Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(50)

Unified Diff: src/ppc/simulator-ppc.cc

Issue 422063005: Contribution of PowerPC port. (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: re-upload - catch up to 8/19 level Created 6 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: src/ppc/simulator-ppc.cc
diff --git a/src/ppc/simulator-ppc.cc b/src/ppc/simulator-ppc.cc
new file mode 100644
index 0000000000000000000000000000000000000000..2a6c9c92e542920ca96a6988358b072ce77a69dc
--- /dev/null
+++ b/src/ppc/simulator-ppc.cc
@@ -0,0 +1,3806 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+//
+// Copyright IBM Corp. 2012, 2013. All rights reserved.
+//
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <stdarg.h>
+#include <stdlib.h>
+#include <cmath>
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_PPC
+
+#include "src/assembler.h"
+#include "src/codegen.h"
+#include "src/disasm.h"
+#include "src/ppc/constants-ppc.h"
+#include "src/ppc/frames-ppc.h"
+#include "src/ppc/simulator-ppc.h"
+
+#if defined(USE_SIMULATOR)
+
+// Only build the simulator if not compiling for real PPC hardware.
+namespace v8 {
+namespace internal {
+
+// This macro provides a platform independent use of sscanf. The reason for
+// SScanF not being implemented in a platform independent way through
+// ::v8::internal::OS in the same way as SNPrintF is that the
+// Windows C Run-Time Library does not provide vsscanf.
+#define SScanF sscanf // NOLINT
+
+// The PPCDebugger class is used by the simulator while debugging simulated
+// PowerPC code.
+class PPCDebugger {
+ public:
+ explicit PPCDebugger(Simulator* sim) : sim_(sim) {}
+ ~PPCDebugger();
+
+ void Stop(Instruction* instr);
+ void Info(Instruction* instr);
+ void Debug();
+
+ private:
+ static const Instr kBreakpointInstr = (TWI | 0x1f * B21);
+ static const Instr kNopInstr = (ORI); // ori, 0,0,0
+
+ Simulator* sim_;
+
+ intptr_t GetRegisterValue(int regnum);
+ double GetRegisterPairDoubleValue(int regnum);
+ double GetFPDoubleRegisterValue(int regnum);
+ bool GetValue(const char* desc, intptr_t* value);
+ bool GetFPDoubleValue(const char* desc, double* value);
+
+ // Set or delete a breakpoint. Returns true if successful.
+ bool SetBreakpoint(Instruction* break_pc);
+ bool DeleteBreakpoint(Instruction* break_pc);
+
+ // Undo and redo all breakpoints. This is needed to bracket disassembly and
+ // execution to skip past breakpoints when run from the debugger.
+ void UndoBreakpoints();
+ void RedoBreakpoints();
+};
+
+
+PPCDebugger::~PPCDebugger() {}
+
+
+#ifdef GENERATED_CODE_COVERAGE
+static FILE* coverage_log = NULL;
+
+
+static void InitializeCoverage() {
+ char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
+ if (file_name != NULL) {
+ coverage_log = fopen(file_name, "aw+");
+ }
+}
+
+
+void PPCDebugger::Stop(Instruction* instr) { // roohack need to fix for PPC
+ // Get the stop code.
+ uint32_t code = instr->SvcValue() & kStopCodeMask;
+ // Retrieve the encoded address, which comes just after this stop.
+ char** msg_address =
+ reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
+ char* msg = *msg_address;
+ DCHECK(msg != NULL);
+
+ // Update this stop description.
+ if (isWatchedStop(code) && !watched_stops_[code].desc) {
+ watched_stops_[code].desc = msg;
+ }
+
+ if (strlen(msg) > 0) {
+ if (coverage_log != NULL) {
+ fprintf(coverage_log, "%s\n", msg);
+ fflush(coverage_log);
+ }
+ // Overwrite the instruction and address with nops.
+ instr->SetInstructionBits(kNopInstr);
+ reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr);
+ }
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
+}
+
+#else // ndef GENERATED_CODE_COVERAGE
+
+static void InitializeCoverage() {}
+
+
+void PPCDebugger::Stop(Instruction* instr) {
+ // Get the stop code.
+ // use of kStopCodeMask not right on PowerPC
+ uint32_t code = instr->SvcValue() & kStopCodeMask;
+ // Retrieve the encoded address, which comes just after this stop.
+ char* msg =
+ *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
+ // Update this stop description.
+ if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
+ sim_->watched_stops_[code].desc = msg;
+ }
+ // Print the stop message and code if it is not the default code.
+ if (code != kMaxStopCode) {
+ PrintF("Simulator hit stop %u: %s\n", code, msg);
+ } else {
+ PrintF("Simulator hit %s\n", msg);
+ }
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
+ Debug();
+}
+#endif
+
+
+void PPCDebugger::Info(Instruction* instr) {
+ // Retrieve the encoded address immediately following the Info breakpoint.
+ char* msg =
+ *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
+ PrintF("Simulator info %s\n", msg);
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
+}
+
+
+intptr_t PPCDebugger::GetRegisterValue(int regnum) {
+ return sim_->get_register(regnum);
+}
+
+
+double PPCDebugger::GetRegisterPairDoubleValue(int regnum) {
+ return sim_->get_double_from_register_pair(regnum);
+}
+
+
+double PPCDebugger::GetFPDoubleRegisterValue(int regnum) {
+ return sim_->get_double_from_d_register(regnum);
+}
+
+
+bool PPCDebugger::GetValue(const char* desc, intptr_t* value) {
+ int regnum = Registers::Number(desc);
+ if (regnum != kNoRegister) {
+ *value = GetRegisterValue(regnum);
+ return true;
+ } else {
+ if (strncmp(desc, "0x", 2) == 0) {
+ return SScanF(desc + 2, "%" V8PRIxPTR,
+ reinterpret_cast<uintptr_t*>(value)) == 1;
+ } else {
+ return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) ==
+ 1;
+ }
+ }
+ return false;
+}
+
+
+bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) {
+ int regnum = FPRegisters::Number(desc);
+ if (regnum != kNoRegister) {
+ *value = sim_->get_double_from_d_register(regnum);
+ return true;
+ }
+ return false;
+}
+
+
+bool PPCDebugger::SetBreakpoint(Instruction* break_pc) {
+ // Check if a breakpoint can be set. If not return without any side-effects.
+ if (sim_->break_pc_ != NULL) {
+ return false;
+ }
+
+ // Set the breakpoint.
+ sim_->break_pc_ = break_pc;
+ sim_->break_instr_ = break_pc->InstructionBits();
+ // Not setting the breakpoint instruction in the code itself. It will be set
+ // when the debugger shell continues.
+ return true;
+}
+
+
+bool PPCDebugger::DeleteBreakpoint(Instruction* break_pc) {
+ if (sim_->break_pc_ != NULL) {
+ sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
+ }
+
+ sim_->break_pc_ = NULL;
+ sim_->break_instr_ = 0;
+ return true;
+}
+
+
+void PPCDebugger::UndoBreakpoints() {
+ if (sim_->break_pc_ != NULL) {
+ sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
+ }
+}
+
+
+void PPCDebugger::RedoBreakpoints() {
+ if (sim_->break_pc_ != NULL) {
+ sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
+ }
+}
+
+
+void PPCDebugger::Debug() {
+ intptr_t last_pc = -1;
+ bool done = false;
+
+#define COMMAND_SIZE 63
+#define ARG_SIZE 255
+
+#define STR(a) #a
+#define XSTR(a) STR(a)
+
+ char cmd[COMMAND_SIZE + 1];
+ char arg1[ARG_SIZE + 1];
+ char arg2[ARG_SIZE + 1];
+ char* argv[3] = {cmd, arg1, arg2};
+
+ // make sure to have a proper terminating character if reaching the limit
+ cmd[COMMAND_SIZE] = 0;
+ arg1[ARG_SIZE] = 0;
+ arg2[ARG_SIZE] = 0;
+
+ // Undo all set breakpoints while running in the debugger shell. This will
+ // make them invisible to all commands.
+ UndoBreakpoints();
+ // Disable tracing while simulating
+ bool trace = ::v8::internal::FLAG_trace_sim;
+ ::v8::internal::FLAG_trace_sim = false;
+
+ while (!done && !sim_->has_bad_pc()) {
+ if (last_pc != sim_->get_pc()) {
+ disasm::NameConverter converter;
+ disasm::Disassembler dasm(converter);
+ // use a reasonably large buffer
+ v8::internal::EmbeddedVector<char, 256> buffer;
+ dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
+ PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.start());
+ last_pc = sim_->get_pc();
+ }
+ char* line = ReadLine("sim> ");
+ if (line == NULL) {
+ break;
+ } else {
+ char* last_input = sim_->last_debugger_input();
+ if (strcmp(line, "\n") == 0 && last_input != NULL) {
+ line = last_input;
+ } else {
+ // Ownership is transferred to sim_;
+ sim_->set_last_debugger_input(line);
+ }
+ // Use sscanf to parse the individual parts of the command line. At the
+ // moment no command expects more than two parameters.
+ int argc = SScanF(line,
+ "%" XSTR(COMMAND_SIZE) "s "
+ "%" XSTR(ARG_SIZE) "s "
+ "%" XSTR(ARG_SIZE) "s",
+ cmd, arg1, arg2);
+ if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
+ intptr_t value;
+
+ // If at a breakpoint, proceed past it.
+ if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
+ ->InstructionBits() == 0x7d821008) {
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
+ } else {
+ sim_->ExecuteInstruction(
+ reinterpret_cast<Instruction*>(sim_->get_pc()));
+ }
+
+ if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) {
+ for (int i = 1; i < value; i++) {
+ disasm::NameConverter converter;
+ disasm::Disassembler dasm(converter);
+ // use a reasonably large buffer
+ v8::internal::EmbeddedVector<char, 256> buffer;
+ dasm.InstructionDecode(buffer,
+ reinterpret_cast<byte*>(sim_->get_pc()));
+ PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(),
+ buffer.start());
+ sim_->ExecuteInstruction(
+ reinterpret_cast<Instruction*>(sim_->get_pc()));
+ }
+ }
+ } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
+ // If at a breakpoint, proceed past it.
+ if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
+ ->InstructionBits() == 0x7d821008) {
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
+ } else {
+ // Execute the one instruction we broke at with breakpoints disabled.
+ sim_->ExecuteInstruction(
+ reinterpret_cast<Instruction*>(sim_->get_pc()));
+ }
+ // Leave the debugger shell.
+ done = true;
+ } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
+ if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
+ intptr_t value;
+ double dvalue;
+ if (strcmp(arg1, "all") == 0) {
+ for (int i = 0; i < kNumRegisters; i++) {
+ value = GetRegisterValue(i);
+ PrintF(" %3s: %08" V8PRIxPTR, Registers::Name(i), value);
+ if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
+ (i % 2) == 0) {
+ dvalue = GetRegisterPairDoubleValue(i);
+ PrintF(" (%f)\n", dvalue);
+ } else if (i != 0 && !((i + 1) & 3)) {
+ PrintF("\n");
+ }
+ }
+ PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR
+ " "
+ "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n",
+ sim_->special_reg_pc_, sim_->special_reg_lr_,
+ sim_->special_reg_ctr_, sim_->special_reg_xer_,
+ sim_->condition_reg_);
+ } else if (strcmp(arg1, "alld") == 0) {
+ for (int i = 0; i < kNumRegisters; i++) {
+ value = GetRegisterValue(i);
+ PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR,
+ Registers::Name(i), value, value);
+ if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
+ (i % 2) == 0) {
+ dvalue = GetRegisterPairDoubleValue(i);
+ PrintF(" (%f)\n", dvalue);
+ } else if (!((i + 1) % 2)) {
+ PrintF("\n");
+ }
+ }
+ PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR
+ " "
+ "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n",
+ sim_->special_reg_pc_, sim_->special_reg_lr_,
+ sim_->special_reg_ctr_, sim_->special_reg_xer_,
+ sim_->condition_reg_);
+ } else if (strcmp(arg1, "allf") == 0) {
+ for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
+ dvalue = GetFPDoubleRegisterValue(i);
+ uint64_t as_words = BitCast<uint64_t>(dvalue);
+ PrintF("%3s: %f 0x%08x %08x\n", FPRegisters::Name(i), dvalue,
+ static_cast<uint32_t>(as_words >> 32),
+ static_cast<uint32_t>(as_words & 0xffffffff));
+ }
+ } else if (arg1[0] == 'r' &&
+ (arg1[1] >= '0' && arg1[1] <= '9' &&
+ (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' &&
+ arg1[3] == '\0')))) {
+ int regnum = strtoul(&arg1[1], 0, 10);
+ if (regnum != kNoRegister) {
+ value = GetRegisterValue(regnum);
+ PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
+ value);
+ } else {
+ PrintF("%s unrecognized\n", arg1);
+ }
+ } else {
+ if (GetValue(arg1, &value)) {
+ PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
+ value);
+ } else if (GetFPDoubleValue(arg1, &dvalue)) {
+ uint64_t as_words = BitCast<uint64_t>(dvalue);
+ PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
+ static_cast<uint32_t>(as_words >> 32),
+ static_cast<uint32_t>(as_words & 0xffffffff));
+ } else {
+ PrintF("%s unrecognized\n", arg1);
+ }
+ }
+ } else {
+ PrintF("print <register>\n");
+ }
+ } else if ((strcmp(cmd, "po") == 0) ||
+ (strcmp(cmd, "printobject") == 0)) {
+ if (argc == 2) {
+ intptr_t value;
+ OFStream os(stdout);
+ if (GetValue(arg1, &value)) {
+ Object* obj = reinterpret_cast<Object*>(value);
+ os << arg1 << ": \n";
+#ifdef DEBUG
+ obj->Print(os);
+ os << "\n";
+#else
+ os << Brief(obj) << "\n";
+#endif
+ } else {
+ os << arg1 << " unrecognized\n";
+ }
+ } else {
+ PrintF("printobject <value>\n");
+ }
+ } else if (strcmp(cmd, "setpc") == 0) {
+ intptr_t value;
+
+ if (!GetValue(arg1, &value)) {
+ PrintF("%s unrecognized\n", arg1);
+ continue;
+ }
+ sim_->set_pc(value);
+ } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
+ intptr_t* cur = NULL;
+ intptr_t* end = NULL;
+ int next_arg = 1;
+
+ if (strcmp(cmd, "stack") == 0) {
+ cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp));
+ } else { // "mem"
+ intptr_t value;
+ if (!GetValue(arg1, &value)) {
+ PrintF("%s unrecognized\n", arg1);
+ continue;
+ }
+ cur = reinterpret_cast<intptr_t*>(value);
+ next_arg++;
+ }
+
+ intptr_t words; // likely inaccurate variable name for 64bit
+ if (argc == next_arg) {
+ words = 10;
+ } else {
+ if (!GetValue(argv[next_arg], &words)) {
+ words = 10;
+ }
+ }
+ end = cur + words;
+
+ while (cur < end) {
+ PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR,
+ reinterpret_cast<intptr_t>(cur), *cur, *cur);
+ HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
+ intptr_t value = *cur;
+ Heap* current_heap = v8::internal::Isolate::Current()->heap();
+ if (((value & 1) == 0) || current_heap->Contains(obj)) {
+ PrintF(" (");
+ if ((value & 1) == 0) {
+ PrintF("smi %d", PlatformSmiTagging::SmiToInt(obj));
+ } else {
+ obj->ShortPrint();
+ }
+ PrintF(")");
+ }
+ PrintF("\n");
+ cur++;
+ }
+ } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
+ disasm::NameConverter converter;
+ disasm::Disassembler dasm(converter);
+ // use a reasonably large buffer
+ v8::internal::EmbeddedVector<char, 256> buffer;
+
+ byte* prev = NULL;
+ byte* cur = NULL;
+ byte* end = NULL;
+
+ if (argc == 1) {
+ cur = reinterpret_cast<byte*>(sim_->get_pc());
+ end = cur + (10 * Instruction::kInstrSize);
+ } else if (argc == 2) {
+ int regnum = Registers::Number(arg1);
+ if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
+ // The argument is an address or a register name.
