Index: src/ppc/simulator-ppc.cc |
diff --git a/src/ppc/simulator-ppc.cc b/src/ppc/simulator-ppc.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..2a6c9c92e542920ca96a6988358b072ce77a69dc |
--- /dev/null |
+++ b/src/ppc/simulator-ppc.cc |
@@ -0,0 +1,3806 @@ |
+// Copyright 2012 the V8 project authors. All rights reserved. |
+// |
+// Copyright IBM Corp. 2012, 2013. All rights reserved. |
+// |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include <stdarg.h> |
+#include <stdlib.h> |
+#include <cmath> |
+ |
+#include "src/v8.h" |
+ |
+#if V8_TARGET_ARCH_PPC |
+ |
+#include "src/assembler.h" |
+#include "src/codegen.h" |
+#include "src/disasm.h" |
+#include "src/ppc/constants-ppc.h" |
+#include "src/ppc/frames-ppc.h" |
+#include "src/ppc/simulator-ppc.h" |
+ |
+#if defined(USE_SIMULATOR) |
+ |
+// Only build the simulator if not compiling for real PPC hardware. |
+namespace v8 { |
+namespace internal { |
+ |
+// This macro provides a platform independent use of sscanf. The reason for |
+// SScanF not being implemented in a platform independent way through |
+// ::v8::internal::OS in the same way as SNPrintF is that the |
+// Windows C Run-Time Library does not provide vsscanf. |
+#define SScanF sscanf // NOLINT |
+ |
+// The PPCDebugger class is used by the simulator while debugging simulated |
+// PowerPC code. |
+class PPCDebugger { |
+ public: |
+ explicit PPCDebugger(Simulator* sim) : sim_(sim) {} |
+ ~PPCDebugger(); |
+ |
+ void Stop(Instruction* instr); |
+ void Info(Instruction* instr); |
+ void Debug(); |
+ |
+ private: |
+ static const Instr kBreakpointInstr = (TWI | 0x1f * B21); |
+ static const Instr kNopInstr = (ORI); // ori, 0,0,0 |
+ |
+ Simulator* sim_; |
+ |
+ intptr_t GetRegisterValue(int regnum); |
+ double GetRegisterPairDoubleValue(int regnum); |
+ double GetFPDoubleRegisterValue(int regnum); |
+ bool GetValue(const char* desc, intptr_t* value); |
+ bool GetFPDoubleValue(const char* desc, double* value); |
+ |
+ // Set or delete a breakpoint. Returns true if successful. |
+ bool SetBreakpoint(Instruction* break_pc); |
+ bool DeleteBreakpoint(Instruction* break_pc); |
+ |
+ // Undo and redo all breakpoints. This is needed to bracket disassembly and |
+ // execution to skip past breakpoints when run from the debugger. |
+ void UndoBreakpoints(); |
+ void RedoBreakpoints(); |
+}; |
+ |
+ |
+PPCDebugger::~PPCDebugger() {} |
+ |
+ |
+#ifdef GENERATED_CODE_COVERAGE |
+static FILE* coverage_log = NULL; |
+ |
+ |
+static void InitializeCoverage() { |
+ char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); |
+ if (file_name != NULL) { |
+ coverage_log = fopen(file_name, "aw+"); |
+ } |
+} |
+ |
+ |
+void PPCDebugger::Stop(Instruction* instr) { // roohack need to fix for PPC |
+ // Get the stop code. |
+ uint32_t code = instr->SvcValue() & kStopCodeMask; |
+ // Retrieve the encoded address, which comes just after this stop. |
+ char** msg_address = |
+ reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize); |
+ char* msg = *msg_address; |
+ DCHECK(msg != NULL); |
+ |
+ // Update this stop description. |
+ if (isWatchedStop(code) && !watched_stops_[code].desc) { |
+ watched_stops_[code].desc = msg; |
+ } |
+ |
+ if (strlen(msg) > 0) { |
+ if (coverage_log != NULL) { |
+ fprintf(coverage_log, "%s\n", msg); |
+ fflush(coverage_log); |
+ } |
+ // Overwrite the instruction and address with nops. |
+ instr->SetInstructionBits(kNopInstr); |
+ reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr); |
+ } |
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize); |
+} |
+ |
+#else // ndef GENERATED_CODE_COVERAGE |
+ |
+static void InitializeCoverage() {} |
+ |
+ |
+void PPCDebugger::Stop(Instruction* instr) { |
+ // Get the stop code. |
+ // use of kStopCodeMask not right on PowerPC |
+ uint32_t code = instr->SvcValue() & kStopCodeMask; |
+ // Retrieve the encoded address, which comes just after this stop. |
+ char* msg = |
+ *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize); |
+ // Update this stop description. |
+ if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) { |
+ sim_->watched_stops_[code].desc = msg; |
+ } |
+ // Print the stop message and code if it is not the default code. |
+ if (code != kMaxStopCode) { |
+ PrintF("Simulator hit stop %u: %s\n", code, msg); |
+ } else { |
+ PrintF("Simulator hit %s\n", msg); |
+ } |
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize); |
+ Debug(); |
+} |
+#endif |
+ |
+ |
+void PPCDebugger::Info(Instruction* instr) { |
+ // Retrieve the encoded address immediately following the Info breakpoint. |
+ char* msg = |
+ *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize); |
+ PrintF("Simulator info %s\n", msg); |
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize); |
+} |
+ |
+ |
+intptr_t PPCDebugger::GetRegisterValue(int regnum) { |
+ return sim_->get_register(regnum); |
+} |
+ |
+ |
+double PPCDebugger::GetRegisterPairDoubleValue(int regnum) { |
+ return sim_->get_double_from_register_pair(regnum); |
+} |
+ |
+ |
+double PPCDebugger::GetFPDoubleRegisterValue(int regnum) { |
+ return sim_->get_double_from_d_register(regnum); |
+} |
+ |
+ |
+bool PPCDebugger::GetValue(const char* desc, intptr_t* value) { |
+ int regnum = Registers::Number(desc); |
+ if (regnum != kNoRegister) { |
+ *value = GetRegisterValue(regnum); |
+ return true; |
+ } else { |
+ if (strncmp(desc, "0x", 2) == 0) { |
+ return SScanF(desc + 2, "%" V8PRIxPTR, |
+ reinterpret_cast<uintptr_t*>(value)) == 1; |
+ } else { |
+ return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) == |
+ 1; |
+ } |
+ } |
+ return false; |
+} |
+ |
+ |
+bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) { |
+ int regnum = FPRegisters::Number(desc); |
+ if (regnum != kNoRegister) { |
+ *value = sim_->get_double_from_d_register(regnum); |
+ return true; |
+ } |
+ return false; |
+} |
+ |
+ |
+bool PPCDebugger::SetBreakpoint(Instruction* break_pc) { |
+ // Check if a breakpoint can be set. If not return without any side-effects. |
+ if (sim_->break_pc_ != NULL) { |
+ return false; |
+ } |
+ |
+ // Set the breakpoint. |
+ sim_->break_pc_ = break_pc; |
+ sim_->break_instr_ = break_pc->InstructionBits(); |
+ // Not setting the breakpoint instruction in the code itself. It will be set |
+ // when the debugger shell continues. |
+ return true; |
+} |
+ |
+ |
+bool PPCDebugger::DeleteBreakpoint(Instruction* break_pc) { |
+ if (sim_->break_pc_ != NULL) { |
+ sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
+ } |
+ |
+ sim_->break_pc_ = NULL; |
+ sim_->break_instr_ = 0; |
+ return true; |
+} |
+ |
+ |
+void PPCDebugger::UndoBreakpoints() { |
+ if (sim_->break_pc_ != NULL) { |
+ sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
+ } |
+} |
+ |
+ |
+void PPCDebugger::RedoBreakpoints() { |
+ if (sim_->break_pc_ != NULL) { |
+ sim_->break_pc_->SetInstructionBits(kBreakpointInstr); |
+ } |
+} |
+ |
+ |
+void PPCDebugger::Debug() { |
+ intptr_t last_pc = -1; |
+ bool done = false; |
+ |
+#define COMMAND_SIZE 63 |
+#define ARG_SIZE 255 |
+ |
+#define STR(a) #a |
+#define XSTR(a) STR(a) |
+ |
+ char cmd[COMMAND_SIZE + 1]; |
+ char arg1[ARG_SIZE + 1]; |
+ char arg2[ARG_SIZE + 1]; |
+ char* argv[3] = {cmd, arg1, arg2}; |
+ |
+ // make sure to have a proper terminating character if reaching the limit |
+ cmd[COMMAND_SIZE] = 0; |
+ arg1[ARG_SIZE] = 0; |
+ arg2[ARG_SIZE] = 0; |
+ |
+ // Undo all set breakpoints while running in the debugger shell. This will |
+ // make them invisible to all commands. |
+ UndoBreakpoints(); |
+ // Disable tracing while simulating |
+ bool trace = ::v8::internal::FLAG_trace_sim; |
+ ::v8::internal::FLAG_trace_sim = false; |
+ |
+ while (!done && !sim_->has_bad_pc()) { |
+ if (last_pc != sim_->get_pc()) { |
+ disasm::NameConverter converter; |
+ disasm::Disassembler dasm(converter); |
+ // use a reasonably large buffer |
+ v8::internal::EmbeddedVector<char, 256> buffer; |
+ dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc())); |
+ PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.start()); |
+ last_pc = sim_->get_pc(); |
+ } |
+ char* line = ReadLine("sim> "); |
+ if (line == NULL) { |
+ break; |
+ } else { |
+ char* last_input = sim_->last_debugger_input(); |
+ if (strcmp(line, "\n") == 0 && last_input != NULL) { |
+ line = last_input; |
+ } else { |
+ // Ownership is transferred to sim_; |
+ sim_->set_last_debugger_input(line); |
+ } |
+ // Use sscanf to parse the individual parts of the command line. At the |
+ // moment no command expects more than two parameters. |
+ int argc = SScanF(line, |
+ "%" XSTR(COMMAND_SIZE) "s " |
+ "%" XSTR(ARG_SIZE) "s " |
+ "%" XSTR(ARG_SIZE) "s", |
+ cmd, arg1, arg2); |
+ if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
+ intptr_t value; |
+ |
+ // If at a breakpoint, proceed past it. |
+ if ((reinterpret_cast<Instruction*>(sim_->get_pc())) |
+ ->InstructionBits() == 0x7d821008) { |
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); |
+ } else { |
+ sim_->ExecuteInstruction( |
+ reinterpret_cast<Instruction*>(sim_->get_pc())); |
+ } |
+ |
+ if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) { |
+ for (int i = 1; i < value; i++) { |
+ disasm::NameConverter converter; |
+ disasm::Disassembler dasm(converter); |
+ // use a reasonably large buffer |
+ v8::internal::EmbeddedVector<char, 256> buffer; |
+ dasm.InstructionDecode(buffer, |
+ reinterpret_cast<byte*>(sim_->get_pc())); |
+ PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), |
+ buffer.start()); |
+ sim_->ExecuteInstruction( |
+ reinterpret_cast<Instruction*>(sim_->get_pc())); |
+ } |
+ } |
+ } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { |
+ // If at a breakpoint, proceed past it. |
+ if ((reinterpret_cast<Instruction*>(sim_->get_pc())) |
+ ->InstructionBits() == 0x7d821008) { |
+ sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); |
+ } else { |
+ // Execute the one instruction we broke at with breakpoints disabled. |
+ sim_->ExecuteInstruction( |
+ reinterpret_cast<Instruction*>(sim_->get_pc())); |
+ } |
+ // Leave the debugger shell. |
+ done = true; |
+ } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { |
+ if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) { |
+ intptr_t value; |
+ double dvalue; |
+ if (strcmp(arg1, "all") == 0) { |
+ for (int i = 0; i < kNumRegisters; i++) { |
+ value = GetRegisterValue(i); |
+ PrintF(" %3s: %08" V8PRIxPTR, Registers::Name(i), value); |
+ if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 && |
+ (i % 2) == 0) { |
+ dvalue = GetRegisterPairDoubleValue(i); |
+ PrintF(" (%f)\n", dvalue); |
+ } else if (i != 0 && !((i + 1) & 3)) { |
+ PrintF("\n"); |
+ } |
+ } |
+ PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR |
+ " " |
+ "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n", |
+ sim_->special_reg_pc_, sim_->special_reg_lr_, |
+ sim_->special_reg_ctr_, sim_->special_reg_xer_, |
+ sim_->condition_reg_); |
+ } else if (strcmp(arg1, "alld") == 0) { |
+ for (int i = 0; i < kNumRegisters; i++) { |
+ value = GetRegisterValue(i); |
+ PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR, |
+ Registers::Name(i), value, value); |
+ if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 && |
+ (i % 2) == 0) { |
+ dvalue = GetRegisterPairDoubleValue(i); |
+ PrintF(" (%f)\n", dvalue); |
+ } else if (!((i + 1) % 2)) { |
+ PrintF("\n"); |
+ } |
+ } |
+ PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR |
+ " " |
+ "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n", |
+ sim_->special_reg_pc_, sim_->special_reg_lr_, |
+ sim_->special_reg_ctr_, sim_->special_reg_xer_, |
+ sim_->condition_reg_); |
+ } else if (strcmp(arg1, "allf") == 0) { |
+ for (int i = 0; i < DoubleRegister::kNumRegisters; i++) { |
+ dvalue = GetFPDoubleRegisterValue(i); |
+ uint64_t as_words = BitCast<uint64_t>(dvalue); |
+ PrintF("%3s: %f 0x%08x %08x\n", FPRegisters::Name(i), dvalue, |
+ static_cast<uint32_t>(as_words >> 32), |
+ static_cast<uint32_t>(as_words & 0xffffffff)); |
+ } |
+ } else if (arg1[0] == 'r' && |
+ (arg1[1] >= '0' && arg1[1] <= '9' && |
+ (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' && |
+ arg1[3] == '\0')))) { |
+ int regnum = strtoul(&arg1[1], 0, 10); |
+ if (regnum != kNoRegister) { |
+ value = GetRegisterValue(regnum); |
+ PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value, |
+ value); |
+ } else { |
+ PrintF("%s unrecognized\n", arg1); |
+ } |
+ } else { |
+ if (GetValue(arg1, &value)) { |
+ PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value, |
+ value); |
+ } else if (GetFPDoubleValue(arg1, &dvalue)) { |
+ uint64_t as_words = BitCast<uint64_t>(dvalue); |
+ PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue, |
+ static_cast<uint32_t>(as_words >> 32), |
+ static_cast<uint32_t>(as_words & 0xffffffff)); |
+ } else { |
+ PrintF("%s unrecognized\n", arg1); |
+ } |
+ } |
+ } else { |
+ PrintF("print <register>\n"); |
+ } |
+ } else if ((strcmp(cmd, "po") == 0) || |
+ (strcmp(cmd, "printobject") == 0)) { |
+ if (argc == 2) { |
+ intptr_t value; |
+ OFStream os(stdout); |
+ if (GetValue(arg1, &value)) { |
+ Object* obj = reinterpret_cast<Object*>(value); |
+ os << arg1 << ": \n"; |
+#ifdef DEBUG |
+ obj->Print(os); |
+ os << "\n"; |
+#else |
+ os << Brief(obj) << "\n"; |
+#endif |
+ } else { |
+ os << arg1 << " unrecognized\n"; |
+ } |
+ } else { |
+ PrintF("printobject <value>\n"); |
+ } |
+ } else if (strcmp(cmd, "setpc") == 0) { |
+ intptr_t value; |
+ |
+ if (!GetValue(arg1, &value)) { |
+ PrintF("%s unrecognized\n", arg1); |
+ continue; |
+ } |
+ sim_->set_pc(value); |
+ } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { |
+ intptr_t* cur = NULL; |
+ intptr_t* end = NULL; |
+ int next_arg = 1; |
+ |
+ if (strcmp(cmd, "stack") == 0) { |
+ cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp)); |
+ } else { // "mem" |
+ intptr_t value; |
+ if (!GetValue(arg1, &value)) { |
+ PrintF("%s unrecognized\n", arg1); |
+ continue; |
+ } |
