : 0); |
+ } |
+ // Phis adapt to whatever output representation their uses demand, |
+ // pushing representation changes to their inputs. |
+ RepTypeUnion use_rep = GetUseInfo(node) & rMask; |
+ RepTypeUnion use_type = GetUseInfo(node) & tMask; |
+ RepTypeUnion rep = 0; |
+ if (use_rep & rTagged) { |
+ rep = rTagged; // Tagged overrides everything. |
+ } else if (use_rep & rFloat64) { |
+ rep = rFloat64; |
+ } else if (use_rep & rWord64) { |
+ rep = rWord64; |
+ } else if (use_rep & rWord32) { |
+ rep = rWord32; |
+ } else if (use_rep & rBit) { |
+ rep = rBit; |
+ } else { |
+ // There was no representation associated with any of the uses. |
+ // TODO(titzer): Select the best rep using phi's type, not the usage type? |
+ if (use_type & tAny) { |
+ rep = rTagged; |
+ } else if (use_type & tNumber) { |
+ rep = rFloat64; |
+ } else if (use_type & tInt64 || use_type & tUint64) { |
+ rep = rWord64; |
+ } else if (use_type & tInt32 || use_type & tUint32) { |
+ rep = rWord32; |
+ } else if (use_type & tBool) { |
+ rep = rBit; |
+ } else { |
+ UNREACHABLE(); // should have at least a usage type! |
+ } |
+ } |
+ // Preserve the usage type, but set the representation. |
+ Type* upper = NodeProperties::GetBounds(node).upper; |
+ SetOutput(node, rep | changer_->TypeFromUpperBound(upper)); |
+ } |
+ |
+ Operator* Int32Op(Node* node) { |
+ return changer_->Int32OperatorFor(node->opcode()); |
+ } |
+ |
+ Operator* Uint32Op(Node* node) { |
+ return changer_->Uint32OperatorFor(node->opcode()); |
+ } |
+ |
+ Operator* Float64Op(Node* node) { |
+ return changer_->Float64OperatorFor(node->opcode()); |
+ } |
+ |
+ // Dispatching routine for visiting the node {node} with the usage {use}. |
+ // Depending on the operator, propagate new usage info to the inputs. |
+ void VisitNode(Node* node, RepTypeUnion use, SimplifiedLowering* lowering) { |
+ switch (node->opcode()) { |
+ //------------------------------------------------------------------ |
+ // Common operators. |
+ //------------------------------------------------------------------ |
+ case IrOpcode::kStart: |
+ case IrOpcode::kDead: |
+ return VisitLeaf(node, 0); |
+ case IrOpcode::kParameter: { |
+ // TODO(titzer): use representation from linkage. |
+ Type* upper = NodeProperties::GetBounds(node).upper; |
+ ProcessInput(node, 0, 0); |
+ SetOutput(node, rTagged | changer_->TypeFromUpperBound(upper)); |
+ return; |
+ } |
+ case IrOpcode::kInt32Constant: |
+ return VisitLeaf(node, rWord32); |
+ case IrOpcode::kInt64Constant: |
+ return VisitLeaf(node, rWord64); |
+ case IrOpcode::kFloat64Constant: |
+ return VisitLeaf(node, rFloat64); |
+ case IrOpcode::kExternalConstant: |
+ return VisitLeaf(node, rPtr); |
+ case IrOpcode::kNumberConstant: |
+ return VisitLeaf(node, rTagged); |
+ case IrOpcode::kHeapConstant: |
+ return VisitLeaf(node, rTagged); |
+ |
+ case IrOpcode::kEnd: |
+ case IrOpcode::kIfTrue: |
+ case IrOpcode::kIfFalse: |
+ case IrOpcode::kReturn: |
+ case IrOpcode::kMerge: |
+ case IrOpcode::kThrow: |
+ return VisitInputs(node); // default visit for all node inputs. |
+ |