+ intptr_t value;
+ if (GetValue(arg1, &value)) {
+ cur = reinterpret_cast<byte*>(value);
+ // Disassemble 10 instructions at <arg1>.
+ end = cur + (10 * Instruction::kInstrSize);
+ }
+ } else {
+ // The argument is the number of instructions.
+ intptr_t value;
+ if (GetValue(arg1, &value)) {
+ cur = reinterpret_cast<byte*>(sim_->get_pc());
+ // Disassemble <arg1> instructions.
+ end = cur + (value * Instruction::kInstrSize);
+ }
+ }
+ } else {
+ intptr_t value1;
+ intptr_t value2;
+ if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
+ cur = reinterpret_cast<byte*>(value1);
+ end = cur + (value2 * Instruction::kInstrSize);
+ }
+ }
+
+ while (cur < end) {
+ prev = cur;
+ cur += dasm.InstructionDecode(buffer, cur);
+ PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev),
+ buffer.start());
+ }
+ } else if (strcmp(cmd, "gdb") == 0) {
+ PrintF("relinquishing control to gdb\n");
+ v8::base::OS::DebugBreak();
+ PrintF("regaining control from gdb\n");
+ } else if (strcmp(cmd, "break") == 0) {
+ if (argc == 2) {
+ intptr_t value;
+ if (GetValue(arg1, &value)) {
+ if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
+ PrintF("setting breakpoint failed\n");
+ }
+ } else {
+ PrintF("%s unrecognized\n", arg1);
+ }
+ } else {
+ PrintF("break <address>\n");
+ }
+ } else if (strcmp(cmd, "del") == 0) {
+ if (!DeleteBreakpoint(NULL)) {
+ PrintF("deleting breakpoint failed\n");
+ }
+ } else if (strcmp(cmd, "cr") == 0) {
+ PrintF("Condition reg: %08x\n", sim_->condition_reg_);
+ } else if (strcmp(cmd, "lr") == 0) {
+ PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_);
+ } else if (strcmp(cmd, "ctr") == 0) {
+ PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_);
+ } else if (strcmp(cmd, "xer") == 0) {
+ PrintF("XER: %08x\n", sim_->special_reg_xer_);
+ } else if (strcmp(cmd, "fpscr") == 0) {
+ PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_);
+ } else if (strcmp(cmd, "stop") == 0) {
+ intptr_t value;
+ intptr_t stop_pc =
+ sim_->get_pc() - (Instruction::kInstrSize + kPointerSize);
+ Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
+ Instruction* msg_address =
+ reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize);
+ if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
+ // Remove the current stop.
+ if (sim_->isStopInstruction(stop_instr)) {
+ stop_instr->SetInstructionBits(kNopInstr);
+ msg_address->SetInstructionBits(kNopInstr);
+ } else {
+ PrintF("Not at debugger stop.\n");
+ }
+ } else if (argc == 3) {
+ // Print information about all/the specified breakpoint(s).
+ if (strcmp(arg1, "info") == 0) {
+ if (strcmp(arg2, "all") == 0) {
+ PrintF("Stop information:\n");
+ for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
+ sim_->PrintStopInfo(i);
+ }
+ } else if (GetValue(arg2, &value)) {
+ sim_->PrintStopInfo(value);
+ } else {
+ PrintF("Unrecognized argument.\n");
+ }
+ } else if (strcmp(arg1, "enable") == 0) {
+ // Enable all/the specified breakpoint(s).
+ if (strcmp(arg2, "all") == 0) {
+ for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
+ sim_->EnableStop(i);
+ }
+ } else if (GetValue(arg2, &value)) {
+ sim_->EnableStop(value);
+ } else {
+ PrintF("Unrecognized argument.\n");
+ }
+ } else if (strcmp(arg1, "disable") == 0) {
+ // Disable all/the specified breakpoint(s).
+ if (strcmp(arg2, "all") == 0) {
+ for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
+ sim_->DisableStop(i);
+ }
+ } else if (GetValue(arg2, &value)) {
+ sim_->DisableStop(value);
+ } else {
+ PrintF("Unrecognized argument.\n");
+ }
+ }
+ } else {
+ PrintF("Wrong usage. Use help command for more information.\n");
+ }
+ } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
+ ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
+ PrintF("Trace of executed instructions is %s\n",
+ ::v8::internal::FLAG_trace_sim ? "on" : "off");
+ } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
+ PrintF("cont\n");
+ PrintF(" continue execution (alias 'c')\n");
+ PrintF("stepi [num instructions]\n");
+ PrintF(" step one/num instruction(s) (alias 'si')\n");
+ PrintF("print <register>\n");
+ PrintF(" print register content (alias 'p')\n");
+ PrintF(" use register name 'all' to display all integer registers\n");
+ PrintF(
+ " use register name 'alld' to display integer registers "
+ "with decimal values\n");
+ PrintF(" use register name 'rN' to display register number 'N'\n");
+ PrintF(" add argument 'fp' to print register pair double values\n");
+ PrintF(
+ " use register name 'allf' to display floating-point "
+ "registers\n");
+ PrintF("printobject <register>\n");
+ PrintF(" print an object from a register (alias 'po')\n");
+ PrintF("cr\n");
+ PrintF(" print condition register\n");
+ PrintF("lr\n");
+ PrintF(" print link register\n");
+ PrintF("ctr\n");
+ PrintF(" print ctr register\n");
+ PrintF("xer\n");
+ PrintF(" print XER\n");
+ PrintF("fpscr\n");
+ PrintF(" print FPSCR\n");
+ PrintF("stack [<num words>]\n");
+ PrintF(" dump stack content, default dump 10 words)\n");
+ PrintF("mem <address> [<num words>]\n");
+ PrintF(" dump memory content, default dump 10 words)\n");
+ PrintF("disasm [<instructions>]\n");
+ PrintF("disasm [<address/register>]\n");
+ PrintF("disasm [[<address/register>] <instructions>]\n");
+ PrintF(" disassemble code, default is 10 instructions\n");
+ PrintF(" from pc (alias 'di')\n");
+ PrintF("gdb\n");
+ PrintF(" enter gdb\n");
+ PrintF("break <address>\n");
+ PrintF(" set a break point on the address\n");
+ PrintF("del\n");
+ PrintF(" delete the breakpoint\n");
+ PrintF("trace (alias 't')\n");
+ PrintF(" toogle the tracing of all executed statements\n");
+ PrintF("stop feature:\n");
+ PrintF(" Description:\n");
+ PrintF(" Stops are debug instructions inserted by\n");
+ PrintF(" the Assembler::stop() function.\n");
+ PrintF(" When hitting a stop, the Simulator will\n");
+ PrintF(" stop and and give control to the PPCDebugger.\n");
+ PrintF(" The first %d stop codes are watched:\n",
+ Simulator::kNumOfWatchedStops);
+ PrintF(" - They can be enabled / disabled: the Simulator\n");
+ PrintF(" will / won't stop when hitting them.\n");
+ PrintF(" - The Simulator keeps track of how many times they \n");
+ PrintF(" are met. (See the info command.) Going over a\n");
+ PrintF(" disabled stop still increases its counter. \n");
+ PrintF(" Commands:\n");
+ PrintF(" stop info all/<code> : print infos about number <code>\n");
+ PrintF(" or all stop(s).\n");
+ PrintF(" stop enable/disable all/<code> : enables / disables\n");
+ PrintF(" all or number <code> stop(s)\n");
+ PrintF(" stop unstop\n");
+ PrintF(" ignore the stop instruction at the current location\n");
+ PrintF(" from now on\n");
+ } else {
+ PrintF("Unknown command: %s\n", cmd);
+ }
+ }
+ }
+
+ // Add all the breakpoints back to stop execution and enter the debugger
+ // shell when hit.
+ RedoBreakpoints();
+ // Restore tracing
+ ::v8::internal::FLAG_trace_sim = trace;
+
+#undef COMMAND_SIZE
+#undef ARG_SIZE
+
+#undef STR
+#undef XSTR
+}
+
+
+static bool ICacheMatch(void* one, void* two) {
+ DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
+ DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
+ return one == two;
+}
+
+
+static uint32_t ICacheHash(void* key) {
+ return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
+}
+
+
+static bool AllOnOnePage(uintptr_t start, int size) {
+ intptr_t start_page = (start & ~CachePage::kPageMask);
+ intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
+ return start_page == end_page;
+}
+
+
+void Simulator::set_last_debugger_input(char* input) {
+ DeleteArray(last_debugger_input_);
+ last_debugger_input_ = input;
+}
+
+
+void Simulator::FlushICache(v8::internal::HashMap* i_cache, void* start_addr,
+ size_t size) {
+ intptr_t start = reinterpret_cast<intptr_t>(start_addr);
+ int intra_line = (start & CachePage::kLineMask);
+ start -= intra_line;
+ size += intra_line;
+ size = ((size - 1) | CachePage::kLineMask) + 1;
+ int offset = (start & CachePage::kPageMask);
+ while (!AllOnOnePage(start, size - 1)) {
+ int bytes_to_flush = CachePage::kPageSize - offset;
+ FlushOnePage(i_cache, start, bytes_to_flush);
+ start += bytes_to_flush;
+ size -= bytes_to_flush;
+ DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask));
+ offset = 0;
+ }
+ if (size != 0) {
+ FlushOnePage(i_cache, start, size);
+ }
+}
+
+
+CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
+ v8::internal::HashMap::Entry* entry =
+ i_cache->Lookup(page, ICacheHash(page), true);
+ if (entry->value == NULL) {
+ CachePage* new_page = new CachePage();
+ entry->value = new_page;
+ }
+ return reinterpret_cast<CachePage*>(entry->value);
+}
+
+
+// Flush from start up to and not including start + size.
+void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
+ int size) {
+ DCHECK(size <= CachePage::kPageSize);
+ DCHECK(AllOnOnePage(start, size - 1));
+ DCHECK((start & CachePage::kLineMask) == 0);
+ DCHECK((size & CachePage::kLineMask) == 0);
+ void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
+ int offset = (start & CachePage::kPageMask);
+ CachePage* cache_page = GetCachePage(i_cache, page);
+ char* valid_bytemap = cache_page->ValidityByte(offset);
+ memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
+}
+
+
+void Simulator::CheckICache(v8::internal::HashMap* i_cache,
+ Instruction* instr) {
+ intptr_t address = reinterpret_cast<intptr_t>(instr);
+ void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
+ void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
+ int offset = (address & CachePage::kPageMask);
+ CachePage* cache_page = GetCachePage(i_cache, page);
+ char* cache_valid_byte = cache_page->ValidityByte(offset);
+ bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
+ char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
+ if (cache_hit) {
+ // Check that the data in memory matches the contents of the I-cache.
+ CHECK_EQ(0,
+ memcmp(reinterpret_cast<void*>(instr),
+ cache_page->CachedData(offset), Instruction::kInstrSize));
+ } else {
+ // Cache miss. Load memory into the cache.
+ memcpy(cached_line, line, CachePage::kLineLength);
+ *cache_valid_byte = CachePage::LINE_VALID;
+ }
+}
+
+
+void Simulator::Initialize(Isolate* isolate) {
+ if (isolate->simulator_initialized()) return;
+ isolate->set_simulator_initialized(true);
+ ::v8::internal::ExternalReference::set_redirector(isolate,
+ &RedirectExternalReference);
+}
+
+
+Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
+ i_cache_ = isolate_->simulator_i_cache();
+ if (i_cache_ == NULL) {
+ i_cache_ = new v8::internal::HashMap(&ICacheMatch);
+ isolate_->set_simulator_i_cache(i_cache_);
+ }
+ Initialize(isolate);
+// Set up simulator support first. Some of this information is needed to
+// setup the architecture state.
+#if V8_TARGET_ARCH_PPC64
+ size_t stack_size = 2 * 1024 * 1024; // allocate 2MB for stack
+#else
+ size_t stack_size = 1 * 1024 * 1024; // allocate 1MB for stack
+#endif
+ stack_ = reinterpret_cast<char*>(malloc(stack_size));
+ pc_modified_ = false;
+ icount_ = 0;
+ break_pc_ = NULL;
+ break_instr_ = 0;
+
+ // Set up architecture state.
+ // All registers are initialized to zero to start with.
+ for (int i = 0; i < kNumGPRs; i++) {
+ registers_[i] = 0;
+ }
+ condition_reg_ = 0;
+ fp_condition_reg_ = 0;
+ special_reg_pc_ = 0;
+ special_reg_lr_ = 0;
+ special_reg_ctr_ = 0;
+
+ // Initializing FP registers.
+ for (int i = 0; i < kNumFPRs; i++) {
+ fp_registers_[i] = 0.0;
+ }
+
+ // The sp is initialized to point to the bottom (high address) of the
+ // allocated stack area. To be safe in potential stack underflows we leave
+ // some buffer below.
+ registers_[sp] = reinterpret_cast<intptr_t>(stack_) + stack_size - 64;
+ InitializeCoverage();
+
+ last_debugger_input_ = NULL;
+}
+
+
+Simulator::~Simulator() {}
+
+
+// When the generated code calls an external reference we need to catch that in
+// the simulator. The external reference will be a function compiled for the
+// host architecture. We need to call that function instead of trying to
+// execute it with the simulator. We do that by redirecting the external
+// reference to a svc (Supervisor Call) instruction that is handled by
+// the simulator. We write the original destination of the jump just at a known
+// offset from the svc instruction so the simulator knows what to call.
