Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(902)

Unified Diff: src/ppc/code-stubs-ppc.cc

Issue 422063005: Contribution of PowerPC port. (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: re-upload - catch up to 8/19 level Created 6 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: src/ppc/code-stubs-ppc.cc
diff --git a/src/arm/code-stubs-arm.cc b/src/ppc/code-stubs-ppc.cc
similarity index 53%
copy from src/arm/code-stubs-arm.cc
copy to src/ppc/code-stubs-ppc.cc
index a728d58fbfb58490dbd371f4829df1223dc6ed7e..c3b8862257de0b5e96d4c9fb72987f6500214323 100644
--- a/src/arm/code-stubs-arm.cc
+++ b/src/ppc/code-stubs-ppc.cc
@@ -1,23 +1,28 @@
// Copyright 2012 the V8 project authors. All rights reserved.
+//
+// Copyright IBM Corp. 2012, 2013. All rights reserved.
+//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
-#if V8_TARGET_ARCH_ARM
+#if V8_TARGET_ARCH_PPC
#include "src/bootstrapper.h"
#include "src/code-stubs.h"
#include "src/regexp-macro-assembler.h"
#include "src/stub-cache.h"
+#include "src/ppc/regexp-macro-assembler-ppc.h"
+
namespace v8 {
namespace internal {
void FastNewClosureStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
- Register registers[] = { cp, r2 };
+ Register registers[] = {cp, r5};
descriptor->Initialize(
MajorKey(), ARRAY_SIZE(registers), registers,
Runtime::FunctionForId(Runtime::kNewClosureFromStubFailure)->entry);
@@ -26,21 +31,21 @@ void FastNewClosureStub::InitializeInterfaceDescriptor(
void FastNewContextStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
- Register registers[] = { cp, r1 };
+ Register registers[] = {cp, r4};
descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers);
}
void ToNumberStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
- Register registers[] = { cp, r0 };
+ Register registers[] = {cp, r3};
descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers);
}
void NumberToStringStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
- Register registers[] = { cp, r0 };
+ Register registers[] = {cp, r3};
descriptor->Initialize(
MajorKey(), ARRAY_SIZE(registers), registers,
Runtime::FunctionForId(Runtime::kNumberToStringRT)->entry);
@@ -49,12 +54,10 @@ void NumberToStringStub::InitializeInterfaceDescriptor(
void FastCloneShallowArrayStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
- Register registers[] = { cp, r3, r2, r1 };
+ Register registers[] = {cp, r6, r5, r4};
Representation representations[] = {
- Representation::Tagged(),
- Representation::Tagged(),
- Representation::Smi(),
- Representation::Tagged() };
+ Representation::Tagged(), Representation::Tagged(), Representation::Smi(),
+ Representation::Tagged()};
descriptor->Initialize(
MajorKey(), ARRAY_SIZE(registers), registers,
Runtime::FunctionForId(Runtime::kCreateArrayLiteralStubBailout)->entry,
@@ -64,7 +67,7 @@ void FastCloneShallowArrayStub::InitializeInterfaceDescriptor(
void FastCloneShallowObjectStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
- Register registers[] = { cp, r3, r2, r1, r0 };
+ Register registers[] = {cp, r6, r5, r4, r3};
descriptor->Initialize(
MajorKey(), ARRAY_SIZE(registers), registers,
Runtime::FunctionForId(Runtime::kCreateObjectLiteral)->entry);
@@ -73,36 +76,26 @@ void FastCloneShallowObjectStub::InitializeInterfaceDescriptor(
void CreateAllocationSiteStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
- Register registers[] = { cp, r2, r3 };
+ Register registers[] = {cp, r5, r6};
descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers);
}
void CallFunctionStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
- // r1 function the function to call
- Register registers[] = {cp, r1};
- descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers);
+ UNIMPLEMENTED(); // turbofan
}
void CallConstructStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
- // r0 : number of arguments
- // r1 : the function to call
- // r2 : feedback vector
- // r3 : (only if r2 is not the megamorphic symbol) slot in feedback
- // vector (Smi)
- // TODO(turbofan): So far we don't gather type feedback and hence skip the
- // slot parameter, but ArrayConstructStub needs the vector to be undefined.
- Register registers[] = {cp, r0, r1, r2};
- descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers);
+ UNIMPLEMENTED(); // turbofan
}
void RegExpConstructResultStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
- Register registers[] = { cp, r2, r1, r0 };
+ Register registers[] = {cp, r5, r4, r3};
descriptor->Initialize(
MajorKey(), ARRAY_SIZE(registers), registers,
Runtime::FunctionForId(Runtime::kRegExpConstructResult)->entry);
@@ -111,7 +104,7 @@ void RegExpConstructResultStub::InitializeInterfaceDescriptor(
void TransitionElementsKindStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
- Register registers[] = { cp, r0, r1 };
+ Register registers[] = {cp, r3, r4};
Address entry =
Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry;
descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers,
@@ -121,7 +114,7 @@ void TransitionElementsKindStub::InitializeInterfaceDescriptor(
void CompareNilICStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
- Register registers[] = { cp, r0 };
+ Register registers[] = {cp, r3};
descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers,
FUNCTION_ADDR(CompareNilIC_Miss));
descriptor->SetMissHandler(
@@ -137,26 +130,24 @@ static void InitializeArrayConstructorDescriptor(
int constant_stack_parameter_count) {
// register state
// cp -- context
- // r0 -- number of arguments
- // r1 -- function
- // r2 -- allocation site with elements kind
- Address deopt_handler = Runtime::FunctionForId(
- Runtime::kArrayConstructor)->entry;
+ // r3 -- number of arguments
+ // r4 -- function
+ // r5 -- allocation site with elements kind
+ Address deopt_handler =
+ Runtime::FunctionForId(Runtime::kArrayConstructor)->entry;
if (constant_stack_parameter_count == 0) {
- Register registers[] = { cp, r1, r2 };
+ Register registers[] = {cp, r4, r5};
descriptor->Initialize(major, ARRAY_SIZE(registers), registers,
deopt_handler, NULL, constant_stack_parameter_count,
JS_FUNCTION_STUB_MODE);
} else {
// stack param count needs (constructor pointer, and single argument)
- Register registers[] = { cp, r1, r2, r0 };
+ Register registers[] = {cp, r4, r5, r3};
Representation representations[] = {
- Representation::Tagged(),
- Representation::Tagged(),
- Representation::Tagged(),
- Representation::Integer32() };
- descriptor->Initialize(major, ARRAY_SIZE(registers), registers, r0,
+ Representation::Tagged(), Representation::Tagged(),
+ Representation::Tagged(), Representation::Integer32()};
+ descriptor->Initialize(major, ARRAY_SIZE(registers), registers, r3,
deopt_handler, representations,
constant_stack_parameter_count,
JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
@@ -169,24 +160,23 @@ static void InitializeInternalArrayConstructorDescriptor(
int constant_stack_parameter_count) {
// register state
// cp -- context
- // r0 -- number of arguments
- // r1 -- constructor function
- Address deopt_handler = Runtime::FunctionForId(
- Runtime::kInternalArrayConstructor)->entry;
+ // r3 -- number of arguments
+ // r4 -- constructor function
+ Address deopt_handler =
+ Runtime::FunctionForId(Runtime::kInternalArrayConstructor)->entry;
if (constant_stack_parameter_count == 0) {
- Register registers[] = { cp, r1 };
+ Register registers[] = {cp, r4};
descriptor->Initialize(major, ARRAY_SIZE(registers), registers,
deopt_handler, NULL, constant_stack_parameter_count,
JS_FUNCTION_STUB_MODE);
} else {
// stack param count needs (constructor pointer, and single argument)
- Register registers[] = { cp, r1, r0 };
- Representation representations[] = {
- Representation::Tagged(),
- Representation::Tagged(),
- Representation::Integer32() };
- descriptor->Initialize(major, ARRAY_SIZE(registers), registers, r0,
+ Register registers[] = {cp, r4, r3};
+ Representation representations[] = {Representation::Tagged(),
+ Representation::Tagged(),
+ Representation::Integer32()};
+ descriptor->Initialize(major, ARRAY_SIZE(registers), registers, r3,
deopt_handler, representations,
constant_stack_parameter_count,
JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
@@ -214,7 +204,7 @@ void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
void ToBooleanStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
- Register registers[] = { cp, r0 };
+ Register registers[] = {cp, r3};
descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers,
FUNCTION_ADDR(ToBooleanIC_Miss));
descriptor->SetMissHandler(
@@ -242,7 +232,7 @@ void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor(
void BinaryOpICStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
- Register registers[] = { cp, r1, r0 };
+ Register registers[] = {cp, r4, r3};
descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers,
FUNCTION_ADDR(BinaryOpIC_Miss));
descriptor->SetMissHandler(
@@ -252,7 +242,7 @@ void BinaryOpICStub::InitializeInterfaceDescriptor(
void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
- Register registers[] = { cp, r2, r1, r0 };
+ Register registers[] = {cp, r5, r4, r3};
descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers,
FUNCTION_ADDR(BinaryOpIC_MissWithAllocationSite));
}
@@ -260,26 +250,21 @@ void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor(
void StringAddStub::InitializeInterfaceDescriptor(
CodeStubInterfaceDescriptor* descriptor) {
- Register registers[] = { cp, r1, r0 };
+ Register registers[] = {cp, r4, r3};
descriptor->Initialize(MajorKey(), ARRAY_SIZE(registers), registers,
Runtime::FunctionForId(Runtime::kStringAdd)->entry);
}
void CallDescriptors::InitializeForIsolate(Isolate* isolate) {
- static PlatformInterfaceDescriptor default_descriptor =
- PlatformInterfaceDescriptor(CAN_INLINE_TARGET_ADDRESS);
-
- static PlatformInterfaceDescriptor noInlineDescriptor =
- PlatformInterfaceDescriptor(NEVER_INLINE_TARGET_ADDRESS);
-
{
CallInterfaceDescriptor* descriptor =
isolate->call_descriptor(Isolate::ArgumentAdaptorCall);
- Register registers[] = { cp, // context
- r1, // JSFunction
- r0, // actual number of arguments
- r2, // expected number of arguments
+ Register registers[] = {
+ cp, // context
+ r4, // JSFunction
+ r3, // actual number of arguments
+ r5, // expected number of arguments
};
Representation representations[] = {
Representation::Tagged(), // context
@@ -287,56 +272,56 @@ void CallDescriptors::InitializeForIsolate(Isolate* isolate) {
Representation::Integer32(), // actual number of arguments
Representation::Integer32(), // expected number of arguments
};
- descriptor->Initialize(ARRAY_SIZE(registers), registers,
- representations, &default_descriptor);
+ descriptor->Initialize(ARRAY_SIZE(registers), registers, representations);
}
{
CallInterfaceDescriptor* descriptor =
isolate->call_descriptor(Isolate::KeyedCall);
- Register registers[] = { cp, // context
- r2, // key
+ Register registers[] = {
+ cp, // context
+ r5, // key
};
Representation representations[] = {
- Representation::Tagged(), // context
- Representation::Tagged(), // key
+ Representation::Tagged(), // context
+ Representation::Tagged(), // key
};
- descriptor->Initialize(ARRAY_SIZE(registers), registers,
- representations, &noInlineDescriptor);
+ descriptor->Initialize(ARRAY_SIZE(registers), registers, representations);
}
{
CallInterfaceDescriptor* descriptor =
isolate->call_descriptor(Isolate::NamedCall);
- Register registers[] = { cp, // context
- r2, // name
+ Register registers[] = {
+ cp, // context
+ r5, // name
};
Representation representations[] = {
- Representation::Tagged(), // context
- Representation::Tagged(), // name
+ Representation::Tagged(), // context
+ Representation::Tagged(), // name
};
- descriptor->Initialize(ARRAY_SIZE(registers), registers,
- representations, &noInlineDescriptor);
+ descriptor->Initialize(ARRAY_SIZE(registers), registers, representations);
}
{
CallInterfaceDescriptor* descriptor =
isolate->call_descriptor(Isolate::CallHandler);
- Register registers[] = { cp, // context
- r0, // receiver
+ Register registers[] = {
+ cp, // context
+ r3, // receiver
};
Representation representations[] = {
Representation::Tagged(), // context
Representation::Tagged(), // receiver
};
- descriptor->Initialize(ARRAY_SIZE(registers), registers,
- representations, &default_descriptor);
+ descriptor->Initialize(ARRAY_SIZE(registers), registers, representations);
}
{
CallInterfaceDescriptor* descriptor =
isolate->call_descriptor(Isolate::ApiFunctionCall);
- Register registers[] = { cp, // context
- r0, // callee
- r4, // call_data
- r2, // holder
- r1, // api_function_address
+ Register registers[] = {
+ cp, // context
+ r3, // callee
+ r7, // call_data
+ r5, // holder
+ r4, // api_function_address
};
Representation representations[] = {
Representation::Tagged(), // context
@@ -345,8 +330,7 @@ void CallDescriptors::InitializeForIsolate(Isolate* isolate) {
Representation::Tagged(), // holder
Representation::External(), // api_function_address
};
- descriptor->Initialize(ARRAY_SIZE(registers), registers,
- representations, &default_descriptor);
+ descriptor->Initialize(ARRAY_SIZE(registers), registers, representations);
}
}
@@ -354,17 +338,12 @@ void CallDescriptors::InitializeForIsolate(Isolate* isolate) {
#define __ ACCESS_MASM(masm)
-static void EmitIdenticalObjectComparison(MacroAssembler* masm,
- Label* slow,
+static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
Condition cond);
-static void EmitSmiNonsmiComparison(MacroAssembler* masm,
- Register lhs,
- Register rhs,
- Label* lhs_not_nan,
- Label* slow,
- bool strict);
-static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
- Register lhs,
+static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
+ Register rhs, Label* lhs_not_nan,
+ Label* slow, bool strict);
+static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
Register rhs);
@@ -378,8 +357,7 @@ void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) {
// Call the runtime system in a fresh internal frame.