+ case IrOpcode::kBranch: |
+ ProcessInput(node, 0, rBit); |
+ Enqueue(NodeProperties::GetControlInput(node, 0)); |
+ break; |
+ case IrOpcode::kPhi: |
+ return VisitPhi(node, use); |
+ |
+//------------------------------------------------------------------ |
+// JavaScript operators. |
+//------------------------------------------------------------------ |
+// For now, we assume that all JS operators were too complex to lower |
+// to Simplified and that they will always require tagged value inputs |
+// and produce tagged value outputs. |
+// TODO(turbofan): it might be possible to lower some JSOperators here, |
+// but that responsibility really lies in the typed lowering phase. |
+#define DEFINE_JS_CASE(x) case IrOpcode::k##x: |
+ JS_OP_LIST(DEFINE_JS_CASE) |
+#undef DEFINE_JS_CASE |
+ contains_js_nodes_ = true; |
+ VisitInputs(node); |
+ return SetOutput(node, rTagged); |
+ |
+ //------------------------------------------------------------------ |
+ // Simplified operators. |
+ //------------------------------------------------------------------ |
+ case IrOpcode::kBooleanNot: { |
+ if (lower()) { |
+ RepTypeUnion input = GetInfo(node->InputAt(0))->output; |
+ if (input & rBit) { |
+ // BooleanNot(x: rBit) => WordEqual(x, #0) |
+ node->set_op(lowering->machine()->WordEqual()); |
+ node->AppendInput(jsgraph_->zone(), jsgraph_->Int32Constant(0)); |
+ } else { |
+ // BooleanNot(x: rTagged) => WordEqual(x, #false) |
+ node->set_op(lowering->machine()->WordEqual()); |
+ node->AppendInput(jsgraph_->zone(), jsgraph_->FalseConstant()); |
+ } |
+ } else { |
+ // No input representation requirement; adapt during lowering. |
+ ProcessInput(node, 0, tBool); |
+ SetOutput(node, rBit); |
+ } |
+ break; |
+ } |
+ case IrOpcode::kNumberEqual: |
+ case IrOpcode::kNumberLessThan: |
+ case IrOpcode::kNumberLessThanOrEqual: { |
+ // Number comparisons reduce to integer comparisons for integer inputs. |
+ if (BothInputsAre(node, Type::Signed32())) { |
+ // => signed Int32Cmp |
+ VisitInt32Cmp(node); |
+ if (lower()) node->set_op(Int32Op(node)); |
+ } else if (BothInputsAre(node, Type::Unsigned32())) { |
+ // => unsigned Int32Cmp |
+ VisitUint32Cmp(node); |
+ if (lower()) node->set_op(Uint32Op(node)); |
+ } else { |
+ // => Float64Cmp |
+ VisitFloat64Cmp(node); |
+ if (lower()) node->set_op(Float64Op(node)); |
+ } |
+ break; |
+ } |
+ case IrOpcode::kNumberAdd: |
+ case IrOpcode::kNumberSubtract: { |
+ // Add and subtract reduce to Int32Add/Sub if the inputs |
+ // are already integers and all uses are truncating. |
+ if (BothInputsAre(node, Type::Signed32()) && |
+ (use & (tUint32 | tNumber | tAny)) == 0) { |
+ // => signed Int32Add/Sub |
+ VisitInt32Binop(node); |
+ if (lower()) node->set_op(Int32Op(node)); |
+ } else if (BothInputsAre(node, Type::Unsigned32()) && |
+ (use & (tInt32 | tNumber | tAny)) == 0) { |
+ // => unsigned Int32Add/Sub |
+ VisitUint32Binop(node); |
+ if (lower()) node->set_op(Uint32Op(node)); |
+ } else { |
+ // => Float64Add/Sub |
+ VisitFloat64Binop(node); |
+ if (lower()) node->set_op(Float64Op(node)); |
+ } |
+ break; |
+ } |