+class Redirection {
+ public:
+ Redirection(void* external_function, ExternalReference::Type type)
+ : external_function_(external_function),
+ swi_instruction_(rtCallRedirInstr | kCallRtRedirected),
+ type_(type),
+ next_(NULL) {
+ Isolate* isolate = Isolate::Current();
+ next_ = isolate->simulator_redirection();
+ Simulator::current(isolate)->FlushICache(
+ isolate->simulator_i_cache(),
+ reinterpret_cast<void*>(&swi_instruction_), Instruction::kInstrSize);
+ isolate->set_simulator_redirection(this);
+ }
+
+ void* address_of_swi_instruction() {
+ return reinterpret_cast<void*>(&swi_instruction_);
+ }
+
+ void* external_function() { return external_function_; }
+ ExternalReference::Type type() { return type_; }
+
+ static Redirection* Get(void* external_function,
+ ExternalReference::Type type) {
+ Isolate* isolate = Isolate::Current();
+ Redirection* current = isolate->simulator_redirection();
+ for (; current != NULL; current = current->next_) {
+ if (current->external_function_ == external_function) {
+ DCHECK_EQ(current->type(), type);
+ return current;
+ }
+ }
+ return new Redirection(external_function, type);
+ }
+
+ static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
+ char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
+ char* addr_of_redirection =
+ addr_of_swi - OFFSET_OF(Redirection, swi_instruction_);
+ return reinterpret_cast<Redirection*>(addr_of_redirection);
+ }
+
+ static void* ReverseRedirection(intptr_t reg) {
+ Redirection* redirection = FromSwiInstruction(
+ reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg)));
+ return redirection->external_function();
+ }
+
+ private:
+ void* external_function_;
+ uint32_t swi_instruction_;
+ ExternalReference::Type type_;
+ Redirection* next_;
+};
+
+
+void* Simulator::RedirectExternalReference(void* external_function,
+ ExternalReference::Type type) {
+ Redirection* redirection = Redirection::Get(external_function, type);
+ return redirection->address_of_swi_instruction();
+}
+
+
+// Get the active Simulator for the current thread.
+Simulator* Simulator::current(Isolate* isolate) {
+ v8::internal::Isolate::PerIsolateThreadData* isolate_data =
+ isolate->FindOrAllocatePerThreadDataForThisThread();
+ DCHECK(isolate_data != NULL);
+
+ Simulator* sim = isolate_data->simulator();
+ if (sim == NULL) {
+ // TODO(146): delete the simulator object when a thread/isolate goes away.
+ sim = new Simulator(isolate);
+ isolate_data->set_simulator(sim);
+ }
+ return sim;
+}
+
+
+// Sets the register in the architecture state.
+void Simulator::set_register(int reg, intptr_t value) {
+ DCHECK((reg >= 0) && (reg < kNumGPRs));
+ registers_[reg] = value;
+}
+
+
+// Get the register from the architecture state.
+intptr_t Simulator::get_register(int reg) const {
+ DCHECK((reg >= 0) && (reg < kNumGPRs));
+ // Stupid code added to avoid bug in GCC.
+ // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
+ if (reg >= kNumGPRs) return 0;
+ // End stupid code.
+ return registers_[reg];
+}
+
+
+double Simulator::get_double_from_register_pair(int reg) {
+ DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0));
+
+ double dm_val = 0.0;
+#if !V8_TARGET_ARCH_PPC64 // doesn't make sense in 64bit mode
+ // Read the bits from the unsigned integer register_[] array
+ // into the double precision floating point value and return it.
+ char buffer[sizeof(fp_registers_[0])];
+ memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
+ memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
+#endif
+ return (dm_val);
+}
+
+
+// Raw access to the PC register.
+void Simulator::set_pc(intptr_t value) {
+ pc_modified_ = true;
+ special_reg_pc_ = value;
+}
+
+
+bool Simulator::has_bad_pc() const {
+ return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc));
+}
+
+
+// Raw access to the PC register without the special adjustment when reading.
+intptr_t Simulator::get_pc() const { return special_reg_pc_; }
+
+
+// Runtime FP routines take:
+// - two double arguments
+// - one double argument and zero or one integer arguments.
+// All are consructed here from d1, d2 and r3.
+void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) {
+ *x = get_double_from_d_register(1);
+ *y = get_double_from_d_register(2);
+ *z = get_register(3);
+}
+
+
+// The return value is in d1.
+void Simulator::SetFpResult(const double& result) { fp_registers_[1] = result; }
+
+
+void Simulator::TrashCallerSaveRegisters() {
+// We don't trash the registers with the return value.
+#if 0 // A good idea to trash volatile registers, needs to be done
+ registers_[2] = 0x50Bad4U;
+ registers_[3] = 0x50Bad4U;
+ registers_[12] = 0x50Bad4U;
+#endif
+}
+
+
+uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) {
+ uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
+ return *ptr;
+}
+
+
+int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) {
+ int32_t* ptr = reinterpret_cast<int32_t*>(addr);
+ return *ptr;
+}
+
+
+void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) {
+ uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
+ *ptr = value;
+ return;
+}
+
+
+void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) {
+ int32_t* ptr = reinterpret_cast<int32_t*>(addr);
+ *ptr = value;
+ return;
+}
+
+
+uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) {
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
+ return *ptr;
+}
+
+
+int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) {
+ int16_t* ptr = reinterpret_cast<int16_t*>(addr);
+ return *ptr;
+}
+
+
+void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) {
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
+ *ptr = value;
+ return;
+}
+
+
+void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) {
+ int16_t* ptr = reinterpret_cast<int16_t*>(addr);
+ *ptr = value;
+ return;
+}
+
+
+uint8_t Simulator::ReadBU(intptr_t addr) {
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
+ return *ptr;
+}
+
+
+int8_t Simulator::ReadB(intptr_t addr) {
+ int8_t* ptr = reinterpret_cast<int8_t*>(addr);
+ return *ptr;
+}
+
+
+void Simulator::WriteB(intptr_t addr, uint8_t value) {
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
+ *ptr = value;
+}
+
+
+void Simulator::WriteB(intptr_t addr, int8_t value) {
+ int8_t* ptr = reinterpret_cast<int8_t*>(addr);
+ *ptr = value;
+}
+
+
+intptr_t* Simulator::ReadDW(intptr_t addr) {
+ intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
+ return ptr;
+}
+
+
+void Simulator::WriteDW(intptr_t addr, int64_t value) {
+ int64_t* ptr = reinterpret_cast<int64_t*>(addr);
+ *ptr = value;
+ return;
+}
+
+
+// Returns the limit of the stack area to enable checking for stack overflows.
+uintptr_t Simulator::StackLimit() const {
+ // Leave a safety margin of 1024 bytes to prevent overrunning the stack when
+ // pushing values.
+ return reinterpret_cast<uintptr_t>(stack_) + 1024;
+}
+
+
+// Unsupported instructions use Format to print an error and stop execution.
+void Simulator::Format(Instruction* instr, const char* format) {
+ PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
+ reinterpret_cast<intptr_t>(instr), format);
+ UNIMPLEMENTED();
+}
+
+
+// Calculate C flag value for additions.
+bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
+ uint32_t uleft = static_cast<uint32_t>(left);
+ uint32_t uright = static_cast<uint32_t>(right);
+ uint32_t urest = 0xffffffffU - uleft;
+
+ return (uright > urest) ||
+ (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
+}
+
+
+// Calculate C flag value for subtractions.
+bool Simulator::BorrowFrom(int32_t left, int32_t right) {
+ uint32_t uleft = static_cast<uint32_t>(left);
+ uint32_t uright = static_cast<uint32_t>(right);
+
+ return (uright > uleft);
+}
+
+
+// Calculate V flag value for additions and subtractions.
+bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
+ bool addition) {
+ bool overflow;
+ if (addition) {
+ // operands have the same sign
+ overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
+ // and operands and result have different sign
+ &&
+ ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
+ } else {
+ // operands have different signs
+ overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
+ // and first operand and result have different signs
+ &&
+ ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
+ }
+ return overflow;
+}
+
+
+#if !V8_TARGET_ARCH_PPC64
+// Calls into the V8 runtime are based on this very simple interface.
+// Note: To be able to return two values from some calls the code in runtime.cc
+// uses the ObjectPair which is essentially two 32-bit values stuffed into a
+// 64-bit value. With the code below we assume that all runtime calls return
+// 64 bits of result. If they don't, the r4 result register contains a bogus
+// value, which is fine because it is caller-saved.
+typedef int64_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
+ intptr_t arg2, intptr_t arg3,
+ intptr_t arg4, intptr_t arg5);
+#else
+// For 64-bit, we need to be more explicit.
+typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
+ intptr_t arg2, intptr_t arg3,
+ intptr_t arg4, intptr_t arg5);
+struct ObjectPair {
+ intptr_t x;
+ intptr_t y;
+};
+
+typedef struct ObjectPair (*SimulatorRuntimeObjectPairCall)(
+ intptr_t arg0, intptr_t arg1, intptr_t arg2, intptr_t arg3, intptr_t arg4,
+ intptr_t arg5);
+#endif
+
+// These prototypes handle the four types of FP calls.
+typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
+typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
+typedef double (*SimulatorRuntimeFPCall)(double darg0);
+typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0);
+
+// This signature supports direct call in to API function native callback
+// (refer to InvocationCallback in v8.h).
+typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0);
+typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1);
+
+// This signature supports direct call to accessor getter callback.
+typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1);
+typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0,
+ intptr_t arg1, void* arg2);
+
+// Software interrupt instructions are used by the simulator to call into the
+// C-based V8 runtime.
+void Simulator::SoftwareInterrupt(Instruction* instr) {
+ int svc = instr->SvcValue();
+ switch (svc) {
+ case kCallRtRedirected: {
+ // Check if stack is aligned. Error if not aligned is reported below to
+ // include information on the function called.
+ bool stack_aligned =
+ (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
+ 0;
+ Redirection* redirection = Redirection::FromSwiInstruction(instr);
+ const int kArgCount = 6;
+ int arg0_regnum = 3;
+#if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
+ intptr_t result_buffer = 0;
+ if (redirection->type() == ExternalReference::BUILTIN_OBJECTPAIR_CALL) {
+ result_buffer = get_register(r3);
+ arg0_regnum++;
+ }
+#endif
+ intptr_t arg[kArgCount];
+ for (int i = 0; i < kArgCount; i++) {
+ arg[i] = get_register(arg0_regnum + i);
+ }
+ bool fp_call =
+ (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
+ (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
+ (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
+ (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
+ // This is dodgy but it works because the C entry stubs are never moved.
+ // See comment in codegen-arm.cc and bug 1242173.
+ intptr_t saved_lr = special_reg_lr_;
+ intptr_t external =
+ reinterpret_cast<intptr_t>(redirection->external_function());
+ if (fp_call) {
+ double dval0, dval1; // one or two double parameters
+ intptr_t ival; // zero or one integer parameters
+ int iresult = 0; // integer return value
+ double dresult = 0; // double return value
+ GetFpArgs(&dval0, &dval1, &ival);
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ SimulatorRuntimeCall generic_target =
+ reinterpret_cast<SimulatorRuntimeCall>(external);
+ switch (redirection->type()) {
+ case ExternalReference::BUILTIN_FP_FP_CALL:
+ case ExternalReference::BUILTIN_COMPARE_CALL:
+ PrintF("Call to host function at %p with args %f, %f",
+ FUNCTION_ADDR(generic_target), dval0, dval1);
+ break;
+ case ExternalReference::BUILTIN_FP_CALL:
+ PrintF("Call to host function at %p with arg %f",
+ FUNCTION_ADDR(generic_target), dval0);
+ break;
+ case ExternalReference::BUILTIN_FP_INT_CALL:
+ PrintF("Call to host function at %p with args %f, %" V8PRIdPTR,
+ FUNCTION_ADDR(generic_target), dval0, ival);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
+ get_register(sp));
+ }
+ PrintF("\n");
+ }
+ CHECK(stack_aligned);
+ switch (redirection->type()) {
+ case ExternalReference::BUILTIN_COMPARE_CALL: {
+ SimulatorRuntimeCompareCall target =
+ reinterpret_cast<SimulatorRuntimeCompareCall>(external);
+ iresult = target(dval0, dval1);
+ set_register(r3, iresult);
+ break;
+ }
+ case ExternalReference::BUILTIN_FP_FP_CALL: {
+ SimulatorRuntimeFPFPCall target =
+ reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
+ dresult = target(dval0, dval1);
+ SetFpResult(dresult);
+ break;
+ }
+ case ExternalReference::BUILTIN_FP_CALL: {
+ SimulatorRuntimeFPCall target =
+ reinterpret_cast<SimulatorRuntimeFPCall>(external);
+ dresult = target(dval0);
+ SetFpResult(dresult);
+ break;
+ }
+ case ExternalReference::BUILTIN_FP_INT_CALL: {
+ SimulatorRuntimeFPIntCall target =
+ reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
+ dresult = target(dval0, ival);
+ SetFpResult(dresult);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ switch (redirection->type()) {
+ case ExternalReference::BUILTIN_COMPARE_CALL:
+ PrintF("Returned %08x\n", iresult);
+ break;
+ case ExternalReference::BUILTIN_FP_FP_CALL:
+ case ExternalReference::BUILTIN_FP_CALL:
+ case ExternalReference::BUILTIN_FP_INT_CALL:
+ PrintF("Returned %f\n", dresult);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+ } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
+ // See callers of MacroAssembler::CallApiFunctionAndReturn for
+ // explanation of register usage.
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ PrintF("Call to host function at %p args %08" V8PRIxPTR,
+ reinterpret_cast<void*>(external), arg[0]);
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
+ get_register(sp));
+ }
+ PrintF("\n");
+ }
+ CHECK(stack_aligned);
+ SimulatorRuntimeDirectApiCall target =
+ reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
+ target(arg[0]);
+ } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
+ // See callers of MacroAssembler::CallApiFunctionAndReturn for
+ // explanation of register usage.
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ PrintF("Call to host function at %p args %08" V8PRIxPTR
+ " %08" V8PRIxPTR,
+ reinterpret_cast<void*>(external), arg[0], arg[1]);
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
+ get_register(sp));
+ }
+ PrintF("\n");
+ }
+ CHECK(stack_aligned);
+ SimulatorRuntimeProfilingApiCall target =
+ reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
+ target(arg[0], Redirection::ReverseRedirection(arg[1]));
+ } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
+ // See callers of MacroAssembler::CallApiFunctionAndReturn for
+ // explanation of register usage.