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
DCHECK(param_count == 0 ||
- r0.is(descriptor->GetEnvironmentParameterRegister(
- param_count - 1)));
+ r3.is(descriptor->GetEnvironmentParameterRegister(param_count - 1)));
// Push arguments
for (int i = 0; i < param_count; ++i) {
__ push(descriptor->GetEnvironmentParameterRegister(i));
@@ -392,6 +370,7 @@ void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) {
}
+#if 0 // roohack unused?
// Takes a Smi and converts to an IEEE 64 bit floating point value in two
// registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
// 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
@@ -485,84 +464,92 @@ void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord));
__ Ret();
}
+#endif // roohack
void DoubleToIStub::Generate(MacroAssembler* masm) {
- Label out_of_range, only_low, negate, done;
+ Label out_of_range, only_low, negate, done, fastpath_done;
Register input_reg = source();
Register result_reg = destination();
DCHECK(is_truncating());
int double_offset = offset();
- // Account for saved regs if input is sp.
- if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
+ // Immediate values for this stub fit in instructions, so it's safe to use ip.
Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
Register scratch_low =
GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
Register scratch_high =
GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
- LowDwVfpRegister double_scratch = kScratchDoubleReg;
+ DoubleRegister double_scratch = kScratchDoubleReg;
- __ Push(scratch_high, scratch_low, scratch);
+ __ push(scratch);
+ // Account for saved regs if input is sp.
+ if (input_reg.is(sp)) double_offset += kPointerSize;
if (!skip_fastpath()) {
// Load double input.
- __ vldr(double_scratch, MemOperand(input_reg, double_offset));
- __ vmov(scratch_low, scratch_high, double_scratch);
+ __ lfd(double_scratch, MemOperand(input_reg, double_offset));
// Do fast-path convert from double to int.
- __ vcvt_s32_f64(double_scratch.low(), double_scratch);
- __ vmov(result_reg, double_scratch.low());
+ __ ConvertDoubleToInt64(double_scratch,
+#if !V8_TARGET_ARCH_PPC64
+ scratch,
+#endif
+ result_reg, d0);
- // If result is not saturated (0x7fffffff or 0x80000000), we are done.
- __ sub(scratch, result_reg, Operand(1));
- __ cmp(scratch, Operand(0x7ffffffe));
- __ b(lt, &done);
- } else {
- // We've already done MacroAssembler::TryFastTruncatedDoubleToILoad, so we
- // know exponent > 31, so we can skip the vcvt_s32_f64 which will saturate.
- if (double_offset == 0) {
- __ ldm(ia, input_reg, scratch_low.bit() | scratch_high.bit());
- } else {
- __ ldr(scratch_low, MemOperand(input_reg, double_offset));
- __ ldr(scratch_high, MemOperand(input_reg, double_offset + kIntSize));
- }
+// Test for overflow
+#if V8_TARGET_ARCH_PPC64
+ __ TestIfInt32(result_reg, scratch, r0);
+#else
+ __ TestIfInt32(scratch, result_reg, r0);
+#endif
+ __ beq(&fastpath_done);
}
- __ Ubfx(scratch, scratch_high,
- HeapNumber::kExponentShift, HeapNumber::kExponentBits);
+ __ Push(scratch_high, scratch_low);
+ // Account for saved regs if input is sp.
+ if (input_reg.is(sp)) double_offset += 2 * kPointerSize;
+
+ __ lwz(scratch_high,
+ MemOperand(input_reg, double_offset + Register::kExponentOffset));
+ __ lwz(scratch_low,
+ MemOperand(input_reg, double_offset + Register::kMantissaOffset));
+
+ __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
// Load scratch with exponent - 1. This is faster than loading
- // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value.
+ // with exponent because Bias + 1 = 1024 which is a *PPC* immediate value.
STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
- __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
+ __ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
// If exponent is greater than or equal to 84, the 32 less significant
// bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
// the result is 0.
// Compare exponent with 84 (compare exponent - 1 with 83).
- __ cmp(scratch, Operand(83));
- __ b(ge, &out_of_range);
+ __ cmpi(scratch, Operand(83));
+ __ bge(&out_of_range);
// If we reach this code, 31 <= exponent <= 83.
// So, we don't have to handle cases where 0 <= exponent <= 20 for
// which we would need to shift right the high part of the mantissa.
// Scratch contains exponent - 1.
// Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
- __ rsb(scratch, scratch, Operand(51), SetCC);
- __ b(ls, &only_low);
+ __ subfic(scratch, scratch, Operand(51));
+ __ cmpi(scratch, Operand::Zero());
+ __ ble(&only_low);
// 21 <= exponent <= 51, shift scratch_low and scratch_high
// to generate the result.
- __ mov(scratch_low, Operand(scratch_low, LSR, scratch));
+ __ srw(scratch_low, scratch_low, scratch);
// Scratch contains: 52 - exponent.
// We needs: exponent - 20.
// So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
- __ rsb(scratch, scratch, Operand(32));
- __ Ubfx(result_reg, scratch_high,
- 0, HeapNumber::kMantissaBitsInTopWord);
+ __ subfic(scratch, scratch, Operand(32));
+ __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
// Set the implicit 1 before the mantissa part in scratch_high.
- __ orr(result_reg, result_reg,
- Operand(1 << HeapNumber::kMantissaBitsInTopWord));
- __ orr(result_reg, scratch_low, Operand(result_reg, LSL, scratch));
+ STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
+ __ oris(result_reg, result_reg,
+ Operand(1 << ((HeapNumber::kMantissaBitsInTopWord) - 16)));
+ __ slw(r0, result_reg, scratch);
+ __ orx(result_reg, scratch_low, r0);
__ b(&negate);
__ bind(&out_of_range);
@@ -572,8 +559,8 @@ void DoubleToIStub::Generate(MacroAssembler* masm) {
__ bind(&only_low);
// 52 <= exponent <= 83, shift only scratch_low.
// On entry, scratch contains: 52 - exponent.
- __ rsb(scratch, scratch, Operand::Zero());
- __ mov(result_reg, Operand(scratch_low, LSL, scratch));
+ __ neg(scratch, scratch);
+ __ slw(result_reg, scratch_low, scratch);
__ bind(&negate);
// If input was positive, scratch_high ASR 31 equals 0 and
@@ -582,20 +569,29 @@ void DoubleToIStub::Generate(MacroAssembler* masm) {
// If the input was negative, we have to negate the result.
// Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
// New result = (result eor 0xffffffff) + 1 = 0 - result.
- __ eor(result_reg, result_reg, Operand(scratch_high, ASR, 31));
- __ add(result_reg, result_reg, Operand(scratch_high, LSR, 31));
+ __ srawi(r0, scratch_high, 31);
+#if V8_TARGET_ARCH_PPC64
+ __ srdi(r0, r0, Operand(32));
+#endif
+ __ xor_(result_reg, result_reg, r0);
+ __ srwi(r0, scratch_high, Operand(31));
+ __ add(result_reg, result_reg, r0);
__ bind(&done);
+ __ Pop(scratch_high, scratch_low);
+
+ __ bind(&fastpath_done);
+ __ pop(scratch);
- __ Pop(scratch_high, scratch_low, scratch);
__ Ret();
}
+#if 0 // roohack unused?
void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(
Isolate* isolate) {
- WriteInt32ToHeapNumberStub stub1(isolate, r1, r0, r2);
- WriteInt32ToHeapNumberStub stub2(isolate, r2, r0, r3);
+ WriteInt32ToHeapNumberStub stub1(isolate, r4, r3, r5);
+ WriteInt32ToHeapNumberStub stub2(isolate, r5, r3, r6);
stub1.GetCode();
stub2.GetCode();
}
@@ -645,48 +641,47 @@ void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
__ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
__ Ret();
}
-
+#endif // roohack
// Handle the case where the lhs and rhs are the same object.
// Equality is almost reflexive (everything but NaN), so this is a test
// for "identity and not NaN".
-static void EmitIdenticalObjectComparison(MacroAssembler* masm,
- Label* slow,
+static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
Condition cond) {
Label not_identical;
Label heap_number, return_equal;
- __ cmp(r0, r1);
- __ b(ne, &not_identical);
+ __ cmp(r3, r4);
+ __ bne(&not_identical);
// Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
// so we do the second best thing - test it ourselves.
// They are both equal and they are not both Smis so both of them are not
// Smis. If it's not a heap number, then return equal.
if (cond == lt || cond == gt) {
- __ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE);
- __ b(ge, slow);
+ __ CompareObjectType(r3, r7, r7, FIRST_SPEC_OBJECT_TYPE);
+ __ bge(slow);
} else {
- __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE);
- __ b(eq, &heap_number);
+ __ CompareObjectType(r3, r7, r7, HEAP_NUMBER_TYPE);
+ __ beq(&heap_number);
// Comparing JS objects with <=, >= is complicated.
if (cond != eq) {
- __ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE));
- __ b(ge, slow);
+ __ cmpi(r7, Operand(FIRST_SPEC_OBJECT_TYPE));
+ __ bge(slow);
// Normally here we fall through to return_equal, but undefined is
// special: (undefined == undefined) == true, but
// (undefined <= undefined) == false! See ECMAScript 11.8.5.
if (cond == le || cond == ge) {
- __ cmp(r4, Operand(ODDBALL_TYPE));
- __ b(ne, &return_equal);
- __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
- __ cmp(r0, r2);
- __ b(ne, &return_equal);
+ __ cmpi(r7, Operand(ODDBALL_TYPE));
+ __ bne(&return_equal);
+ __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
+ __ cmp(r3, r5);
+ __ bne(&return_equal);
if (cond == le) {
// undefined <= undefined should fail.
- __ mov(r0, Operand(GREATER));
- } else {
+ __ li(r3, Operand(GREATER));
+ } else {
// undefined >= undefined should fail.
- __ mov(r0, Operand(LESS));
+ __ li(r3, Operand(LESS));
}
__ Ret();
}
@@ -695,11 +690,11 @@ static void EmitIdenticalObjectComparison(MacroAssembler* masm,
__ bind(&return_equal);
if (cond == lt) {
- __ mov(r0, Operand(GREATER)); // Things aren't less than themselves.
+ __ li(r3, Operand(GREATER)); // Things aren't less than themselves.
} else if (cond == gt) {
- __ mov(r0, Operand(LESS)); // Things aren't greater than themselves.
+ __ li(r3, Operand(LESS)); // Things aren't greater than themselves.
} else {
- __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
+ __ li(r3, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
}
__ Ret();
@@ -714,29 +709,33 @@ static void EmitIdenticalObjectComparison(MacroAssembler* masm,
// The representation of NaN values has all exponent bits (52..62) set,
// and not all mantissa bits (0..51) clear.
// Read top bits of double representation (second word of value).
- __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset));
+ __ lwz(r5, FieldMemOperand(r3, HeapNumber::kExponentOffset));
// Test that exponent bits are all set.
- __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
- // NaNs have all-one exponents so they sign extend to -1.
- __ cmp(r3, Operand(-1));
- __ b(ne, &return_equal);
+ STATIC_ASSERT(HeapNumber::kExponentMask == 0x7ff00000u);
+ __ ExtractBitMask(r6, r5, HeapNumber::kExponentMask);
+ __ cmpli(r6, Operand(0x7ff));
+ __ bne(&return_equal);
// Shift out flag and all exponent bits, retaining only mantissa.
- __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord));
+ __ slwi(r5, r5, Operand(HeapNumber::kNonMantissaBitsInTopWord));
// Or with all low-bits of mantissa.
- __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
- __ orr(r0, r3, Operand(r2), SetCC);
- // For equal we already have the right value in r0: Return zero (equal)
+ __ lwz(r6, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
+ __ orx(r3, r6, r5);
+ __ cmpi(r3, Operand::Zero());
+ // For equal we already have the right value in r3: Return zero (equal)
// if all bits in mantissa are zero (it's an Infinity) and non-zero if
// not (it's a NaN). For <= and >= we need to load r0 with the failing
// value if it's a NaN.
if (cond != eq) {
+ Label not_equal;
+ __ bne(&not_equal);
// All-zero means Infinity means equal.
- __ Ret(eq);
+ __ Ret();
+ __ bind(&not_equal);
if (cond == le) {
- __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail.
+ __ li(r3, Operand(GREATER)); // NaN <= NaN should fail.
} else {
- __ mov(r0, Operand(LESS)); // NaN >= NaN should fail.
+ __ li(r3, Operand(LESS)); // NaN >= NaN should fail.
}
}
__ Ret();
@@ -748,183 +747,178 @@ static void EmitIdenticalObjectComparison(MacroAssembler* masm,
// See comment at call site.
-static void EmitSmiNonsmiComparison(MacroAssembler* masm,
- Register lhs,
- Register rhs,
- Label* lhs_not_nan,
- Label* slow,
- bool strict) {
- DCHECK((lhs.is(r0) && rhs.is(r1)) ||
- (lhs.is(r1) && rhs.is(r0)));
+static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
+ Register rhs, Label* lhs_not_nan,
+ Label* slow, bool strict) {
+ DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
Label rhs_is_smi;
__ JumpIfSmi(rhs, &rhs_is_smi);
// Lhs is a Smi. Check whether the rhs is a heap number.