+ cur = reinterpret_cast<intptr_t*>(value); |
+ next_arg++; |
+ } |
+ |
+ intptr_t words; // likely inaccurate variable name for 64bit |
+ if (argc == next_arg) { |
+ words = 10; |
+ } else { |
+ if (!GetValue(argv[next_arg], &words)) { |
+ words = 10; |
+ } |
+ } |
+ end = cur + words; |
+ |
+ while (cur < end) { |
+ PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR, |
+ reinterpret_cast<intptr_t>(cur), *cur, *cur); |
+ HeapObject* obj = reinterpret_cast<HeapObject*>(*cur); |
+ intptr_t value = *cur; |
+ Heap* current_heap = v8::internal::Isolate::Current()->heap(); |
+ if (((value & 1) == 0) || current_heap->Contains(obj)) { |
+ PrintF(" ("); |
+ if ((value & 1) == 0) { |
+ PrintF("smi %d", PlatformSmiTagging::SmiToInt(obj)); |
+ } else { |
+ obj->ShortPrint(); |
+ } |
+ PrintF(")"); |
+ } |
+ PrintF("\n"); |
+ cur++; |
+ } |
+ } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) { |
+ disasm::NameConverter converter; |
+ disasm::Disassembler dasm(converter); |
+ // use a reasonably large buffer |
+ v8::internal::EmbeddedVector<char, 256> buffer; |
+ |
+ byte* prev = NULL; |
+ byte* cur = NULL; |
+ byte* end = NULL; |
+ |
+ if (argc == 1) { |
+ cur = reinterpret_cast<byte*>(sim_->get_pc()); |
+ end = cur + (10 * Instruction::kInstrSize); |
+ } else if (argc == 2) { |
+ int regnum = Registers::Number(arg1); |
+ if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) { |
+ // The argument is an address or a register name. |
+ intptr_t value; |
+ if (GetValue(arg1, &value)) { |
+ cur = reinterpret_cast<byte*>(value); |
+ // Disassemble 10 instructions at <arg1>. |
+ end = cur + (10 * Instruction::kInstrSize); |
+ } |
+ } else { |
+ // The argument is the number of instructions. |
+ intptr_t value; |
+ if (GetValue(arg1, &value)) { |
+ cur = reinterpret_cast<byte*>(sim_->get_pc()); |
+ // Disassemble <arg1> instructions. |
+ end = cur + (value * Instruction::kInstrSize); |
+ } |
+ } |
+ } else { |
+ intptr_t value1; |
+ intptr_t value2; |
+ if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { |
+ cur = reinterpret_cast<byte*>(value1); |
+ end = cur + (value2 * Instruction::kInstrSize); |
+ } |
+ } |
+ |
+ while (cur < end) { |
+ prev = cur; |
+ cur += dasm.InstructionDecode(buffer, cur); |
+ PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev), |
+ buffer.start()); |
+ } |
+ } else if (strcmp(cmd, "gdb") == 0) { |
+ PrintF("relinquishing control to gdb\n"); |
+ v8::base::OS::DebugBreak(); |
+ PrintF("regaining control from gdb\n"); |
+ } else if (strcmp(cmd, "break") == 0) { |
+ if (argc == 2) { |
+ intptr_t value; |
+ if (GetValue(arg1, &value)) { |
+ if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { |
+ PrintF("setting breakpoint failed\n"); |
+ } |
+ } else { |
+ PrintF("%s unrecognized\n", arg1); |
+ } |
+ } else { |
+ PrintF("break <address>\n"); |
+ } |
+ } else if (strcmp(cmd, "del") == 0) { |
+ if (!DeleteBreakpoint(NULL)) { |
+ PrintF("deleting breakpoint failed\n"); |
+ } |
+ } else if (strcmp(cmd, "cr") == 0) { |
+ PrintF("Condition reg: %08x\n", sim_->condition_reg_); |
+ } else if (strcmp(cmd, "lr") == 0) { |
+ PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_); |
+ } else if (strcmp(cmd, "ctr") == 0) { |
+ PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_); |
+ } else if (strcmp(cmd, "xer") == 0) { |
+ PrintF("XER: %08x\n", sim_->special_reg_xer_); |
+ } else if (strcmp(cmd, "fpscr") == 0) { |
+ PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_); |
+ } else if (strcmp(cmd, "stop") == 0) { |
+ intptr_t value; |
+ intptr_t stop_pc = |
+ sim_->get_pc() - (Instruction::kInstrSize + kPointerSize); |
+ Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc); |
+ Instruction* msg_address = |
+ reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize); |
+ if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { |
+ // Remove the current stop. |
+ if (sim_->isStopInstruction(stop_instr)) { |
+ stop_instr->SetInstructionBits(kNopInstr); |
+ msg_address->SetInstructionBits(kNopInstr); |
+ } else { |
+ PrintF("Not at debugger stop.\n"); |
+ } |
+ } else if (argc == 3) { |
+ // Print information about all/the specified breakpoint(s). |
+ if (strcmp(arg1, "info") == 0) { |
+ if (strcmp(arg2, "all") == 0) { |
+ PrintF("Stop information:\n"); |
+ for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { |
+ sim_->PrintStopInfo(i); |
+ } |
+ } else if (GetValue(arg2, &value)) { |
+ sim_->PrintStopInfo(value); |
+ } else { |
+ PrintF("Unrecognized argument.\n"); |
+ } |
+ } else if (strcmp(arg1, "enable") == 0) { |
+ // Enable all/the specified breakpoint(s). |
+ if (strcmp(arg2, "all") == 0) { |
+ for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { |
+ sim_->EnableStop(i); |
+ } |
+ } else if (GetValue(arg2, &value)) { |
+ sim_->EnableStop(value); |
+ } else { |
+ PrintF("Unrecognized argument.\n"); |
+ } |
+ } else if (strcmp(arg1, "disable") == 0) { |
+ // Disable all/the specified breakpoint(s). |
+ if (strcmp(arg2, "all") == 0) { |
+ for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { |
+ sim_->DisableStop(i); |
+ } |
+ } else if (GetValue(arg2, &value)) { |
+ sim_->DisableStop(value); |
+ } else { |
+ PrintF("Unrecognized argument.\n"); |
+ } |
+ } |
+ } else { |
+ PrintF("Wrong usage. Use help command for more information.\n"); |
+ } |
+ } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) { |
+ ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim; |
+ PrintF("Trace of executed instructions is %s\n", |
+ ::v8::internal::FLAG_trace_sim ? "on" : "off"); |
+ } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { |
+ PrintF("cont\n"); |
+ PrintF(" continue execution (alias 'c')\n"); |
+ PrintF("stepi [num instructions]\n"); |
+ PrintF(" step one/num instruction(s) (alias 'si')\n"); |
+ PrintF("print <register>\n"); |
+ PrintF(" print register content (alias 'p')\n"); |
+ PrintF(" use register name 'all' to display all integer registers\n"); |
+ PrintF( |
+ " use register name 'alld' to display integer registers " |
+ "with decimal values\n"); |
+ PrintF(" use register name 'rN' to display register number 'N'\n"); |
+ PrintF(" add argument 'fp' to print register pair double values\n"); |
+ PrintF( |
+ " use register name 'allf' to display floating-point " |
+ "registers\n"); |
+ PrintF("printobject <register>\n"); |
+ PrintF(" print an object from a register (alias 'po')\n"); |
+ PrintF("cr\n"); |
+ PrintF(" print condition register\n"); |
+ PrintF("lr\n"); |
+ PrintF(" print link register\n"); |
+ PrintF("ctr\n"); |
+ PrintF(" print ctr register\n"); |
+ PrintF("xer\n"); |
+ PrintF(" print XER\n"); |
+ PrintF("fpscr\n"); |
+ PrintF(" print FPSCR\n"); |
+ PrintF("stack [<num words>]\n"); |
+ PrintF(" dump stack content, default dump 10 words)\n"); |
+ PrintF("mem <address> [<num words>]\n"); |
+ PrintF(" dump memory content, default dump 10 words)\n"); |
+ PrintF("disasm [<instructions>]\n"); |
+ PrintF("disasm [<address/register>]\n"); |
+ PrintF("disasm [[<address/register>] <instructions>]\n"); |
+ PrintF(" disassemble code, default is 10 instructions\n"); |
+ PrintF(" from pc (alias 'di')\n"); |
+ PrintF("gdb\n"); |
+ PrintF(" enter gdb\n"); |
+ PrintF("break <address>\n"); |
+ PrintF(" set a break point on the address\n"); |
+ PrintF("del\n"); |
+ PrintF(" delete the breakpoint\n"); |
+ PrintF("trace (alias 't')\n"); |
+ PrintF(" toogle the tracing of all executed statements\n"); |
+ PrintF("stop feature:\n"); |
+ PrintF(" Description:\n"); |
+ PrintF(" Stops are debug instructions inserted by\n"); |
+ PrintF(" the Assembler::stop() function.\n"); |
+ PrintF(" When hitting a stop, the Simulator will\n"); |
+ PrintF(" stop and and give control to the PPCDebugger.\n"); |
+ PrintF(" The first %d stop codes are watched:\n", |
+ Simulator::kNumOfWatchedStops); |
+ PrintF(" - They can be enabled / disabled: the Simulator\n"); |
+ PrintF(" will / won't stop when hitting them.\n"); |
+ PrintF(" - The Simulator keeps track of how many times they \n"); |
+ PrintF(" are met. (See the info command.) Going over a\n"); |
+ PrintF(" disabled stop still increases its counter. \n"); |
+ PrintF(" Commands:\n"); |
+ PrintF(" stop info all/<code> : print infos about number <code>\n"); |
+ PrintF(" or all stop(s).\n"); |
+ PrintF(" stop enable/disable all/<code> : enables / disables\n"); |
+ PrintF(" all or number <code> stop(s)\n"); |
+ PrintF(" stop unstop\n"); |
+ PrintF(" ignore the stop instruction at the current location\n"); |
+ PrintF(" from now on\n"); |
+ } else { |
+ PrintF("Unknown command: %s\n", cmd); |
+ } |
+ } |
+ } |
+ |
+ // Add all the breakpoints back to stop execution and enter the debugger |
+ // shell when hit. |
+ RedoBreakpoints(); |
+ // Restore tracing |
+ ::v8::internal::FLAG_trace_sim = trace; |
+ |
+#undef COMMAND_SIZE |
+#undef ARG_SIZE |
+ |
+#undef STR |
+#undef XSTR |
+} |
+ |
+ |
+static bool ICacheMatch(void* one, void* two) { |
+ DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0); |
+ DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0); |
+ return one == two; |
+} |
+ |
+ |
+static uint32_t ICacheHash(void* key) { |
+ return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; |
+} |
+ |
+ |
+static bool AllOnOnePage(uintptr_t start, int size) { |
+ intptr_t start_page = (start & ~CachePage::kPageMask); |
+ intptr_t end_page = ((start + size) & ~CachePage::kPageMask); |
+ return start_page == end_page; |
+} |
+ |
+ |
+void Simulator::set_last_debugger_input(char* input) { |
+ DeleteArray(last_debugger_input_); |
+ last_debugger_input_ = input; |
+} |
+ |
+ |
+void Simulator::FlushICache(v8::internal::HashMap* i_cache, void* start_addr, |
+ size_t size) { |
+ intptr_t start = reinterpret_cast<intptr_t>(start_addr); |
+ int intra_line = (start & CachePage::kLineMask); |
+ start -= intra_line; |
+ size += intra_line; |
+ size = ((size - 1) | CachePage::kLineMask) + 1; |
+ int offset = (start & CachePage::kPageMask); |
+ while (!AllOnOnePage(start, size - 1)) { |
+ int bytes_to_flush = CachePage::kPageSize - offset; |
+ FlushOnePage(i_cache, start, bytes_to_flush); |
+ start += bytes_to_flush; |
+ size -= bytes_to_flush; |
+ DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask)); |
+ offset = 0; |
+ } |
+ if (size != 0) { |
+ FlushOnePage(i_cache, start, size); |
+ } |
+} |
+ |
+ |
+CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) { |
+ v8::internal::HashMap::Entry* entry = |
+ i_cache->Lookup(page, ICacheHash(page), true); |
+ if (entry->value == NULL) { |
+ CachePage* new_page = new CachePage(); |
+ entry->value = new_page; |
+ } |
+ return reinterpret_cast<CachePage*>(entry->value); |
+} |
+ |
+ |
+// Flush from start up to and not including start + size. |
+void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start, |
+ int size) { |
+ DCHECK(size <= CachePage::kPageSize); |
+ DCHECK(AllOnOnePage(start, size - 1)); |
+ DCHECK((start & CachePage::kLineMask) == 0); |
+ DCHECK((size & CachePage::kLineMask) == 0); |
+ void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); |
+ int offset = (start & CachePage::kPageMask); |
+ CachePage* cache_page = GetCachePage(i_cache, page); |
+ char* valid_bytemap = cache_page->ValidityByte(offset); |
+ memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); |
+} |
+ |
+ |
+void Simulator::CheckICache(v8::internal::HashMap* i_cache, |
+ Instruction* instr) { |
+ intptr_t address = reinterpret_cast<intptr_t>(instr); |
+ void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); |
+ void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); |
+ int offset = (address & CachePage::kPageMask); |
+ CachePage* cache_page = GetCachePage(i_cache, page); |
+ char* cache_valid_byte = cache_page->ValidityByte(offset); |
+ bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); |
+ char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); |
+ if (cache_hit) { |
+ // Check that the data in memory matches the contents of the I-cache. |
+ CHECK_EQ(0, |
+ memcmp(reinterpret_cast<void*>(instr), |
+ cache_page->CachedData(offset), Instruction::kInstrSize)); |
+ } else { |
+ // Cache miss. Load memory into the cache. |
+ memcpy(cached_line, line, CachePage::kLineLength); |
+ *cache_valid_byte = CachePage::LINE_VALID; |
+ } |
+} |
+ |
+ |
+void Simulator::Initialize(Isolate* isolate) { |
+ if (isolate->simulator_initialized()) return; |
+ isolate->set_simulator_initialized(true); |
+ ::v8::internal::ExternalReference::set_redirector(isolate, |
+ &RedirectExternalReference); |
+} |
+ |
+ |
+Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { |
+ i_cache_ = isolate_->simulator_i_cache(); |
+ if (i_cache_ == NULL) { |
+ i_cache_ = new v8::internal::HashMap(&ICacheMatch); |
+ isolate_->set_simulator_i_cache(i_cache_); |
+ } |
+ Initialize(isolate); |
+// Set up simulator support first. Some of this information is needed to |
+// setup the architecture state. |
+#if V8_TARGET_ARCH_PPC64 |
+ size_t stack_size = 2 * 1024 * 1024; // allocate 2MB for stack |
+#else |
+ size_t stack_size = 1 * 1024 * 1024; // allocate 1MB for stack |
+#endif |
+ stack_ = reinterpret_cast<char*>(malloc(stack_size)); |
+ pc_modified_ = false; |
+ icount_ = 0; |
+ break_pc_ = NULL; |
+ break_instr_ = 0; |
+ |
+ // Set up architecture state. |
+ // All registers are initialized to zero to start with. |
+ for (int i = 0; i < kNumGPRs; i++) { |
+ registers_[i] = 0; |
+ } |
+ condition_reg_ = 0; |
+ fp_condition_reg_ = 0; |
+ special_reg_pc_ = 0; |
+ special_reg_lr_ = 0; |
+ special_reg_ctr_ = 0; |
+ |
+ // Initializing FP registers. |
+ for (int i = 0; i < kNumFPRs; i++) { |
+ fp_registers_[i] = 0.0; |
+ } |
+ |
+ // The sp is initialized to point to the bottom (high address) of the |
+ // allocated stack area. To be safe in potential stack underflows we leave |
+ // some buffer below. |
+ registers_[sp] = reinterpret_cast<intptr_t>(stack_) + stack_size - 64; |
+ InitializeCoverage(); |
+ |
+ last_debugger_input_ = NULL; |
+} |
+ |
+ |
+Simulator::~Simulator() {} |