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ PrintF("Call to host function at %p args %08" V8PRIxPTR
+ " %08" V8PRIxPTR,
+ reinterpret_cast<void*>(external), arg[0], arg[1]);
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
+ get_register(sp));
+ }
+ PrintF("\n");
+ }
+ CHECK(stack_aligned);
+ SimulatorRuntimeDirectGetterCall target =
+ reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
+#if !ABI_PASSES_HANDLES_IN_REGS
+ arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
+#endif
+ target(arg[0], arg[1]);
+ } else if (redirection->type() ==
+ ExternalReference::PROFILING_GETTER_CALL) {
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ PrintF("Call to host function at %p args %08" V8PRIxPTR
+ " %08" V8PRIxPTR " %08" V8PRIxPTR,
+ reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]);
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
+ get_register(sp));
+ }
+ PrintF("\n");
+ }
+ CHECK(stack_aligned);
+ SimulatorRuntimeProfilingGetterCall target =
+ reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
+#if !ABI_PASSES_HANDLES_IN_REGS
+ arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
+#endif
+ target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2]));
+ } else {
+ // builtin call.
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ SimulatorRuntimeCall target =
+ reinterpret_cast<SimulatorRuntimeCall>(external);
+ PrintF(
+ "Call to host function at %p,\n"
+ "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
+ ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR,
+ FUNCTION_ADDR(target), arg[0], arg[1], arg[2], arg[3], arg[4],
+ arg[5]);
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
+ get_register(sp));
+ }
+ PrintF("\n");
+ }
+ CHECK(stack_aligned);
+#if !V8_TARGET_ARCH_PPC64
+ DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
+ SimulatorRuntimeCall target =
+ reinterpret_cast<SimulatorRuntimeCall>(external);
+ int64_t result = target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
+ int32_t lo_res = static_cast<int32_t>(result);
+ int32_t hi_res = static_cast<int32_t>(result >> 32);
+#if V8_TARGET_BIG_ENDIAN
+ if (::v8::internal::FLAG_trace_sim) {
+ PrintF("Returned %08x\n", hi_res);
+ }
+ set_register(r3, hi_res);
+ set_register(r4, lo_res);
+#else
+ if (::v8::internal::FLAG_trace_sim) {
+ PrintF("Returned %08x\n", lo_res);
+ }
+ set_register(r3, lo_res);
+ set_register(r4, hi_res);
+#endif
+#else
+ if (redirection->type() == ExternalReference::BUILTIN_CALL) {
+ SimulatorRuntimeCall target =
+ reinterpret_cast<SimulatorRuntimeCall>(external);
+ intptr_t result =
+ target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
+ if (::v8::internal::FLAG_trace_sim) {
+ PrintF("Returned %08" V8PRIxPTR "\n", result);
+ }
+ set_register(r3, result);
+ } else {
+ DCHECK(redirection->type() ==
+ ExternalReference::BUILTIN_OBJECTPAIR_CALL);
+ SimulatorRuntimeObjectPairCall target =
+ reinterpret_cast<SimulatorRuntimeObjectPairCall>(external);
+ struct ObjectPair result =
+ target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
+ if (::v8::internal::FLAG_trace_sim) {
+ PrintF("Returned %08" V8PRIxPTR ", %08" V8PRIxPTR "\n", result.x,
+ result.y);
+ }
+#if ABI_RETURNS_OBJECT_PAIRS_IN_REGS
+ set_register(r3, result.x);
+ set_register(r4, result.y);
+#else
+ memcpy(reinterpret_cast<void*>(result_buffer), &result,
+ sizeof(struct ObjectPair));
+#endif
+ }
+#endif
+ }
+ set_pc(saved_lr);
+ break;
+ }
+ case kBreakpoint: {
+ PPCDebugger dbg(this);
+ dbg.Debug();
+ break;
+ }
+ case kInfo: {
+ PPCDebugger dbg(this);
+ dbg.Info(instr);
+ break;
+ }
+ // stop uses all codes greater than 1 << 23.
+ default: {
+ if (svc >= (1 << 23)) {
+ uint32_t code = svc & kStopCodeMask;
+ if (isWatchedStop(code)) {
+ IncreaseStopCounter(code);
+ }
+ // Stop if it is enabled, otherwise go on jumping over the stop
+ // and the message address.
+ if (isEnabledStop(code)) {
+ PPCDebugger dbg(this);
+ dbg.Stop(instr);
+ } else {
+ set_pc(get_pc() + Instruction::kInstrSize + kPointerSize);
+ }
+ } else {
+ // This is not a valid svc code.
+ UNREACHABLE();
+ break;
+ }
+ }
+ }
+}
+
+
+// Stop helper functions.
+bool Simulator::isStopInstruction(Instruction* instr) {
+ return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
+}
+
+
+bool Simulator::isWatchedStop(uint32_t code) {
+ DCHECK(code <= kMaxStopCode);
+ return code < kNumOfWatchedStops;
+}
+
+
+bool Simulator::isEnabledStop(uint32_t code) {
+ DCHECK(code <= kMaxStopCode);
+ // Unwatched stops are always enabled.
+ return !isWatchedStop(code) ||
+ !(watched_stops_[code].count & kStopDisabledBit);
+}
+
+
+void Simulator::EnableStop(uint32_t code) {
+ DCHECK(isWatchedStop(code));
+ if (!isEnabledStop(code)) {
+ watched_stops_[code].count &= ~kStopDisabledBit;
+ }
+}
+
+
+void Simulator::DisableStop(uint32_t code) {
+ DCHECK(isWatchedStop(code));
+ if (isEnabledStop(code)) {
+ watched_stops_[code].count |= kStopDisabledBit;
+ }
+}
+
+
+void Simulator::IncreaseStopCounter(uint32_t code) {
+ DCHECK(code <= kMaxStopCode);
+ DCHECK(isWatchedStop(code));
+ if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
+ PrintF(
+ "Stop counter for code %i has overflowed.\n"
+ "Enabling this code and reseting the counter to 0.\n",
+ code);
+ watched_stops_[code].count = 0;
+ EnableStop(code);
+ } else {
+ watched_stops_[code].count++;
+ }
+}
+
+
+// Print a stop status.
+void Simulator::PrintStopInfo(uint32_t code) {
+ DCHECK(code <= kMaxStopCode);
+ if (!isWatchedStop(code)) {
+ PrintF("Stop not watched.");
+ } else {
+ const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
+ int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
+ // Don't print the state of unused breakpoints.
+ if (count != 0) {
+ if (watched_stops_[code].desc) {
+ PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
+ state, count, watched_stops_[code].desc);
+ } else {
+ PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
+ count);
+ }
+ }
+ }
+}
+
+
+void Simulator::SetCR0(intptr_t result, bool setSO) {
+ int bf = 0;
+ if (result < 0) {
+ bf |= 0x80000000;
+ }
+ if (result > 0) {
+ bf |= 0x40000000;
+ }
+ if (result == 0) {
+ bf |= 0x20000000;
+ }
+ if (setSO) {
+ bf |= 0x10000000;
+ }
+ condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
+}
+
+
+void Simulator::ExecuteBranchConditional(Instruction* instr) {
+ int bo = instr->Bits(25, 21) << 21;
+ int offset = (instr->Bits(15, 2) << 18) >> 16;
+ int condition_bit = instr->Bits(20, 16);
+ int condition_mask = 0x80000000 >> condition_bit;
+ switch (bo) {
+ case DCBNZF: // Decrement CTR; branch if CTR != 0 and condition false
+ case DCBEZF: // Decrement CTR; branch if CTR == 0 and condition false
+ UNIMPLEMENTED();
+ case BF: { // Branch if condition false
+ if (!(condition_reg_ & condition_mask)) {
+ if (instr->Bit(0) == 1) { // LK flag set
+ special_reg_lr_ = get_pc() + 4;
+ }
+ set_pc(get_pc() + offset);
+ }
+ break;
+ }
+ case DCBNZT: // Decrement CTR; branch if CTR != 0 and condition true
+ case DCBEZT: // Decrement CTR; branch if CTR == 0 and condition true
+ UNIMPLEMENTED();
+ case BT: { // Branch if condition true
+ if (condition_reg_ & condition_mask) {
+ if (instr->Bit(0) == 1) { // LK flag set
+ special_reg_lr_ = get_pc() + 4;
+ }
+ set_pc(get_pc() + offset);
+ }
+ break;
+ }
+ case DCBNZ: // Decrement CTR; branch if CTR != 0
+ case DCBEZ: // Decrement CTR; branch if CTR == 0
+ special_reg_ctr_ -= 1;
+ if ((special_reg_ctr_ == 0) == (bo == DCBEZ)) {
+ if (instr->Bit(0) == 1) { // LK flag set
+ special_reg_lr_ = get_pc() + 4;
+ }
+ set_pc(get_pc() + offset);
+ }
+ break;
+ case BA: { // Branch always
+ if (instr->Bit(0) == 1) { // LK flag set
+ special_reg_lr_ = get_pc() + 4;
+ }
+ set_pc(get_pc() + offset);
+ break;
+ }
+ default:
+ UNIMPLEMENTED(); // Invalid encoding
+ }
+}
+
+
+// Handle execution based on instruction types.
+void Simulator::ExecuteExt1(Instruction* instr) {
+ switch (instr->Bits(10, 1) << 1) {
+ case MCRF:
+ UNIMPLEMENTED(); // Not used by V8.
+ case BCLRX: {
+ // need to check BO flag
+ intptr_t old_pc = get_pc();
+ set_pc(special_reg_lr_);
+ if (instr->Bit(0) == 1) { // LK flag set
+ special_reg_lr_ = old_pc + 4;
+ }
+ break;
+ }
+ case BCCTRX: {
+ // need to check BO flag
+ intptr_t old_pc = get_pc();
+ set_pc(special_reg_ctr_);
+ if (instr->Bit(0) == 1) { // LK flag set
+ special_reg_lr_ = old_pc + 4;
+ }
+ break;
+ }
+ case CRNOR:
+ case RFI:
+ case CRANDC:
+ UNIMPLEMENTED();
+ case ISYNC: {
+ // todo - simulate isync
+ break;
+ }
+ case CRXOR: {
+ int bt = instr->Bits(25, 21);
+ int ba = instr->Bits(20, 16);
+ int bb = instr->Bits(15, 11);
+ int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
+ int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
+ int bt_val = ba_val ^ bb_val;
+ bt_val = bt_val << (31 - bt); // shift bit to correct destination
+ condition_reg_ &= ~(0x80000000 >> bt);
+ condition_reg_ |= bt_val;
+ break;
+ }
+ case CREQV: {
+ int bt = instr->Bits(25, 21);
+ int ba = instr->Bits(20, 16);
+ int bb = instr->Bits(15, 11);
+ int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
+ int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
+ int bt_val = 1 - (ba_val ^ bb_val);
+ bt_val = bt_val << (31 - bt); // shift bit to correct destination
+ condition_reg_ &= ~(0x80000000 >> bt);
+ condition_reg_ |= bt_val;
+ break;
+ }
+ case CRNAND:
+ case CRAND:
+ case CRORC:
+ case CROR:
+ default: {
+ UNIMPLEMENTED(); // Not used by V8.