- __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE);
+ __ CompareObjectType(rhs, r6, r7, HEAP_NUMBER_TYPE);
if (strict) {
// If rhs is not a number and lhs is a Smi then strict equality cannot
// succeed. Return non-equal
- // If rhs is r0 then there is already a non zero value in it.
- if (!rhs.is(r0)) {
- __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
+ // If rhs is r3 then there is already a non zero value in it.
+ Label skip;
+ __ beq(&skip);
+ if (!rhs.is(r3)) {
+ __ mov(r3, Operand(NOT_EQUAL));
}
- __ Ret(ne);
+ __ Ret();
+ __ bind(&skip);
} else {
// Smi compared non-strictly with a non-Smi non-heap-number. Call
// the runtime.
- __ b(ne, slow);
+ __ bne(slow);
}
// Lhs is a smi, rhs is a number.
// Convert lhs to a double in d7.
__ SmiToDouble(d7, lhs);
- // Load the double from rhs, tagged HeapNumber r0, to d6.
- __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
+ // Load the double from rhs, tagged HeapNumber r3, to d6.
+ __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
// We now have both loaded as doubles but we can skip the lhs nan check
// since it's a smi.
- __ jmp(lhs_not_nan);
+ __ b(lhs_not_nan);
__ bind(&rhs_is_smi);
// Rhs is a smi. Check whether the non-smi lhs is a heap number.
- __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE);
+ __ CompareObjectType(lhs, r7, r7, HEAP_NUMBER_TYPE);
if (strict) {
// If lhs is not a number and rhs is a smi then strict equality cannot
// succeed. Return non-equal.
- // If lhs is r0 then there is already a non zero value in it.
- if (!lhs.is(r0)) {
- __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne);
+ // If lhs is r3 then there is already a non zero value in it.
+ Label skip;
+ __ beq(&skip);
+ if (!lhs.is(r3)) {
+ __ mov(r3, Operand(NOT_EQUAL));
}
- __ Ret(ne);
+ __ Ret();
+ __ bind(&skip);
} else {
// Smi compared non-strictly with a non-smi non-heap-number. Call
// the runtime.
- __ b(ne, slow);
+ __ bne(slow);
}
// Rhs is a smi, lhs is a heap number.
- // Load the double from lhs, tagged HeapNumber r1, to d7.
- __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
- // Convert rhs to a double in d6 .
+ // Load the double from lhs, tagged HeapNumber r4, to d7.
+ __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
+ // Convert rhs to a double in d6.
__ SmiToDouble(d6, rhs);
// Fall through to both_loaded_as_doubles.
}
// See comment at call site.
-static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
- Register lhs,
+static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
Register rhs) {
- DCHECK((lhs.is(r0) && rhs.is(r1)) ||
- (lhs.is(r1) && rhs.is(r0)));
-
- // If either operand is a JS object or an oddball value, then they are
- // not equal since their pointers are different.
- // There is no test for undetectability in strict equality.
- STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
- Label first_non_object;
- // Get the type of the first operand into r2 and compare it with
- // FIRST_SPEC_OBJECT_TYPE.
- __ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE);
- __ b(lt, &first_non_object);
-
- // Return non-zero (r0 is not zero)
- Label return_not_equal;
- __ bind(&return_not_equal);
- __ Ret();
+ DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
+
+ // If either operand is a JS object or an oddball value, then they are
+ // not equal since their pointers are different.
+ // There is no test for undetectability in strict equality.
+ STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
+ Label first_non_object;
+ // Get the type of the first operand into r5 and compare it with
+ // FIRST_SPEC_OBJECT_TYPE.
+ __ CompareObjectType(rhs, r5, r5, FIRST_SPEC_OBJECT_TYPE);
+ __ blt(&first_non_object);
+
+ // Return non-zero (r3 is not zero)
+ Label return_not_equal;
+ __ bind(&return_not_equal);
+ __ Ret();
- __ bind(&first_non_object);
- // Check for oddballs: true, false, null, undefined.
- __ cmp(r2, Operand(ODDBALL_TYPE));
- __ b(eq, &return_not_equal);
+ __ bind(&first_non_object);
+ // Check for oddballs: true, false, null, undefined.
+ __ cmpi(r5, Operand(ODDBALL_TYPE));
+ __ beq(&return_not_equal);
- __ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE);
- __ b(ge, &return_not_equal);
+ __ CompareObjectType(lhs, r6, r6, FIRST_SPEC_OBJECT_TYPE);
+ __ bge(&return_not_equal);
- // Check for oddballs: true, false, null, undefined.
- __ cmp(r3, Operand(ODDBALL_TYPE));
- __ b(eq, &return_not_equal);
+ // Check for oddballs: true, false, null, undefined.
+ __ cmpi(r6, Operand(ODDBALL_TYPE));
+ __ beq(&return_not_equal);
- // Now that we have the types we might as well check for
- // internalized-internalized.
- STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
- __ orr(r2, r2, Operand(r3));
- __ tst(r2, Operand(kIsNotStringMask | kIsNotInternalizedMask));
- __ b(eq, &return_not_equal);
+ // Now that we have the types we might as well check for
+ // internalized-internalized.
+ STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
+ __ orx(r5, r5, r6);
+ __ andi(r0, r5, Operand(kIsNotStringMask | kIsNotInternalizedMask));
+ __ beq(&return_not_equal, cr0);
}
// See comment at call site.
-static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
- Register lhs,
+static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs,
Register rhs,
Label* both_loaded_as_doubles,
- Label* not_heap_numbers,
- Label* slow) {
- DCHECK((lhs.is(r0) && rhs.is(r1)) ||
- (lhs.is(r1) && rhs.is(r0)));
+ Label* not_heap_numbers, Label* slow) {
+ DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
- __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE);
- __ b(ne, not_heap_numbers);
- __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset));
- __ cmp(r2, r3);
- __ b(ne, slow); // First was a heap number, second wasn't. Go slow case.
+ __ CompareObjectType(rhs, r6, r5, HEAP_NUMBER_TYPE);
+ __ bne(not_heap_numbers);
+ __ LoadP(r5, FieldMemOperand(lhs, HeapObject::kMapOffset));
+ __ cmp(r5, r6);
+ __ bne(slow); // First was a heap number, second wasn't. Go slow case.
// Both are heap numbers. Load them up then jump to the code we have
// for that.
- __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag);
- __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag);
- __ jmp(both_loaded_as_doubles);
+ __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
+ __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
+
+ __ b(both_loaded_as_doubles);
}
// Fast negative check for internalized-to-internalized equality.
static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
- Register lhs,
- Register rhs,
+ Register lhs, Register rhs,
Label* possible_strings,
Label* not_both_strings) {
- DCHECK((lhs.is(r0) && rhs.is(r1)) ||
- (lhs.is(r1) && rhs.is(r0)));
+ DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
- // r2 is object type of rhs.
+ // r5 is object type of rhs.
Label object_test;
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
- __ tst(r2, Operand(kIsNotStringMask));
- __ b(ne, &object_test);
- __ tst(r2, Operand(kIsNotInternalizedMask));
- __ b(ne, possible_strings);
- __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE);
- __ b(ge, not_both_strings);
- __ tst(r3, Operand(kIsNotInternalizedMask));
- __ b(ne, possible_strings);
+ __ andi(r0, r5, Operand(kIsNotStringMask));
+ __ bne(&object_test, cr0);
+ __ andi(r0, r5, Operand(kIsNotInternalizedMask));
+ __ bne(possible_strings, cr0);
+ __ CompareObjectType(lhs, r6, r6, FIRST_NONSTRING_TYPE);
+ __ bge(not_both_strings);
+ __ andi(r0, r6, Operand(kIsNotInternalizedMask));
+ __ bne(possible_strings, cr0);
// Both are internalized. We already checked they weren't the same pointer
// so they are not equal.
- __ mov(r0, Operand(NOT_EQUAL));
+ __ li(r3, Operand(NOT_EQUAL));
__ Ret();
__ bind(&object_test);
- __ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE));
- __ b(lt, not_both_strings);
- __ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE);
- __ b(lt, not_both_strings);
+ __ cmpi(r5, Operand(FIRST_SPEC_OBJECT_TYPE));
+ __ blt(not_both_strings);
+ __ CompareObjectType(lhs, r5, r6, FIRST_SPEC_OBJECT_TYPE);
+ __ blt(not_both_strings);
// If both objects are undetectable, they are equal. Otherwise, they
// are not equal, since they are different objects and an object is not
// equal to undefined.
- __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset));
- __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset));
- __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset));
- __ and_(r0, r2, Operand(r3));
- __ and_(r0, r0, Operand(1 << Map::kIsUndetectable));
- __ eor(r0, r0, Operand(1 << Map::kIsUndetectable));
+ __ LoadP(r6, FieldMemOperand(rhs, HeapObject::kMapOffset));
+ __ lbz(r5, FieldMemOperand(r5, Map::kBitFieldOffset));
+ __ lbz(r6, FieldMemOperand(r6, Map::kBitFieldOffset));
+ __ and_(r3, r5, r6);
+ __ andi(r3, r3, Operand(1 << Map::kIsUndetectable));
+ __ xori(r3, r3, Operand(1 << Map::kIsUndetectable));
__ Ret();
}
-static void ICCompareStub_CheckInputType(MacroAssembler* masm,
- Register input,
+static void ICCompareStub_CheckInputType(MacroAssembler* masm, Register input,
Register scratch,
CompareIC::State expected,
Label* fail) {
@@ -942,26 +936,27 @@ static void ICCompareStub_CheckInputType(MacroAssembler* masm,
}
-// On entry r1 and r2 are the values to be compared.
-// On exit r0 is 0, positive or negative to indicate the result of
+// On entry r4 and r5 are the values to be compared.
+// On exit r3 is 0, positive or negative to indicate the result of
// the comparison.
void ICCompareStub::GenerateGeneric(MacroAssembler* masm) {
- Register lhs = r1;
- Register rhs = r0;
+ Register lhs = r4;
+ Register rhs = r3;
Condition cc = GetCondition();
Label miss;
- ICCompareStub_CheckInputType(masm, lhs, r2, left_, &miss);
- ICCompareStub_CheckInputType(masm, rhs, r3, right_, &miss);
+ ICCompareStub_CheckInputType(masm, lhs, r5, left_, &miss);
+ ICCompareStub_CheckInputType(masm, rhs, r6, right_, &miss);
Label slow; // Call builtin.
Label not_smis, both_loaded_as_doubles, lhs_not_nan;
Label not_two_smis, smi_done;
- __ orr(r2, r1, r0);
- __ JumpIfNotSmi(r2, &not_two_smis);
- __ mov(r1, Operand(r1, ASR, 1));
- __ sub(r0, r1, Operand(r0, ASR, 1));
+ __ orx(r5, r4, r3);
+ __ JumpIfNotSmi(r5, &not_two_smis);
+ __ SmiUntag(r4);
+ __ SmiUntag(r3);
+ __ sub(r3, r4, r3);
__ Ret();
__ bind(&not_two_smis);
@@ -976,41 +971,45 @@ void ICCompareStub::GenerateGeneric(MacroAssembler* masm) {
// be strictly equal if the other is a HeapNumber.
STATIC_ASSERT(kSmiTag == 0);
DCHECK_EQ(0, Smi::FromInt(0));
- __ and_(r2, lhs, Operand(rhs));
- __ JumpIfNotSmi(r2, &not_smis);
+ __ and_(r5, lhs, rhs);
+ __ JumpIfNotSmi(r5, &not_smis);
// One operand is a smi. EmitSmiNonsmiComparison generates code that can:
// 1) Return the answer.
// 2) Go to slow.
// 3) Fall through to both_loaded_as_doubles.
// 4) Jump to lhs_not_nan.
// In cases 3 and 4 we have found out we were dealing with a number-number
- // comparison. If VFP3 is supported the double values of the numbers have
- // been loaded into d7 and d6. Otherwise, the double values have been loaded
- // into r0, r1, r2, and r3.
+ // comparison. The double values of the numbers have been loaded
+ // into d7 and d6.
EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
__ bind(&both_loaded_as_doubles);
- // The arguments have been converted to doubles and stored in d6 and d7, if
- // VFP3 is supported, or in r0, r1, r2, and r3.
+ // The arguments have been converted to doubles and stored in d6 and d7
__ bind(&lhs_not_nan);
Label no_nan;
- // ARMv7 VFP3 instructions to implement double precision comparison.
- __ VFPCompareAndSetFlags(d7, d6);
- Label nan;
- __ b(vs, &nan);
- __ mov(r0, Operand(EQUAL), LeaveCC, eq);
- __ mov(r0, Operand(LESS), LeaveCC, lt);
- __ mov(r0, Operand(GREATER), LeaveCC, gt);
+ __ fcmpu(d7, d6);
+
+ Label nan, equal, less_than;
+ __ bunordered(&nan);
+ __ beq(&equal);
+ __ blt(&less_than);
+ __ li(r3, Operand(GREATER));
+ __ Ret();
+ __ bind(&equal);
+ __ li(r3, Operand(EQUAL));
+ __ Ret();
+ __ bind(&less_than);
+ __ li(r3, Operand(LESS));
__ Ret();
__ bind(&nan);
- // If one of the sides was a NaN then the v flag is set. Load r0 with
+ // If one of the sides was a NaN then the v flag is set. Load r3 with
// whatever it takes to make the comparison fail, since comparisons with NaN
// always fail.
if (cc == lt || cc == le) {
- __ mov(r0, Operand(GREATER));
+ __ li(r3, Operand(GREATER));
} else {
- __ mov(r0, Operand(LESS));
+ __ li(r3, Operand(LESS));
}
__ Ret();
@@ -1026,14 +1025,11 @@ void ICCompareStub::GenerateGeneric(MacroAssembler* masm) {
Label check_for_internalized_strings;
Label flat_string_check;
// Check for heap-number-heap-number comparison. Can jump to slow case,
- // or load both doubles into r0, r1, r2, r3 and jump to the code that handles
+ // or load both doubles into r3, r4, r5, r6 and jump to the code that handles
// that case. If the inputs are not doubles then jumps to
// check_for_internalized_strings.