+ case IrOpcode::kNumberMultiply: |
+ case IrOpcode::kNumberDivide: |
+ case IrOpcode::kNumberModulus: { |
+ // Float64Mul/Div/Mod |
+ VisitFloat64Binop(node); |
+ if (lower()) node->set_op(Float64Op(node)); |
+ break; |
+ } |
+ case IrOpcode::kNumberToInt32: { |
+ RepTypeUnion use_rep = use & rMask; |
+ if (lower()) { |
+ RepTypeUnion in = GetInfo(node->InputAt(0))->output; |
+ if ((in & tMask) == tInt32 || (in & rMask) == rWord32) { |
+ // If the input has type int32, or is already a word32, just change |
+ // representation if necessary. |
+ VisitUnop(node, tInt32 | use_rep, tInt32 | use_rep); |
+ DeferReplacement(node, node->InputAt(0)); |
+ } else { |
+ // Require the input in float64 format and perform truncation. |
+ // TODO(turbofan): could also avoid the truncation with a tag check. |
+ VisitUnop(node, tInt32 | rFloat64, tInt32 | rWord32); |
+ // TODO(titzer): should be a truncation. |
+ node->set_op(lowering->machine()->ChangeFloat64ToInt32()); |
+ } |
+ } else { |
+ // Propagate a type to the input, but pass through representation. |
+ VisitUnop(node, tInt32, tInt32 | use_rep); |
+ } |
+ break; |
+ } |
+ case IrOpcode::kNumberToUint32: { |
+ RepTypeUnion use_rep = use & rMask; |
+ if (lower()) { |
+ RepTypeUnion in = GetInfo(node->InputAt(0))->output; |
+ if ((in & tMask) == tUint32 || (in & rMask) == rWord32) { |
+ // The input has type int32, just change representation. |
+ VisitUnop(node, tUint32 | use_rep, tUint32 | use_rep); |
+ DeferReplacement(node, node->InputAt(0)); |
+ } else { |
+ // Require the input in float64 format to perform truncation. |
+ // TODO(turbofan): could also avoid the truncation with a tag check. |
+ VisitUnop(node, tUint32 | rFloat64, tUint32 | rWord32); |
+ // TODO(titzer): should be a truncation. |
+ node->set_op(lowering->machine()->ChangeFloat64ToUint32()); |
+ } |
+ } else { |
+ // Propagate a type to the input, but pass through representation. |
+ VisitUnop(node, tUint32, tUint32 | use_rep); |
+ } |
+ break; |
+ } |
+ case IrOpcode::kReferenceEqual: { |
+ VisitBinop(node, kAnyTagged, rBit); |
+ if (lower()) node->set_op(lowering->machine()->WordEqual()); |
+ break; |
+ } |
+ case IrOpcode::kStringEqual: { |
+ VisitBinop(node, kAnyTagged, rBit); |
+ // TODO(titzer): lower StringEqual to stub/runtime call. |
+ break; |
+ } |
+ case IrOpcode::kStringLessThan: { |
+ VisitBinop(node, kAnyTagged, rBit); |
+ // TODO(titzer): lower StringLessThan to stub/runtime call. |
+ break; |
+ } |
+ case IrOpcode::kStringLessThanOrEqual: { |
+ VisitBinop(node, kAnyTagged, rBit); |
+ // TODO(titzer): lower StringLessThanOrEqual to stub/runtime call. |
+ break; |
+ } |
+ case IrOpcode::kStringAdd: { |
+ VisitBinop(node, kAnyTagged, kAnyTagged); |
+ // TODO(titzer): lower StringAdd to stub/runtime call. |
+ break; |
+ } |
+ case IrOpcode::kLoadField: { |
+ FieldAccess access = FieldAccessOf(node->op()); |
+ ProcessInput(node, 0, changer_->TypeForBasePointer(access)); |
+ SetOutput(node, changer_->TypeForField(access)); |
+ if (lower()) lowering->DoLoadField(node); |
+ break; |
+ } |