+ }
+ }
+}
+
+
+bool Simulator::ExecuteExt2_10bit(Instruction* instr) {
+ bool found = true;
+
+ int opcode = instr->Bits(10, 1) << 1;
+ switch (opcode) {
+ case SRWX: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ uint32_t rs_val = get_register(rs);
+ uintptr_t rb_val = get_register(rb);
+ intptr_t result = rs_val >> (rb_val & 0x3f);
+ set_register(ra, result);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(result);
+ }
+ break;
+ }
+#if V8_TARGET_ARCH_PPC64
+ case SRDX: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ uintptr_t rs_val = get_register(rs);
+ uintptr_t rb_val = get_register(rb);
+ intptr_t result = rs_val >> (rb_val & 0x7f);
+ set_register(ra, result);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(result);
+ }
+ break;
+ }
+#endif
+ case SRAW: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ int32_t rs_val = get_register(rs);
+ intptr_t rb_val = get_register(rb);
+ intptr_t result = rs_val >> (rb_val & 0x3f);
+ set_register(ra, result);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(result);
+ }
+ break;
+ }
+#if V8_TARGET_ARCH_PPC64
+ case SRAD: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ intptr_t rs_val = get_register(rs);
+ intptr_t rb_val = get_register(rb);
+ intptr_t result = rs_val >> (rb_val & 0x7f);
+ set_register(ra, result);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(result);
+ }
+ break;
+ }
+#endif
+ case SRAWIX: {
+ int ra = instr->RAValue();
+ int rs = instr->RSValue();
+ int sh = instr->Bits(15, 11);
+ int32_t rs_val = get_register(rs);
+ intptr_t result = rs_val >> sh;
+ set_register(ra, result);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(result);
+ }
+ break;
+ }
+#if V8_TARGET_ARCH_PPC64
+ case EXTSW: {
+ const int shift = kBitsPerPointer - 32;
+ int ra = instr->RAValue();
+ int rs = instr->RSValue();
+ intptr_t rs_val = get_register(rs);
+ intptr_t ra_val = (rs_val << shift) >> shift;
+ set_register(ra, ra_val);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(ra_val);
+ }
+ break;
+ }
+#endif
+ case EXTSH: {
+ const int shift = kBitsPerPointer - 16;
+ int ra = instr->RAValue();
+ int rs = instr->RSValue();
+ intptr_t rs_val = get_register(rs);
+ intptr_t ra_val = (rs_val << shift) >> shift;
+ set_register(ra, ra_val);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(ra_val);
+ }
+ break;
+ }
+ case EXTSB: {
+ const int shift = kBitsPerPointer - 8;
+ int ra = instr->RAValue();
+ int rs = instr->RSValue();
+ intptr_t rs_val = get_register(rs);
+ intptr_t ra_val = (rs_val << shift) >> shift;
+ set_register(ra, ra_val);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(ra_val);
+ }
+ break;
+ }
+ case LFSUX:
+ case LFSX: {
+ int frt = instr->RTValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ intptr_t rb_val = get_register(rb);
+ int32_t val = ReadW(ra_val + rb_val, instr);
+ float* fptr = reinterpret_cast<float*>(&val);
+ set_d_register_from_double(frt, static_cast<double>(*fptr));
+ if (opcode == LFSUX) {
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + rb_val);
+ }
+ break;
+ }
+ case LFDUX:
+ case LFDX: {
+ int frt = instr->RTValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ intptr_t rb_val = get_register(rb);
+ double* dptr = reinterpret_cast<double*>(ReadDW(ra_val + rb_val));
+ set_d_register_from_double(frt, *dptr);
+ if (opcode == LFDUX) {
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + rb_val);
+ }
+ break;
+ }
+ case STFSUX: {
+ case STFSX:
+ int frs = instr->RSValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ intptr_t rb_val = get_register(rb);
+ float frs_val = static_cast<float>(get_double_from_d_register(frs));
+ int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
+ WriteW(ra_val + rb_val, *p, instr);
+ if (opcode == STFSUX) {
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + rb_val);
+ }
+ break;
+ }
+ case STFDUX: {
+ case STFDX:
+ int frs = instr->RSValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ intptr_t rb_val = get_register(rb);
+ double frs_val = get_double_from_d_register(frs);
+ int64_t* p = reinterpret_cast<int64_t*>(&frs_val);
+ WriteDW(ra_val + rb_val, *p);
+ if (opcode == STFDUX) {
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + rb_val);
+ }
+ break;
+ }
+ case SYNC: {
+ // todo - simulate sync
+ break;
+ }
+ case ICBI: {
+ // todo - simulate icbi
+ break;
+ }
+ default: {
+ found = false;
+ break;
+ }
+ }
+
+ if (found) return found;
+
+ found = true;
+ opcode = instr->Bits(10, 2) << 2;
+ switch (opcode) {
+ case SRADIX: {
+ int ra = instr->RAValue();
+ int rs = instr->RSValue();
+ int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
+ intptr_t rs_val = get_register(rs);
+ intptr_t result = rs_val >> sh;
+ set_register(ra, result);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(result);
+ }
+ break;
+ }
+ default: {
+ found = false;
+ break;
+ }
+ }
+
+ return found;
+}
+
+
+bool Simulator::ExecuteExt2_9bit_part1(Instruction* instr) {
+ bool found = true;
+
+ int opcode = instr->Bits(9, 1) << 1;
+ switch (opcode) {
+ case TW: {
+ // used for call redirection in simulation mode
+ SoftwareInterrupt(instr);
+ break;
+ }
+ case CMP: {
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ int cr = instr->Bits(25, 23);
+ uint32_t bf = 0;
+#if V8_TARGET_ARCH_PPC64
+ int L = instr->Bit(21);
+ if (L) {
+#endif
+ intptr_t ra_val = get_register(ra);
+ intptr_t rb_val = get_register(rb);
+ if (ra_val < rb_val) {
+ bf |= 0x80000000;
+ }
+ if (ra_val > rb_val) {
+ bf |= 0x40000000;
+ }
+ if (ra_val == rb_val) {
+ bf |= 0x20000000;
+ }
+#if V8_TARGET_ARCH_PPC64
+ } else {
+ int32_t ra_val = get_register(ra);
+ int32_t rb_val = get_register(rb);
+ if (ra_val < rb_val) {
+ bf |= 0x80000000;
+ }
+ if (ra_val > rb_val) {
+ bf |= 0x40000000;
+ }
+ if (ra_val == rb_val) {
+ bf |= 0x20000000;
+ }
+ }
+#endif
+ uint32_t condition_mask = 0xF0000000U >> (cr * 4);
+ uint32_t condition = bf >> (cr * 4);
+ condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
+ break;
+ }
+ case SUBFCX: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ // int oe = instr->Bit(10);
+ uintptr_t ra_val = get_register(ra);
+ uintptr_t rb_val = get_register(rb);
+ uintptr_t alu_out = ~ra_val + rb_val + 1;
+ set_register(rt, alu_out);
+ // If the sign of rb and alu_out don't match, carry = 0
+ if ((alu_out ^ rb_val) & 0x80000000) {
+ special_reg_xer_ &= ~0xF0000000;
+ } else {
+ special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
+ }
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(alu_out);
+ }
+ // todo - handle OE bit
+ break;
+ }
+ case ADDCX: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ // int oe = instr->Bit(10);
+ uintptr_t ra_val = get_register(ra);
+ uintptr_t rb_val = get_register(rb);
+ uintptr_t alu_out = ra_val + rb_val;
+ // Check overflow
+ if (~ra_val < rb_val) {
+ special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
+ } else {
+ special_reg_xer_ &= ~0xF0000000;
+ }
+ set_register(rt, alu_out);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(static_cast<intptr_t>(alu_out));
+ }
+ // todo - handle OE bit
+ break;
+ }
+ case MULHWX: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
+ int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
+ int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val;
+ alu_out >>= 32;
+ set_register(rt, alu_out);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(static_cast<intptr_t>(alu_out));
+ }
+ // todo - handle OE bit
+ break;
+ }
+ case NEGX: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ intptr_t ra_val = get_register(ra);
+ intptr_t alu_out = 1 + ~ra_val;
+#if V8_TARGET_ARCH_PPC64
+ intptr_t one = 1; // work-around gcc
+ intptr_t kOverflowVal = (one << 63);
+#else
+ intptr_t kOverflowVal = kMinInt;
+#endif
+ set_register(rt, alu_out);
+ if (instr->Bit(10)) { // OE bit set
+ if (ra_val == kOverflowVal) {
+ special_reg_xer_ |= 0xC0000000; // set SO,OV
+ } else {
+ special_reg_xer_ &= ~0x40000000; // clear OV
+ }
+ }
+ if (instr->Bit(0)) { // RC bit set
+ bool setSO = (special_reg_xer_ & 0x80000000);
+ SetCR0(alu_out, setSO);
+ }
+ break;
+ }
+ case SLWX: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ uint32_t rs_val = get_register(rs);
+ uintptr_t rb_val = get_register(rb);
+ uint32_t result = rs_val << (rb_val & 0x3f);
+ set_register(ra, result);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(result);
+ }
+ break;
+ }
+#if V8_TARGET_ARCH_PPC64
+ case SLDX: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ uintptr_t rs_val = get_register(rs);
+ uintptr_t rb_val = get_register(rb);
+ uintptr_t result = rs_val << (rb_val & 0x7f);
+ set_register(ra, result);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(result);
+ }
+ break;
+ }
+ case MFVSRD: {
+ DCHECK(!instr->Bit(0));
+ int frt = instr->RTValue();
+ int ra = instr->RAValue();
+ double frt_val = get_double_from_d_register(frt);
+ int64_t* p = reinterpret_cast<int64_t*>(&frt_val);
+ set_register(ra, *p);
+ break;
+ }
+ case MFVSRWZ: {
+ DCHECK(!instr->Bit(0));
+ int frt = instr->RTValue();
+ int ra = instr->RAValue();
+ double frt_val = get_double_from_d_register(frt);
+ int64_t* p = reinterpret_cast<int64_t*>(&frt_val);
+ set_register(ra, static_cast<uint32_t>(*p));
+ break;
+ }
+ case MTVSRD: {
+ DCHECK(!instr->Bit(0));
+ int frt = instr->RTValue();
+ int ra = instr->RAValue();
+ int64_t ra_val = get_register(ra);
+ double* p = reinterpret_cast<double*>(&ra_val);
+ set_d_register_from_double(frt, *p);
+ break;
+ }
+ case MTVSRWA: {
+ DCHECK(!instr->Bit(0));
+ int frt = instr->RTValue();
+ int ra = instr->RAValue();
+ int64_t ra_val = static_cast<int32_t>(get_register(ra));
+ double* p = reinterpret_cast<double*>(&ra_val);
+ set_d_register_from_double(frt, *p);
+ break;
+ }
+ case MTVSRWZ: {
+ DCHECK(!instr->Bit(0));
+ int frt = instr->RTValue();
+ int ra = instr->RAValue();
+ uint64_t ra_val = static_cast<uint32_t>(get_register(ra));
+ double* p = reinterpret_cast<double*>(&ra_val);
+ set_d_register_from_double(frt, *p);
+ break;
+ }
+#endif
+ default: {
+ found = false;
+ break;
+ }
+ }
+
+ return found;
+}
+
+
+void Simulator::ExecuteExt2_9bit_part2(Instruction* instr) {
+ int opcode = instr->Bits(9, 1) << 1;
+ switch (opcode) {
+ case CNTLZWX: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ uintptr_t rs_val = get_register(rs);
+ uintptr_t count = 0;
+ int n = 0;
+ uintptr_t bit = 0x80000000;
+ for (; n < 32; n++) {
+ if (bit & rs_val) break;
+ count++;
+ bit >>= 1;
+ }
+ set_register(ra, count);
+ if (instr->Bit(0)) { // RC Bit set
+ int bf = 0;
+ if (count > 0) {
+ bf |= 0x40000000;
+ }
+ if (count == 0) {
+ bf |= 0x20000000;
+ }
+ condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
+ }
+ break;
+ }
+#if V8_TARGET_ARCH_PPC64
+ case CNTLZDX: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ uintptr_t rs_val = get_register(rs);
+ uintptr_t count = 0;
+ int n = 0;
+ uintptr_t bit = 0x8000000000000000UL;
+ for (; n < 64; n++) {
+ if (bit & rs_val) break;
+ count++;
+ bit >>= 1;
+ }
+ set_register(ra, count);
+ if (instr->Bit(0)) { // RC Bit set
+ int bf = 0;
+ if (count > 0) {
+ bf |= 0x40000000;
+ }
+ if (count == 0) {
+ bf |= 0x20000000;
+ }
+ condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
+ }
+ break;
+ }
+#endif
+ case ANDX: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ intptr_t rs_val = get_register(rs);
+ intptr_t rb_val = get_register(rb);
+ intptr_t alu_out = rs_val & rb_val;
+ set_register(ra, alu_out);
+ if (instr->Bit(0)) { // RC Bit set
+ SetCR0(alu_out);
+ }
+ break;
+ }
+ case ANDCX: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ intptr_t rs_val = get_register(rs);
+ intptr_t rb_val = get_register(rb);
+ intptr_t alu_out = rs_val & ~rb_val;
+ set_register(ra, alu_out);
+ if (instr->Bit(0)) { // RC Bit set
+ SetCR0(alu_out);
+ }
+ break;
+ }
+ case CMPL: {
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ int cr = instr->Bits(25, 23);
+ uint32_t bf = 0;
+#if V8_TARGET_ARCH_PPC64
+ int L = instr->Bit(21);
+ if (L) {
+#endif
+ uintptr_t ra_val = get_register(ra);
+ uintptr_t rb_val = get_register(rb);
+ if (ra_val < rb_val) {
+ bf |= 0x80000000;
+ }
+ if (ra_val > rb_val) {
+ bf |= 0x40000000;
+ }
+ if (ra_val == rb_val) {
+ bf |= 0x20000000;
+ }
+#if V8_TARGET_ARCH_PPC64
+ } else {
+ uint32_t ra_val = get_register(ra);
+ uint32_t rb_val = get_register(rb);
+ if (ra_val < rb_val) {
+ bf |= 0x80000000;
+ }
+ if (ra_val > rb_val) {
+ bf |= 0x40000000;
+ }
+ if (ra_val == rb_val) {
+ bf |= 0x20000000;
+ }
+ }
+#endif
+ uint32_t condition_mask = 0xF0000000U >> (cr * 4);
+ uint32_t condition = bf >> (cr * 4);
+ condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
+ break;
+ }
+ case SUBFX: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ // int oe = instr->Bit(10);
+ intptr_t ra_val = get_register(ra);
+ intptr_t rb_val = get_register(rb);
+ intptr_t alu_out = rb_val - ra_val;
+ // todo - figure out underflow
+ set_register(rt, alu_out);
+ if (instr->Bit(0)) { // RC Bit set
+ SetCR0(alu_out);
+ }
+ // todo - handle OE bit
+ break;
+ }
+ case ADDZEX: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ intptr_t ra_val = get_register(ra);
+ if (special_reg_xer_ & 0x20000000) {
+ ra_val += 1;
+ }
+ set_register(rt, ra_val);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(ra_val);
+ }
+ // todo - handle OE bit
+ break;
+ }
+ case NORX: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ intptr_t rs_val = get_register(rs);
+ intptr_t rb_val = get_register(rb);
+ intptr_t alu_out = ~(rs_val | rb_val);
+ set_register(ra, alu_out);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(alu_out);
+ }
+ break;
+ }
+ case MULLW: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
+ int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
+ int32_t alu_out = ra_val * rb_val;
+ set_register(rt, alu_out);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(alu_out);
+ }
+ // todo - handle OE bit
+ break;
+ }
+#if V8_TARGET_ARCH_PPC64
+ case MULLD: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ int64_t ra_val = get_register(ra);
+ int64_t rb_val = get_register(rb);
+ int64_t alu_out = ra_val * rb_val;
+ set_register(rt, alu_out);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(alu_out);
+ }
+ // todo - handle OE bit
+ break;
+ }
+#endif
+ case DIVW: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ int32_t ra_val = get_register(ra);
+ int32_t rb_val = get_register(rb);
+ bool overflow = (ra_val == kMinInt && rb_val == -1);
+ // result is undefined if divisor is zero or if operation
+ // is 0x80000000 / -1.
+ int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val / rb_val;
+ set_register(rt, alu_out);
+ if (instr->Bit(10)) { // OE bit set
+ if (overflow) {
+ special_reg_xer_ |= 0xC0000000; // set SO,OV
+ } else {
+ special_reg_xer_ &= ~0x40000000; // clear OV
+ }
+ }
+ if (instr->Bit(0)) { // RC bit set
+ bool setSO = (special_reg_xer_ & 0x80000000);
+ SetCR0(alu_out, setSO);
+ }
+ break;
+ }
+#if V8_TARGET_ARCH_PPC64
+ case DIVD: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ int64_t ra_val = get_register(ra);
+ int64_t rb_val = get_register(rb);
+ int64_t one = 1; // work-around gcc
+ int64_t kMinLongLong = (one << 63);
+ // result is undefined if divisor is zero or if operation
+ // is 0x80000000_00000000 / -1.