- // In this case r2 will contain the type of rhs_. Never falls through.
- EmitCheckForTwoHeapNumbers(masm,
- lhs,
- rhs,
- &both_loaded_as_doubles,
+ // In this case r5 will contain the type of rhs_. Never falls through.
+ EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles,
&check_for_internalized_strings,
&flat_string_check);
@@ -1043,34 +1039,24 @@ void ICCompareStub::GenerateGeneric(MacroAssembler* masm) {
if (cc == eq && !strict()) {
// Returns an answer for two internalized strings or two detectable objects.
// Otherwise jumps to string case or not both strings case.
- // Assumes that r2 is the type of rhs_ on entry.
- EmitCheckForInternalizedStringsOrObjects(
- masm, lhs, rhs, &flat_string_check, &slow);
+ // Assumes that r5 is the type of rhs_ on entry.
+ EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, &flat_string_check,
+ &slow);
}
// Check for both being sequential ASCII strings, and inline if that is the
// case.
__ bind(&flat_string_check);
- __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs, rhs, r2, r3, &slow);
+ __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs, rhs, r5, r6, &slow);
- __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r2,
- r3);
+ __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r5,
+ r6);
if (cc == eq) {
- StringCompareStub::GenerateFlatAsciiStringEquals(masm,
- lhs,
- rhs,
- r2,
- r3,
- r4);
+ StringCompareStub::GenerateFlatAsciiStringEquals(masm, lhs, rhs, r5, r6);
} else {
- StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
- lhs,
- rhs,
- r2,
- r3,
- r4,
- r5);
+ StringCompareStub::GenerateCompareFlatAsciiStrings(masm, lhs, rhs, r5, r6,
+ r7);
}
// Never falls through to here.
@@ -1090,8 +1076,8 @@ void ICCompareStub::GenerateGeneric(MacroAssembler* masm) {
DCHECK(cc == gt || cc == ge); // remaining cases
ncr = LESS;
}
- __ mov(r0, Operand(Smi::FromInt(ncr)));
- __ push(r0);
+ __ LoadSmiLiteral(r3, Smi::FromInt(ncr));
+ __ push(r3);
}
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
@@ -1107,41 +1093,40 @@ void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
// We don't allow a GC during a store buffer overflow so there is no need to
// store the registers in any particular way, but we do have to store and
// restore them.
- __ stm(db_w, sp, kCallerSaved | lr.bit());
-
- const Register scratch = r1;
-
+ __ mflr(r0);
+ __ MultiPush(kJSCallerSaved | r0.bit());
if (save_doubles_ == kSaveFPRegs) {
- __ SaveFPRegs(sp, scratch);
+ __ SaveFPRegs(sp, 0, DoubleRegister::kNumVolatileRegisters);
}
const int argument_count = 1;
const int fp_argument_count = 0;
+ const Register scratch = r4;
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
- __ mov(r0, Operand(ExternalReference::isolate_address(isolate())));
- __ CallCFunction(
- ExternalReference::store_buffer_overflow_function(isolate()),
- argument_count);
+ __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
+ __ CallCFunction(ExternalReference::store_buffer_overflow_function(isolate()),
+ argument_count);
if (save_doubles_ == kSaveFPRegs) {
- __ RestoreFPRegs(sp, scratch);
+ __ RestoreFPRegs(sp, 0, DoubleRegister::kNumVolatileRegisters);
}
- __ ldm(ia_w, sp, kCallerSaved | pc.bit()); // Also pop pc to get Ret(0).
+ __ MultiPop(kJSCallerSaved | r0.bit());
+ __ mtlr(r0);
+ __ Ret();
}
void MathPowStub::Generate(MacroAssembler* masm) {
- const Register base = r1;
- const Register exponent = r2;
- const Register heapnumbermap = r5;
- const Register heapnumber = r0;
- const DwVfpRegister double_base = d0;
- const DwVfpRegister double_exponent = d1;
- const DwVfpRegister double_result = d2;
- const DwVfpRegister double_scratch = d3;
- const SwVfpRegister single_scratch = s6;
- const Register scratch = r9;
- const Register scratch2 = r4;
+ const Register base = r4;
+ const Register exponent = r5;
+ const Register heapnumbermap = r8;
+ const Register heapnumber = r3;
+ const DoubleRegister double_base = d1;
+ const DoubleRegister double_exponent = d2;
+ const DoubleRegister double_result = d3;
+ const DoubleRegister double_scratch = d0;
+ const Register scratch = r11;
+ const Register scratch2 = r10;
Label call_runtime, done, int_exponent;
if (exponent_type_ == ON_STACK) {
@@ -1149,108 +1134,104 @@ void MathPowStub::Generate(MacroAssembler* masm) {
// The exponent and base are supplied as arguments on the stack.
// This can only happen if the stub is called from non-optimized code.
// Load input parameters from stack to double registers.
- __ ldr(base, MemOperand(sp, 1 * kPointerSize));
- __ ldr(exponent, MemOperand(sp, 0 * kPointerSize));
+ __ LoadP(base, MemOperand(sp, 1 * kPointerSize));
+ __ LoadP(exponent, MemOperand(sp, 0 * kPointerSize));
__ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
__ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
- __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset));
+ __ LoadP(scratch, FieldMemOperand(base, JSObject::kMapOffset));
__ cmp(scratch, heapnumbermap);
- __ b(ne, &call_runtime);
+ __ bne(&call_runtime);
- __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
- __ jmp(&unpack_exponent);
+ __ lfd(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
+ __ b(&unpack_exponent);
__ bind(&base_is_smi);
- __ vmov(single_scratch, scratch);
- __ vcvt_f64_s32(double_base, single_scratch);
+ __ ConvertIntToDouble(scratch, double_base);
__ bind(&unpack_exponent);
__ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
-
- __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
+ __ LoadP(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
__ cmp(scratch, heapnumbermap);
- __ b(ne, &call_runtime);
- __ vldr(double_exponent,
- FieldMemOperand(exponent, HeapNumber::kValueOffset));
+ __ bne(&call_runtime);
+
+ __ lfd(double_exponent,
+ FieldMemOperand(exponent, HeapNumber::kValueOffset));
} else if (exponent_type_ == TAGGED) {
// Base is already in double_base.
__ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
- __ vldr(double_exponent,
- FieldMemOperand(exponent, HeapNumber::kValueOffset));
+ __ lfd(double_exponent,
+ FieldMemOperand(exponent, HeapNumber::kValueOffset));
}
if (exponent_type_ != INTEGER) {
- Label int_exponent_convert;
// Detect integer exponents stored as double.
- __ vcvt_u32_f64(single_scratch, double_exponent);
- // We do not check for NaN or Infinity here because comparing numbers on
- // ARM correctly distinguishes NaNs. We end up calling the built-in.
- __ vcvt_f64_u32(double_scratch, single_scratch);
- __ VFPCompareAndSetFlags(double_scratch, double_exponent);
- __ b(eq, &int_exponent_convert);
+ __ TryDoubleToInt32Exact(scratch, double_exponent, scratch2,
+ double_scratch);
+ __ beq(&int_exponent);
if (exponent_type_ == ON_STACK) {
// Detect square root case. Crankshaft detects constant +/-0.5 at
// compile time and uses DoMathPowHalf instead. We then skip this check
// for non-constant cases of +/-0.5 as these hardly occur.
- Label not_plus_half;
+ Label not_plus_half, not_minus_inf1, not_minus_inf2;
// Test for 0.5.
- __ vmov(double_scratch, 0.5, scratch);
- __ VFPCompareAndSetFlags(double_exponent, double_scratch);
- __ b(ne, &not_plus_half);
+ __ LoadDoubleLiteral(double_scratch, 0.5, scratch);
+ __ fcmpu(double_exponent, double_scratch);
+ __ bne(&not_plus_half);
// Calculates square root of base. Check for the special case of
// Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
- __ vmov(double_scratch, -V8_INFINITY, scratch);
- __ VFPCompareAndSetFlags(double_base, double_scratch);
- __ vneg(double_result, double_scratch, eq);
- __ b(eq, &done);
+ __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch);
+ __ fcmpu(double_base, double_scratch);
+ __ bne(&not_minus_inf1);
+ __ fneg(double_result, double_scratch);
+ __ b(&done);
+ __ bind(&not_minus_inf1);
// Add +0 to convert -0 to +0.
- __ vadd(double_scratch, double_base, kDoubleRegZero);
- __ vsqrt(double_result, double_scratch);
- __ jmp(&done);
+ __ fadd(double_scratch, double_base, kDoubleRegZero);
+ __ fsqrt(double_result, double_scratch);
+ __ b(&done);
__ bind(&not_plus_half);
- __ vmov(double_scratch, -0.5, scratch);
- __ VFPCompareAndSetFlags(double_exponent, double_scratch);
- __ b(ne, &call_runtime);
+ __ LoadDoubleLiteral(double_scratch, -0.5, scratch);
+ __ fcmpu(double_exponent, double_scratch);
+ __ bne(&call_runtime);
// Calculates square root of base. Check for the special case of
// Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
- __ vmov(double_scratch, -V8_INFINITY, scratch);
- __ VFPCompareAndSetFlags(double_base, double_scratch);
- __ vmov(double_result, kDoubleRegZero, eq);
- __ b(eq, &done);
+ __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch);
+ __ fcmpu(double_base, double_scratch);
+ __ bne(&not_minus_inf2);
+ __ fmr(double_result, kDoubleRegZero);
+ __ b(&done);
+ __ bind(&not_minus_inf2);
// Add +0 to convert -0 to +0.
- __ vadd(double_scratch, double_base, kDoubleRegZero);
- __ vmov(double_result, 1.0, scratch);
- __ vsqrt(double_scratch, double_scratch);
- __ vdiv(double_result, double_result, double_scratch);
- __ jmp(&done);
+ __ fadd(double_scratch, double_base, kDoubleRegZero);
+ __ LoadDoubleLiteral(double_result, 1.0, scratch);
+ __ fsqrt(double_scratch, double_scratch);
+ __ fdiv(double_result, double_result, double_scratch);
+ __ b(&done);
}
- __ push(lr);
+ __ mflr(r0);
+ __ push(r0);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2, scratch);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(
- ExternalReference::power_double_double_function(isolate()),
- 0, 2);
+ ExternalReference::power_double_double_function(isolate()), 0, 2);
}
- __ pop(lr);
+ __ pop(r0);
+ __ mtlr(r0);
__ MovFromFloatResult(double_result);
- __ jmp(&done);
-
- __ bind(&int_exponent_convert);
- __ vcvt_u32_f64(single_scratch, double_exponent);
- __ vmov(scratch, single_scratch);
+ __ b(&done);
}
// Calculate power with integer exponent.
@@ -1258,38 +1239,47 @@ void MathPowStub::Generate(MacroAssembler* masm) {
// Get two copies of exponent in the registers scratch and exponent.
if (exponent_type_ == INTEGER) {
- __ mov(scratch, exponent);
+ __ mr(scratch, exponent);
} else {
// Exponent has previously been stored into scratch as untagged integer.
- __ mov(exponent, scratch);
+ __ mr(exponent, scratch);
}
- __ vmov(double_scratch, double_base); // Back up base.
- __ vmov(double_result, 1.0, scratch2);
+ __ fmr(double_scratch, double_base); // Back up base.
+ __ li(scratch2, Operand(1));
+ __ ConvertIntToDouble(scratch2, double_result);
// Get absolute value of exponent.
- __ cmp(scratch, Operand::Zero());
- __ mov(scratch2, Operand::Zero(), LeaveCC, mi);
- __ sub(scratch, scratch2, scratch, LeaveCC, mi);
+ Label positive_exponent;
+ __ cmpi(scratch, Operand::Zero());
+ __ bge(&positive_exponent);
+ __ neg(scratch, scratch);
+ __ bind(&positive_exponent);
- Label while_true;
+ Label while_true, no_carry, loop_end;
__ bind(&while_true);
- __ mov(scratch, Operand(scratch, ASR, 1), SetCC);
- __ vmul(double_result, double_result, double_scratch, cs);
- __ vmul(double_scratch, double_scratch, double_scratch, ne);
- __ b(ne, &while_true);
-
- __ cmp(exponent, Operand::Zero());
- __ b(ge, &done);
- __ vmov(double_scratch, 1.0, scratch);
- __ vdiv(double_result, double_scratch, double_result);
+ __ andi(scratch2, scratch, Operand(1));
+ __ beq(&no_carry, cr0);
+ __ fmul(double_result, double_result, double_scratch);
+ __ bind(&no_carry);
+ __ ShiftRightArithImm(scratch, scratch, 1, SetRC);
+ __ beq(&loop_end, cr0);
+ __ fmul(double_scratch, double_scratch, double_scratch);
+ __ b(&while_true);
+ __ bind(&loop_end);
+
+ __ cmpi(exponent, Operand::Zero());
+ __ bge(&done);
+
+ __ li(scratch2, Operand(1));
+ __ ConvertIntToDouble(scratch2, double_scratch);
+ __ fdiv(double_result, double_scratch, double_result);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
- __ VFPCompareAndSetFlags(double_result, 0.0);
- __ b(ne, &done);
+ __ fcmpu(double_result, kDoubleRegZero);
+ __ bne(&done);
// double_exponent may not containe the exponent value if the input was a
// smi. We set it with exponent value before bailing out.