+ case IrOpcode::kStoreField: { |
+ FieldAccess access = FieldAccessOf(node->op()); |
+ ProcessInput(node, 0, changer_->TypeForBasePointer(access)); |
+ ProcessInput(node, 1, changer_->TypeForField(access)); |
+ SetOutput(node, 0); |
+ if (lower()) lowering->DoStoreField(node); |
+ break; |
+ } |
+ case IrOpcode::kLoadElement: { |
+ ElementAccess access = ElementAccessOf(node->op()); |
+ ProcessInput(node, 0, changer_->TypeForBasePointer(access)); |
+ ProcessInput(node, 1, kInt32); // element index |
+ SetOutput(node, changer_->TypeForElement(access)); |
+ if (lower()) lowering->DoLoadElement(node); |
+ break; |
+ } |
+ case IrOpcode::kStoreElement: { |
+ ElementAccess access = ElementAccessOf(node->op()); |
+ ProcessInput(node, 0, changer_->TypeForBasePointer(access)); |
+ ProcessInput(node, 1, kInt32); // element index |
+ ProcessInput(node, 2, changer_->TypeForElement(access)); |
+ SetOutput(node, 0); |
+ if (lower()) lowering->DoStoreElement(node); |
+ break; |
+ } |
+ |
+ //------------------------------------------------------------------ |
+ // Machine-level operators. |
+ //------------------------------------------------------------------ |
+ case IrOpcode::kLoad: { |
+ // TODO(titzer): machine loads/stores need to know BaseTaggedness!? |
+ RepType tBase = rTagged; |
+ MachineRepresentation rep = OpParameter<MachineRepresentation>(node); |
+ ProcessInput(node, 0, tBase); // pointer or object |
+ ProcessInput(node, 1, kInt32); // index |
+ SetOutput(node, changer_->TypeForMachineRepresentation(rep)); |
+ break; |
+ } |
+ case IrOpcode::kStore: { |
+ // TODO(titzer): machine loads/stores need to know BaseTaggedness!? |
+ RepType tBase = rTagged; |
+ StoreRepresentation rep = OpParameter<StoreRepresentation>(node); |
+ ProcessInput(node, 0, tBase); // pointer or object |
+ ProcessInput(node, 1, kInt32); // index |
+ ProcessInput(node, 2, changer_->TypeForMachineRepresentation(rep.rep)); |
+ SetOutput(node, 0); |
+ break; |
+ } |
+ case IrOpcode::kWord32Shr: |
+ // We output unsigned int32 for shift right because JavaScript. |
+ return VisitBinop(node, rWord32, rWord32 | tUint32); |
+ case IrOpcode::kWord32And: |
+ case IrOpcode::kWord32Or: |
+ case IrOpcode::kWord32Xor: |
+ case IrOpcode::kWord32Shl: |
+ case IrOpcode::kWord32Sar: |
+ // We use signed int32 as the output type for these word32 operations, |
+ // though the machine bits are the same for either signed or unsigned, |
+ // because JavaScript considers the result from these operations signed. |
+ return VisitBinop(node, rWord32, rWord32 | tInt32); |
+ case IrOpcode::kWord32Equal: |
+ return VisitBinop(node, rWord32, rBit); |
+ |
+ case IrOpcode::kInt32Add: |
+ case IrOpcode::kInt32Sub: |
+ case IrOpcode::kInt32Mul: |
+ case IrOpcode::kInt32Div: |
+ case IrOpcode::kInt32Mod: |
+ return VisitInt32Binop(node); |
+ case IrOpcode::kInt32UDiv: |
+ case IrOpcode::kInt32UMod: |
+ return VisitUint32Binop(node); |
+ case IrOpcode::kInt32LessThan: |
+ case IrOpcode::kInt32LessThanOrEqual: |
+ return VisitInt32Cmp(node); |
+ |
+ case IrOpcode::kUint32LessThan: |
+ case IrOpcode::kUint32LessThanOrEqual: |