+ |
+ |
+// When the generated code calls an external reference we need to catch that in |
+// the simulator. The external reference will be a function compiled for the |
+// host architecture. We need to call that function instead of trying to |
+// execute it with the simulator. We do that by redirecting the external |
+// reference to a svc (Supervisor Call) instruction that is handled by |
+// the simulator. We write the original destination of the jump just at a known |
+// offset from the svc instruction so the simulator knows what to call. |
+class Redirection { |
+ public: |
+ Redirection(void* external_function, ExternalReference::Type type) |
+ : external_function_(external_function), |
+ swi_instruction_(rtCallRedirInstr | kCallRtRedirected), |
+ type_(type), |
+ next_(NULL) { |
+ Isolate* isolate = Isolate::Current(); |
+ next_ = isolate->simulator_redirection(); |
+ Simulator::current(isolate)->FlushICache( |
+ isolate->simulator_i_cache(), |
+ reinterpret_cast<void*>(&swi_instruction_), Instruction::kInstrSize); |
+ isolate->set_simulator_redirection(this); |
+ } |
+ |
+ void* address_of_swi_instruction() { |
+ return reinterpret_cast<void*>(&swi_instruction_); |
+ } |
+ |
+ void* external_function() { return external_function_; } |
+ ExternalReference::Type type() { return type_; } |
+ |
+ static Redirection* Get(void* external_function, |
+ ExternalReference::Type type) { |
+ Isolate* isolate = Isolate::Current(); |
+ Redirection* current = isolate->simulator_redirection(); |
+ for (; current != NULL; current = current->next_) { |
+ if (current->external_function_ == external_function) { |
+ DCHECK_EQ(current->type(), type); |
+ return current; |
+ } |
+ } |
+ return new Redirection(external_function, type); |
+ } |
+ |
+ static Redirection* FromSwiInstruction(Instruction* swi_instruction) { |
+ char* addr_of_swi = reinterpret_cast<char*>(swi_instruction); |
+ char* addr_of_redirection = |
+ addr_of_swi - OFFSET_OF(Redirection, swi_instruction_); |
+ return reinterpret_cast<Redirection*>(addr_of_redirection); |
+ } |
+ |
+ static void* ReverseRedirection(intptr_t reg) { |
+ Redirection* redirection = FromSwiInstruction( |
+ reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg))); |
+ return redirection->external_function(); |
+ } |
+ |
+ private: |
+ void* external_function_; |
+ uint32_t swi_instruction_; |
+ ExternalReference::Type type_; |
+ Redirection* next_; |
+}; |
+ |
+ |
+void* Simulator::RedirectExternalReference(void* external_function, |
+ ExternalReference::Type type) { |
+ Redirection* redirection = Redirection::Get(external_function, type); |
+ return redirection->address_of_swi_instruction(); |
+} |
+ |
+ |
+// Get the active Simulator for the current thread. |
+Simulator* Simulator::current(Isolate* isolate) { |
+ v8::internal::Isolate::PerIsolateThreadData* isolate_data = |
+ isolate->FindOrAllocatePerThreadDataForThisThread(); |
+ DCHECK(isolate_data != NULL); |
+ |
+ Simulator* sim = isolate_data->simulator(); |
+ if (sim == NULL) { |
+ // TODO(146): delete the simulator object when a thread/isolate goes away. |
+ sim = new Simulator(isolate); |
+ isolate_data->set_simulator(sim); |
+ } |
+ return sim; |
+} |
+ |
+ |
+// Sets the register in the architecture state. |
+void Simulator::set_register(int reg, intptr_t value) { |
+ DCHECK((reg >= 0) && (reg < kNumGPRs)); |
+ registers_[reg] = value; |
+} |
+ |
+ |
+// Get the register from the architecture state. |
+intptr_t Simulator::get_register(int reg) const { |
+ DCHECK((reg >= 0) && (reg < kNumGPRs)); |
+ // Stupid code added to avoid bug in GCC. |
+ // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 |
+ if (reg >= kNumGPRs) return 0; |
+ // End stupid code. |
+ return registers_[reg]; |
+} |
+ |
+ |
+double Simulator::get_double_from_register_pair(int reg) { |
+ DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0)); |
+ |
+ double dm_val = 0.0; |
+#if !V8_TARGET_ARCH_PPC64 // doesn't make sense in 64bit mode |
+ // Read the bits from the unsigned integer register_[] array |
+ // into the double precision floating point value and return it. |
+ char buffer[sizeof(fp_registers_[0])]; |
+ memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); |
+ memcpy(&dm_val, buffer, 2 * sizeof(registers_[0])); |
+#endif |
+ return (dm_val); |
+} |
+ |
+ |
+// Raw access to the PC register. |
+void Simulator::set_pc(intptr_t value) { |
+ pc_modified_ = true; |
+ special_reg_pc_ = value; |
+} |
+ |
+ |
+bool Simulator::has_bad_pc() const { |
+ return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc)); |
+} |
+ |
+ |
+// Raw access to the PC register without the special adjustment when reading. |
+intptr_t Simulator::get_pc() const { return special_reg_pc_; } |
+ |
+ |
+// Runtime FP routines take: |
+// - two double arguments |
+// - one double argument and zero or one integer arguments. |
+// All are consructed here from d1, d2 and r3. |
+void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) { |
+ *x = get_double_from_d_register(1); |
+ *y = get_double_from_d_register(2); |
+ *z = get_register(3); |
+} |
+ |
+ |
+// The return value is in d1. |
+void Simulator::SetFpResult(const double& result) { fp_registers_[1] = result; } |
+ |
+ |
+void Simulator::TrashCallerSaveRegisters() { |
+// We don't trash the registers with the return value. |
+#if 0 // A good idea to trash volatile registers, needs to be done |
+ registers_[2] = 0x50Bad4U; |
+ registers_[3] = 0x50Bad4U; |
+ registers_[12] = 0x50Bad4U; |
+#endif |
+} |
+ |
+ |
+uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) { |
+ uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); |
+ return *ptr; |
+} |
+ |
+ |
+int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) { |
+ int32_t* ptr = reinterpret_cast<int32_t*>(addr); |
+ return *ptr; |
+} |
+ |
+ |
+void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) { |
+ uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); |
+ *ptr = value; |
+ return; |
+} |
+ |
+ |
+void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) { |
+ int32_t* ptr = reinterpret_cast<int32_t*>(addr); |
+ *ptr = value; |
+ return; |
+} |
+ |
+ |
+uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) { |
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
+ return *ptr; |
+} |
+ |
+ |
+int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) { |
+ int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
+ return *ptr; |
+} |
+ |
+ |
+void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) { |
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
+ *ptr = value; |
+ return; |
+} |
+ |
+ |
+void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) { |
+ int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
+ *ptr = value; |
+ return; |
+} |
+ |
+ |
+uint8_t Simulator::ReadBU(intptr_t addr) { |
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
+ return *ptr; |
+} |
+ |
+ |
+int8_t Simulator::ReadB(intptr_t addr) { |
+ int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
+ return *ptr; |
+} |
+ |
+ |
+void Simulator::WriteB(intptr_t addr, uint8_t value) { |
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
+ *ptr = value; |
+} |
+ |
+ |
+void Simulator::WriteB(intptr_t addr, int8_t value) { |
+ int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
+ *ptr = value; |
+} |
+ |
+ |
+intptr_t* Simulator::ReadDW(intptr_t addr) { |
+ intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
+ return ptr; |
+} |
+ |
+ |
+void Simulator::WriteDW(intptr_t addr, int64_t value) { |
+ int64_t* ptr = reinterpret_cast<int64_t*>(addr); |
+ *ptr = value; |
+ return; |
+} |
+ |
+ |
+// Returns the limit of the stack area to enable checking for stack overflows. |
+uintptr_t Simulator::StackLimit() const { |
+ // Leave a safety margin of 1024 bytes to prevent overrunning the stack when |
+ // pushing values. |
+ return reinterpret_cast<uintptr_t>(stack_) + 1024; |
+} |
+ |
+ |
+// Unsupported instructions use Format to print an error and stop execution. |
+void Simulator::Format(Instruction* instr, const char* format) { |
+ PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n", |
+ reinterpret_cast<intptr_t>(instr), format); |
+ UNIMPLEMENTED(); |
+} |
+ |
+ |
+// Calculate C flag value for additions. |
+bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) { |
+ uint32_t uleft = static_cast<uint32_t>(left); |
+ uint32_t uright = static_cast<uint32_t>(right); |
+ uint32_t urest = 0xffffffffU - uleft; |
+ |
+ return (uright > urest) || |
+ (carry && (((uright + 1) > urest) || (uright > (urest - 1)))); |
+} |
+ |
+ |
+// Calculate C flag value for subtractions. |
+bool Simulator::BorrowFrom(int32_t left, int32_t right) { |
+ uint32_t uleft = static_cast<uint32_t>(left); |
+ uint32_t uright = static_cast<uint32_t>(right); |
+ |
+ return (uright > uleft); |
+} |
+ |
+ |
+// Calculate V flag value for additions and subtractions. |
+bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right, |
+ bool addition) { |
+ bool overflow; |
+ if (addition) { |
+ // operands have the same sign |
+ overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) |
+ // and operands and result have different sign |
+ && |
+ ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); |
+ } else { |
+ // operands have different signs |
+ overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) |
+ // and first operand and result have different signs |
+ && |
+ ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); |
+ } |
+ return overflow; |
+} |
+ |
+ |
+#if !V8_TARGET_ARCH_PPC64 |
+// Calls into the V8 runtime are based on this very simple interface. |
+// Note: To be able to return two values from some calls the code in runtime.cc |
+// uses the ObjectPair which is essentially two 32-bit values stuffed into a |
+// 64-bit value. With the code below we assume that all runtime calls return |
+// 64 bits of result. If they don't, the r4 result register contains a bogus |
+// value, which is fine because it is caller-saved. |
+typedef int64_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1, |
+ intptr_t arg2, intptr_t arg3, |
+ intptr_t arg4, intptr_t arg5); |
+#else |
+// For 64-bit, we need to be more explicit. |
+typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1, |
+ intptr_t arg2, intptr_t arg3, |
+ intptr_t arg4, intptr_t arg5); |
+struct ObjectPair { |
+ intptr_t x; |
+ intptr_t y; |
+}; |
+ |
+typedef struct ObjectPair (*SimulatorRuntimeObjectPairCall)( |
+ intptr_t arg0, intptr_t arg1, intptr_t arg2, intptr_t arg3, intptr_t arg4, |
+ intptr_t arg5); |
+#endif |
+ |
+// These prototypes handle the four types of FP calls. |
+typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1); |
+typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1); |
+typedef double (*SimulatorRuntimeFPCall)(double darg0); |
+typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0); |
+ |
+// This signature supports direct call in to API function native callback |
+// (refer to InvocationCallback in v8.h). |
+typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0); |
+typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1); |
+ |
+// This signature supports direct call to accessor getter callback. |
+typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1); |
+typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0, |
+ intptr_t arg1, void* arg2); |
+ |
+// Software interrupt instructions are used by the simulator to call into the |
+// C-based V8 runtime. |
+void Simulator::SoftwareInterrupt(Instruction* instr) { |
+ int svc = instr->SvcValue(); |
+ switch (svc) { |
+ case kCallRtRedirected: { |
+ // Check if stack is aligned. Error if not aligned is reported below to |
+ // include information on the function called. |
+ bool stack_aligned = |
+ (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) == |
+ 0; |
+ Redirection* redirection = Redirection::FromSwiInstruction(instr); |
+ const int kArgCount = 6; |
+ int arg0_regnum = 3; |
+#if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS |
+ intptr_t result_buffer = 0; |
+ if (redirection->type() == ExternalReference::BUILTIN_OBJECTPAIR_CALL) { |
+ result_buffer = get_register(r3); |
+ arg0_regnum++; |
+ } |
+#endif |
+ intptr_t arg[kArgCount]; |
+ for (int i = 0; i < kArgCount; i++) { |
+ arg[i] = get_register(arg0_regnum + i); |
+ } |
+ bool fp_call = |
+ (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || |
+ (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || |
+ (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || |
+ (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); |
+ // This is dodgy but it works because the C entry stubs are never moved. |
+ // See comment in codegen-arm.cc and bug 1242173. |
+ intptr_t saved_lr = special_reg_lr_; |
+ intptr_t external = |
+ reinterpret_cast<intptr_t>(redirection->external_function()); |
+ if (fp_call) { |
+ double dval0, dval1; // one or two double parameters |
+ intptr_t ival; // zero or one integer parameters |
+ int iresult = 0; // integer return value |
+ double dresult = 0; // double return value |
+ GetFpArgs(&dval0, &dval1, &ival); |
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
+ SimulatorRuntimeCall generic_target = |
+ reinterpret_cast<SimulatorRuntimeCall>(external); |
+ switch (redirection->type()) { |
+ case ExternalReference::BUILTIN_FP_FP_CALL: |
+ case ExternalReference::BUILTIN_COMPARE_CALL: |
+ PrintF("Call to host function at %p with args %f, %f", |
+ FUNCTION_ADDR(generic_target), dval0, dval1); |
+ break; |
+ case ExternalReference::BUILTIN_FP_CALL: |
+ PrintF("Call to host function at %p with arg %f", |
+ FUNCTION_ADDR(generic_target), dval0); |
+ break; |
+ case ExternalReference::BUILTIN_FP_INT_CALL: |
+ PrintF("Call to host function at %p with args %f, %" V8PRIdPTR, |
+ FUNCTION_ADDR(generic_target), dval0, ival); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ break; |
+ } |
+ if (!stack_aligned) { |