- __ vmov(single_scratch, exponent);
- __ vcvt_f64_s32(double_exponent, single_scratch);
+ __ ConvertIntToDouble(exponent, double_exponent);
// Returning or bailing out.
Counters* counters = isolate()->counters();
@@ -1301,24 +1291,25 @@ void MathPowStub::Generate(MacroAssembler* masm) {
// The stub is called from non-optimized code, which expects the result
// as heap number in exponent.
__ bind(&done);
- __ AllocateHeapNumber(
- heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
- __ vstr(double_result,
+ __ AllocateHeapNumber(heapnumber, scratch, scratch2, heapnumbermap,
+ &call_runtime);
+ __ stfd(double_result,
FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
- DCHECK(heapnumber.is(r0));
+ DCHECK(heapnumber.is(r3));
__ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
__ Ret(2);
} else {
- __ push(lr);
+ __ mflr(r0);
+ __ push(r0);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2, scratch);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(
- ExternalReference::power_double_double_function(isolate()),
- 0, 2);
+ ExternalReference::power_double_double_function(isolate()), 0, 2);
}
- __ pop(lr);
+ __ pop(r0);
+ __ mtlr(r0);
__ MovFromFloatResult(double_result);
__ bind(&done);
@@ -1328,14 +1319,12 @@ void MathPowStub::Generate(MacroAssembler* masm) {
}
-bool CEntryStub::NeedsImmovableCode() {
- return true;
-}
+bool CEntryStub::NeedsImmovableCode() { return true; }
void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
CEntryStub::GenerateAheadOfTime(isolate);
- WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate);
+ // WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate);
StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
@@ -1358,7 +1347,7 @@ void CodeStub::GenerateFPStubs(Isolate* isolate) {
}
Code* store_buffer_overflow_code;
if (!stub.FindCodeInCache(&store_buffer_overflow_code)) {
- store_buffer_overflow_code = *stub.GetCode();
+ store_buffer_overflow_code = *stub.GetCode();
}
isolate->set_fp_stubs_generated(true);
}
@@ -1372,52 +1361,74 @@ void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
void CEntryStub::Generate(MacroAssembler* masm) {
// Called from JavaScript; parameters are on stack as if calling JS function.
- // r0: number of arguments including receiver
- // r1: pointer to builtin function
+ // r3: number of arguments including receiver
+ // r4: pointer to builtin function
// fp: frame pointer (restored after C call)
// sp: stack pointer (restored as callee's sp after C call)
// cp: current context (C callee-saved)
ProfileEntryHookStub::MaybeCallEntryHook(masm);
- __ mov(r5, Operand(r1));
+ __ mr(r15, r4);
- // Compute the argv pointer in a callee-saved register.
- __ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2));
- __ sub(r1, r1, Operand(kPointerSize));
+ // Compute the argv pointer.
+ __ ShiftLeftImm(r4, r3, Operand(kPointerSizeLog2));
+ __ add(r4, r4, sp);
+ __ subi(r4, r4, Operand(kPointerSize));
// Enter the exit frame that transitions from JavaScript to C++.
FrameScope scope(masm, StackFrame::MANUAL);
- __ EnterExitFrame(save_doubles_);
- // Store a copy of argc in callee-saved registers for later.
- __ mov(r4, Operand(r0));
+ // Need at least one extra slot for return address location.
+ int arg_stack_space = 1;
- // r0, r4: number of arguments including receiver (C callee-saved)
- // r1: pointer to the first argument (C callee-saved)
- // r5: pointer to builtin function (C callee-saved)
+// PPC LINUX ABI:
+#if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
+ // Pass buffer for return value on stack if necessary
+ if (result_size_ > 1) {
+ DCHECK_EQ(2, result_size_);
+ arg_stack_space += 2;
+ }
+#endif
- // Result returned in r0 or r0+r1 by default.
+ __ EnterExitFrame(save_doubles_, arg_stack_space);
-#if V8_HOST_ARCH_ARM
- int frame_alignment = MacroAssembler::ActivationFrameAlignment();
- int frame_alignment_mask = frame_alignment - 1;
- if (FLAG_debug_code) {
- if (frame_alignment > kPointerSize) {
- Label alignment_as_expected;
- DCHECK(IsPowerOf2(frame_alignment));
- __ tst(sp, Operand(frame_alignment_mask));
- __ b(eq, &alignment_as_expected);
- // Don't use Check here, as it will call Runtime_Abort re-entering here.
- __ stop("Unexpected alignment");
- __ bind(&alignment_as_expected);
- }
+ // Store a copy of argc in callee-saved registers for later.
+ __ mr(r14, r3);
+
+ // r3, r14: number of arguments including receiver (C callee-saved)
+ // r4: pointer to the first argument
+ // r15: pointer to builtin function (C callee-saved)
+
+ // Result returned in registers or stack, depending on result size and ABI.
+
+ Register isolate_reg = r5;
+#if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
+ if (result_size_ > 1) {
+ // The return value is 16-byte non-scalar value.
+ // Use frame storage reserved by calling function to pass return
+ // buffer as implicit first argument.
+ __ mr(r5, r4);
+ __ mr(r4, r3);
+ __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));
+ isolate_reg = r6;
}
#endif
// Call C built-in.
- // r0 = argc, r1 = argv
- __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
+ __ mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate())));
+
+#if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR)
+ // Native AIX/PPC64 Linux use a function descriptor.
+ __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(r15, kPointerSize));
+ __ LoadP(ip, MemOperand(r15, 0)); // Instruction address
+ Register target = ip;
+#elif ABI_TOC_ADDRESSABILITY_VIA_IP
+ __ Move(ip, r15);
+ Register target = ip;
+#else
+ Register target = r15;
+#endif
// To let the GC traverse the return address of the exit frames, we need to
// know where the return address is. The CEntryStub is unmovable, so
@@ -1427,199 +1438,207 @@ void CEntryStub::Generate(MacroAssembler* masm) {
// already at '+ 8' from the current instruction but return is after three
// instructions so add another 4 to pc to get the return address.
{
- // Prevent literal pool emission before return address.
- Assembler::BlockConstPoolScope block_const_pool(masm);
- __ add(lr, pc, Operand(4));
- __ str(lr, MemOperand(sp, 0));
- __ Call(r5);
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
+ Label here;
+ __ b(&here, SetLK);
+ __ bind(&here);
+ __ mflr(r8);
+
+ // Constant used below is dependent on size of Call() macro instructions
+ __ addi(r0, r8, Operand(20));
+
+ __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
+ __ Call(target);
}
- __ VFPEnsureFPSCRState(r2);
+// roohack - do we need to (re)set FPU state?
+
+#if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
+ // If return value is on the stack, pop it to registers.
+ if (result_size_ > 1) {
+ __ LoadP(r4, MemOperand(r3, kPointerSize));
+ __ LoadP(r3, MemOperand(r3));
+ }
+#endif
// Runtime functions should not return 'the hole'. Allowing it to escape may
// lead to crashes in the IC code later.
if (FLAG_debug_code) {
Label okay;
- __ CompareRoot(r0, Heap::kTheHoleValueRootIndex);
- __ b(ne, &okay);
+ __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
+ __ bne(&okay);
__ stop("The hole escaped");
__ bind(&okay);
}
// Check result for exception sentinel.
Label exception_returned;
- __ CompareRoot(r0, Heap::kExceptionRootIndex);
- __ b(eq, &exception_returned);
+ __ CompareRoot(r3, Heap::kExceptionRootIndex);
+ __ beq(&exception_returned);
- ExternalReference pending_exception_address(
- Isolate::kPendingExceptionAddress, isolate());
+ ExternalReference pending_exception_address(Isolate::kPendingExceptionAddress,
+ isolate());
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
Label okay;
- __ mov(r2, Operand(pending_exception_address));
- __ ldr(r2, MemOperand(r2));
- __ CompareRoot(r2, Heap::kTheHoleValueRootIndex);
+ __ mov(r5, Operand(pending_exception_address));
+ __ LoadP(r5, MemOperand(r5));
+ __ CompareRoot(r5, Heap::kTheHoleValueRootIndex);
// Cannot use check here as it attempts to generate call into runtime.
- __ b(eq, &okay);
+ __ beq(&okay);
__ stop("Unexpected pending exception");
__ bind(&okay);
}
// Exit C frame and return.
- // r0:r1: result
+ // r3:r4: result
// sp: stack pointer
// fp: frame pointer
- // Callee-saved register r4 still holds argc.
- __ LeaveExitFrame(save_doubles_, r4, true);
- __ mov(pc, lr);
+ // r14: still holds argc (callee-saved).
+ __ LeaveExitFrame(save_doubles_, r14, true);
+ __ blr();
// Handling of exception.
__ bind(&exception_returned);
// Retrieve the pending exception.
- __ mov(r2, Operand(pending_exception_address));
- __ ldr(r0, MemOperand(r2));
+ __ mov(r5, Operand(pending_exception_address));
+ __ LoadP(r3, MemOperand(r5));
// Clear the pending exception.
- __ LoadRoot(r3, Heap::kTheHoleValueRootIndex);
- __ str(r3, MemOperand(r2));
+ __ LoadRoot(r6, Heap::kTheHoleValueRootIndex);
+ __ StoreP(r6, MemOperand(r5));
// Special handling of termination exceptions which are uncatchable
// by javascript code.
Label throw_termination_exception;
- __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex);
- __ b(eq, &throw_termination_exception);
+ __ CompareRoot(r3, Heap::kTerminationExceptionRootIndex);
+ __ beq(&throw_termination_exception);
// Handle normal exception.
- __ Throw(r0);
+ __ Throw(r3);
__ bind(&throw_termination_exception);
- __ ThrowUncatchable(r0);
+ __ ThrowUncatchable(r3);
}
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
- // r0: code entry
- // r1: function
- // r2: receiver
- // r3: argc
+ // r3: code entry
+ // r4: function
+ // r5: receiver
+ // r6: argc
// [sp+0]: argv
Label invoke, handler_entry, exit;
+// Called from C
+#if ABI_USES_FUNCTION_DESCRIPTORS
+ __ function_descriptor();
+#endif
+
ProfileEntryHookStub::MaybeCallEntryHook(masm);
- // Called from C, so do not pop argc and args on exit (preserve sp)
- // No need to save register-passed args
- // Save callee-saved registers (incl. cp and fp), sp, and lr
- __ stm(db_w, sp, kCalleeSaved | lr.bit());
+ // PPC LINUX ABI:
+ // preserve LR in pre-reserved slot in caller's frame
+ __ mflr(r0);
+ __ StoreP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));
- // Save callee-saved vfp registers.
- __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
- // Set up the reserved register for 0.0.
- __ vmov(kDoubleRegZero, 0.0);
- __ VFPEnsureFPSCRState(r4);
+ // Save callee saved registers on the stack.
+ __ MultiPush(kCalleeSaved);
- // Get address of argv, see stm above.
- // r0: code entry
- // r1: function
- // r2: receiver
- // r3: argc
+ // Floating point regs FPR0 - FRP13 are volatile
+ // FPR14-FPR31 are non-volatile, but sub-calls will save them for us
- // Set up argv in r4.
- int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
- offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
- __ ldr(r4, MemOperand(sp, offset_to_argv));
+ // int offset_to_argv = kPointerSize * 22; // matches (22*4) above
+ // __ lwz(r7, MemOperand(sp, offset_to_argv));
// Push a frame with special values setup to mark it as an entry frame.
- // r0: code entry
- // r1: function
- // r2: receiver
- // r3: argc
- // r4: argv
+ // r3: code entry
+ // r4: function
+ // r5: receiver
+ // r6: argc
+ // r7: argv
+ __ li(r0, Operand(-1)); // Push a bad frame pointer to fail if it is used.
+ __ push(r0);
+#if V8_OOL_CONSTANT_POOL
+ __ mov(kConstantPoolRegister,
+ Operand(isolate()->factory()->empty_constant_pool_array()));
+ __ push(kConstantPoolRegister);
+#endif
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
- if (FLAG_enable_ool_constant_pool) {
- __ mov(r8, Operand(isolate()->factory()->empty_constant_pool_array()));
- }
- __ mov(r7, Operand(Smi::FromInt(marker)));
- __ mov(r6, Operand(Smi::FromInt(marker)));
- __ mov(r5,
- Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
- __ ldr(r5, MemOperand(r5));
- __ mov(ip, Operand(-1)); // Push a bad frame pointer to fail if it is used.
- __ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() |
- (FLAG_enable_ool_constant_pool ? r8.bit() : 0) |
- ip.bit());
+ __ LoadSmiLiteral(r0, Smi::FromInt(marker));
+ __ push(r0);
+ __ push(r0);
+ // Save copies of the top frame descriptor on the stack.
+ __ mov(r8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
+ __ LoadP(r0, MemOperand(r8));
+ __ push(r0);
// Set up frame pointer for the frame to be pushed.
- __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
+ __ addi(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
// If this is the outermost JS call, set js_entry_sp value.