+ return VisitUint32Cmp(node); |
+ |
+ case IrOpcode::kInt64Add: |
+ case IrOpcode::kInt64Sub: |
+ case IrOpcode::kInt64Mul: |
+ case IrOpcode::kInt64Div: |
+ case IrOpcode::kInt64Mod: |
+ return VisitInt64Binop(node); |
+ case IrOpcode::kInt64LessThan: |
+ case IrOpcode::kInt64LessThanOrEqual: |
+ return VisitInt64Cmp(node); |
+ |
+ case IrOpcode::kInt64UDiv: |
+ case IrOpcode::kInt64UMod: |
+ return VisitUint64Binop(node); |
+ |
+ case IrOpcode::kWord64And: |
+ case IrOpcode::kWord64Or: |
+ case IrOpcode::kWord64Xor: |
+ case IrOpcode::kWord64Shl: |
+ case IrOpcode::kWord64Shr: |
+ case IrOpcode::kWord64Sar: |
+ return VisitBinop(node, rWord64, rWord64); |
+ case IrOpcode::kWord64Equal: |
+ return VisitBinop(node, rWord64, rBit); |
+ |
+ case IrOpcode::kConvertInt32ToInt64: |
+ return VisitUnop(node, tInt32 | rWord32, tInt32 | rWord64); |
+ case IrOpcode::kConvertInt64ToInt32: |
+ return VisitUnop(node, tInt64 | rWord64, tInt32 | rWord32); |
+ |
+ case IrOpcode::kChangeInt32ToFloat64: |
+ return VisitUnop(node, tInt32 | rWord32, tInt32 | rFloat64); |
+ case IrOpcode::kChangeUint32ToFloat64: |
+ return VisitUnop(node, tUint32 | rWord32, tUint32 | rFloat64); |
+ case IrOpcode::kChangeFloat64ToInt32: |
+ return VisitUnop(node, tInt32 | rFloat64, tInt32 | rWord32); |
+ case IrOpcode::kChangeFloat64ToUint32: |
+ return VisitUnop(node, tUint32 | rFloat64, tUint32 | rWord32); |
+ |
+ case IrOpcode::kFloat64Add: |
+ case IrOpcode::kFloat64Sub: |
+ case IrOpcode::kFloat64Mul: |
+ case IrOpcode::kFloat64Div: |
+ case IrOpcode::kFloat64Mod: |
+ return VisitFloat64Binop(node); |
+ case IrOpcode::kFloat64Equal: |
+ case IrOpcode::kFloat64LessThan: |
+ case IrOpcode::kFloat64LessThanOrEqual: |
+ return VisitFloat64Cmp(node); |
+ default: |
+ VisitInputs(node); |
+ break; |
+ } |
+ } |
+ |
+ void DeferReplacement(Node* node, Node* replacement) { |
+ if (replacement->id() < count_) { |
+ // Replace with a previously existing node eagerly. |
+ node->ReplaceUses(replacement); |
+ } else { |
+ // Otherwise, we are replacing a node with a representation change. |
+ // Such a substitution must be done after all lowering is done, because |
+ // new nodes do not have {NodeInfo} entries, and that would confuse |
+ // the representation change insertion for uses of it. |
+ replacements_.push_back(node); |
+ replacements_.push_back(replacement); |
+ } |
+ // TODO(titzer) node->RemoveAllInputs(); // Node is now dead. |
+ } |
+ |
+ void PrintUseInfo(Node* node) { |
+ TRACE(("#%d:%-20s ", node->id(), node->op()->mnemonic())); |
+ PrintInfo(GetUseInfo(node)); |
+ TRACE(("\n")); |
+ } |
+ |
+ void PrintInfo(RepTypeUnion info) { |
+ if (FLAG_trace_representation) { |
+ char buf[REP_TYPE_STRLEN]; |
+ RenderRepTypeUnion(buf, info); |
+ TRACE(("%s", buf)); |
+ } |
+ } |
+ |
+ private: |
+ JSGraph* jsgraph_; |
+ int count_; // number of nodes in the graph |
+ NodeInfo* info_; // node id -> usage information |
+ NodeVector nodes_; // collected nodes |
+ NodeVector replacements_; // replacements to be done after lowering |