+ PrintF(" with unaligned stack %08" V8PRIxPTR "\n", |
+ get_register(sp)); |
+ } |
+ PrintF("\n"); |
+ } |
+ CHECK(stack_aligned); |
+ switch (redirection->type()) { |
+ case ExternalReference::BUILTIN_COMPARE_CALL: { |
+ SimulatorRuntimeCompareCall target = |
+ reinterpret_cast<SimulatorRuntimeCompareCall>(external); |
+ iresult = target(dval0, dval1); |
+ set_register(r3, iresult); |
+ break; |
+ } |
+ case ExternalReference::BUILTIN_FP_FP_CALL: { |
+ SimulatorRuntimeFPFPCall target = |
+ reinterpret_cast<SimulatorRuntimeFPFPCall>(external); |
+ dresult = target(dval0, dval1); |
+ SetFpResult(dresult); |
+ break; |
+ } |
+ case ExternalReference::BUILTIN_FP_CALL: { |
+ SimulatorRuntimeFPCall target = |
+ reinterpret_cast<SimulatorRuntimeFPCall>(external); |
+ dresult = target(dval0); |
+ SetFpResult(dresult); |
+ break; |
+ } |
+ case ExternalReference::BUILTIN_FP_INT_CALL: { |
+ SimulatorRuntimeFPIntCall target = |
+ reinterpret_cast<SimulatorRuntimeFPIntCall>(external); |
+ dresult = target(dval0, ival); |
+ SetFpResult(dresult); |
+ break; |
+ } |
+ default: |
+ UNREACHABLE(); |
+ break; |
+ } |
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
+ switch (redirection->type()) { |
+ case ExternalReference::BUILTIN_COMPARE_CALL: |
+ PrintF("Returned %08x\n", iresult); |
+ break; |
+ case ExternalReference::BUILTIN_FP_FP_CALL: |
+ case ExternalReference::BUILTIN_FP_CALL: |
+ case ExternalReference::BUILTIN_FP_INT_CALL: |
+ PrintF("Returned %f\n", dresult); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ break; |
+ } |
+ } |
+ } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { |
+ // See callers of MacroAssembler::CallApiFunctionAndReturn for |
+ // explanation of register usage. |
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
+ PrintF("Call to host function at %p args %08" V8PRIxPTR, |
+ reinterpret_cast<void*>(external), arg[0]); |
+ if (!stack_aligned) { |
+ PrintF(" with unaligned stack %08" V8PRIxPTR "\n", |
+ get_register(sp)); |
+ } |
+ PrintF("\n"); |
+ } |
+ CHECK(stack_aligned); |
+ SimulatorRuntimeDirectApiCall target = |
+ reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); |
+ target(arg[0]); |
+ } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) { |
+ // See callers of MacroAssembler::CallApiFunctionAndReturn for |
+ // explanation of register usage. |
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
+ PrintF("Call to host function at %p args %08" V8PRIxPTR |
+ " %08" V8PRIxPTR, |
+ reinterpret_cast<void*>(external), arg[0], arg[1]); |
+ if (!stack_aligned) { |
+ PrintF(" with unaligned stack %08" V8PRIxPTR "\n", |
+ get_register(sp)); |
+ } |
+ PrintF("\n"); |
+ } |
+ CHECK(stack_aligned); |
+ SimulatorRuntimeProfilingApiCall target = |
+ reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external); |
+ target(arg[0], Redirection::ReverseRedirection(arg[1])); |
+ } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { |
+ // See callers of MacroAssembler::CallApiFunctionAndReturn for |
+ // explanation of register usage. |
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
+ PrintF("Call to host function at %p args %08" V8PRIxPTR |
+ " %08" V8PRIxPTR, |
+ reinterpret_cast<void*>(external), arg[0], arg[1]); |
+ if (!stack_aligned) { |
+ PrintF(" with unaligned stack %08" V8PRIxPTR "\n", |
+ get_register(sp)); |
+ } |
+ PrintF("\n"); |
+ } |
+ CHECK(stack_aligned); |
+ SimulatorRuntimeDirectGetterCall target = |
+ reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); |
+#if !ABI_PASSES_HANDLES_IN_REGS |
+ arg[0] = *(reinterpret_cast<intptr_t*>(arg[0])); |
+#endif |
+ target(arg[0], arg[1]); |
+ } else if (redirection->type() == |
+ ExternalReference::PROFILING_GETTER_CALL) { |
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
+ PrintF("Call to host function at %p args %08" V8PRIxPTR |
+ " %08" V8PRIxPTR " %08" V8PRIxPTR, |
+ reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]); |
+ if (!stack_aligned) { |
+ PrintF(" with unaligned stack %08" V8PRIxPTR "\n", |
+ get_register(sp)); |
+ } |
+ PrintF("\n"); |
+ } |
+ CHECK(stack_aligned); |
+ SimulatorRuntimeProfilingGetterCall target = |
+ reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external); |
+#if !ABI_PASSES_HANDLES_IN_REGS |
+ arg[0] = *(reinterpret_cast<intptr_t*>(arg[0])); |
+#endif |
+ target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2])); |
+ } else { |
+ // builtin call. |
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
+ SimulatorRuntimeCall target = |
+ reinterpret_cast<SimulatorRuntimeCall>(external); |
+ PrintF( |
+ "Call to host function at %p,\n" |
+ "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR |
+ ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR, |
+ FUNCTION_ADDR(target), arg[0], arg[1], arg[2], arg[3], arg[4], |
+ arg[5]); |
+ if (!stack_aligned) { |
+ PrintF(" with unaligned stack %08" V8PRIxPTR "\n", |
+ get_register(sp)); |
+ } |
+ PrintF("\n"); |
+ } |
+ CHECK(stack_aligned); |
+#if !V8_TARGET_ARCH_PPC64 |
+ DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL); |
+ SimulatorRuntimeCall target = |
+ reinterpret_cast<SimulatorRuntimeCall>(external); |
+ int64_t result = target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]); |
+ int32_t lo_res = static_cast<int32_t>(result); |
+ int32_t hi_res = static_cast<int32_t>(result >> 32); |
+#if V8_TARGET_BIG_ENDIAN |
+ if (::v8::internal::FLAG_trace_sim) { |
+ PrintF("Returned %08x\n", hi_res); |
+ } |
+ set_register(r3, hi_res); |
+ set_register(r4, lo_res); |
+#else |
+ if (::v8::internal::FLAG_trace_sim) { |
+ PrintF("Returned %08x\n", lo_res); |
+ } |
+ set_register(r3, lo_res); |
+ set_register(r4, hi_res); |
+#endif |
+#else |
+ if (redirection->type() == ExternalReference::BUILTIN_CALL) { |
+ SimulatorRuntimeCall target = |
+ reinterpret_cast<SimulatorRuntimeCall>(external); |
+ intptr_t result = |
+ target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]); |
+ if (::v8::internal::FLAG_trace_sim) { |
+ PrintF("Returned %08" V8PRIxPTR "\n", result); |
+ } |
+ set_register(r3, result); |
+ } else { |
+ DCHECK(redirection->type() == |
+ ExternalReference::BUILTIN_OBJECTPAIR_CALL); |
+ SimulatorRuntimeObjectPairCall target = |
+ reinterpret_cast<SimulatorRuntimeObjectPairCall>(external); |
+ struct ObjectPair result = |
+ target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]); |
+ if (::v8::internal::FLAG_trace_sim) { |
+ PrintF("Returned %08" V8PRIxPTR ", %08" V8PRIxPTR "\n", result.x, |
+ result.y); |
+ } |
+#if ABI_RETURNS_OBJECT_PAIRS_IN_REGS |
+ set_register(r3, result.x); |
+ set_register(r4, result.y); |
+#else |
+ memcpy(reinterpret_cast<void*>(result_buffer), &result, |
+ sizeof(struct ObjectPair)); |
+#endif |
+ } |
+#endif |
+ } |
+ set_pc(saved_lr); |
+ break; |
+ } |
+ case kBreakpoint: { |
+ PPCDebugger dbg(this); |
+ dbg.Debug(); |
+ break; |
+ } |
+ case kInfo: { |
+ PPCDebugger dbg(this); |
+ dbg.Info(instr); |
+ break; |
+ } |
+ // stop uses all codes greater than 1 << 23. |
+ default: { |
+ if (svc >= (1 << 23)) { |
+ uint32_t code = svc & kStopCodeMask; |
+ if (isWatchedStop(code)) { |
+ IncreaseStopCounter(code); |
+ } |
+ // Stop if it is enabled, otherwise go on jumping over the stop |
+ // and the message address. |
+ if (isEnabledStop(code)) { |
+ PPCDebugger dbg(this); |
+ dbg.Stop(instr); |
+ } else { |
+ set_pc(get_pc() + Instruction::kInstrSize + kPointerSize); |
+ } |
+ } else { |
+ // This is not a valid svc code. |
+ UNREACHABLE(); |
+ break; |
+ } |
+ } |
+ } |
+} |
+ |
+ |
+// Stop helper functions. |
+bool Simulator::isStopInstruction(Instruction* instr) { |
+ return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode); |
+} |
+ |
+ |
+bool Simulator::isWatchedStop(uint32_t code) { |
+ DCHECK(code <= kMaxStopCode); |
+ return code < kNumOfWatchedStops; |
+} |
+ |
+ |
+bool Simulator::isEnabledStop(uint32_t code) { |
+ DCHECK(code <= kMaxStopCode); |
+ // Unwatched stops are always enabled. |
+ return !isWatchedStop(code) || |
+ !(watched_stops_[code].count & kStopDisabledBit); |
+} |
+ |
+ |
+void Simulator::EnableStop(uint32_t code) { |
+ DCHECK(isWatchedStop(code)); |
+ if (!isEnabledStop(code)) { |
+ watched_stops_[code].count &= ~kStopDisabledBit; |
+ } |
+} |
+ |
+ |
+void Simulator::DisableStop(uint32_t code) { |
+ DCHECK(isWatchedStop(code)); |
+ if (isEnabledStop(code)) { |
+ watched_stops_[code].count |= kStopDisabledBit; |
+ } |
+} |
+ |
+ |
+void Simulator::IncreaseStopCounter(uint32_t code) { |
+ DCHECK(code <= kMaxStopCode); |
+ DCHECK(isWatchedStop(code)); |
+ if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) { |
+ PrintF( |
+ "Stop counter for code %i has overflowed.\n" |
+ "Enabling this code and reseting the counter to 0.\n", |
+ code); |
+ watched_stops_[code].count = 0; |
+ EnableStop(code); |
+ } else { |
+ watched_stops_[code].count++; |
+ } |
+} |
+ |
+ |
+// Print a stop status. |
+void Simulator::PrintStopInfo(uint32_t code) { |
+ DCHECK(code <= kMaxStopCode); |
+ if (!isWatchedStop(code)) { |
+ PrintF("Stop not watched."); |
+ } else { |
+ const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; |
+ int32_t count = watched_stops_[code].count & ~kStopDisabledBit; |
+ // Don't print the state of unused breakpoints. |
+ if (count != 0) { |
+ if (watched_stops_[code].desc) { |
+ PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, |
+ state, count, watched_stops_[code].desc); |
+ } else { |
+ PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state, |
+ count); |
+ } |
+ } |
+ } |
+} |
+ |
+ |
+void Simulator::SetCR0(intptr_t result, bool setSO) { |
+ int bf = 0; |
+ if (result < 0) { |
+ bf |= 0x80000000; |
+ } |
+ if (result > 0) { |
+ bf |= 0x40000000; |
+ } |
+ if (result == 0) { |
+ bf |= 0x20000000; |
+ } |
+ if (setSO) { |
+ bf |= 0x10000000; |
+ } |
+ condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; |
+} |
+ |
+ |
+void Simulator::ExecuteBranchConditional(Instruction* instr) { |
+ int bo = instr->Bits(25, 21) << 21; |
+ int offset = (instr->Bits(15, 2) << 18) >> 16; |
+ int condition_bit = instr->Bits(20, 16); |
+ int condition_mask = 0x80000000 >> condition_bit; |
+ switch (bo) { |
+ case DCBNZF: // Decrement CTR; branch if CTR != 0 and condition false |
+ case DCBEZF: // Decrement CTR; branch if CTR == 0 and condition false |
+ UNIMPLEMENTED(); |
+ case BF: { // Branch if condition false |
+ if (!(condition_reg_ & condition_mask)) { |
+ if (instr->Bit(0) == 1) { // LK flag set |
+ special_reg_lr_ = get_pc() + 4; |
+ } |
+ set_pc(get_pc() + offset); |
+ } |
+ break; |
+ } |
+ case DCBNZT: // Decrement CTR; branch if CTR != 0 and condition true |
+ case DCBEZT: // Decrement CTR; branch if CTR == 0 and condition true |
+ UNIMPLEMENTED(); |
+ case BT: { // Branch if condition true |
+ if (condition_reg_ & condition_mask) { |
+ if (instr->Bit(0) == 1) { // LK flag set |
+ special_reg_lr_ = get_pc() + 4; |
+ } |
+ set_pc(get_pc() + offset); |
+ } |
+ break; |
+ } |
+ case DCBNZ: // Decrement CTR; branch if CTR != 0 |
+ case DCBEZ: // Decrement CTR; branch if CTR == 0 |
+ special_reg_ctr_ -= 1; |
+ if ((special_reg_ctr_ == 0) == (bo == DCBEZ)) { |
+ if (instr->Bit(0) == 1) { // LK flag set |
+ special_reg_lr_ = get_pc() + 4; |
+ } |
+ set_pc(get_pc() + offset); |
+ } |
+ break; |
+ case BA: { // Branch always |
+ if (instr->Bit(0) == 1) { // LK flag set |
+ special_reg_lr_ = get_pc() + 4; |
+ } |
+ set_pc(get_pc() + offset); |
+ break; |
+ } |
+ default: |
+ UNIMPLEMENTED(); // Invalid encoding |
+ } |
+} |
+ |
+ |
+// Handle execution based on instruction types. |
+void Simulator::ExecuteExt1(Instruction* instr) { |
+ switch (instr->Bits(10, 1) << 1) { |
+ case MCRF: |
+ UNIMPLEMENTED(); // Not used by V8. |
+ case BCLRX: { |
+ // need to check BO flag |
+ intptr_t old_pc = get_pc(); |
+ set_pc(special_reg_lr_); |
+ if (instr->Bit(0) == 1) { // LK flag set |
+ special_reg_lr_ = old_pc + 4; |
+ } |
+ break; |
+ } |
+ case BCCTRX: { |
+ // need to check BO flag |
+ intptr_t old_pc = get_pc(); |
+ set_pc(special_reg_ctr_); |
+ if (instr->Bit(0) == 1) { // LK flag set |
+ special_reg_lr_ = old_pc + 4; |
+ } |
+ break; |
+ } |
+ case CRNOR: |
+ case RFI: |
+ case CRANDC: |
+ UNIMPLEMENTED(); |
+ case ISYNC: { |
+ // todo - simulate isync |
+ break; |
+ } |
+ case CRXOR: { |
+ int bt = instr->Bits(25, 21); |
+ int ba = instr->Bits(20, 16); |
+ int bb = instr->Bits(15, 11); |
+ int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1; |
+ int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1; |
+ int bt_val = ba_val ^ bb_val; |
+ bt_val = bt_val << (31 - bt); // shift bit to correct destination |
+ condition_reg_ &= ~(0x80000000 >> bt); |
+ condition_reg_ |= bt_val; |
+ break; |
+ } |
+ case CREQV: { |
+ int bt = instr->Bits(25, 21); |
+ int ba = instr->Bits(20, 16); |
+ int bb = instr->Bits(15, 11); |
+ int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1; |
+ int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1; |
+ int bt_val = 1 - (ba_val ^ bb_val); |
+ bt_val = bt_val << (31 - bt); // shift bit to correct destination |
+ condition_reg_ &= ~(0x80000000 >> bt); |
+ condition_reg_ |= bt_val; |
+ break; |
+ } |
+ case CRNAND: |
+ case CRAND: |
+ case CRORC: |
+ case CROR: |
+ default: { |
+ UNIMPLEMENTED(); // Not used by V8. |
+ } |
+ } |
+} |
+ |
+ |
+bool Simulator::ExecuteExt2_10bit(Instruction* instr) { |
+ bool found = true; |
+ |
+ int opcode = instr->Bits(10, 1) << 1; |
+ switch (opcode) { |
+ case SRWX: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ uint32_t rs_val = get_register(rs); |
+ uintptr_t rb_val = get_register(rb); |
+ intptr_t result = rs_val >> (rb_val & 0x3f); |
+ set_register(ra, result); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(result); |
+ } |
+ break; |
+ } |
+#if V8_TARGET_ARCH_PPC64 |
+ case SRDX: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ uintptr_t rs_val = get_register(rs); |
+ uintptr_t rb_val = get_register(rb); |