Label non_outermost_js;
ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
- __ mov(r5, Operand(ExternalReference(js_entry_sp)));
- __ ldr(r6, MemOperand(r5));
- __ cmp(r6, Operand::Zero());
- __ b(ne, &non_outermost_js);
- __ str(fp, MemOperand(r5));
- __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
+ __ mov(r8, Operand(ExternalReference(js_entry_sp)));
+ __ LoadP(r9, MemOperand(r8));
+ __ cmpi(r9, Operand::Zero());
+ __ bne(&non_outermost_js);
+ __ StoreP(fp, MemOperand(r8));
+ __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
Label cont;
__ b(&cont);
__ bind(&non_outermost_js);
- __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
+ __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME));
__ bind(&cont);
- __ push(ip);
+ __ push(ip); // frame-type
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
- __ jmp(&invoke);
+ __ b(&invoke);
+
+ __ bind(&handler_entry);
+ handler_offset_ = handler_entry.pos();
+ // Caught exception: Store result (exception) in the pending exception
+ // field in the JSEnv and return a failure sentinel. Coming in here the
+ // fp will be invalid because the PushTryHandler below sets it to 0 to
+ // signal the existence of the JSEntry frame.
+ __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
+ isolate())));
- // Block literal pool emission whilst taking the position of the handler
- // entry. This avoids making the assumption that literal pools are always
- // emitted after an instruction is emitted, rather than before.
- {
- Assembler::BlockConstPoolScope block_const_pool(masm);
- __ bind(&handler_entry);
- handler_offset_ = handler_entry.pos();
- // Caught exception: Store result (exception) in the pending exception
- // field in the JSEnv and return a failure sentinel. Coming in here the
- // fp will be invalid because the PushTryHandler below sets it to 0 to
- // signal the existence of the JSEntry frame.
- __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
- isolate())));
- }
- __ str(r0, MemOperand(ip));
- __ LoadRoot(r0, Heap::kExceptionRootIndex);
+ __ StoreP(r3, MemOperand(ip));
+ __ LoadRoot(r3, Heap::kExceptionRootIndex);
__ b(&exit);
// Invoke: Link this frame into the handler chain. There's only one
// handler block in this code object, so its index is 0.
__ bind(&invoke);
- // Must preserve r0-r4, r5-r6 are available.
+ // Must preserve r0-r4, r5-r7 are available. (needs update for PPC)
__ PushTryHandler(StackHandler::JS_ENTRY, 0);
// If an exception not caught by another handler occurs, this handler
- // returns control to the code after the bl(&invoke) above, which
+ // returns control to the code after the b(&invoke) above, which
// restores all kCalleeSaved registers (including cp and fp) to their
// saved values before returning a failure to C.
// Clear any pending exceptions.
- __ mov(r5, Operand(isolate()->factory()->the_hole_value()));
+ __ mov(r8, Operand(isolate()->factory()->the_hole_value()));
__ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
isolate())));
- __ str(r5, MemOperand(ip));
+ __ StoreP(r8, MemOperand(ip));
// Invoke the function by calling through JS entry trampoline builtin.
// Notice that we cannot store a reference to the trampoline code directly in
// this stub, because runtime stubs are not traversed when doing GC.
// Expected registers by Builtins::JSEntryTrampoline
- // r0: code entry
- // r1: function
- // r2: receiver
- // r3: argc
- // r4: argv
+ // r3: code entry
+ // r4: function
+ // r5: receiver
+ // r6: argc
+ // r7: argv
if (is_construct) {
ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
isolate());
@@ -1628,73 +1647,88 @@ void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
__ mov(ip, Operand(entry));
}
- __ ldr(ip, MemOperand(ip)); // deref address
- __ add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
+ __ LoadP(ip, MemOperand(ip)); // deref address
// Branch and link to JSEntryTrampoline.
- __ Call(ip);
+ // the address points to the start of the code object, skip the header
+ __ addi(r0, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
+ __ mtlr(r0);
+ __ bclr(BA, SetLK); // make the call
// Unlink this frame from the handler chain.
__ PopTryHandler();
- __ bind(&exit); // r0 holds result
+ __ bind(&exit); // r3 holds result
// Check if the current stack frame is marked as the outermost JS frame.
Label non_outermost_js_2;
- __ pop(r5);
- __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
- __ b(ne, &non_outermost_js_2);
- __ mov(r6, Operand::Zero());
- __ mov(r5, Operand(ExternalReference(js_entry_sp)));
- __ str(r6, MemOperand(r5));
+ __ pop(r8);
+ __ CmpSmiLiteral(r8, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME), r0);
+ __ bne(&non_outermost_js_2);
+ __ mov(r9, Operand::Zero());
+ __ mov(r8, Operand(ExternalReference(js_entry_sp)));
+ __ StoreP(r9, MemOperand(r8));
__ bind(&non_outermost_js_2);
// Restore the top frame descriptors from the stack.
- __ pop(r3);
- __ mov(ip,
- Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
- __ str(r3, MemOperand(ip));
+ __ pop(r6);
+ __ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
+ __ StoreP(r6, MemOperand(ip));
// Reset the stack to the callee saved registers.
- __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
+ __ addi(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
- // Restore callee-saved registers and return.
+// Restore callee-saved registers and return.
#ifdef DEBUG
if (FLAG_debug_code) {
- __ mov(lr, Operand(pc));
+ Label here;
+ __ b(&here, SetLK);
+ __ bind(&here);
}
#endif
- // Restore callee-saved vfp registers.
- __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
+ __ MultiPop(kCalleeSaved);
- __ ldm(ia_w, sp, kCalleeSaved | pc.bit());
+ __ LoadP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));
+ __ mtctr(r0);
+ __ bctr();
}
-// Uses registers r0 to r4.
+// Uses registers r3 to r7.
// Expected input (depending on whether args are in registers or on the stack):
-// * object: r0 or at sp + 1 * kPointerSize.
-// * function: r1 or at sp.
+// * object: r3 or at sp + 1 * kPointerSize.
+// * function: r4 or at sp.
//
// An inlined call site may have been generated before calling this stub.
-// In this case the offset to the inline sites to patch are passed in r5 and r6.
+// In this case the offset to the inline site to patch is passed in r8.
// (See LCodeGen::DoInstanceOfKnownGlobal)
void InstanceofStub::Generate(MacroAssembler* masm) {
// Call site inlining and patching implies arguments in registers.
DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
// Fixed register usage throughout the stub:
- const Register object = r0; // Object (lhs).
- Register map = r3; // Map of the object.
- const Register function = r1; // Function (rhs).
- const Register prototype = r4; // Prototype of the function.
- const Register scratch = r2;
+ const Register object = r3; // Object (lhs).
+ Register map = r6; // Map of the object.
+ const Register function = r4; // Function (rhs).
+ const Register prototype = r7; // Prototype of the function.
+ const Register inline_site = r9;
+ const Register scratch = r5;
+ Register scratch3 = no_reg;
+
+// delta = mov + unaligned LoadP + cmp + bne
+#if V8_TARGET_ARCH_PPC64
+ const int32_t kDeltaToLoadBoolResult =
+ (Assembler::kMovInstructions + 4) * Assembler::kInstrSize;
+#else
+ const int32_t kDeltaToLoadBoolResult =
+ (Assembler::kMovInstructions + 3) * Assembler::kInstrSize;
+#endif
Label slow, loop, is_instance, is_not_instance, not_js_object;
if (!HasArgsInRegisters()) {
- __ ldr(object, MemOperand(sp, 1 * kPointerSize));
- __ ldr(function, MemOperand(sp, 0));
+ __ LoadP(object, MemOperand(sp, 1 * kPointerSize));
+ __ LoadP(function, MemOperand(sp, 0));
}
// Check that the left hand is a JS object and load map.
@@ -1706,10 +1740,10 @@ void InstanceofStub::Generate(MacroAssembler* masm) {
if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
Label miss;
__ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
- __ b(ne, &miss);
+ __ bne(&miss);
__ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex);
- __ b(ne, &miss);
- __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
+ __ bne(&miss);
+ __ LoadRoot(r3, Heap::kInstanceofCacheAnswerRootIndex);
__ Ret(HasArgsInRegisters() ? 0 : 2);
__ bind(&miss);
@@ -1731,81 +1765,72 @@ void InstanceofStub::Generate(MacroAssembler* masm) {
DCHECK(HasArgsInRegisters());
// Patch the (relocated) inlined map check.
- // The map_load_offset was stored in r5
+ // The offset was stored in r8
// (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
- const Register map_load_offset = r5;
- __ sub(r9, lr, map_load_offset);
- // Get the map location in r5 and patch it.
- __ GetRelocatedValueLocation(r9, map_load_offset, scratch);
- __ ldr(map_load_offset, MemOperand(map_load_offset));
- __ str(map, FieldMemOperand(map_load_offset, Cell::kValueOffset));
+ const Register offset = r8;
+ __ mflr(inline_site);
+ __ sub(inline_site, inline_site, offset);
+ // Get the map location in r8 and patch it.
+ __ GetRelocatedValue(inline_site, offset, scratch);
+ __ StoreP(map, FieldMemOperand(offset, Cell::kValueOffset), r0);
}
- // Register mapping: r3 is object map and r4 is function prototype.
- // Get prototype of object into r2.
- __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
+ // Register mapping: r6 is object map and r7 is function prototype.
+ // Get prototype of object into r5.
+ __ LoadP(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
// We don't need map any more. Use it as a scratch register.
- Register scratch2 = map;
+ scratch3 = map;
map = no_reg;
// Loop through the prototype chain looking for the function prototype.
- __ LoadRoot(scratch2, Heap::kNullValueRootIndex);
+ __ LoadRoot(scratch3, Heap::kNullValueRootIndex);
__ bind(&loop);
- __ cmp(scratch, Operand(prototype));
- __ b(eq, &is_instance);
- __ cmp(scratch, scratch2);
- __ b(eq, &is_not_instance);
- __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
- __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
- __ jmp(&loop);
+ __ cmp(scratch, prototype);
+ __ beq(&is_instance);
+ __ cmp(scratch, scratch3);
+ __ beq(&is_not_instance);
+ __ LoadP(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
+ __ LoadP(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
+ __ b(&loop);
Factory* factory = isolate()->factory();
__ bind(&is_instance);
if (!HasCallSiteInlineCheck()) {
- __ mov(r0, Operand(Smi::FromInt(0)));
- __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
+ __ LoadSmiLiteral(r3, Smi::FromInt(0));
+ __ StoreRoot(r3, Heap::kInstanceofCacheAnswerRootIndex);
if (ReturnTrueFalseObject()) {
- __ Move(r0, factory->true_value());
+ __ Move(r3, factory->true_value());
}
} else {
// Patch the call site to return true.
- __ LoadRoot(r0, Heap::kTrueValueRootIndex);
- // The bool_load_offset was stored in r6
- // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
- const Register bool_load_offset = r6;
- __ sub(r9, lr, bool_load_offset);
+ __ LoadRoot(r3, Heap::kTrueValueRootIndex);
+ __ addi(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
// Get the boolean result location in scratch and patch it.
- __ GetRelocatedValueLocation(r9, scratch, scratch2);
- __ str(r0, MemOperand(scratch));
+ __ SetRelocatedValue(inline_site, scratch, r3);
if (!ReturnTrueFalseObject()) {
- __ mov(r0, Operand(Smi::FromInt(0)));
+ __ LoadSmiLiteral(r3, Smi::FromInt(0));
}
}
__ Ret(HasArgsInRegisters() ? 0 : 2);
__ bind(&is_not_instance);
if (!HasCallSiteInlineCheck()) {
- __ mov(r0, Operand(Smi::FromInt(1)));
- __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex);
+ __ LoadSmiLiteral(r3, Smi::FromInt(1));
+ __ StoreRoot(r3, Heap::kInstanceofCacheAnswerRootIndex);
if (ReturnTrueFalseObject()) {
- __ Move(r0, factory->false_value());
+ __ Move(r3, factory->false_value());
}
} else {
// Patch the call site to return false.
- __ LoadRoot(r0, Heap::kFalseValueRootIndex);
- // The bool_load_offset was stored in r6
- // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
- const Register bool_load_offset = r6;
- __ sub(r9, lr, bool_load_offset);
- ;
+ __ LoadRoot(r3, Heap::kFalseValueRootIndex);
+ __ addi(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
// Get the boolean result location in scratch and patch it.
- __ GetRelocatedValueLocation(r9, scratch, scratch2);
- __ str(r0, MemOperand(scratch));
+ __ SetRelocatedValue(inline_site, scratch, r3);
if (!ReturnTrueFalseObject()) {
- __ mov(r0, Operand(Smi::FromInt(1)));
+ __ LoadSmiLiteral(r3, Smi::FromInt(1));
}
}
__ Ret(HasArgsInRegisters() ? 0 : 2);
@@ -1815,16 +1840,16 @@ void InstanceofStub::Generate(MacroAssembler* masm) {
// Before null, smi and string value checks, check that the rhs is a function
// as for a non-function rhs an exception needs to be thrown.
__ JumpIfSmi(function, &slow);
- __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE);
- __ b(ne, &slow);
+ __ CompareObjectType(function, scratch3, scratch, JS_FUNCTION_TYPE);
+ __ bne(&slow);
// Null is not instance of anything.
- __ cmp(scratch, Operand(isolate()->factory()->null_value()));
- __ b(ne, &object_not_null);
+ __ Cmpi(scratch, Operand(isolate()->factory()->null_value()), r0);
+ __ bne(&object_not_null);
if (ReturnTrueFalseObject()) {
- __ Move(r0, factory->false_value());
+ __ Move(r3, factory->false_value());
} else {
- __ mov(r0, Operand(Smi::FromInt(1)));
+ __ LoadSmiLiteral(r3, Smi::FromInt(1));
}
__ Ret(HasArgsInRegisters() ? 0 : 2);
@@ -1832,9 +1857,9 @@ void InstanceofStub::Generate(MacroAssembler* masm) {
// Smi values are not instances of anything.