+ bool contains_js_nodes_; // {true} if a JS operator was seen |
+ Phase phase_; // current phase of algorithm |
+ RepresentationChanger* changer_; // for inserting representation changes |
+ |
+ std::queue<Node*, std::deque<Node*, NodePtrZoneAllocator> > queue_; |
+ |
+ NodeInfo* GetInfo(Node* node) { |
+ DCHECK(node->id() >= 0); |
+ DCHECK(node->id() < count_); |
+ return &info_[node->id()]; |
+ } |
+ |
+ RepTypeUnion GetUseInfo(Node* node) { return GetInfo(node)->use; } |
+}; |
+ |
+ |
Node* SimplifiedLowering::IsTagged(Node* node) { |
// TODO(titzer): factor this out to a TaggingScheme abstraction. |
STATIC_ASSERT(kSmiTagMask == 1); // Only works if tag is the low bit. |
@@ -20,6 +712,17 @@ Node* SimplifiedLowering::IsTagged(Node* node) { |
} |
+void SimplifiedLowering::LowerAllNodes() { |
+ SimplifiedOperatorBuilder simplified(graph()->zone()); |
+ RepresentationChanger changer(jsgraph(), &simplified, machine(), |
+ graph()->zone()->isolate()); |
+ RepresentationSelector selector(jsgraph(), zone(), &changer); |
+ selector.Run(this); |
+ |
+ LoweringBuilder::LowerAllNodes(); |
+} |
+ |
+ |
Node* SimplifiedLowering::Untag(Node* node) { |
// TODO(titzer): factor this out to a TaggingScheme abstraction. |
Node* shift_amount = jsgraph()->Int32Constant(kSmiTagSize + kSmiShiftSize); |
@@ -165,10 +868,8 @@ void SimplifiedLowering::DoChangeFloat64ToTagged(Node* node, Node* effect, |
void SimplifiedLowering::DoChangeBoolToBit(Node* node, Node* effect, |
Node* control) { |
- Node* val = node->InputAt(0); |
- Operator* op = |
- kPointerSize == 8 ? machine()->Word64Equal() : machine()->Word32Equal(); |
- Node* cmp = graph()->NewNode(op, val, jsgraph()->TrueConstant()); |
+ Node* cmp = graph()->NewNode(machine()->WordEqual(), node->InputAt(0), |
+ jsgraph()->TrueConstant()); |
node->ReplaceUses(cmp); |
} |
@@ -204,7 +905,7 @@ static WriteBarrierKind ComputeWriteBarrierKind( |
} |
-void SimplifiedLowering::DoLoadField(Node* node, Node* effect, Node* control) { |
+void SimplifiedLowering::DoLoadField(Node* node) { |
const FieldAccess& access = FieldAccessOf(node->op()); |
node->set_op(machine_.Load(access.representation)); |
Node* offset = jsgraph()->Int32Constant(access.offset - access.tag()); |
@@ -212,7 +913,7 @@ void SimplifiedLowering::DoLoadField(Node* node, Node* effect, Node* control) { |
} |
-void SimplifiedLowering::DoStoreField(Node* node, Node* effect, Node* control) { |
+void SimplifiedLowering::DoStoreField(Node* node) { |
const FieldAccess& access = FieldAccessOf(node->op()); |
WriteBarrierKind kind = ComputeWriteBarrierKind( |
access.base_is_tagged, access.representation, access.type); |
@@ -252,21 +953,19 @@ Node* SimplifiedLowering::ComputeIndex(const ElementAccess& access, |
} |
int fixed_offset = access.header_size - access.tag(); |
if (fixed_offset == 0) return index; |
- return graph()->NewNode(machine()->Int32Add(), |
- jsgraph()->Int32Constant(fixed_offset), index); |
+ return graph()->NewNode(machine()->Int32Add(), index, |
+ jsgraph()->Int32Constant(fixed_offset)); |
} |
-void SimplifiedLowering::DoLoadElement(Node* node, Node* effect, |