+ intptr_t result = rs_val >> (rb_val & 0x7f); |
+ set_register(ra, result); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(result); |
+ } |
+ break; |
+ } |
+#endif |
+ case SRAW: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ int32_t rs_val = get_register(rs); |
+ intptr_t rb_val = get_register(rb); |
+ intptr_t result = rs_val >> (rb_val & 0x3f); |
+ set_register(ra, result); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(result); |
+ } |
+ break; |
+ } |
+#if V8_TARGET_ARCH_PPC64 |
+ case SRAD: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ intptr_t rs_val = get_register(rs); |
+ intptr_t rb_val = get_register(rb); |
+ intptr_t result = rs_val >> (rb_val & 0x7f); |
+ set_register(ra, result); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(result); |
+ } |
+ break; |
+ } |
+#endif |
+ case SRAWIX: { |
+ int ra = instr->RAValue(); |
+ int rs = instr->RSValue(); |
+ int sh = instr->Bits(15, 11); |
+ int32_t rs_val = get_register(rs); |
+ intptr_t result = rs_val >> sh; |
+ set_register(ra, result); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(result); |
+ } |
+ break; |
+ } |
+#if V8_TARGET_ARCH_PPC64 |
+ case EXTSW: { |
+ const int shift = kBitsPerPointer - 32; |
+ int ra = instr->RAValue(); |
+ int rs = instr->RSValue(); |
+ intptr_t rs_val = get_register(rs); |
+ intptr_t ra_val = (rs_val << shift) >> shift; |
+ set_register(ra, ra_val); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(ra_val); |
+ } |
+ break; |
+ } |
+#endif |
+ case EXTSH: { |
+ const int shift = kBitsPerPointer - 16; |
+ int ra = instr->RAValue(); |
+ int rs = instr->RSValue(); |
+ intptr_t rs_val = get_register(rs); |
+ intptr_t ra_val = (rs_val << shift) >> shift; |
+ set_register(ra, ra_val); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(ra_val); |
+ } |
+ break; |
+ } |
+ case EXTSB: { |
+ const int shift = kBitsPerPointer - 8; |
+ int ra = instr->RAValue(); |
+ int rs = instr->RSValue(); |
+ intptr_t rs_val = get_register(rs); |
+ intptr_t ra_val = (rs_val << shift) >> shift; |
+ set_register(ra, ra_val); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(ra_val); |
+ } |
+ break; |
+ } |
+ case LFSUX: |
+ case LFSX: { |
+ int frt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ intptr_t rb_val = get_register(rb); |
+ int32_t val = ReadW(ra_val + rb_val, instr); |
+ float* fptr = reinterpret_cast<float*>(&val); |
+ set_d_register_from_double(frt, static_cast<double>(*fptr)); |
+ if (opcode == LFSUX) { |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + rb_val); |
+ } |
+ break; |
+ } |
+ case LFDUX: |
+ case LFDX: { |
+ int frt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ intptr_t rb_val = get_register(rb); |
+ double* dptr = reinterpret_cast<double*>(ReadDW(ra_val + rb_val)); |
+ set_d_register_from_double(frt, *dptr); |
+ if (opcode == LFDUX) { |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + rb_val); |
+ } |
+ break; |
+ } |
+ case STFSUX: { |
+ case STFSX: |
+ int frs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ intptr_t rb_val = get_register(rb); |
+ float frs_val = static_cast<float>(get_double_from_d_register(frs)); |
+ int32_t* p = reinterpret_cast<int32_t*>(&frs_val); |
+ WriteW(ra_val + rb_val, *p, instr); |
+ if (opcode == STFSUX) { |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + rb_val); |
+ } |
+ break; |
+ } |
+ case STFDUX: { |
+ case STFDX: |
+ int frs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ intptr_t rb_val = get_register(rb); |
+ double frs_val = get_double_from_d_register(frs); |
+ int64_t* p = reinterpret_cast<int64_t*>(&frs_val); |
+ WriteDW(ra_val + rb_val, *p); |
+ if (opcode == STFDUX) { |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + rb_val); |
+ } |
+ break; |
+ } |
+ case SYNC: { |
+ // todo - simulate sync |
+ break; |
+ } |
+ case ICBI: { |
+ // todo - simulate icbi |
+ break; |
+ } |
+ default: { |
+ found = false; |
+ break; |
+ } |
+ } |
+ |
+ if (found) return found; |
+ |
+ found = true; |
+ opcode = instr->Bits(10, 2) << 2; |
+ switch (opcode) { |
+ case SRADIX: { |
+ int ra = instr->RAValue(); |
+ int rs = instr->RSValue(); |
+ int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); |
+ intptr_t rs_val = get_register(rs); |
+ intptr_t result = rs_val >> sh; |
+ set_register(ra, result); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(result); |
+ } |
+ break; |
+ } |
+ default: { |
+ found = false; |
+ break; |
+ } |
+ } |
+ |
+ return found; |
+} |
+ |
+ |
+bool Simulator::ExecuteExt2_9bit_part1(Instruction* instr) { |
+ bool found = true; |
+ |
+ int opcode = instr->Bits(9, 1) << 1; |
+ switch (opcode) { |
+ case TW: { |
+ // used for call redirection in simulation mode |
+ SoftwareInterrupt(instr); |
+ break; |
+ } |
+ case CMP: { |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ int cr = instr->Bits(25, 23); |
+ uint32_t bf = 0; |
+#if V8_TARGET_ARCH_PPC64 |
+ int L = instr->Bit(21); |
+ if (L) { |
+#endif |
+ intptr_t ra_val = get_register(ra); |
+ intptr_t rb_val = get_register(rb); |
+ if (ra_val < rb_val) { |
+ bf |= 0x80000000; |
+ } |
+ if (ra_val > rb_val) { |
+ bf |= 0x40000000; |
+ } |
+ if (ra_val == rb_val) { |
+ bf |= 0x20000000; |
+ } |
+#if V8_TARGET_ARCH_PPC64 |
+ } else { |
+ int32_t ra_val = get_register(ra); |
+ int32_t rb_val = get_register(rb); |
+ if (ra_val < rb_val) { |
+ bf |= 0x80000000; |
+ } |
+ if (ra_val > rb_val) { |
+ bf |= 0x40000000; |
+ } |
+ if (ra_val == rb_val) { |
+ bf |= 0x20000000; |
+ } |
+ } |
+#endif |
+ uint32_t condition_mask = 0xF0000000U >> (cr * 4); |
+ uint32_t condition = bf >> (cr * 4); |
+ condition_reg_ = (condition_reg_ & ~condition_mask) | condition; |
+ break; |
+ } |
+ case SUBFCX: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ // int oe = instr->Bit(10); |
+ uintptr_t ra_val = get_register(ra); |
+ uintptr_t rb_val = get_register(rb); |
+ uintptr_t alu_out = ~ra_val + rb_val + 1; |
+ set_register(rt, alu_out); |
+ // If the sign of rb and alu_out don't match, carry = 0 |
+ if ((alu_out ^ rb_val) & 0x80000000) { |
+ special_reg_xer_ &= ~0xF0000000; |
+ } else { |
+ special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000; |
+ } |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(alu_out); |
+ } |
+ // todo - handle OE bit |
+ break; |
+ } |
+ case ADDCX: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ // int oe = instr->Bit(10); |
+ uintptr_t ra_val = get_register(ra); |
+ uintptr_t rb_val = get_register(rb); |
+ uintptr_t alu_out = ra_val + rb_val; |
+ // Check overflow |
+ if (~ra_val < rb_val) { |
+ special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000; |
+ } else { |
+ special_reg_xer_ &= ~0xF0000000; |
+ } |
+ set_register(rt, alu_out); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(static_cast<intptr_t>(alu_out)); |
+ } |
+ // todo - handle OE bit |
+ break; |
+ } |
+ case MULHWX: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ int32_t ra_val = (get_register(ra) & 0xFFFFFFFF); |
+ int32_t rb_val = (get_register(rb) & 0xFFFFFFFF); |
+ int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val; |
+ alu_out >>= 32; |
+ set_register(rt, alu_out); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(static_cast<intptr_t>(alu_out)); |
+ } |
+ // todo - handle OE bit |
+ break; |
+ } |
+ case NEGX: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ intptr_t ra_val = get_register(ra); |
+ intptr_t alu_out = 1 + ~ra_val; |
+#if V8_TARGET_ARCH_PPC64 |
+ intptr_t one = 1; // work-around gcc |
+ intptr_t kOverflowVal = (one << 63); |
+#else |
+ intptr_t kOverflowVal = kMinInt; |
+#endif |
+ set_register(rt, alu_out); |
+ if (instr->Bit(10)) { // OE bit set |
+ if (ra_val == kOverflowVal) { |
+ special_reg_xer_ |= 0xC0000000; // set SO,OV |
+ } else { |
+ special_reg_xer_ &= ~0x40000000; // clear OV |
+ } |
+ } |
+ if (instr->Bit(0)) { // RC bit set |
+ bool setSO = (special_reg_xer_ & 0x80000000); |
+ SetCR0(alu_out, setSO); |
+ } |
+ break; |
+ } |
+ case SLWX: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ uint32_t rs_val = get_register(rs); |
+ uintptr_t rb_val = get_register(rb); |
+ uint32_t result = rs_val << (rb_val & 0x3f); |
+ set_register(ra, result); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(result); |
+ } |
+ break; |
+ } |
+#if V8_TARGET_ARCH_PPC64 |
+ case SLDX: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ uintptr_t rs_val = get_register(rs); |
+ uintptr_t rb_val = get_register(rb); |
+ uintptr_t result = rs_val << (rb_val & 0x7f); |
+ set_register(ra, result); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(result); |
+ } |
+ break; |
+ } |
+ case MFVSRD: { |
+ DCHECK(!instr->Bit(0)); |
+ int frt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ double frt_val = get_double_from_d_register(frt); |
+ int64_t* p = reinterpret_cast<int64_t*>(&frt_val); |
+ set_register(ra, *p); |
+ break; |
+ } |
+ case MFVSRWZ: { |
+ DCHECK(!instr->Bit(0)); |
+ int frt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ double frt_val = get_double_from_d_register(frt); |
+ int64_t* p = reinterpret_cast<int64_t*>(&frt_val); |
+ set_register(ra, static_cast<uint32_t>(*p)); |
+ break; |
+ } |
+ case MTVSRD: { |
+ DCHECK(!instr->Bit(0)); |
+ int frt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int64_t ra_val = get_register(ra); |
+ double* p = reinterpret_cast<double*>(&ra_val); |
+ set_d_register_from_double(frt, *p); |
+ break; |
+ } |
+ case MTVSRWA: { |
+ DCHECK(!instr->Bit(0)); |
+ int frt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int64_t ra_val = static_cast<int32_t>(get_register(ra)); |
+ double* p = reinterpret_cast<double*>(&ra_val); |
+ set_d_register_from_double(frt, *p); |
+ break; |
+ } |
+ case MTVSRWZ: { |
+ DCHECK(!instr->Bit(0)); |
+ int frt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ uint64_t ra_val = static_cast<uint32_t>(get_register(ra)); |
+ double* p = reinterpret_cast<double*>(&ra_val); |
+ set_d_register_from_double(frt, *p); |
+ break; |
+ } |
+#endif |
+ default: { |
+ found = false; |
+ break; |
+ } |
+ } |
+ |
+ return found; |
+} |
+ |
+ |
+void Simulator::ExecuteExt2_9bit_part2(Instruction* instr) { |
+ int opcode = instr->Bits(9, 1) << 1; |
+ switch (opcode) { |
+ case CNTLZWX: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ uintptr_t rs_val = get_register(rs); |
+ uintptr_t count = 0; |
+ int n = 0; |
+ uintptr_t bit = 0x80000000; |
+ for (; n < 32; n++) { |
+ if (bit & rs_val) break; |
+ count++; |
+ bit >>= 1; |
+ } |
+ set_register(ra, count); |
+ if (instr->Bit(0)) { // RC Bit set |
+ int bf = 0; |
+ if (count > 0) { |
+ bf |= 0x40000000; |
+ } |
+ if (count == 0) { |
+ bf |= 0x20000000; |
+ } |
+ condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; |
+ } |
+ break; |
+ } |
+#if V8_TARGET_ARCH_PPC64 |
+ case CNTLZDX: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ uintptr_t rs_val = get_register(rs); |
+ uintptr_t count = 0; |
+ int n = 0; |
+ uintptr_t bit = 0x8000000000000000UL; |
+ for (; n < 64; n++) { |
+ if (bit & rs_val) break; |
+ count++; |
+ bit >>= 1; |
+ } |
+ set_register(ra, count); |
+ if (instr->Bit(0)) { // RC Bit set |
+ int bf = 0; |
+ if (count > 0) { |
+ bf |= 0x40000000; |
+ } |
+ if (count == 0) { |
+ bf |= 0x20000000; |
+ } |
+ condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; |
+ } |
+ break; |
+ } |
+#endif |
+ case ANDX: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ intptr_t rs_val = get_register(rs); |
+ intptr_t rb_val = get_register(rb); |
+ intptr_t alu_out = rs_val & rb_val; |
+ set_register(ra, alu_out); |
+ if (instr->Bit(0)) { // RC Bit set |
+ SetCR0(alu_out); |
+ } |
+ break; |
+ } |
+ case ANDCX: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ intptr_t rs_val = get_register(rs); |
+ intptr_t rb_val = get_register(rb); |
+ intptr_t alu_out = rs_val & ~rb_val; |
+ set_register(ra, alu_out); |
+ if (instr->Bit(0)) { // RC Bit set |
+ SetCR0(alu_out); |
+ } |
+ break; |
+ } |
+ case CMPL: { |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ int cr = instr->Bits(25, 23); |
+ uint32_t bf = 0; |
+#if V8_TARGET_ARCH_PPC64 |
+ int L = instr->Bit(21); |
+ if (L) { |
+#endif |
+ uintptr_t ra_val = get_register(ra); |
+ uintptr_t rb_val = get_register(rb); |
+ if (ra_val < rb_val) { |
+ bf |= 0x80000000; |
+ } |
+ if (ra_val > rb_val) { |
+ bf |= 0x40000000; |
+ } |
+ if (ra_val == rb_val) { |
+ bf |= 0x20000000; |
+ } |
+#if V8_TARGET_ARCH_PPC64 |
+ } else { |
+ uint32_t ra_val = get_register(ra); |
+ uint32_t rb_val = get_register(rb); |
+ if (ra_val < rb_val) { |
+ bf |= 0x80000000; |
+ } |
+ if (ra_val > rb_val) { |
+ bf |= 0x40000000; |
+ } |
+ if (ra_val == rb_val) { |
+ bf |= 0x20000000; |
+ } |
+ } |
+#endif |
+ uint32_t condition_mask = 0xF0000000U >> (cr * 4); |
+ uint32_t condition = bf >> (cr * 4); |
+ condition_reg_ = (condition_reg_ & ~condition_mask) | condition; |
+ break; |
+ } |
+ case SUBFX: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ // int oe = instr->Bit(10); |
+ intptr_t ra_val = get_register(ra); |
+ intptr_t rb_val = get_register(rb); |
+ intptr_t alu_out = rb_val - ra_val; |
+ // todo - figure out underflow |
+ set_register(rt, alu_out); |
+ if (instr->Bit(0)) { // RC Bit set |
+ SetCR0(alu_out); |
+ } |
+ // todo - handle OE bit |
+ break; |
+ } |
+ case ADDZEX: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ intptr_t ra_val = get_register(ra); |
+ if (special_reg_xer_ & 0x20000000) { |
+ ra_val += 1; |
+ } |
+ set_register(rt, ra_val); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(ra_val); |
+ } |
+ // todo - handle OE bit |
+ break; |
+ } |
+ case NORX: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ intptr_t rs_val = get_register(rs); |
+ intptr_t rb_val = get_register(rb); |
+ intptr_t alu_out = ~(rs_val | rb_val); |
+ set_register(ra, alu_out); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(alu_out); |
+ } |
+ break; |
+ } |
+ case MULLW: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ int32_t ra_val = (get_register(ra) & 0xFFFFFFFF); |