+ int64_t alu_out =
+ (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1))
+ ? -1
+ : ra_val / rb_val;
+ set_register(rt, alu_out);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(alu_out);
+ }
+ // todo - handle OE bit
+ break;
+ }
+#endif
+ case ADDX: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ // int oe = instr->Bit(10);
+ intptr_t ra_val = get_register(ra);
+ intptr_t rb_val = get_register(rb);
+ intptr_t alu_out = ra_val + rb_val;
+ set_register(rt, alu_out);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(alu_out);
+ }
+ // todo - handle OE bit
+ break;
+ }
+ case XORX: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ intptr_t rs_val = get_register(rs);
+ intptr_t rb_val = get_register(rb);
+ intptr_t alu_out = rs_val ^ rb_val;
+ set_register(ra, alu_out);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(alu_out);
+ }
+ break;
+ }
+ case ORX: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ intptr_t rs_val = get_register(rs);
+ intptr_t rb_val = get_register(rb);
+ intptr_t alu_out = rs_val | rb_val;
+ set_register(ra, alu_out);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(alu_out);
+ }
+ break;
+ }
+ case MFSPR: {
+ int rt = instr->RTValue();
+ int spr = instr->Bits(20, 11);
+ if (spr != 256) {
+ UNIMPLEMENTED(); // Only LRLR supported
+ }
+ set_register(rt, special_reg_lr_);
+ break;
+ }
+ case MTSPR: {
+ int rt = instr->RTValue();
+ intptr_t rt_val = get_register(rt);
+ int spr = instr->Bits(20, 11);
+ if (spr == 256) {
+ special_reg_lr_ = rt_val;
+ } else if (spr == 288) {
+ special_reg_ctr_ = rt_val;
+ } else if (spr == 32) {
+ special_reg_xer_ = rt_val;
+ } else {
+ UNIMPLEMENTED(); // Only LR supported
+ }
+ break;
+ }
+ case MFCR: {
+ int rt = instr->RTValue();
+ set_register(rt, condition_reg_);
+ break;
+ }
+ case STWUX:
+ case STWX: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ int32_t rs_val = get_register(rs);
+ intptr_t rb_val = get_register(rb);
+ WriteW(ra_val + rb_val, rs_val, instr);
+ if (opcode == STWUX) {
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + rb_val);
+ }
+ break;
+ }
+ case STBUX:
+ case STBX: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ int8_t rs_val = get_register(rs);
+ intptr_t rb_val = get_register(rb);
+ WriteB(ra_val + rb_val, rs_val);
+ if (opcode == STBUX) {
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + rb_val);
+ }
+ break;
+ }
+ case STHUX:
+ case STHX: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ int16_t rs_val = get_register(rs);
+ intptr_t rb_val = get_register(rb);
+ WriteH(ra_val + rb_val, rs_val, instr);
+ if (opcode == STHUX) {
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + rb_val);
+ }
+ break;
+ }
+ case LWZX:
+ case LWZUX: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ intptr_t rb_val = get_register(rb);
+ set_register(rt, ReadWU(ra_val + rb_val, instr));
+ if (opcode == LWZUX) {
+ DCHECK(ra != 0 && ra != rt);
+ set_register(ra, ra_val + rb_val);
+ }
+ break;
+ }
+#if V8_TARGET_ARCH_PPC64
+ case LDX:
+ case LDUX: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ intptr_t rb_val = get_register(rb);
+ intptr_t* result = ReadDW(ra_val + rb_val);
+ set_register(rt, *result);
+ if (opcode == LDUX) {
+ DCHECK(ra != 0 && ra != rt);
+ set_register(ra, ra_val + rb_val);
+ }
+ break;
+ }
+ case STDX:
+ case STDUX: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ intptr_t rs_val = get_register(rs);
+ intptr_t rb_val = get_register(rb);
+ WriteDW(ra_val + rb_val, rs_val);
+ if (opcode == STDUX) {
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + rb_val);
+ }
+ break;
+ }
+#endif
+ case LBZX:
+ case LBZUX: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ intptr_t rb_val = get_register(rb);
+ set_register(rt, ReadBU(ra_val + rb_val) & 0xFF);
+ if (opcode == LBZUX) {
+ DCHECK(ra != 0 && ra != rt);
+ set_register(ra, ra_val + rb_val);
+ }
+ break;
+ }
+ case LHZX:
+ case LHZUX: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ int rb = instr->RBValue();
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ intptr_t rb_val = get_register(rb);
+ set_register(rt, ReadHU(ra_val + rb_val, instr) & 0xFFFF);
+ if (opcode == LHZUX) {
+ DCHECK(ra != 0 && ra != rt);
+ set_register(ra, ra_val + rb_val);
+ }
+ break;
+ }
+ case DCBF: {
+ // todo - simulate dcbf
+ break;
+ }
+ default: {
+ PrintF("Unimplemented: %08x\n", instr->InstructionBits());
+ UNIMPLEMENTED(); // Not used by V8.
+ }
+ }
+}
+
+
+void Simulator::ExecuteExt2(Instruction* instr) {
+ // Check first the 10-1 bit versions
+ if (ExecuteExt2_10bit(instr)) return;
+ // Now look at the lesser encodings
+ if (ExecuteExt2_9bit_part1(instr)) return;
+ ExecuteExt2_9bit_part2(instr);
+}
+
+
+void Simulator::ExecuteExt4(Instruction* instr) {
+ switch (instr->Bits(5, 1) << 1) {
+ case FDIV: {
+ int frt = instr->RTValue();
+ int fra = instr->RAValue();
+ int frb = instr->RBValue();
+ double fra_val = get_double_from_d_register(fra);
+ double frb_val = get_double_from_d_register(frb);
+ double frt_val = fra_val / frb_val;
+ set_d_register_from_double(frt, frt_val);
+ return;
+ }
+ case FSUB: {
+ int frt = instr->RTValue();
+ int fra = instr->RAValue();
+ int frb = instr->RBValue();
+ double fra_val = get_double_from_d_register(fra);
+ double frb_val = get_double_from_d_register(frb);
+ double frt_val = fra_val - frb_val;
+ set_d_register_from_double(frt, frt_val);
+ return;
+ }
+ case FADD: {
+ int frt = instr->RTValue();
+ int fra = instr->RAValue();
+ int frb = instr->RBValue();
+ double fra_val = get_double_from_d_register(fra);
+ double frb_val = get_double_from_d_register(frb);
+ double frt_val = fra_val + frb_val;
+ set_d_register_from_double(frt, frt_val);
+ return;
+ }
+ case FSQRT: {
+ int frt = instr->RTValue();
+ int frb = instr->RBValue();
+ double frb_val = get_double_from_d_register(frb);
+ double frt_val = std::sqrt(frb_val);
+ set_d_register_from_double(frt, frt_val);
+ return;
+ }
+ case FSEL: {
+ int frt = instr->RTValue();
+ int fra = instr->RAValue();
+ int frb = instr->RBValue();
+ int frc = instr->RCValue();
+ double fra_val = get_double_from_d_register(fra);
+ double frb_val = get_double_from_d_register(frb);
+ double frc_val = get_double_from_d_register(frc);
+ double frt_val = ((fra_val >= 0.0) ? frc_val : frb_val);
+ set_d_register_from_double(frt, frt_val);
+ return;
+ }
+ case FMUL: {
+ int frt = instr->RTValue();
+ int fra = instr->RAValue();
+ int frc = instr->RCValue();
+ double fra_val = get_double_from_d_register(fra);
+ double frc_val = get_double_from_d_register(frc);
+ double frt_val = fra_val * frc_val;
+ set_d_register_from_double(frt, frt_val);
+ return;
+ }
+ case FMSUB: {
+ int frt = instr->RTValue();
+ int fra = instr->RAValue();
+ int frb = instr->RBValue();
+ int frc = instr->RCValue();
+ double fra_val = get_double_from_d_register(fra);
+ double frb_val = get_double_from_d_register(frb);
+ double frc_val = get_double_from_d_register(frc);
+ double frt_val = (fra_val * frc_val) - frb_val;
+ set_d_register_from_double(frt, frt_val);
+ return;
+ }
+ case FMADD: {
+ int frt = instr->RTValue();
+ int fra = instr->RAValue();
+ int frb = instr->RBValue();
+ int frc = instr->RCValue();
+ double fra_val = get_double_from_d_register(fra);
+ double frb_val = get_double_from_d_register(frb);
+ double frc_val = get_double_from_d_register(frc);
+ double frt_val = (fra_val * frc_val) + frb_val;
+ set_d_register_from_double(frt, frt_val);
+ return;
+ }
+ }
+ int opcode = instr->Bits(10, 1) << 1;
+ switch (opcode) {
+ case FCMPU: {
+ int fra = instr->RAValue();
+ int frb = instr->RBValue();
+ double fra_val = get_double_from_d_register(fra);
+ double frb_val = get_double_from_d_register(frb);
+ int cr = instr->Bits(25, 23);
+ int bf = 0;
+ if (fra_val < frb_val) {
+ bf |= 0x80000000;
+ }
+ if (fra_val > frb_val) {
+ bf |= 0x40000000;
+ }
+ if (fra_val == frb_val) {
+ bf |= 0x20000000;
+ }
+ if (std::isunordered(fra_val, frb_val)) {
+ bf |= 0x10000000;
+ }
+ int condition_mask = 0xF0000000 >> (cr * 4);
+ int condition = bf >> (cr * 4);
+ condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
+ return;
+ }
+ case FRSP: {
+ int frt = instr->RTValue();
+ int frb = instr->RBValue();
+ double frb_val = get_double_from_d_register(frb);
+ // frsp round 8-byte double-precision value to 8-byte
+ // single-precision value, ignore the round here
+ set_d_register_from_double(frt, frb_val);
+ if (instr->Bit(0)) { // RC bit set
+ // UNIMPLEMENTED();
+ }
+ return;
+ }
+ case FCFID: {
+ int frt = instr->RTValue();
+ int frb = instr->RBValue();
+ double t_val = get_double_from_d_register(frb);
+ int64_t* frb_val_p = reinterpret_cast<int64_t*>(&t_val);
+ double frt_val = static_cast<double>(*frb_val_p);
+ set_d_register_from_double(frt, frt_val);
+ return;
+ }
+ case FCTID: {
+ int frt = instr->RTValue();
+ int frb = instr->RBValue();
+ double frb_val = get_double_from_d_register(frb);
+ int64_t frt_val;
+ int64_t one = 1; // work-around gcc
+ int64_t kMinLongLong = (one << 63);
+ int64_t kMaxLongLong = kMinLongLong - 1;
+
+ if (frb_val > kMaxLongLong) {
+ frt_val = kMaxLongLong;
+ } else if (frb_val < kMinLongLong) {
+ frt_val = kMinLongLong;
+ } else {
+ switch (fp_condition_reg_ & kFPRoundingModeMask) {
+ case kRoundToZero:
+ frt_val = (int64_t)frb_val;
+ break;
+ case kRoundToPlusInf:
+ frt_val = (int64_t)std::ceil(frb_val);
+ break;
+ case kRoundToMinusInf:
+ frt_val = (int64_t)std::floor(frb_val);
+ break;
+ default:
+ frt_val = (int64_t)frb_val;
+ UNIMPLEMENTED(); // Not used by V8.
+ break;
+ }
+ }
+ double* p = reinterpret_cast<double*>(&frt_val);
+ set_d_register_from_double(frt, *p);
+ return;
+ }
+ case FCTIDZ: {
+ int frt = instr->RTValue();
+ int frb = instr->RBValue();
+ double frb_val = get_double_from_d_register(frb);
+ int64_t frt_val;
+ int64_t one = 1; // work-around gcc
+ int64_t kMinLongLong = (one << 63);
+ int64_t kMaxLongLong = kMinLongLong - 1;
+
+ if (frb_val > kMaxLongLong) {
+ frt_val = kMaxLongLong;
+ } else if (frb_val < kMinLongLong) {
+ frt_val = kMinLongLong;
+ } else {
+ frt_val = (int64_t)frb_val;
+ }
+ double* p = reinterpret_cast<double*>(&frt_val);
+ set_d_register_from_double(frt, *p);
+ return;
+ }
+ case FCTIW:
+ case FCTIWZ: {
+ int frt = instr->RTValue();
+ int frb = instr->RBValue();
+ double frb_val = get_double_from_d_register(frb);
+ int64_t frt_val;
+ if (frb_val > kMaxInt) {
+ frt_val = kMaxInt;
+ } else if (frb_val < kMinInt) {
+ frt_val = kMinInt;
+ } else {
+ if (opcode == FCTIWZ) {
+ frt_val = (int64_t)frb_val;
+ } else {
+ switch (fp_condition_reg_ & kFPRoundingModeMask) {
+ case kRoundToZero:
+ frt_val = (int64_t)frb_val;
+ break;
+ case kRoundToPlusInf:
+ frt_val = (int64_t)std::ceil(frb_val);
+ break;
+ case kRoundToMinusInf:
+ frt_val = (int64_t)std::floor(frb_val);
+ break;
+ case kRoundToNearest:
+ frt_val = (int64_t)lround(frb_val);
+
+ // Round to even if exactly halfway. (lround rounds up)
+ if (std::fabs(static_cast<double>(frt_val) - frb_val) == 0.5 &&
+ (frt_val % 2)) {
+ frt_val += ((frt_val > 0) ? -1 : 1);
+ }
+
+ break;
+ default:
+ DCHECK(false);
+ frt_val = (int64_t)frb_val;
+ break;
+ }
+ }
+ }
+ double* p = reinterpret_cast<double*>(&frt_val);
+ set_d_register_from_double(frt, *p);
+ return;
+ }
+ case FNEG: {
+ int frt = instr->RTValue();
+ int frb = instr->RBValue();
+ double frb_val = get_double_from_d_register(frb);
+ double frt_val = -frb_val;
+ set_d_register_from_double(frt, frt_val);
+ return;
+ }
+ case FMR: {
+ int frt = instr->RTValue();
+ int frb = instr->RBValue();
+ double frb_val = get_double_from_d_register(frb);
+ double frt_val = frb_val;
+ set_d_register_from_double(frt, frt_val);
+ return;
+ }
+ case MTFSFI: {
+ int bf = instr->Bits(25, 23);
+ int imm = instr->Bits(15, 12);
+ int fp_condition_mask = 0xF0000000 >> (bf * 4);
+ fp_condition_reg_ &= ~fp_condition_mask;
+ fp_condition_reg_ |= (imm << (28 - (bf * 4)));
+ if (instr->Bit(0)) { // RC bit set
+ condition_reg_ &= 0xF0FFFFFF;
+ condition_reg_ |= (imm << 23);
+ }
+ return;
+ }
+ case MTFSF: {
+ int frb = instr->RBValue();
+ double frb_dval = get_double_from_d_register(frb);
+ int64_t* p = reinterpret_cast<int64_t*>(&frb_dval);
+ int32_t frb_ival = static_cast<int32_t>((*p) & 0xffffffff);
+ int l = instr->Bits(25, 25);
+ if (l == 1) {
+ fp_condition_reg_ = frb_ival;
+ } else {
+ UNIMPLEMENTED();
+ }
+ if (instr->Bit(0)) { // RC bit set
+ UNIMPLEMENTED();
+ // int w = instr->Bits(16, 16);
+ // int flm = instr->Bits(24, 17);
+ }
+ return;
+ }
+ case MFFS: {
+ int frt = instr->RTValue();
+ int64_t lval = static_cast<int64_t>(fp_condition_reg_);
+ double* p = reinterpret_cast<double*>(&lval);
+ set_d_register_from_double(frt, *p);
+ return;
+ }
+ case FABS: {
+ int frt = instr->RTValue();
+ int frb = instr->RBValue();
+ double frb_val = get_double_from_d_register(frb);
+ double frt_val = std::fabs(frb_val);
+ set_d_register_from_double(frt, frt_val);
+ return;
+ }
+ case FRIM: {
+ int frt = instr->RTValue();
+ int frb = instr->RBValue();
+ double frb_val = get_double_from_d_register(frb);
+ int64_t floor_val = (int64_t)frb_val;
+ if (floor_val > frb_val) floor_val--;
+ double frt_val = static_cast<double>(floor_val);
+ set_d_register_from_double(frt, frt_val);
+ return;
+ }
+ }
+ UNIMPLEMENTED(); // Not used by V8.