__ JumpIfNotSmi(object, &object_not_null_or_smi);
if (ReturnTrueFalseObject()) {
- __ Move(r0, factory->false_value());
+ __ Move(r3, factory->false_value());
} else {
- __ mov(r0, Operand(Smi::FromInt(1)));
+ __ LoadSmiLiteral(r3, Smi::FromInt(1));
}
__ Ret(HasArgsInRegisters() ? 0 : 2);
@@ -1842,9 +1867,9 @@ void InstanceofStub::Generate(MacroAssembler* masm) {
// String values are not instances of anything.
__ IsObjectJSStringType(object, scratch, &slow);
if (ReturnTrueFalseObject()) {
- __ Move(r0, factory->false_value());
+ __ Move(r3, factory->false_value());
} else {
- __ mov(r0, Operand(Smi::FromInt(1)));
+ __ LoadSmiLiteral(r3, Smi::FromInt(1));
}
__ Ret(HasArgsInRegisters() ? 0 : 2);
@@ -1852,18 +1877,26 @@ void InstanceofStub::Generate(MacroAssembler* masm) {
__ bind(&slow);
if (!ReturnTrueFalseObject()) {
if (HasArgsInRegisters()) {
- __ Push(r0, r1);
+ __ Push(r3, r4);
}
- __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
+ __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
} else {
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
- __ Push(r0, r1);
+ __ Push(r3, r4);
__ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
}
- __ cmp(r0, Operand::Zero());
- __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq);
- __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne);
+ Label true_value, done;
+ __ cmpi(r3, Operand::Zero());
+ __ beq(&true_value);
+
+ __ LoadRoot(r3, Heap::kFalseValueRootIndex);
+ __ b(&done);
+
+ __ bind(&true_value);
+ __ LoadRoot(r3, Heap::kTrueValueRootIndex);
+
+ __ bind(&done);
__ Ret(HasArgsInRegisters() ? 0 : 2);
}
}
@@ -1873,18 +1906,18 @@ void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
Label miss;
Register receiver = LoadIC::ReceiverRegister();
- NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r3,
- r4, &miss);
+ NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r6,
+ r7, &miss);
__ bind(&miss);
PropertyAccessCompiler::TailCallBuiltin(
masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
}
-Register InstanceofStub::left() { return r0; }
+Register InstanceofStub::left() { return r3; }
-Register InstanceofStub::right() { return r1; }
+Register InstanceofStub::right() { return r4; }
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
@@ -1895,67 +1928,72 @@ void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
// Check that the key is a smi.
Label slow;
- __ JumpIfNotSmi(r1, &slow);
+ __ JumpIfNotSmi(r4, &slow);
// Check if the calling frame is an arguments adaptor frame.
Label adaptor;
- __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
- __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
- __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
- __ b(eq, &adaptor);
+ __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset));
+ STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu);
+ __ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
+ __ beq(&adaptor);
// Check index against formal parameters count limit passed in
- // through register r0. Use unsigned comparison to get negative
+ // through register r3. Use unsigned comparison to get negative
// check for free.
- __ cmp(r1, r0);
- __ b(hs, &slow);
+ __ cmpl(r4, r3);
+ __ bge(&slow);
// Read the argument from the stack and return it.
- __ sub(r3, r0, r1);
- __ add(r3, fp, Operand::PointerOffsetFromSmiKey(r3));
- __ ldr(r0, MemOperand(r3, kDisplacement));
- __ Jump(lr);
+ __ sub(r6, r3, r4);
+ __ SmiToPtrArrayOffset(r6, r6);
+ __ add(r6, fp, r6);
+ __ LoadP(r3, MemOperand(r6, kDisplacement));
+ __ blr();
// Arguments adaptor case: Check index against actual arguments
// limit found in the arguments adaptor frame. Use unsigned
// comparison to get negative check for free.
__ bind(&adaptor);
- __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ cmp(r1, r0);
- __ b(cs, &slow);
+ __ LoadP(r3, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ cmpl(r4, r3);
+ __ bge(&slow);
// Read the argument from the adaptor frame and return it.
- __ sub(r3, r0, r1);
- __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r3));
- __ ldr(r0, MemOperand(r3, kDisplacement));
- __ Jump(lr);
+ __ sub(r6, r3, r4);
+ __ SmiToPtrArrayOffset(r6, r6);
+ __ add(r6, r5, r6);
+ __ LoadP(r3, MemOperand(r6, kDisplacement));
+ __ blr();
// Slow-case: Handle non-smi or out-of-bounds access to arguments
// by calling the runtime system.
__ bind(&slow);
- __ push(r1);
+ __ push(r4);
__ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
}
void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
// sp[0] : number of parameters
- // sp[4] : receiver displacement
- // sp[8] : function
+ // sp[1] : receiver displacement
+ // sp[2] : function
// Check if the calling frame is an arguments adaptor frame.
Label runtime;
- __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
- __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
- __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
- __ b(ne, &runtime);
+ __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ LoadP(r5, MemOperand(r6, StandardFrameConstants::kContextOffset));
+ STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu);
+ __ CmpSmiLiteral(r5, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
+ __ bne(&runtime);
// Patch the arguments.length and the parameters pointer in the current frame.
- __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ str(r2, MemOperand(sp, 0 * kPointerSize));
- __ add(r3, r3, Operand(r2, LSL, 1));
- __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
- __ str(r3, MemOperand(sp, 1 * kPointerSize));
+ __ LoadP(r5, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ StoreP(r5, MemOperand(sp, 0 * kPointerSize));
+ __ SmiToPtrArrayOffset(r5, r5);
+ __ add(r6, r6, r5);
+ __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset));
+ __ StoreP(r6, MemOperand(sp, 1 * kPointerSize));
__ bind(&runtime);
__ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
@@ -1965,39 +2003,44 @@ void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
// Stack layout:
// sp[0] : number of parameters (tagged)
- // sp[4] : address of receiver argument
- // sp[8] : function
+ // sp[1] : address of receiver argument
+ // sp[2] : function
// Registers used over whole function:
- // r6 : allocated object (tagged)
- // r9 : mapped parameter count (tagged)
+ // r9 : allocated object (tagged)
+ // r11 : mapped parameter count (tagged)
- __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
- // r1 = parameter count (tagged)
+ __ LoadP(r4, MemOperand(sp, 0 * kPointerSize));
+ // r4 = parameter count (tagged)
// Check if the calling frame is an arguments adaptor frame.
Label runtime;
Label adaptor_frame, try_allocate;
- __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
- __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset));
- __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
- __ b(eq, &adaptor_frame);
+ __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ LoadP(r5, MemOperand(r6, StandardFrameConstants::kContextOffset));
+ STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu);
+ __ CmpSmiLiteral(r5, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
+ __ beq(&adaptor_frame);
// No adaptor, parameter count = argument count.
- __ mov(r2, r1);
+ __ mr(r5, r4);
__ b(&try_allocate);
// We have an adaptor frame. Patch the parameters pointer.
__ bind(&adaptor_frame);
- __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ add(r3, r3, Operand(r2, LSL, 1));
- __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
- __ str(r3, MemOperand(sp, 1 * kPointerSize));
-
- // r1 = parameter count (tagged)
- // r2 = argument count (tagged)
- // Compute the mapped parameter count = min(r1, r2) in r1.
- __ cmp(r1, Operand(r2));
- __ mov(r1, Operand(r2), LeaveCC, gt);
+ __ LoadP(r5, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ SmiToPtrArrayOffset(r7, r5);
+ __ add(r6, r6, r7);
+ __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset));
+ __ StoreP(r6, MemOperand(sp, 1 * kPointerSize));
+
+ // r4 = parameter count (tagged)
+ // r5 = argument count (tagged)
+ // Compute the mapped parameter count = min(r4, r5) in r4.
+ Label skip;
+ __ cmp(r4, r5);
+ __ blt(&skip);
+ __ mr(r4, r5);
+ __ bind(&skip);
__ bind(&try_allocate);
@@ -2006,85 +2049,102 @@ void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
const int kParameterMapHeaderSize =
FixedArray::kHeaderSize + 2 * kPointerSize;
// If there are no mapped parameters, we do not need the parameter_map.
- __ cmp(r1, Operand(Smi::FromInt(0)));
- __ mov(r9, Operand::Zero(), LeaveCC, eq);
- __ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne);
- __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne);
+ Label skip2, skip3;
+ __ CmpSmiLiteral(r4, Smi::FromInt(0), r0);
+ __ bne(&skip2);
+ __ li(r11, Operand::Zero());
+ __ b(&skip3);
+ __ bind(&skip2);
+ __ SmiToPtrArrayOffset(r11, r4);
+ __ addi(r11, r11, Operand(kParameterMapHeaderSize));
+ __ bind(&skip3);
// 2. Backing store.
- __ add(r9, r9, Operand(r2, LSL, 1));
- __ add(r9, r9, Operand(FixedArray::kHeaderSize));
+ __ SmiToPtrArrayOffset(r7, r5);
+ __ add(r11, r11, r7);
+ __ addi(r11, r11, Operand(FixedArray::kHeaderSize));
// 3. Arguments object.
- __ add(r9, r9, Operand(Heap::kSloppyArgumentsObjectSize));
+ __ addi(r11, r11, Operand(Heap::kSloppyArgumentsObjectSize));
// Do the allocation of all three objects in one go.
- __ Allocate(r9, r0, r3, r4, &runtime, TAG_OBJECT);
+ __ Allocate(r11, r3, r6, r7, &runtime, TAG_OBJECT);
- // r0 = address of new object(s) (tagged)
- // r2 = argument count (smi-tagged)
+ // r3 = address of new object(s) (tagged)
+ // r5 = argument count (smi-tagged)
// Get the arguments boilerplate from the current native context into r4.
const int kNormalOffset =
Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
const int kAliasedOffset =
Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX);
- __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
- __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
- __ cmp(r1, Operand::Zero());
- __ ldr(r4, MemOperand(r4, kNormalOffset), eq);
- __ ldr(r4, MemOperand(r4, kAliasedOffset), ne);
-
- // r0 = address of new object (tagged)
- // r1 = mapped parameter count (tagged)
- // r2 = argument count (smi-tagged)
- // r4 = address of arguments map (tagged)
- __ str(r4, FieldMemOperand(r0, JSObject::kMapOffset));
- __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
- __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset));
- __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
+ __ LoadP(r7,
+ MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+ __ LoadP(r7, FieldMemOperand(r7, GlobalObject::kNativeContextOffset));
+ Label skip4, skip5;
+ __ cmpi(r4, Operand::Zero());
+ __ bne(&skip4);
+ __ LoadP(r7, MemOperand(r7, kNormalOffset));
+ __ b(&skip5);
+ __ bind(&skip4);
+ __ LoadP(r7, MemOperand(r7, kAliasedOffset));
+ __ bind(&skip5);
+
+ // r3 = address of new object (tagged)
+ // r4 = mapped parameter count (tagged)
+ // r5 = argument count (smi-tagged)
+ // r7 = address of arguments map (tagged)
+ __ StoreP(r7, FieldMemOperand(r3, JSObject::kMapOffset), r0);
+ __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
+ __ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
+ __ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
// Set up the callee in-object property.
STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
- __ ldr(r3, MemOperand(sp, 2 * kPointerSize));
- __ AssertNotSmi(r3);
- const int kCalleeOffset = JSObject::kHeaderSize +
- Heap::kArgumentsCalleeIndex * kPointerSize;
- __ str(r3, FieldMemOperand(r0, kCalleeOffset));
+ __ LoadP(r6, MemOperand(sp, 2 * kPointerSize));
+ __ AssertNotSmi(r6);
+ const int kCalleeOffset =
+ JSObject::kHeaderSize + Heap::kArgumentsCalleeIndex * kPointerSize;
+ __ StoreP(r6, FieldMemOperand(r3, kCalleeOffset), r0);
// Use the length (smi tagged) and set that as an in-object property too.
- __ AssertSmi(r2);
+ __ AssertSmi(r5);
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
- const int kLengthOffset = JSObject::kHeaderSize +
- Heap::kArgumentsLengthIndex * kPointerSize;
- __ str(r2, FieldMemOperand(r0, kLengthOffset));
+ const int kLengthOffset =
+ JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize;
+ __ StoreP(r5, FieldMemOperand(r3, kLengthOffset), r0);
// Set up the elements pointer in the allocated arguments object.
- // If we allocated a parameter map, r4 will point there, otherwise
+ // If we allocated a parameter map, r7 will point there, otherwise
// it will point to the backing store.
- __ add(r4, r0, Operand(Heap::kSloppyArgumentsObjectSize));
- __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
+ __ addi(r7, r3, Operand(Heap::kSloppyArgumentsObjectSize));
+ __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
- // r0 = address of new object (tagged)
- // r1 = mapped parameter count (tagged)
- // r2 = argument count (tagged)
- // r4 = address of parameter map or backing store (tagged)
+ // r3 = address of new object (tagged)
+ // r4 = mapped parameter count (tagged)
+ // r5 = argument count (tagged)
+ // r7 = address of parameter map or backing store (tagged)
// Initialize parameter map. If there are no mapped arguments, we're done.
- Label skip_parameter_map;
- __ cmp(r1, Operand(Smi::FromInt(0)));
- // Move backing store address to r3, because it is
+ Label skip_parameter_map, skip6;
+ __ CmpSmiLiteral(r4, Smi::FromInt(0), r0);
+ __ bne(&skip6);
+ // Move backing store address to r6, because it is
// expected there when filling in the unmapped arguments.