+ int32_t rb_val = (get_register(rb) & 0xFFFFFFFF); |
+ int32_t alu_out = ra_val * rb_val; |
+ set_register(rt, alu_out); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(alu_out); |
+ } |
+ // todo - handle OE bit |
+ break; |
+ } |
+#if V8_TARGET_ARCH_PPC64 |
+ case MULLD: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ int64_t ra_val = get_register(ra); |
+ int64_t rb_val = get_register(rb); |
+ int64_t alu_out = ra_val * rb_val; |
+ set_register(rt, alu_out); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(alu_out); |
+ } |
+ // todo - handle OE bit |
+ break; |
+ } |
+#endif |
+ case DIVW: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ int32_t ra_val = get_register(ra); |
+ int32_t rb_val = get_register(rb); |
+ bool overflow = (ra_val == kMinInt && rb_val == -1); |
+ // result is undefined if divisor is zero or if operation |
+ // is 0x80000000 / -1. |
+ int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val / rb_val; |
+ set_register(rt, alu_out); |
+ if (instr->Bit(10)) { // OE bit set |
+ if (overflow) { |
+ special_reg_xer_ |= 0xC0000000; // set SO,OV |
+ } else { |
+ special_reg_xer_ &= ~0x40000000; // clear OV |
+ } |
+ } |
+ if (instr->Bit(0)) { // RC bit set |
+ bool setSO = (special_reg_xer_ & 0x80000000); |
+ SetCR0(alu_out, setSO); |
+ } |
+ break; |
+ } |
+#if V8_TARGET_ARCH_PPC64 |
+ case DIVD: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ int64_t ra_val = get_register(ra); |
+ int64_t rb_val = get_register(rb); |
+ int64_t one = 1; // work-around gcc |
+ int64_t kMinLongLong = (one << 63); |
+ // result is undefined if divisor is zero or if operation |
+ // is 0x80000000_00000000 / -1. |
+ int64_t alu_out = |
+ (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1)) |
+ ? -1 |
+ : ra_val / rb_val; |
+ set_register(rt, alu_out); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(alu_out); |
+ } |
+ // todo - handle OE bit |
+ break; |
+ } |
+#endif |
+ case ADDX: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ // int oe = instr->Bit(10); |
+ intptr_t ra_val = get_register(ra); |
+ intptr_t rb_val = get_register(rb); |
+ intptr_t alu_out = ra_val + rb_val; |
+ set_register(rt, alu_out); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(alu_out); |
+ } |
+ // todo - handle OE bit |
+ break; |
+ } |
+ case XORX: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ intptr_t rs_val = get_register(rs); |
+ intptr_t rb_val = get_register(rb); |
+ intptr_t alu_out = rs_val ^ rb_val; |
+ set_register(ra, alu_out); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(alu_out); |
+ } |
+ break; |
+ } |
+ case ORX: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ intptr_t rs_val = get_register(rs); |
+ intptr_t rb_val = get_register(rb); |
+ intptr_t alu_out = rs_val | rb_val; |
+ set_register(ra, alu_out); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(alu_out); |
+ } |
+ break; |
+ } |
+ case MFSPR: { |
+ int rt = instr->RTValue(); |
+ int spr = instr->Bits(20, 11); |
+ if (spr != 256) { |
+ UNIMPLEMENTED(); // Only LRLR supported |
+ } |
+ set_register(rt, special_reg_lr_); |
+ break; |
+ } |
+ case MTSPR: { |
+ int rt = instr->RTValue(); |
+ intptr_t rt_val = get_register(rt); |
+ int spr = instr->Bits(20, 11); |
+ if (spr == 256) { |
+ special_reg_lr_ = rt_val; |
+ } else if (spr == 288) { |
+ special_reg_ctr_ = rt_val; |
+ } else if (spr == 32) { |
+ special_reg_xer_ = rt_val; |
+ } else { |
+ UNIMPLEMENTED(); // Only LR supported |
+ } |
+ break; |
+ } |
+ case MFCR: { |
+ int rt = instr->RTValue(); |
+ set_register(rt, condition_reg_); |
+ break; |
+ } |
+ case STWUX: |
+ case STWX: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ int32_t rs_val = get_register(rs); |
+ intptr_t rb_val = get_register(rb); |
+ WriteW(ra_val + rb_val, rs_val, instr); |
+ if (opcode == STWUX) { |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + rb_val); |
+ } |
+ break; |
+ } |
+ case STBUX: |
+ case STBX: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ int8_t rs_val = get_register(rs); |
+ intptr_t rb_val = get_register(rb); |
+ WriteB(ra_val + rb_val, rs_val); |
+ if (opcode == STBUX) { |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + rb_val); |
+ } |
+ break; |
+ } |
+ case STHUX: |
+ case STHX: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ int16_t rs_val = get_register(rs); |
+ intptr_t rb_val = get_register(rb); |
+ WriteH(ra_val + rb_val, rs_val, instr); |
+ if (opcode == STHUX) { |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + rb_val); |
+ } |
+ break; |
+ } |
+ case LWZX: |
+ case LWZUX: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ intptr_t rb_val = get_register(rb); |
+ set_register(rt, ReadWU(ra_val + rb_val, instr)); |
+ if (opcode == LWZUX) { |
+ DCHECK(ra != 0 && ra != rt); |
+ set_register(ra, ra_val + rb_val); |
+ } |
+ break; |
+ } |
+#if V8_TARGET_ARCH_PPC64 |
+ case LDX: |
+ case LDUX: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ intptr_t rb_val = get_register(rb); |
+ intptr_t* result = ReadDW(ra_val + rb_val); |
+ set_register(rt, *result); |
+ if (opcode == LDUX) { |
+ DCHECK(ra != 0 && ra != rt); |
+ set_register(ra, ra_val + rb_val); |
+ } |
+ break; |
+ } |
+ case STDX: |
+ case STDUX: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ intptr_t rs_val = get_register(rs); |
+ intptr_t rb_val = get_register(rb); |
+ WriteDW(ra_val + rb_val, rs_val); |
+ if (opcode == STDUX) { |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + rb_val); |
+ } |
+ break; |
+ } |
+#endif |
+ case LBZX: |
+ case LBZUX: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ intptr_t rb_val = get_register(rb); |
+ set_register(rt, ReadBU(ra_val + rb_val) & 0xFF); |
+ if (opcode == LBZUX) { |
+ DCHECK(ra != 0 && ra != rt); |
+ set_register(ra, ra_val + rb_val); |
+ } |
+ break; |
+ } |
+ case LHZX: |
+ case LHZUX: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int rb = instr->RBValue(); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ intptr_t rb_val = get_register(rb); |
+ set_register(rt, ReadHU(ra_val + rb_val, instr) & 0xFFFF); |
+ if (opcode == LHZUX) { |
+ DCHECK(ra != 0 && ra != rt); |
+ set_register(ra, ra_val + rb_val); |
+ } |
+ break; |
+ } |
+ case DCBF: { |
+ // todo - simulate dcbf |
+ break; |
+ } |
+ default: { |
+ PrintF("Unimplemented: %08x\n", instr->InstructionBits()); |
+ UNIMPLEMENTED(); // Not used by V8. |
+ } |
+ } |
+} |
+ |
+ |
+void Simulator::ExecuteExt2(Instruction* instr) { |
+ // Check first the 10-1 bit versions |
+ if (ExecuteExt2_10bit(instr)) return; |
+ // Now look at the lesser encodings |
+ if (ExecuteExt2_9bit_part1(instr)) return; |
+ ExecuteExt2_9bit_part2(instr); |
+} |
+ |
+ |
+void Simulator::ExecuteExt4(Instruction* instr) { |
+ switch (instr->Bits(5, 1) << 1) { |
+ case FDIV: { |
+ int frt = instr->RTValue(); |
+ int fra = instr->RAValue(); |
+ int frb = instr->RBValue(); |
+ double fra_val = get_double_from_d_register(fra); |
+ double frb_val = get_double_from_d_register(frb); |
+ double frt_val = fra_val / frb_val; |
+ set_d_register_from_double(frt, frt_val); |
+ return; |
+ } |
+ case FSUB: { |
+ int frt = instr->RTValue(); |
+ int fra = instr->RAValue(); |
+ int frb = instr->RBValue(); |
+ double fra_val = get_double_from_d_register(fra); |
+ double frb_val = get_double_from_d_register(frb); |
+ double frt_val = fra_val - frb_val; |
+ set_d_register_from_double(frt, frt_val); |
+ return; |
+ } |
+ case FADD: { |
+ int frt = instr->RTValue(); |
+ int fra = instr->RAValue(); |
+ int frb = instr->RBValue(); |
+ double fra_val = get_double_from_d_register(fra); |
+ double frb_val = get_double_from_d_register(frb); |
+ double frt_val = fra_val + frb_val; |
+ set_d_register_from_double(frt, frt_val); |
+ return; |
+ } |
+ case FSQRT: { |
+ int frt = instr->RTValue(); |
+ int frb = instr->RBValue(); |
+ double frb_val = get_double_from_d_register(frb); |
+ double frt_val = std::sqrt(frb_val); |
+ set_d_register_from_double(frt, frt_val); |
+ return; |
+ } |
+ case FSEL: { |
+ int frt = instr->RTValue(); |
+ int fra = instr->RAValue(); |
+ int frb = instr->RBValue(); |
+ int frc = instr->RCValue(); |
+ double fra_val = get_double_from_d_register(fra); |
+ double frb_val = get_double_from_d_register(frb); |
+ double frc_val = get_double_from_d_register(frc); |
+ double frt_val = ((fra_val >= 0.0) ? frc_val : frb_val); |
+ set_d_register_from_double(frt, frt_val); |
+ return; |
+ } |
+ case FMUL: { |
+ int frt = instr->RTValue(); |
+ int fra = instr->RAValue(); |
+ int frc = instr->RCValue(); |
+ double fra_val = get_double_from_d_register(fra); |
+ double frc_val = get_double_from_d_register(frc); |
+ double frt_val = fra_val * frc_val; |
+ set_d_register_from_double(frt, frt_val); |
+ return; |
+ } |
+ case FMSUB: { |
+ int frt = instr->RTValue(); |
+ int fra = instr->RAValue(); |
+ int frb = instr->RBValue(); |
+ int frc = instr->RCValue(); |
+ double fra_val = get_double_from_d_register(fra); |
+ double frb_val = get_double_from_d_register(frb); |
+ double frc_val = get_double_from_d_register(frc); |
+ double frt_val = (fra_val * frc_val) - frb_val; |
+ set_d_register_from_double(frt, frt_val); |
+ return; |
+ } |
+ case FMADD: { |
+ int frt = instr->RTValue(); |
+ int fra = instr->RAValue(); |
+ int frb = instr->RBValue(); |
+ int frc = instr->RCValue(); |
+ double fra_val = get_double_from_d_register(fra); |
+ double frb_val = get_double_from_d_register(frb); |
+ double frc_val = get_double_from_d_register(frc); |
+ double frt_val = (fra_val * frc_val) + frb_val; |
+ set_d_register_from_double(frt, frt_val); |
+ return; |
+ } |
+ } |
+ int opcode = instr->Bits(10, 1) << 1; |
+ switch (opcode) { |
+ case FCMPU: { |
+ int fra = instr->RAValue(); |
+ int frb = instr->RBValue(); |
+ double fra_val = get_double_from_d_register(fra); |
+ double frb_val = get_double_from_d_register(frb); |
+ int cr = instr->Bits(25, 23); |
+ int bf = 0; |
+ if (fra_val < frb_val) { |
+ bf |= 0x80000000; |
+ } |
+ if (fra_val > frb_val) { |
+ bf |= 0x40000000; |
+ } |
+ if (fra_val == frb_val) { |
+ bf |= 0x20000000; |
+ } |
+ if (std::isunordered(fra_val, frb_val)) { |
+ bf |= 0x10000000; |
+ } |
+ int condition_mask = 0xF0000000 >> (cr * 4); |
+ int condition = bf >> (cr * 4); |
+ condition_reg_ = (condition_reg_ & ~condition_mask) | condition; |
+ return; |
+ } |
+ case FRSP: { |
+ int frt = instr->RTValue(); |
+ int frb = instr->RBValue(); |
+ double frb_val = get_double_from_d_register(frb); |
+ // frsp round 8-byte double-precision value to 8-byte |
+ // single-precision value, ignore the round here |
+ set_d_register_from_double(frt, frb_val); |
+ if (instr->Bit(0)) { // RC bit set |
+ // UNIMPLEMENTED(); |
+ } |
+ return; |
+ } |
+ case FCFID: { |
+ int frt = instr->RTValue(); |
+ int frb = instr->RBValue(); |
+ double t_val = get_double_from_d_register(frb); |
+ int64_t* frb_val_p = reinterpret_cast<int64_t*>(&t_val); |
+ double frt_val = static_cast<double>(*frb_val_p); |
+ set_d_register_from_double(frt, frt_val); |
+ return; |
+ } |
+ case FCTID: { |
+ int frt = instr->RTValue(); |
+ int frb = instr->RBValue(); |
+ double frb_val = get_double_from_d_register(frb); |
+ int64_t frt_val; |
+ int64_t one = 1; // work-around gcc |
+ int64_t kMinLongLong = (one << 63); |
+ int64_t kMaxLongLong = kMinLongLong - 1; |
+ |
+ if (frb_val > kMaxLongLong) { |
+ frt_val = kMaxLongLong; |
+ } else if (frb_val < kMinLongLong) { |
+ frt_val = kMinLongLong; |
+ } else { |
+ switch (fp_condition_reg_ & kFPRoundingModeMask) { |
+ case kRoundToZero: |
+ frt_val = (int64_t)frb_val; |
+ break; |
+ case kRoundToPlusInf: |
+ frt_val = (int64_t)std::ceil(frb_val); |
+ break; |
+ case kRoundToMinusInf: |
+ frt_val = (int64_t)std::floor(frb_val); |
+ break; |
+ default: |
+ frt_val = (int64_t)frb_val; |
+ UNIMPLEMENTED(); // Not used by V8. |
+ break; |
+ } |
+ } |
+ double* p = reinterpret_cast<double*>(&frt_val); |
+ set_d_register_from_double(frt, *p); |
+ return; |
+ } |
+ case FCTIDZ: { |
+ int frt = instr->RTValue(); |
+ int frb = instr->RBValue(); |
+ double frb_val = get_double_from_d_register(frb); |
+ int64_t frt_val; |
+ int64_t one = 1; // work-around gcc |
+ int64_t kMinLongLong = (one << 63); |
+ int64_t kMaxLongLong = kMinLongLong - 1; |
+ |
+ if (frb_val > kMaxLongLong) { |
+ frt_val = kMaxLongLong; |
+ } else if (frb_val < kMinLongLong) { |
+ frt_val = kMinLongLong; |
+ } else { |
+ frt_val = (int64_t)frb_val; |
+ } |
+ double* p = reinterpret_cast<double*>(&frt_val); |
+ set_d_register_from_double(frt, *p); |
+ return; |
+ } |
+ case FCTIW: |
+ case FCTIWZ: { |
+ int frt = instr->RTValue(); |
+ int frb = instr->RBValue(); |
+ double frb_val = get_double_from_d_register(frb); |
+ int64_t frt_val; |
+ if (frb_val > kMaxInt) { |
+ frt_val = kMaxInt; |
+ } else if (frb_val < kMinInt) { |
+ frt_val = kMinInt; |
+ } else { |
+ if (opcode == FCTIWZ) { |
+ frt_val = (int64_t)frb_val; |
+ } else { |
+ switch (fp_condition_reg_ & kFPRoundingModeMask) { |
+ case kRoundToZero: |
+ frt_val = (int64_t)frb_val; |
+ break; |
+ case kRoundToPlusInf: |
+ frt_val = (int64_t)std::ceil(frb_val); |
+ break; |
+ case kRoundToMinusInf: |
+ frt_val = (int64_t)std::floor(frb_val); |
+ break; |
+ case kRoundToNearest: |
+ frt_val = (int64_t)lround(frb_val); |
+ |
+ // Round to even if exactly halfway. (lround rounds up) |
+ if (std::fabs(static_cast<double>(frt_val) - frb_val) == 0.5 && |
+ (frt_val % 2)) { |
+ frt_val += ((frt_val > 0) ? -1 : 1); |
+ } |
+ |
+ break; |
+ default: |
+ DCHECK(false); |
+ frt_val = (int64_t)frb_val; |
+ break; |
+ } |
+ } |
+ } |
+ double* p = reinterpret_cast<double*>(&frt_val); |
+ set_d_register_from_double(frt, *p); |
+ return; |
+ } |
+ case FNEG: { |
+ int frt = instr->RTValue(); |
+ int frb = instr->RBValue(); |
+ double frb_val = get_double_from_d_register(frb); |
+ double frt_val = -frb_val; |
+ set_d_register_from_double(frt, frt_val); |
+ return; |
+ } |
+ case FMR: { |