+}
+
+#if V8_TARGET_ARCH_PPC64
+void Simulator::ExecuteExt5(Instruction* instr) {
+ switch (instr->Bits(4, 2) << 2) {
+ case RLDICL: {
+ int ra = instr->RAValue();
+ int rs = instr->RSValue();
+ uintptr_t rs_val = get_register(rs);
+ int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
+ int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
+ DCHECK(sh >= 0 && sh <= 63);
+ DCHECK(mb >= 0 && mb <= 63);
+ // rotate left
+ uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh));
+ uintptr_t mask = 0xffffffffffffffff >> mb;
+ result &= mask;
+ set_register(ra, result);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(result);
+ }
+ return;
+ }
+ case RLDICR: {
+ int ra = instr->RAValue();
+ int rs = instr->RSValue();
+ uintptr_t rs_val = get_register(rs);
+ int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
+ int me = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
+ DCHECK(sh >= 0 && sh <= 63);
+ DCHECK(me >= 0 && me <= 63);
+ // rotate left
+ uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh));
+ uintptr_t mask = 0xffffffffffffffff << (63 - me);
+ result &= mask;
+ set_register(ra, result);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(result);
+ }
+ return;
+ }
+ case RLDIC: {
+ int ra = instr->RAValue();
+ int rs = instr->RSValue();
+ uintptr_t rs_val = get_register(rs);
+ int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
+ int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
+ DCHECK(sh >= 0 && sh <= 63);
+ DCHECK(mb >= 0 && mb <= 63);
+ // rotate left
+ uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh));
+ uintptr_t mask = (0xffffffffffffffff >> mb) & (0xffffffffffffffff << sh);
+ result &= mask;
+ set_register(ra, result);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(result);
+ }
+ return;
+ }
+ case RLDIMI: {
+ int ra = instr->RAValue();
+ int rs = instr->RSValue();
+ uintptr_t rs_val = get_register(rs);
+ intptr_t ra_val = get_register(ra);
+ int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
+ int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
+ int me = 63 - sh;
+ // rotate left
+ uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh));
+ uintptr_t mask = 0;
+ if (mb < me + 1) {
+ uintptr_t bit = 0x8000000000000000 >> mb;
+ for (; mb <= me; mb++) {
+ mask |= bit;
+ bit >>= 1;
+ }
+ } else if (mb == me + 1) {
+ mask = 0xffffffffffffffff;
+ } else { // mb > me+1
+ uintptr_t bit = 0x8000000000000000 >> (me + 1); // needs to be tested
+ mask = 0xffffffffffffffff;
+ for (; me < mb; me++) {
+ mask ^= bit;
+ bit >>= 1;
+ }
+ }
+ result &= mask;
+ ra_val &= ~mask;
+ result |= ra_val;
+ set_register(ra, result);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(result);
+ }
+ return;
+ }
+ }
+ switch (instr->Bits(4, 1) << 1) {
+ case RLDCL: {
+ int ra = instr->RAValue();
+ int rs = instr->RSValue();
+ int rb = instr->RBValue();
+ uintptr_t rs_val = get_register(rs);
+ uintptr_t rb_val = get_register(rb);
+ int sh = (rb_val & 0x3f);
+ int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
+ DCHECK(sh >= 0 && sh <= 63);
+ DCHECK(mb >= 0 && mb <= 63);
+ // rotate left
+ uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh));
+ uintptr_t mask = 0xffffffffffffffff >> mb;
+ result &= mask;
+ set_register(ra, result);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(result);
+ }
+ return;
+ }
+ }
+ UNIMPLEMENTED(); // Not used by V8.
+}
+#endif
+
+
+void Simulator::ExecuteGeneric(Instruction* instr) {
+ int opcode = instr->OpcodeValue() << 26;
+ switch (opcode) {
+ case SUBFIC: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ intptr_t ra_val = get_register(ra);
+ int32_t im_val = instr->Bits(15, 0);
+ im_val = SIGN_EXT_IMM16(im_val);
+ intptr_t alu_out = im_val - ra_val;
+ set_register(rt, alu_out);
+ // todo - handle RC bit
+ break;
+ }
+ case CMPLI: {
+ int ra = instr->RAValue();
+ uint32_t im_val = instr->Bits(15, 0);
+ int cr = instr->Bits(25, 23);
+ uint32_t bf = 0;
+#if V8_TARGET_ARCH_PPC64
+ int L = instr->Bit(21);
+ if (L) {
+#endif
+ uintptr_t ra_val = get_register(ra);
+ if (ra_val < im_val) {
+ bf |= 0x80000000;
+ }
+ if (ra_val > im_val) {
+ bf |= 0x40000000;
+ }
+ if (ra_val == im_val) {
+ bf |= 0x20000000;
+ }
+#if V8_TARGET_ARCH_PPC64
+ } else {
+ uint32_t ra_val = get_register(ra);
+ if (ra_val < im_val) {
+ bf |= 0x80000000;
+ }
+ if (ra_val > im_val) {
+ bf |= 0x40000000;
+ }
+ if (ra_val == im_val) {
+ bf |= 0x20000000;
+ }
+ }
+#endif
+ uint32_t condition_mask = 0xF0000000U >> (cr * 4);
+ uint32_t condition = bf >> (cr * 4);
+ condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
+ break;
+ }
+ case CMPI: {
+ int ra = instr->RAValue();
+ int32_t im_val = instr->Bits(15, 0);
+ im_val = SIGN_EXT_IMM16(im_val);
+ int cr = instr->Bits(25, 23);
+ uint32_t bf = 0;
+#if V8_TARGET_ARCH_PPC64
+ int L = instr->Bit(21);
+ if (L) {
+#endif
+ intptr_t ra_val = get_register(ra);
+ if (ra_val < im_val) {
+ bf |= 0x80000000;
+ }
+ if (ra_val > im_val) {
+ bf |= 0x40000000;
+ }
+ if (ra_val == im_val) {
+ bf |= 0x20000000;
+ }
+#if V8_TARGET_ARCH_PPC64
+ } else {
+ int32_t ra_val = get_register(ra);
+ if (ra_val < im_val) {
+ bf |= 0x80000000;
+ }
+ if (ra_val > im_val) {
+ bf |= 0x40000000;
+ }
+ if (ra_val == im_val) {
+ bf |= 0x20000000;
+ }
+ }
+#endif
+ uint32_t condition_mask = 0xF0000000U >> (cr * 4);
+ uint32_t condition = bf >> (cr * 4);
+ condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
+ break;
+ }
+ case ADDIC: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ uintptr_t ra_val = get_register(ra);
+ uintptr_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
+ uintptr_t alu_out = ra_val + im_val;
+ // Check overflow
+ if (~ra_val < im_val) {
+ special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
+ } else {
+ special_reg_xer_ &= ~0xF0000000;
+ }
+ set_register(rt, alu_out);
+ break;
+ }
+ case ADDI: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ int32_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
+ intptr_t alu_out;
+ if (ra == 0) {
+ alu_out = im_val;
+ } else {
+ intptr_t ra_val = get_register(ra);
+ alu_out = ra_val + im_val;
+ }
+ set_register(rt, alu_out);
+ // todo - handle RC bit
+ break;
+ }
+ case ADDIS: {
+ int rt = instr->RTValue();
+ int ra = instr->RAValue();
+ int32_t im_val = (instr->Bits(15, 0) << 16);
+ intptr_t alu_out;
+ if (ra == 0) { // treat r0 as zero
+ alu_out = im_val;
+ } else {
+ intptr_t ra_val = get_register(ra);
+ alu_out = ra_val + im_val;
+ }
+ set_register(rt, alu_out);
+ break;
+ }
+ case BCX: {
+ ExecuteBranchConditional(instr);
+ break;
+ }
+ case BX: {
+ int offset = (instr->Bits(25, 2) << 8) >> 6;
+ if (instr->Bit(0) == 1) { // LK flag set
+ special_reg_lr_ = get_pc() + 4;
+ }
+ set_pc(get_pc() + offset);
+ // todo - AA flag
+ break;
+ }
+ case EXT1: {
+ ExecuteExt1(instr);
+ break;
+ }
+ case RLWIMIX: {
+ int ra = instr->RAValue();
+ int rs = instr->RSValue();
+ uint32_t rs_val = get_register(rs);
+ int32_t ra_val = get_register(ra);
+ int sh = instr->Bits(15, 11);
+ int mb = instr->Bits(10, 6);
+ int me = instr->Bits(5, 1);
+ // rotate left
+ uint32_t result = (rs_val << sh) | (rs_val >> (32 - sh));
+ int mask = 0;
+ if (mb < me + 1) {
+ int bit = 0x80000000 >> mb;
+ for (; mb <= me; mb++) {
+ mask |= bit;
+ bit >>= 1;
+ }
+ } else if (mb == me + 1) {
+ mask = 0xffffffff;
+ } else { // mb > me+1
+ int bit = 0x80000000 >> (me + 1); // needs to be tested
+ mask = 0xffffffff;
+ for (; me < mb; me++) {
+ mask ^= bit;
+ bit >>= 1;
+ }
+ }
+ result &= mask;
+ ra_val &= ~mask;
+ result |= ra_val;
+ set_register(ra, result);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(result);
+ }
+ break;
+ }
+ case RLWINMX:
+ case RLWNMX: {
+ int ra = instr->RAValue();
+ int rs = instr->RSValue();
+ uint32_t rs_val = get_register(rs);
+ int sh = 0;
+ if (opcode == RLWINMX) {
+ sh = instr->Bits(15, 11);
+ } else {
+ int rb = instr->RBValue();
+ uint32_t rb_val = get_register(rb);
+ sh = (rb_val & 0x1f);
+ }
+ int mb = instr->Bits(10, 6);
+ int me = instr->Bits(5, 1);
+ // rotate left
+ uint32_t result = (rs_val << sh) | (rs_val >> (32 - sh));
+ int mask = 0;
+ if (mb < me + 1) {
+ int bit = 0x80000000 >> mb;
+ for (; mb <= me; mb++) {
+ mask |= bit;
+ bit >>= 1;
+ }
+ } else if (mb == me + 1) {
+ mask = 0xffffffff;
+ } else { // mb > me+1
+ int bit = 0x80000000 >> (me + 1); // needs to be tested
+ mask = 0xffffffff;
+ for (; me < mb; me++) {
+ mask ^= bit;
+ bit >>= 1;
+ }
+ }
+ result &= mask;
+ set_register(ra, result);
+ if (instr->Bit(0)) { // RC bit set
+ SetCR0(result);
+ }
+ break;
+ }
+ case ORI: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ intptr_t rs_val = get_register(rs);
+ uint32_t im_val = instr->Bits(15, 0);
+ intptr_t alu_out = rs_val | im_val;
+ set_register(ra, alu_out);
+ break;
+ }
+ case ORIS: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ intptr_t rs_val = get_register(rs);
+ uint32_t im_val = instr->Bits(15, 0);
+ intptr_t alu_out = rs_val | (im_val << 16);
+ set_register(ra, alu_out);
+ break;
+ }
+ case XORI: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ intptr_t rs_val = get_register(rs);
+ uint32_t im_val = instr->Bits(15, 0);
+ intptr_t alu_out = rs_val ^ im_val;
+ set_register(ra, alu_out);
+ // todo - set condition based SO bit
+ break;
+ }
+ case XORIS: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ intptr_t rs_val = get_register(rs);
+ uint32_t im_val = instr->Bits(15, 0);
+ intptr_t alu_out = rs_val ^ (im_val << 16);
+ set_register(ra, alu_out);
+ break;
+ }
+ case ANDIx: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ intptr_t rs_val = get_register(rs);
+ uint32_t im_val = instr->Bits(15, 0);
+ intptr_t alu_out = rs_val & im_val;
+ set_register(ra, alu_out);
+ SetCR0(alu_out);
+ break;
+ }
+ case ANDISx: {
+ int rs = instr->RSValue();
+ int ra = instr->RAValue();
+ intptr_t rs_val = get_register(rs);
+ uint32_t im_val = instr->Bits(15, 0);
+ intptr_t alu_out = rs_val & (im_val << 16);
+ set_register(ra, alu_out);
+ SetCR0(alu_out);
+ break;
+ }
+ case EXT2: {
+ ExecuteExt2(instr);
+ break;
+ }
+
+ case LWZU:
+ case LWZ: {
+ int ra = instr->RAValue();
+ int rt = instr->RTValue();
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
+ set_register(rt, ReadWU(ra_val + offset, instr));
+ if (opcode == LWZU) {
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + offset);
+ }
+ break;
+ }
+
+ case LBZU:
+ case LBZ: {
+ int ra = instr->RAValue();
+ int rt = instr->RTValue();
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
+ set_register(rt, ReadB(ra_val + offset) & 0xFF);
+ if (opcode == LBZU) {
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + offset);
+ }
+ break;
+ }
+
+ case STWU:
+ case STW: {
+ int ra = instr->RAValue();
+ int rs = instr->RSValue();
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ int32_t rs_val = get_register(rs);
+ int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
+ WriteW(ra_val + offset, rs_val, instr);
+ if (opcode == STWU) {
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + offset);
+ }
+ // printf("r%d %08x -> %08x\n", rs, rs_val, offset); // 0xdead
+ break;
+ }
+
+ case STBU:
+ case STB: {
+ int ra = instr->RAValue();
+ int rs = instr->RSValue();
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ int8_t rs_val = get_register(rs);
+ int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
+ WriteB(ra_val + offset, rs_val);
+ if (opcode == STBU) {
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + offset);
+ }
+ break;
+ }
+
+ case LHZU:
+ case LHZ: {
+ int ra = instr->RAValue();
+ int rt = instr->RTValue();
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
+ uintptr_t result = ReadHU(ra_val + offset, instr) & 0xffff;
+ set_register(rt, result);
+ if (opcode == LHZU) {
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + offset);
+ }
+ break;
+ }
+
+ case LHA:
+ case LHAU: {
+ UNIMPLEMENTED();
+ break;
+ }
+
+ case STHU:
+ case STH: {
+ int ra = instr->RAValue();
+ int rs = instr->RSValue();
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ int16_t rs_val = get_register(rs);
+ int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
+ WriteH(ra_val + offset, rs_val, instr);
+ if (opcode == STHU) {
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + offset);
+ }