- Node* control) { |
+void SimplifiedLowering::DoLoadElement(Node* node) { |
const ElementAccess& access = ElementAccessOf(node->op()); |
node->set_op(machine_.Load(access.representation)); |
node->ReplaceInput(1, ComputeIndex(access, node->InputAt(1))); |
} |
-void SimplifiedLowering::DoStoreElement(Node* node, Node* effect, |
- Node* control) { |
+void SimplifiedLowering::DoStoreElement(Node* node) { |
const ElementAccess& access = ElementAccessOf(node->op()); |
WriteBarrierKind kind = ComputeWriteBarrierKind( |
access.base_is_tagged, access.representation, access.type); |
@@ -275,63 +974,37 @@ void SimplifiedLowering::DoStoreElement(Node* node, Node* effect, |
} |
-void SimplifiedLowering::Lower(Node* node) { |
- Node* start = graph()->start(); |
+void SimplifiedLowering::Lower(Node* node) {} |
+ |
+ |
+void SimplifiedLowering::LowerChange(Node* node, Node* effect, Node* control) { |
switch (node->opcode()) { |
- case IrOpcode::kBooleanNot: |
- case IrOpcode::kNumberEqual: |
- case IrOpcode::kNumberLessThan: |
- case IrOpcode::kNumberLessThanOrEqual: |
- case IrOpcode::kNumberAdd: |
- case IrOpcode::kNumberSubtract: |
- case IrOpcode::kNumberMultiply: |
- case IrOpcode::kNumberDivide: |
- case IrOpcode::kNumberModulus: |
- case IrOpcode::kNumberToInt32: |
- case IrOpcode::kNumberToUint32: |
- case IrOpcode::kReferenceEqual: |
- case IrOpcode::kStringEqual: |
- case IrOpcode::kStringLessThan: |
- case IrOpcode::kStringLessThanOrEqual: |
- case IrOpcode::kStringAdd: |
- break; |
case IrOpcode::kChangeTaggedToInt32: |
- DoChangeTaggedToUI32(node, start, start, true); |
+ DoChangeTaggedToUI32(node, effect, control, true); |
break; |
case IrOpcode::kChangeTaggedToUint32: |
- DoChangeTaggedToUI32(node, start, start, false); |
+ DoChangeTaggedToUI32(node, effect, control, false); |
break; |
case IrOpcode::kChangeTaggedToFloat64: |
- DoChangeTaggedToFloat64(node, start, start); |
+ DoChangeTaggedToFloat64(node, effect, control); |
break; |
case IrOpcode::kChangeInt32ToTagged: |
- DoChangeUI32ToTagged(node, start, start, true); |
+ DoChangeUI32ToTagged(node, effect, control, true); |
break; |
case IrOpcode::kChangeUint32ToTagged: |
- DoChangeUI32ToTagged(node, start, start, false); |
+ DoChangeUI32ToTagged(node, effect, control, false); |
break; |
case IrOpcode::kChangeFloat64ToTagged: |
- DoChangeFloat64ToTagged(node, start, start); |
+ DoChangeFloat64ToTagged(node, effect, control); |
break; |
case IrOpcode::kChangeBoolToBit: |
- DoChangeBoolToBit(node, start, start); |
+ DoChangeBoolToBit(node, effect, control); |
break; |
case IrOpcode::kChangeBitToBool: |
- DoChangeBitToBool(node, start, start); |
- break; |
- case IrOpcode::kLoadField: |
- DoLoadField(node, start, start); |
- break; |
- case IrOpcode::kStoreField: |
- DoStoreField(node, start, start); |
- break; |
- case IrOpcode::kLoadElement: |
- DoLoadElement(node, start, start); |
- break; |
- case IrOpcode::kStoreElement: |
- DoStoreElement(node, start, start); |
+ DoChangeBitToBool(node, effect, control); |
break; |
default: |
+ UNREACHABLE(); |
break; |
} |
} |