+ int frt = instr->RTValue(); |
+ int frb = instr->RBValue(); |
+ double frb_val = get_double_from_d_register(frb); |
+ double frt_val = frb_val; |
+ set_d_register_from_double(frt, frt_val); |
+ return; |
+ } |
+ case MTFSFI: { |
+ int bf = instr->Bits(25, 23); |
+ int imm = instr->Bits(15, 12); |
+ int fp_condition_mask = 0xF0000000 >> (bf * 4); |
+ fp_condition_reg_ &= ~fp_condition_mask; |
+ fp_condition_reg_ |= (imm << (28 - (bf * 4))); |
+ if (instr->Bit(0)) { // RC bit set |
+ condition_reg_ &= 0xF0FFFFFF; |
+ condition_reg_ |= (imm << 23); |
+ } |
+ return; |
+ } |
+ case MTFSF: { |
+ int frb = instr->RBValue(); |
+ double frb_dval = get_double_from_d_register(frb); |
+ int64_t* p = reinterpret_cast<int64_t*>(&frb_dval); |
+ int32_t frb_ival = static_cast<int32_t>((*p) & 0xffffffff); |
+ int l = instr->Bits(25, 25); |
+ if (l == 1) { |
+ fp_condition_reg_ = frb_ival; |
+ } else { |
+ UNIMPLEMENTED(); |
+ } |
+ if (instr->Bit(0)) { // RC bit set |
+ UNIMPLEMENTED(); |
+ // int w = instr->Bits(16, 16); |
+ // int flm = instr->Bits(24, 17); |
+ } |
+ return; |
+ } |
+ case MFFS: { |
+ int frt = instr->RTValue(); |
+ int64_t lval = static_cast<int64_t>(fp_condition_reg_); |
+ double* p = reinterpret_cast<double*>(&lval); |
+ set_d_register_from_double(frt, *p); |
+ return; |
+ } |
+ case FABS: { |
+ int frt = instr->RTValue(); |
+ int frb = instr->RBValue(); |
+ double frb_val = get_double_from_d_register(frb); |
+ double frt_val = std::fabs(frb_val); |
+ set_d_register_from_double(frt, frt_val); |
+ return; |
+ } |
+ case FRIM: { |
+ int frt = instr->RTValue(); |
+ int frb = instr->RBValue(); |
+ double frb_val = get_double_from_d_register(frb); |
+ int64_t floor_val = (int64_t)frb_val; |
+ if (floor_val > frb_val) floor_val--; |
+ double frt_val = static_cast<double>(floor_val); |
+ set_d_register_from_double(frt, frt_val); |
+ return; |
+ } |
+ } |
+ UNIMPLEMENTED(); // Not used by V8. |
+} |
+ |
+#if V8_TARGET_ARCH_PPC64 |
+void Simulator::ExecuteExt5(Instruction* instr) { |
+ switch (instr->Bits(4, 2) << 2) { |
+ case RLDICL: { |
+ int ra = instr->RAValue(); |
+ int rs = instr->RSValue(); |
+ uintptr_t rs_val = get_register(rs); |
+ int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); |
+ int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); |
+ DCHECK(sh >= 0 && sh <= 63); |
+ DCHECK(mb >= 0 && mb <= 63); |
+ // rotate left |
+ uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh)); |
+ uintptr_t mask = 0xffffffffffffffff >> mb; |
+ result &= mask; |
+ set_register(ra, result); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(result); |
+ } |
+ return; |
+ } |
+ case RLDICR: { |
+ int ra = instr->RAValue(); |
+ int rs = instr->RSValue(); |
+ uintptr_t rs_val = get_register(rs); |
+ int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); |
+ int me = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); |
+ DCHECK(sh >= 0 && sh <= 63); |
+ DCHECK(me >= 0 && me <= 63); |
+ // rotate left |
+ uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh)); |
+ uintptr_t mask = 0xffffffffffffffff << (63 - me); |
+ result &= mask; |
+ set_register(ra, result); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(result); |
+ } |
+ return; |
+ } |
+ case RLDIC: { |
+ int ra = instr->RAValue(); |
+ int rs = instr->RSValue(); |
+ uintptr_t rs_val = get_register(rs); |
+ int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); |
+ int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); |
+ DCHECK(sh >= 0 && sh <= 63); |
+ DCHECK(mb >= 0 && mb <= 63); |
+ // rotate left |
+ uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh)); |
+ uintptr_t mask = (0xffffffffffffffff >> mb) & (0xffffffffffffffff << sh); |
+ result &= mask; |
+ set_register(ra, result); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(result); |
+ } |
+ return; |
+ } |
+ case RLDIMI: { |
+ int ra = instr->RAValue(); |
+ int rs = instr->RSValue(); |
+ uintptr_t rs_val = get_register(rs); |
+ intptr_t ra_val = get_register(ra); |
+ int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); |
+ int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); |
+ int me = 63 - sh; |
+ // rotate left |
+ uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh)); |
+ uintptr_t mask = 0; |
+ if (mb < me + 1) { |
+ uintptr_t bit = 0x8000000000000000 >> mb; |
+ for (; mb <= me; mb++) { |
+ mask |= bit; |
+ bit >>= 1; |
+ } |
+ } else if (mb == me + 1) { |
+ mask = 0xffffffffffffffff; |
+ } else { // mb > me+1 |
+ uintptr_t bit = 0x8000000000000000 >> (me + 1); // needs to be tested |
+ mask = 0xffffffffffffffff; |
+ for (; me < mb; me++) { |
+ mask ^= bit; |
+ bit >>= 1; |
+ } |
+ } |
+ result &= mask; |
+ ra_val &= ~mask; |
+ result |= ra_val; |
+ set_register(ra, result); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(result); |
+ } |
+ return; |
+ } |
+ } |
+ switch (instr->Bits(4, 1) << 1) { |
+ case RLDCL: { |
+ int ra = instr->RAValue(); |
+ int rs = instr->RSValue(); |
+ int rb = instr->RBValue(); |
+ uintptr_t rs_val = get_register(rs); |
+ uintptr_t rb_val = get_register(rb); |
+ int sh = (rb_val & 0x3f); |
+ int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); |
+ DCHECK(sh >= 0 && sh <= 63); |
+ DCHECK(mb >= 0 && mb <= 63); |
+ // rotate left |
+ uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh)); |
+ uintptr_t mask = 0xffffffffffffffff >> mb; |
+ result &= mask; |
+ set_register(ra, result); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(result); |
+ } |
+ return; |
+ } |
+ } |
+ UNIMPLEMENTED(); // Not used by V8. |
+} |
+#endif |
+ |
+ |
+void Simulator::ExecuteGeneric(Instruction* instr) { |
+ int opcode = instr->OpcodeValue() << 26; |
+ switch (opcode) { |
+ case SUBFIC: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ intptr_t ra_val = get_register(ra); |
+ int32_t im_val = instr->Bits(15, 0); |
+ im_val = SIGN_EXT_IMM16(im_val); |
+ intptr_t alu_out = im_val - ra_val; |
+ set_register(rt, alu_out); |
+ // todo - handle RC bit |
+ break; |
+ } |
+ case CMPLI: { |
+ int ra = instr->RAValue(); |
+ uint32_t im_val = instr->Bits(15, 0); |
+ int cr = instr->Bits(25, 23); |
+ uint32_t bf = 0; |
+#if V8_TARGET_ARCH_PPC64 |
+ int L = instr->Bit(21); |
+ if (L) { |
+#endif |
+ uintptr_t ra_val = get_register(ra); |
+ if (ra_val < im_val) { |
+ bf |= 0x80000000; |
+ } |
+ if (ra_val > im_val) { |
+ bf |= 0x40000000; |
+ } |
+ if (ra_val == im_val) { |
+ bf |= 0x20000000; |
+ } |
+#if V8_TARGET_ARCH_PPC64 |
+ } else { |
+ uint32_t ra_val = get_register(ra); |
+ if (ra_val < im_val) { |
+ bf |= 0x80000000; |
+ } |
+ if (ra_val > im_val) { |
+ bf |= 0x40000000; |
+ } |
+ if (ra_val == im_val) { |
+ bf |= 0x20000000; |
+ } |
+ } |
+#endif |
+ uint32_t condition_mask = 0xF0000000U >> (cr * 4); |
+ uint32_t condition = bf >> (cr * 4); |
+ condition_reg_ = (condition_reg_ & ~condition_mask) | condition; |
+ break; |
+ } |
+ case CMPI: { |
+ int ra = instr->RAValue(); |
+ int32_t im_val = instr->Bits(15, 0); |
+ im_val = SIGN_EXT_IMM16(im_val); |
+ int cr = instr->Bits(25, 23); |
+ uint32_t bf = 0; |
+#if V8_TARGET_ARCH_PPC64 |
+ int L = instr->Bit(21); |
+ if (L) { |
+#endif |
+ intptr_t ra_val = get_register(ra); |
+ if (ra_val < im_val) { |
+ bf |= 0x80000000; |
+ } |
+ if (ra_val > im_val) { |
+ bf |= 0x40000000; |
+ } |
+ if (ra_val == im_val) { |
+ bf |= 0x20000000; |
+ } |
+#if V8_TARGET_ARCH_PPC64 |
+ } else { |
+ int32_t ra_val = get_register(ra); |
+ if (ra_val < im_val) { |
+ bf |= 0x80000000; |
+ } |
+ if (ra_val > im_val) { |
+ bf |= 0x40000000; |
+ } |
+ if (ra_val == im_val) { |
+ bf |= 0x20000000; |
+ } |
+ } |
+#endif |
+ uint32_t condition_mask = 0xF0000000U >> (cr * 4); |
+ uint32_t condition = bf >> (cr * 4); |
+ condition_reg_ = (condition_reg_ & ~condition_mask) | condition; |
+ break; |
+ } |
+ case ADDIC: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ uintptr_t ra_val = get_register(ra); |
+ uintptr_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0)); |
+ uintptr_t alu_out = ra_val + im_val; |
+ // Check overflow |
+ if (~ra_val < im_val) { |
+ special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000; |
+ } else { |
+ special_reg_xer_ &= ~0xF0000000; |
+ } |
+ set_register(rt, alu_out); |
+ break; |
+ } |
+ case ADDI: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int32_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0)); |
+ intptr_t alu_out; |
+ if (ra == 0) { |
+ alu_out = im_val; |
+ } else { |
+ intptr_t ra_val = get_register(ra); |
+ alu_out = ra_val + im_val; |
+ } |
+ set_register(rt, alu_out); |
+ // todo - handle RC bit |
+ break; |
+ } |
+ case ADDIS: { |
+ int rt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int32_t im_val = (instr->Bits(15, 0) << 16); |
+ intptr_t alu_out; |
+ if (ra == 0) { // treat r0 as zero |
+ alu_out = im_val; |
+ } else { |
+ intptr_t ra_val = get_register(ra); |
+ alu_out = ra_val + im_val; |
+ } |
+ set_register(rt, alu_out); |
+ break; |
+ } |
+ case BCX: { |
+ ExecuteBranchConditional(instr); |
+ break; |
+ } |
+ case BX: { |
+ int offset = (instr->Bits(25, 2) << 8) >> 6; |
+ if (instr->Bit(0) == 1) { // LK flag set |
+ special_reg_lr_ = get_pc() + 4; |
+ } |
+ set_pc(get_pc() + offset); |
+ // todo - AA flag |
+ break; |
+ } |
+ case EXT1: { |
+ ExecuteExt1(instr); |
+ break; |
+ } |
+ case RLWIMIX: { |
+ int ra = instr->RAValue(); |
+ int rs = instr->RSValue(); |
+ uint32_t rs_val = get_register(rs); |
+ int32_t ra_val = get_register(ra); |
+ int sh = instr->Bits(15, 11); |
+ int mb = instr->Bits(10, 6); |
+ int me = instr->Bits(5, 1); |
+ // rotate left |
+ uint32_t result = (rs_val << sh) | (rs_val >> (32 - sh)); |
+ int mask = 0; |
+ if (mb < me + 1) { |
+ int bit = 0x80000000 >> mb; |
+ for (; mb <= me; mb++) { |
+ mask |= bit; |
+ bit >>= 1; |
+ } |
+ } else if (mb == me + 1) { |
+ mask = 0xffffffff; |
+ } else { // mb > me+1 |
+ int bit = 0x80000000 >> (me + 1); // needs to be tested |
+ mask = 0xffffffff; |
+ for (; me < mb; me++) { |
+ mask ^= bit; |
+ bit >>= 1; |
+ } |
+ } |
+ result &= mask; |
+ ra_val &= ~mask; |
+ result |= ra_val; |
+ set_register(ra, result); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(result); |
+ } |
+ break; |
+ } |
+ case RLWINMX: |
+ case RLWNMX: { |
+ int ra = instr->RAValue(); |
+ int rs = instr->RSValue(); |
+ uint32_t rs_val = get_register(rs); |
+ int sh = 0; |
+ if (opcode == RLWINMX) { |
+ sh = instr->Bits(15, 11); |
+ } else { |
+ int rb = instr->RBValue(); |
+ uint32_t rb_val = get_register(rb); |
+ sh = (rb_val & 0x1f); |
+ } |
+ int mb = instr->Bits(10, 6); |
+ int me = instr->Bits(5, 1); |
+ // rotate left |
+ uint32_t result = (rs_val << sh) | (rs_val >> (32 - sh)); |
+ int mask = 0; |
+ if (mb < me + 1) { |
+ int bit = 0x80000000 >> mb; |
+ for (; mb <= me; mb++) { |
+ mask |= bit; |
+ bit >>= 1; |
+ } |
+ } else if (mb == me + 1) { |
+ mask = 0xffffffff; |
+ } else { // mb > me+1 |
+ int bit = 0x80000000 >> (me + 1); // needs to be tested |
+ mask = 0xffffffff; |
+ for (; me < mb; me++) { |
+ mask ^= bit; |
+ bit >>= 1; |
+ } |
+ } |
+ result &= mask; |
+ set_register(ra, result); |
+ if (instr->Bit(0)) { // RC bit set |
+ SetCR0(result); |
+ } |
+ break; |
+ } |
+ case ORI: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ intptr_t rs_val = get_register(rs); |
+ uint32_t im_val = instr->Bits(15, 0); |
+ intptr_t alu_out = rs_val | im_val; |
+ set_register(ra, alu_out); |
+ break; |
+ } |
+ case ORIS: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ intptr_t rs_val = get_register(rs); |
+ uint32_t im_val = instr->Bits(15, 0); |
+ intptr_t alu_out = rs_val | (im_val << 16); |
+ set_register(ra, alu_out); |
+ break; |
+ } |
+ case XORI: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ intptr_t rs_val = get_register(rs); |
+ uint32_t im_val = instr->Bits(15, 0); |
+ intptr_t alu_out = rs_val ^ im_val; |
+ set_register(ra, alu_out); |
+ // todo - set condition based SO bit |
+ break; |
+ } |
+ case XORIS: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ intptr_t rs_val = get_register(rs); |
+ uint32_t im_val = instr->Bits(15, 0); |
+ intptr_t alu_out = rs_val ^ (im_val << 16); |
+ set_register(ra, alu_out); |
+ break; |
+ } |
+ case ANDIx: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ intptr_t rs_val = get_register(rs); |
+ uint32_t im_val = instr->Bits(15, 0); |
+ intptr_t alu_out = rs_val & im_val; |
+ set_register(ra, alu_out); |
+ SetCR0(alu_out); |
+ break; |
+ } |
+ case ANDISx: { |
+ int rs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ intptr_t rs_val = get_register(rs); |
+ uint32_t im_val = instr->Bits(15, 0); |
+ intptr_t alu_out = rs_val & (im_val << 16); |
+ set_register(ra, alu_out); |
+ SetCR0(alu_out); |
+ break; |
+ } |
+ case EXT2: { |
+ ExecuteExt2(instr); |
+ break; |
+ } |
+ |
+ case LWZU: |
+ case LWZ: { |
+ int ra = instr->RAValue(); |
+ int rt = instr->RTValue(); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); |
+ set_register(rt, ReadWU(ra_val + offset, instr)); |
+ if (opcode == LWZU) { |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + offset); |
+ } |
+ break; |
+ } |
+ |
+ case LBZU: |
+ case LBZ: { |
+ int ra = instr->RAValue(); |
+ int rt = instr->RTValue(); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); |
+ set_register(rt, ReadB(ra_val + offset) & 0xFF); |
+ if (opcode == LBZU) { |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + offset); |
+ } |
+ break; |
+ } |
+ |
+ case STWU: |
+ case STW: { |
+ int ra = instr->RAValue(); |
+ int rs = instr->RSValue(); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ int32_t rs_val = get_register(rs); |
+ int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); |
+ WriteW(ra_val + offset, rs_val, instr); |
+ if (opcode == STWU) { |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + offset); |
+ } |
+ // printf("r%d %08x -> %08x\n", rs, rs_val, offset); // 0xdead |
+ break; |
+ } |
+ |
+ case STBU: |
+ case STB: { |
+ int ra = instr->RAValue(); |