+ break;
+ }
+
+ case LMW:
+ case STMW: {
+ UNIMPLEMENTED();
+ break;
+ }
+
+ case LFSU:
+ case LFS: {
+ int frt = instr->RTValue();
+ int ra = instr->RAValue();
+ int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ int32_t val = ReadW(ra_val + offset, instr);
+ float* fptr = reinterpret_cast<float*>(&val);
+ set_d_register_from_double(frt, static_cast<double>(*fptr));
+ if (opcode == LFSU) {
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + offset);
+ }
+ break;
+ }
+
+ case LFDU:
+ case LFD: {
+ int frt = instr->RTValue();
+ int ra = instr->RAValue();
+ int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ double* dptr = reinterpret_cast<double*>(ReadDW(ra_val + offset));
+ set_d_register_from_double(frt, *dptr);
+ if (opcode == LFDU) {
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + offset);
+ }
+ break;
+ }
+
+ case STFSU: {
+ case STFS:
+ int frs = instr->RSValue();
+ int ra = instr->RAValue();
+ int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ float frs_val = static_cast<float>(get_double_from_d_register(frs));
+ int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
+ WriteW(ra_val + offset, *p, instr);
+ if (opcode == STFSU) {
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + offset);
+ }
+ break;
+ }
+
+ case STFDU:
+ case STFD: {
+ int frs = instr->RSValue();
+ int ra = instr->RAValue();
+ int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
+ double frs_val = get_double_from_d_register(frs);
+ int64_t* p = reinterpret_cast<int64_t*>(&frs_val);
+ WriteDW(ra_val + offset, *p);
+ if (opcode == STFDU) {
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + offset);
+ }
+ break;
+ }
+
+ case EXT3:
+ UNIMPLEMENTED();
+ case EXT4: {
+ ExecuteExt4(instr);
+ break;
+ }
+
+#if V8_TARGET_ARCH_PPC64
+ case EXT5: {
+ ExecuteExt5(instr);
+ break;
+ }
+ case LD: {
+ int ra = instr->RAValue();
+ int rt = instr->RTValue();
+ int64_t ra_val = ra == 0 ? 0 : get_register(ra);
+ int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
+ switch (instr->Bits(1, 0)) {
+ case 0: { // ld
+ intptr_t* result = ReadDW(ra_val + offset);
+ set_register(rt, *result);
+ break;
+ }
+ case 1: { // ldu
+ intptr_t* result = ReadDW(ra_val + offset);
+ set_register(rt, *result);
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + offset);
+ break;
+ }
+ case 2: { // lwa
+ intptr_t result = ReadW(ra_val + offset, instr);
+ set_register(rt, result);
+ break;
+ }
+ }
+ break;
+ }
+
+ case STD: {
+ int ra = instr->RAValue();
+ int rs = instr->RSValue();
+ int64_t ra_val = ra == 0 ? 0 : get_register(ra);
+ int64_t rs_val = get_register(rs);
+ int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
+ WriteDW(ra_val + offset, rs_val);
+ if (instr->Bit(0) == 1) { // This is the STDU form
+ DCHECK(ra != 0);
+ set_register(ra, ra_val + offset);
+ }
+ break;
+ }
+#endif
+
+ case FAKE_OPCODE: {
+ if (instr->Bits(MARKER_SUBOPCODE_BIT, MARKER_SUBOPCODE_BIT) == 1) {
+ int marker_code = instr->Bits(STUB_MARKER_HIGH_BIT, 0);
+ DCHECK(marker_code < F_NEXT_AVAILABLE_STUB_MARKER);
+ PrintF("Hit stub-marker: %d (EMIT_STUB_MARKER)\n", marker_code);
+ } else {
+ int fake_opcode = instr->Bits(FAKE_OPCODE_HIGH_BIT, 0);
+ if (fake_opcode == fBKPT) {
+ PPCDebugger dbg(this);
+ PrintF("Simulator hit BKPT.\n");
+ dbg.Debug();
+ } else {
+ DCHECK(fake_opcode < fLastFaker);
+ PrintF("Hit ARM opcode: %d(FAKE_OPCODE defined in constant-ppc.h)\n",
+ fake_opcode);
+ UNIMPLEMENTED();
+ }
+ }
+ break;
+ }
+
+ default: {
+ UNIMPLEMENTED();
+ break;
+ }
+ }
+} // NOLINT - disable function size check
+
+
+void Simulator::Trace(Instruction* instr) {
+ disasm::NameConverter converter;
+ disasm::Disassembler dasm(converter);
+ // use a reasonably large buffer
+ v8::internal::EmbeddedVector<char, 256> buffer;
+ dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
+ PrintF("%05d %08" V8PRIxPTR " %s\n", icount_,
+ reinterpret_cast<intptr_t>(instr), buffer.start());
+}
+
+
+// Executes the current instruction.
+void Simulator::ExecuteInstruction(Instruction* instr) {
+ if (v8::internal::FLAG_check_icache) {
+ CheckICache(isolate_->simulator_i_cache(), instr);
+ }
+ pc_modified_ = false;
+ if (::v8::internal::FLAG_trace_sim) {
+ Trace(instr);
+ }
+ int opcode = instr->OpcodeValue() << 26;
+ if (opcode == TWI) {
+ SoftwareInterrupt(instr);
+ } else {
+ ExecuteGeneric(instr);
+ }
+ if (!pc_modified_) {
+ set_pc(reinterpret_cast<intptr_t>(instr) + Instruction::kInstrSize);
+ }
+}
+
+
+void Simulator::Execute() {
+ // Get the PC to simulate. Cannot use the accessor here as we need the
+ // raw PC value and not the one used as input to arithmetic instructions.
+ intptr_t program_counter = get_pc();
+
+ if (::v8::internal::FLAG_stop_sim_at == 0) {
+ // Fast version of the dispatch loop without checking whether the simulator
+ // should be stopping at a particular executed instruction.
+ while (program_counter != end_sim_pc) {
+ Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
+ icount_++;
+ ExecuteInstruction(instr);
+ program_counter = get_pc();
+ }
+ } else {
+ // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
+ // we reach the particular instuction count.
+ while (program_counter != end_sim_pc) {
+ Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
+ icount_++;
+ if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
+ PPCDebugger dbg(this);
+ dbg.Debug();
+ } else {
+ ExecuteInstruction(instr);
+ }
+ program_counter = get_pc();
+ }
+ }
+}
+
+
+void Simulator::CallInternal(byte* entry) {
+// Prepare to execute the code at entry
+#if ABI_USES_FUNCTION_DESCRIPTORS
+ // entry is the function descriptor
+ set_pc(*(reinterpret_cast<intptr_t*>(entry)));
+#else
+ // entry is the instruction address
+ set_pc(reinterpret_cast<intptr_t>(entry));
+#endif
+
+ // Put down marker for end of simulation. The simulator will stop simulation
+ // when the PC reaches this value. By saving the "end simulation" value into
+ // the LR the simulation stops when returning to this call point.
+ special_reg_lr_ = end_sim_pc;
+
+ // Remember the values of non-volatile registers.
+ intptr_t r2_val = get_register(r2);
+ intptr_t r13_val = get_register(r13);
+ intptr_t r14_val = get_register(r14);
+ intptr_t r15_val = get_register(r15);
+ intptr_t r16_val = get_register(r16);
+ intptr_t r17_val = get_register(r17);
+ intptr_t r18_val = get_register(r18);
+ intptr_t r19_val = get_register(r19);
+ intptr_t r20_val = get_register(r20);
+ intptr_t r21_val = get_register(r21);
+ intptr_t r22_val = get_register(r22);
+ intptr_t r23_val = get_register(r23);
+ intptr_t r24_val = get_register(r24);
+ intptr_t r25_val = get_register(r25);
+ intptr_t r26_val = get_register(r26);
+ intptr_t r27_val = get_register(r27);
+ intptr_t r28_val = get_register(r28);
+ intptr_t r29_val = get_register(r29);
+ intptr_t r30_val = get_register(r30);
+ intptr_t r31_val = get_register(fp);
+
+ // Set up the non-volatile registers with a known value. To be able to check
+ // that they are preserved properly across JS execution.
+ intptr_t callee_saved_value = icount_;
+ set_register(r2, callee_saved_value);
+ set_register(r13, callee_saved_value);
+ set_register(r14, callee_saved_value);
+ set_register(r15, callee_saved_value);
+ set_register(r16, callee_saved_value);
+ set_register(r17, callee_saved_value);
+ set_register(r18, callee_saved_value);
+ set_register(r19, callee_saved_value);
+ set_register(r20, callee_saved_value);
+ set_register(r21, callee_saved_value);
+ set_register(r22, callee_saved_value);
+ set_register(r23, callee_saved_value);
+ set_register(r24, callee_saved_value);
+ set_register(r25, callee_saved_value);
+ set_register(r26, callee_saved_value);
+ set_register(r27, callee_saved_value);
+ set_register(r28, callee_saved_value);
+ set_register(r29, callee_saved_value);
+ set_register(r30, callee_saved_value);
+ set_register(fp, callee_saved_value);
+
+ // Start the simulation
+ Execute();
+
+ // Check that the non-volatile registers have been preserved.
+ CHECK_EQ(callee_saved_value, get_register(r2));
+ CHECK_EQ(callee_saved_value, get_register(r13));
+ CHECK_EQ(callee_saved_value, get_register(r14));
+ CHECK_EQ(callee_saved_value, get_register(r15));
+ CHECK_EQ(callee_saved_value, get_register(r16));
+ CHECK_EQ(callee_saved_value, get_register(r17));
+ CHECK_EQ(callee_saved_value, get_register(r18));
+ CHECK_EQ(callee_saved_value, get_register(r19));
+ CHECK_EQ(callee_saved_value, get_register(r20));
+ CHECK_EQ(callee_saved_value, get_register(r21));
+ CHECK_EQ(callee_saved_value, get_register(r22));
+ CHECK_EQ(callee_saved_value, get_register(r23));
+ CHECK_EQ(callee_saved_value, get_register(r24));
+ CHECK_EQ(callee_saved_value, get_register(r25));
+ CHECK_EQ(callee_saved_value, get_register(r26));
+ CHECK_EQ(callee_saved_value, get_register(r27));
+ CHECK_EQ(callee_saved_value, get_register(r28));
+ CHECK_EQ(callee_saved_value, get_register(r29));
+ CHECK_EQ(callee_saved_value, get_register(r30));
+ CHECK_EQ(callee_saved_value, get_register(fp));
+
+ // Restore non-volatile registers with the original value.
+ set_register(r2, r2_val);
+ set_register(r13, r13_val);
+ set_register(r14, r14_val);
+ set_register(r15, r15_val);
+ set_register(r16, r16_val);
+ set_register(r17, r17_val);
+ set_register(r18, r18_val);
+ set_register(r19, r19_val);
+ set_register(r20, r20_val);
+ set_register(r21, r21_val);
+ set_register(r22, r22_val);
+ set_register(r23, r23_val);
+ set_register(r24, r24_val);
+ set_register(r25, r25_val);
+ set_register(r26, r26_val);
+ set_register(r27, r27_val);
+ set_register(r28, r28_val);
+ set_register(r29, r29_val);
+ set_register(r30, r30_val);
+ set_register(fp, r31_val);
+}
+
+
+intptr_t Simulator::Call(byte* entry, int argument_count, ...) {
+ va_list parameters;
+ va_start(parameters, argument_count);
+ // Set up arguments
+
+ // First eight arguments passed in registers r3-r10.
+ int reg_arg_count = (argument_count > 8) ? 8 : argument_count;
+ int stack_arg_count = argument_count - reg_arg_count;
+ for (int i = 0; i < reg_arg_count; i++) {
+ set_register(i + 3, va_arg(parameters, intptr_t));
+ }
+
+ // Remaining arguments passed on stack.
+ intptr_t original_stack = get_register(sp);
+ // Compute position of stack on entry to generated code.
+ intptr_t entry_stack =
+ (original_stack -
+ (kNumRequiredStackFrameSlots + stack_arg_count) * sizeof(intptr_t));
+ if (base::OS::ActivationFrameAlignment() != 0) {
+ entry_stack &= -base::OS::ActivationFrameAlignment();
+ }
+ // Store remaining arguments on stack, from low to high memory.
+ // +2 is a hack for the LR slot + old SP on PPC
+ intptr_t* stack_argument =
+ reinterpret_cast<intptr_t*>(entry_stack) + kStackFrameExtraParamSlot;
+ for (int i = 0; i < stack_arg_count; i++) {
+ stack_argument[i] = va_arg(parameters, intptr_t);
+ }
+ va_end(parameters);
+ set_register(sp, entry_stack);
+
+ CallInternal(entry);
+
+ // Pop stack passed arguments.
+ CHECK_EQ(entry_stack, get_register(sp));
+ set_register(sp, original_stack);
+
+ intptr_t result = get_register(r3);
+ return result;
+}
+
+
+void Simulator::CallFP(byte* entry, double d0, double d1) {
+ set_d_register_from_double(1, d0);
+ set_d_register_from_double(2, d1);
+ CallInternal(entry);
+}
+
+
+int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) {
+ CallFP(entry, d0, d1);
+ int32_t result = get_register(r3);
+ return result;
+}
+
+
+double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) {
+ CallFP(entry, d0, d1);
+ return get_double_from_d_register(1);
+}
+
+
+uintptr_t Simulator::PushAddress(uintptr_t address) {
+ uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t);
+ uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
+ *stack_slot = address;
+ set_register(sp, new_sp);
+ return new_sp;
+}
+
+
+uintptr_t Simulator::PopAddress() {
+ uintptr_t current_sp = get_register(sp);
+ uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
+ uintptr_t address = *stack_slot;
+ set_register(sp, current_sp + sizeof(uintptr_t));
+ return address;
+}
+}
+} // namespace v8::internal
+
+#endif // USE_SIMULATOR
+#endif // V8_TARGET_ARCH_PPC
« src/hydrogen-bch.cc ('K') | « src/ppc/simulator-ppc.h ('k') | src/ppc/stub-cache-ppc.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698