+ int rs = instr->RSValue(); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ int8_t rs_val = get_register(rs); |
+ int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); |
+ WriteB(ra_val + offset, rs_val); |
+ if (opcode == STBU) { |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + offset); |
+ } |
+ break; |
+ } |
+ |
+ case LHZU: |
+ case LHZ: { |
+ int ra = instr->RAValue(); |
+ int rt = instr->RTValue(); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); |
+ uintptr_t result = ReadHU(ra_val + offset, instr) & 0xffff; |
+ set_register(rt, result); |
+ if (opcode == LHZU) { |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + offset); |
+ } |
+ break; |
+ } |
+ |
+ case LHA: |
+ case LHAU: { |
+ UNIMPLEMENTED(); |
+ break; |
+ } |
+ |
+ case STHU: |
+ case STH: { |
+ int ra = instr->RAValue(); |
+ int rs = instr->RSValue(); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ int16_t rs_val = get_register(rs); |
+ int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); |
+ WriteH(ra_val + offset, rs_val, instr); |
+ if (opcode == STHU) { |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + offset); |
+ } |
+ break; |
+ } |
+ |
+ case LMW: |
+ case STMW: { |
+ UNIMPLEMENTED(); |
+ break; |
+ } |
+ |
+ case LFSU: |
+ case LFS: { |
+ int frt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ int32_t val = ReadW(ra_val + offset, instr); |
+ float* fptr = reinterpret_cast<float*>(&val); |
+ set_d_register_from_double(frt, static_cast<double>(*fptr)); |
+ if (opcode == LFSU) { |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + offset); |
+ } |
+ break; |
+ } |
+ |
+ case LFDU: |
+ case LFD: { |
+ int frt = instr->RTValue(); |
+ int ra = instr->RAValue(); |
+ int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ double* dptr = reinterpret_cast<double*>(ReadDW(ra_val + offset)); |
+ set_d_register_from_double(frt, *dptr); |
+ if (opcode == LFDU) { |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + offset); |
+ } |
+ break; |
+ } |
+ |
+ case STFSU: { |
+ case STFS: |
+ int frs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ float frs_val = static_cast<float>(get_double_from_d_register(frs)); |
+ int32_t* p = reinterpret_cast<int32_t*>(&frs_val); |
+ WriteW(ra_val + offset, *p, instr); |
+ if (opcode == STFSU) { |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + offset); |
+ } |
+ break; |
+ } |
+ |
+ case STFDU: |
+ case STFD: { |
+ int frs = instr->RSValue(); |
+ int ra = instr->RAValue(); |
+ int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); |
+ intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ double frs_val = get_double_from_d_register(frs); |
+ int64_t* p = reinterpret_cast<int64_t*>(&frs_val); |
+ WriteDW(ra_val + offset, *p); |
+ if (opcode == STFDU) { |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + offset); |
+ } |
+ break; |
+ } |
+ |
+ case EXT3: |
+ UNIMPLEMENTED(); |
+ case EXT4: { |
+ ExecuteExt4(instr); |
+ break; |
+ } |
+ |
+#if V8_TARGET_ARCH_PPC64 |
+ case EXT5: { |
+ ExecuteExt5(instr); |
+ break; |
+ } |
+ case LD: { |
+ int ra = instr->RAValue(); |
+ int rt = instr->RTValue(); |
+ int64_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3); |
+ switch (instr->Bits(1, 0)) { |
+ case 0: { // ld |
+ intptr_t* result = ReadDW(ra_val + offset); |
+ set_register(rt, *result); |
+ break; |
+ } |
+ case 1: { // ldu |
+ intptr_t* result = ReadDW(ra_val + offset); |
+ set_register(rt, *result); |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + offset); |
+ break; |
+ } |
+ case 2: { // lwa |
+ intptr_t result = ReadW(ra_val + offset, instr); |
+ set_register(rt, result); |
+ break; |
+ } |
+ } |
+ break; |
+ } |
+ |
+ case STD: { |
+ int ra = instr->RAValue(); |
+ int rs = instr->RSValue(); |
+ int64_t ra_val = ra == 0 ? 0 : get_register(ra); |
+ int64_t rs_val = get_register(rs); |
+ int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3); |
+ WriteDW(ra_val + offset, rs_val); |
+ if (instr->Bit(0) == 1) { // This is the STDU form |
+ DCHECK(ra != 0); |
+ set_register(ra, ra_val + offset); |
+ } |
+ break; |
+ } |
+#endif |
+ |
+ case FAKE_OPCODE: { |
+ if (instr->Bits(MARKER_SUBOPCODE_BIT, MARKER_SUBOPCODE_BIT) == 1) { |
+ int marker_code = instr->Bits(STUB_MARKER_HIGH_BIT, 0); |
+ DCHECK(marker_code < F_NEXT_AVAILABLE_STUB_MARKER); |
+ PrintF("Hit stub-marker: %d (EMIT_STUB_MARKER)\n", marker_code); |
+ } else { |
+ int fake_opcode = instr->Bits(FAKE_OPCODE_HIGH_BIT, 0); |
+ if (fake_opcode == fBKPT) { |
+ PPCDebugger dbg(this); |
+ PrintF("Simulator hit BKPT.\n"); |
+ dbg.Debug(); |
+ } else { |
+ DCHECK(fake_opcode < fLastFaker); |
+ PrintF("Hit ARM opcode: %d(FAKE_OPCODE defined in constant-ppc.h)\n", |
+ fake_opcode); |
+ UNIMPLEMENTED(); |
+ } |
+ } |
+ break; |
+ } |
+ |
+ default: { |
+ UNIMPLEMENTED(); |
+ break; |
+ } |
+ } |
+} // NOLINT - disable function size check |
+ |
+ |
+void Simulator::Trace(Instruction* instr) { |
+ disasm::NameConverter converter; |
+ disasm::Disassembler dasm(converter); |
+ // use a reasonably large buffer |
+ v8::internal::EmbeddedVector<char, 256> buffer; |
+ dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr)); |
+ PrintF("%05d %08" V8PRIxPTR " %s\n", icount_, |
+ reinterpret_cast<intptr_t>(instr), buffer.start()); |
+} |
+ |
+ |
+// Executes the current instruction. |
+void Simulator::ExecuteInstruction(Instruction* instr) { |
+ if (v8::internal::FLAG_check_icache) { |
+ CheckICache(isolate_->simulator_i_cache(), instr); |
+ } |
+ pc_modified_ = false; |
+ if (::v8::internal::FLAG_trace_sim) { |
+ Trace(instr); |
+ } |
+ int opcode = instr->OpcodeValue() << 26; |
+ if (opcode == TWI) { |
+ SoftwareInterrupt(instr); |
+ } else { |
+ ExecuteGeneric(instr); |
+ } |
+ if (!pc_modified_) { |
+ set_pc(reinterpret_cast<intptr_t>(instr) + Instruction::kInstrSize); |
+ } |
+} |
+ |
+ |
+void Simulator::Execute() { |
+ // Get the PC to simulate. Cannot use the accessor here as we need the |
+ // raw PC value and not the one used as input to arithmetic instructions. |
+ intptr_t program_counter = get_pc(); |
+ |
+ if (::v8::internal::FLAG_stop_sim_at == 0) { |
+ // Fast version of the dispatch loop without checking whether the simulator |
+ // should be stopping at a particular executed instruction. |
+ while (program_counter != end_sim_pc) { |
+ Instruction* instr = reinterpret_cast<Instruction*>(program_counter); |
+ icount_++; |
+ ExecuteInstruction(instr); |
+ program_counter = get_pc(); |
+ } |
+ } else { |
+ // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when |
+ // we reach the particular instuction count. |
+ while (program_counter != end_sim_pc) { |
+ Instruction* instr = reinterpret_cast<Instruction*>(program_counter); |
+ icount_++; |
+ if (icount_ == ::v8::internal::FLAG_stop_sim_at) { |
+ PPCDebugger dbg(this); |
+ dbg.Debug(); |
+ } else { |
+ ExecuteInstruction(instr); |
+ } |
+ program_counter = get_pc(); |
+ } |
+ } |
+} |
+ |
+ |
+void Simulator::CallInternal(byte* entry) { |
+// Prepare to execute the code at entry |
+#if ABI_USES_FUNCTION_DESCRIPTORS |
+ // entry is the function descriptor |
+ set_pc(*(reinterpret_cast<intptr_t*>(entry))); |
+#else |
+ // entry is the instruction address |
+ set_pc(reinterpret_cast<intptr_t>(entry)); |
+#endif |
+ |
+ // Put down marker for end of simulation. The simulator will stop simulation |
+ // when the PC reaches this value. By saving the "end simulation" value into |
+ // the LR the simulation stops when returning to this call point. |
+ special_reg_lr_ = end_sim_pc; |
+ |
+ // Remember the values of non-volatile registers. |
+ intptr_t r2_val = get_register(r2); |
+ intptr_t r13_val = get_register(r13); |
+ intptr_t r14_val = get_register(r14); |
+ intptr_t r15_val = get_register(r15); |
+ intptr_t r16_val = get_register(r16); |
+ intptr_t r17_val = get_register(r17); |
+ intptr_t r18_val = get_register(r18); |
+ intptr_t r19_val = get_register(r19); |
+ intptr_t r20_val = get_register(r20); |
+ intptr_t r21_val = get_register(r21); |
+ intptr_t r22_val = get_register(r22); |
+ intptr_t r23_val = get_register(r23); |
+ intptr_t r24_val = get_register(r24); |
+ intptr_t r25_val = get_register(r25); |
+ intptr_t r26_val = get_register(r26); |
+ intptr_t r27_val = get_register(r27); |
+ intptr_t r28_val = get_register(r28); |
+ intptr_t r29_val = get_register(r29); |
+ intptr_t r30_val = get_register(r30); |
+ intptr_t r31_val = get_register(fp); |
+ |
+ // Set up the non-volatile registers with a known value. To be able to check |
+ // that they are preserved properly across JS execution. |
+ intptr_t callee_saved_value = icount_; |
+ set_register(r2, callee_saved_value); |
+ set_register(r13, callee_saved_value); |
+ set_register(r14, callee_saved_value); |
+ set_register(r15, callee_saved_value); |
+ set_register(r16, callee_saved_value); |
+ set_register(r17, callee_saved_value); |
+ set_register(r18, callee_saved_value); |
+ set_register(r19, callee_saved_value); |
+ set_register(r20, callee_saved_value); |
+ set_register(r21, callee_saved_value); |
+ set_register(r22, callee_saved_value); |
+ set_register(r23, callee_saved_value); |
+ set_register(r24, callee_saved_value); |
+ set_register(r25, callee_saved_value); |
+ set_register(r26, callee_saved_value); |
+ set_register(r27, callee_saved_value); |
+ set_register(r28, callee_saved_value); |
+ set_register(r29, callee_saved_value); |
+ set_register(r30, callee_saved_value); |
+ set_register(fp, callee_saved_value); |
+ |
+ // Start the simulation |
+ Execute(); |
+ |
+ // Check that the non-volatile registers have been preserved. |
+ CHECK_EQ(callee_saved_value, get_register(r2)); |
+ CHECK_EQ(callee_saved_value, get_register(r13)); |
+ CHECK_EQ(callee_saved_value, get_register(r14)); |
+ CHECK_EQ(callee_saved_value, get_register(r15)); |
+ CHECK_EQ(callee_saved_value, get_register(r16)); |
+ CHECK_EQ(callee_saved_value, get_register(r17)); |
+ CHECK_EQ(callee_saved_value, get_register(r18)); |
+ CHECK_EQ(callee_saved_value, get_register(r19)); |
+ CHECK_EQ(callee_saved_value, get_register(r20)); |
+ CHECK_EQ(callee_saved_value, get_register(r21)); |
+ CHECK_EQ(callee_saved_value, get_register(r22)); |
+ CHECK_EQ(callee_saved_value, get_register(r23)); |
+ CHECK_EQ(callee_saved_value, get_register(r24)); |
+ CHECK_EQ(callee_saved_value, get_register(r25)); |
+ CHECK_EQ(callee_saved_value, get_register(r26)); |
+ CHECK_EQ(callee_saved_value, get_register(r27)); |
+ CHECK_EQ(callee_saved_value, get_register(r28)); |
+ CHECK_EQ(callee_saved_value, get_register(r29)); |
+ CHECK_EQ(callee_saved_value, get_register(r30)); |
+ CHECK_EQ(callee_saved_value, get_register(fp)); |
+ |
+ // Restore non-volatile registers with the original value. |
+ set_register(r2, r2_val); |
+ set_register(r13, r13_val); |
+ set_register(r14, r14_val); |
+ set_register(r15, r15_val); |
+ set_register(r16, r16_val); |
+ set_register(r17, r17_val); |
+ set_register(r18, r18_val); |
+ set_register(r19, r19_val); |
+ set_register(r20, r20_val); |
+ set_register(r21, r21_val); |
+ set_register(r22, r22_val); |
+ set_register(r23, r23_val); |
+ set_register(r24, r24_val); |
+ set_register(r25, r25_val); |
+ set_register(r26, r26_val); |
+ set_register(r27, r27_val); |
+ set_register(r28, r28_val); |
+ set_register(r29, r29_val); |
+ set_register(r30, r30_val); |
+ set_register(fp, r31_val); |
+} |
+ |
+ |
+intptr_t Simulator::Call(byte* entry, int argument_count, ...) { |
+ va_list parameters; |
+ va_start(parameters, argument_count); |
+ // Set up arguments |
+ |
+ // First eight arguments passed in registers r3-r10. |
+ int reg_arg_count = (argument_count > 8) ? 8 : argument_count; |
+ int stack_arg_count = argument_count - reg_arg_count; |
+ for (int i = 0; i < reg_arg_count; i++) { |
+ set_register(i + 3, va_arg(parameters, intptr_t)); |
+ } |
+ |
+ // Remaining arguments passed on stack. |
+ intptr_t original_stack = get_register(sp); |
+ // Compute position of stack on entry to generated code. |
+ intptr_t entry_stack = |
+ (original_stack - |
+ (kNumRequiredStackFrameSlots + stack_arg_count) * sizeof(intptr_t)); |
+ if (base::OS::ActivationFrameAlignment() != 0) { |
+ entry_stack &= -base::OS::ActivationFrameAlignment(); |
+ } |
+ // Store remaining arguments on stack, from low to high memory. |
+ // +2 is a hack for the LR slot + old SP on PPC |
+ intptr_t* stack_argument = |
+ reinterpret_cast<intptr_t*>(entry_stack) + kStackFrameExtraParamSlot; |
+ for (int i = 0; i < stack_arg_count; i++) { |
+ stack_argument[i] = va_arg(parameters, intptr_t); |
+ } |
+ va_end(parameters); |
+ set_register(sp, entry_stack); |
+ |
+ CallInternal(entry); |
+ |
+ // Pop stack passed arguments. |
+ CHECK_EQ(entry_stack, get_register(sp)); |
+ set_register(sp, original_stack); |
+ |
+ intptr_t result = get_register(r3); |
+ return result; |
+} |
+ |
+ |
+void Simulator::CallFP(byte* entry, double d0, double d1) { |
+ set_d_register_from_double(1, d0); |
+ set_d_register_from_double(2, d1); |
+ CallInternal(entry); |
+} |
+ |
+ |
+int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) { |
+ CallFP(entry, d0, d1); |
+ int32_t result = get_register(r3); |
+ return result; |
+} |
+ |
+ |
+double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) { |
+ CallFP(entry, d0, d1); |
+ return get_double_from_d_register(1); |
+} |
+ |
+ |
+uintptr_t Simulator::PushAddress(uintptr_t address) { |
+ uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t); |
+ uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); |
+ *stack_slot = address; |
+ set_register(sp, new_sp); |
+ return new_sp; |
+} |
+ |
+ |
+uintptr_t Simulator::PopAddress() { |
+ uintptr_t current_sp = get_register(sp); |
+ uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); |
+ uintptr_t address = *stack_slot; |
+ set_register(sp, current_sp + sizeof(uintptr_t)); |
+ return address; |
+} |
+} |
+} // namespace v8::internal |
+ |
+#endif // USE_SIMULATOR |
+#endif // V8_TARGET_ARCH_PPC |