- __ mov(r3, r4, LeaveCC, eq);
- __ b(eq, &skip_parameter_map);
-
- __ LoadRoot(r6, Heap::kSloppyArgumentsElementsMapRootIndex);
- __ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset));
- __ add(r6, r1, Operand(Smi::FromInt(2)));
- __ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset));
- __ str(cp, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize));
- __ add(r6, r4, Operand(r1, LSL, 1));
- __ add(r6, r6, Operand(kParameterMapHeaderSize));
- __ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize));
+ __ mr(r6, r7);
+ __ b(&skip_parameter_map);
+ __ bind(&skip6);
+
+ __ LoadRoot(r9, Heap::kSloppyArgumentsElementsMapRootIndex);
+ __ StoreP(r9, FieldMemOperand(r7, FixedArray::kMapOffset), r0);
+ __ AddSmiLiteral(r9, r4, Smi::FromInt(2), r0);
+ __ StoreP(r9, FieldMemOperand(r7, FixedArray::kLengthOffset), r0);
+ __ StoreP(cp, FieldMemOperand(r7, FixedArray::kHeaderSize + 0 * kPointerSize),
+ r0);
+ __ SmiToPtrArrayOffset(r9, r4);
+ __ add(r9, r7, r9);
+ __ addi(r9, r9, Operand(kParameterMapHeaderSize));
+ __ StoreP(r9, FieldMemOperand(r7, FixedArray::kHeaderSize + 1 * kPointerSize),
+ r0);
// Copy the parameter slots and the holes in the arguments.
// We need to fill in mapped_parameter_count slots. They index the context,
@@ -2095,74 +2155,71 @@ void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
// MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
// We loop from right to left.
Label parameters_loop, parameters_test;
- __ mov(r6, r1);
- __ ldr(r9, MemOperand(sp, 0 * kPointerSize));
- __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
- __ sub(r9, r9, Operand(r1));
- __ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
- __ add(r3, r4, Operand(r6, LSL, 1));
- __ add(r3, r3, Operand(kParameterMapHeaderSize));
-
- // r6 = loop variable (tagged)
- // r1 = mapping index (tagged)
- // r3 = address of backing store (tagged)
- // r4 = address of parameter map (tagged), which is also the address of new
- // object + Heap::kSloppyArgumentsObjectSize (tagged)
- // r0 = temporary scratch (a.o., for address calculation)
- // r5 = the hole value
- __ jmp(&parameters_test);
+ __ mr(r9, r4);
+ __ LoadP(r11, MemOperand(sp, 0 * kPointerSize));
+ __ AddSmiLiteral(r11, r11, Smi::FromInt(Context::MIN_CONTEXT_SLOTS), r0);
+ __ sub(r11, r11, r4);
+ __ LoadRoot(r10, Heap::kTheHoleValueRootIndex);
+ __ SmiToPtrArrayOffset(r6, r9);
+ __ add(r6, r7, r6);
+ __ addi(r6, r6, Operand(kParameterMapHeaderSize));
+
+ // r9 = loop variable (tagged)
+ // r4 = mapping index (tagged)
+ // r6 = address of backing store (tagged)
+ // r7 = address of parameter map (tagged)
+ // r8 = temporary scratch (a.o., for address calculation)
+ // r10 = the hole value
+ __ b(&parameters_test);
__ bind(&parameters_loop);
- __ sub(r6, r6, Operand(Smi::FromInt(1)));
- __ mov(r0, Operand(r6, LSL, 1));
- __ add(r0, r0, Operand(kParameterMapHeaderSize - kHeapObjectTag));
- __ str(r9, MemOperand(r4, r0));
- __ sub(r0, r0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
- __ str(r5, MemOperand(r3, r0));
- __ add(r9, r9, Operand(Smi::FromInt(1)));
+ __ SubSmiLiteral(r9, r9, Smi::FromInt(1), r0);
+ __ SmiToPtrArrayOffset(r8, r9);
+ __ addi(r8, r8, Operand(kParameterMapHeaderSize - kHeapObjectTag));
+ __ StorePX(r11, MemOperand(r8, r7));
+ __ subi(r8, r8, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
+ __ StorePX(r10, MemOperand(r8, r6));
+ __ AddSmiLiteral(r11, r11, Smi::FromInt(1), r0);
__ bind(&parameters_test);
- __ cmp(r6, Operand(Smi::FromInt(0)));
- __ b(ne, &parameters_loop);
-
- // Restore r0 = new object (tagged)
- __ sub(r0, r4, Operand(Heap::kSloppyArgumentsObjectSize));
+ __ CmpSmiLiteral(r9, Smi::FromInt(0), r0);
+ __ bne(&parameters_loop);
__ bind(&skip_parameter_map);
- // r0 = address of new object (tagged)
- // r2 = argument count (tagged)
- // r3 = address of backing store (tagged)
- // r5 = scratch
+ // r5 = argument count (tagged)
+ // r6 = address of backing store (tagged)
+ // r8 = scratch
// Copy arguments header and remaining slots (if there are any).
- __ LoadRoot(r5, Heap::kFixedArrayMapRootIndex);
- __ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset));
- __ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset));
+ __ LoadRoot(r8, Heap::kFixedArrayMapRootIndex);
+ __ StoreP(r8, FieldMemOperand(r6, FixedArray::kMapOffset), r0);
+ __ StoreP(r5, FieldMemOperand(r6, FixedArray::kLengthOffset), r0);
Label arguments_loop, arguments_test;
- __ mov(r9, r1);
- __ ldr(r4, MemOperand(sp, 1 * kPointerSize));
- __ sub(r4, r4, Operand(r9, LSL, 1));
- __ jmp(&arguments_test);
+ __ mr(r11, r4);
+ __ LoadP(r7, MemOperand(sp, 1 * kPointerSize));
+ __ SmiToPtrArrayOffset(r8, r11);
+ __ sub(r7, r7, r8);
+ __ b(&arguments_test);
__ bind(&arguments_loop);
- __ sub(r4, r4, Operand(kPointerSize));
- __ ldr(r6, MemOperand(r4, 0));
- __ add(r5, r3, Operand(r9, LSL, 1));
- __ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize));
- __ add(r9, r9, Operand(Smi::FromInt(1)));
+ __ subi(r7, r7, Operand(kPointerSize));
+ __ LoadP(r9, MemOperand(r7, 0));
+ __ SmiToPtrArrayOffset(r8, r11);
+ __ add(r8, r6, r8);
+ __ StoreP(r9, FieldMemOperand(r8, FixedArray::kHeaderSize), r0);
+ __ AddSmiLiteral(r11, r11, Smi::FromInt(1), r0);
__ bind(&arguments_test);
- __ cmp(r9, Operand(r2));
- __ b(lt, &arguments_loop);
+ __ cmp(r11, r5);
+ __ blt(&arguments_loop);
// Return and remove the on-stack parameters.
- __ add(sp, sp, Operand(3 * kPointerSize));
+ __ addi(sp, sp, Operand(3 * kPointerSize));
__ Ret();
// Do the runtime call to allocate the arguments object.
- // r0 = address of new object (tagged)
- // r2 = argument count (tagged)
+ // r5 = argument count (tagged)
__ bind(&runtime);
- __ str(r2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count.
+ __ StoreP(r5, MemOperand(sp, 0 * kPointerSize)); // Patch argument count.
__ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
}
@@ -2173,89 +2230,98 @@ void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
// sp[8] : function
// Check if the calling frame is an arguments adaptor frame.
Label adaptor_frame, try_allocate, runtime;
- __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
- __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset));
- __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
- __ b(eq, &adaptor_frame);
+ __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+ __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset));
+ STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu);
+ __ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
+ __ beq(&adaptor_frame);
// Get the length from the frame.
- __ ldr(r1, MemOperand(sp, 0));
+ __ LoadP(r4, MemOperand(sp, 0));
__ b(&try_allocate);
// Patch the arguments.length and the parameters pointer.
__ bind(&adaptor_frame);
- __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset));
- __ str(r1, MemOperand(sp, 0));
- __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r1));
- __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset));
- __ str(r3, MemOperand(sp, 1 * kPointerSize));
+ __ LoadP(r4, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ StoreP(r4, MemOperand(sp, 0));
+ __ SmiToPtrArrayOffset(r6, r4);
+ __ add(r6, r5, r6);
+ __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset));
+ __ StoreP(r6, MemOperand(sp, 1 * kPointerSize));
// Try the new space allocation. Start out with computing the size
// of the arguments object and the elements array in words.
Label add_arguments_object;
__ bind(&try_allocate);
- __ SmiUntag(r1, SetCC);
- __ b(eq, &add_arguments_object);
- __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize));
+ __ cmpi(r4, Operand::Zero());
+ __ beq(&add_arguments_object);
+ __ SmiUntag(r4);
+ __ addi(r4, r4, Operand(FixedArray::kHeaderSize / kPointerSize));
__ bind(&add_arguments_object);
- __ add(r1, r1, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize));
+ __ addi(r4, r4, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize));
// Do the allocation of both objects in one go.
- __ Allocate(r1, r0, r2, r3, &runtime,
+ __ Allocate(r4, r3, r5, r6, &runtime,
static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
// Get the arguments boilerplate from the current native context.
- __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
- __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset));
- __ ldr(r4, MemOperand(
- r4, Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX)));
-
- __ str(r4, FieldMemOperand(r0, JSObject::kMapOffset));
- __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex);
- __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset));
- __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset));
+ __ LoadP(r7,
+ MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+ __ LoadP(r7, FieldMemOperand(r7, GlobalObject::kNativeContextOffset));
+ __ LoadP(
+ r7,
+ MemOperand(r7, Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX)));
+
+ __ StoreP(r7, FieldMemOperand(r3, JSObject::kMapOffset), r0);
+ __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
+ __ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
+ __ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
// Get the length (smi tagged) and set that as an in-object property too.
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
- __ ldr(r1, MemOperand(sp, 0 * kPointerSize));
- __ AssertSmi(r1);
- __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize +
- Heap::kArgumentsLengthIndex * kPointerSize));
+ __ LoadP(r4, MemOperand(sp, 0 * kPointerSize));
+ __ AssertSmi(r4);
+ __ StoreP(r4,
+ FieldMemOperand(r3, JSObject::kHeaderSize +
+ Heap::kArgumentsLengthIndex * kPointerSize),
+ r0);
// If there are no actual arguments, we're done.
Label done;
- __ cmp(r1, Operand::Zero());
- __ b(eq, &done);
+ __ cmpi(r4, Operand::Zero());
+ __ beq(&done);
// Get the parameters pointer from the stack.
- __ ldr(r2, MemOperand(sp, 1 * kPointerSize));
+ __ LoadP(r5, MemOperand(sp, 1 * kPointerSize));
// Set up the elements pointer in the allocated arguments object and
// initialize the header in the elements fixed array.
- __ add(r4, r0, Operand(Heap::kStrictArgumentsObjectSize));
- __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset));
- __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex);
- __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset));
- __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset));
- __ SmiUntag(r1);
+ __ addi(r7, r3, Operand(Heap::kStrictArgumentsObjectSize));
+ __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
+ __ LoadRoot(r6, Heap::kFixedArrayMapRootIndex);
+ __ StoreP(r6, FieldMemOperand(r7, FixedArray::kMapOffset), r0);
+ __ StoreP(r4, FieldMemOperand(r7, FixedArray::kLengthOffset), r0);
+ // Untag the length for the loop.
+ __ SmiUntag(r4);
// Copy the fixed array slots.
Label loop;
- // Set up r4 to point to the first array slot.
- __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ // Set up r7 to point to the first array slot.
+ __ addi(r7, r7, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ bind(&loop);
- // Pre-decrement r2 with kPointerSize on each iteration.
+ // Pre-decrement r5 with kPointerSize on each iteration.
// Pre-decrement in order to skip receiver.
- __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex));
- // Post-increment r4 with kPointerSize on each iteration.
- __ str(r3, MemOperand(r4, kPointerSize, PostIndex));
- __ sub(r1, r1, Operand(1));
- __ cmp(r1, Operand::Zero());
- __ b(ne, &loop);
+ __ LoadPU(r6, MemOperand(r5, -kPointerSize));
+ // Post-increment r7 with kPointerSize on each iteration.
+ __ StoreP(r6, MemOperand(r7));
+ __ addi(r7, r7, Operand(kPointerSize));
+ __ subi(r4, r4, Operand(1));
+ __ cmpi(r4, Operand::Zero());
+ __ bne(&loop);
// Return and remove the on-stack parameters.
__ bind(&done);
- __ add(sp, sp, Operand(3 * kPointerSize));
+ __ addi(sp, sp, Operand(3 * kPointerSize));
__ Ret();
// Do the runtime call to allocate the arguments object.
@@ -2265,9 +2331,9 @@ void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
void RegExpExecStub::Generate(MacroAssembler* masm) {
- // Just jump directly to runtime if native RegExp is not selected at compile
- // time or if regexp entry in generated code is turned off runtime switch or
- // at compilation.
+// Just jump directly to runtime if native RegExp is not selected at compile
+// time or if regexp entry in generated code is turned off runtime switch or
+// at compilation.
#ifdef V8_INTERPRETED_REGEXP
__ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
#else // V8_INTERPRETED_REGEXP
@@ -2283,70 +2349,79 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
const int kSubjectOffset = 2 * kPointerSize;
const int kJSRegExpOffset = 3 * kPointerSize;
- Label runtime;
+ Label runtime, br_over, encoding_type_UC16;
+
// Allocation of registers for this function. These are in callee save
// registers and will be preserved by the call to the native RegExp code, as
// this code is called using the normal C calling convention. When calling
// directly from generated code the native RegExp code will not do a GC and
// therefore the content of these registers are safe to use after the call.
- Register subject = r4;
- Register regexp_data = r5;
- Register last_match_info_elements = no_reg; // will be r6;
+ Register subject = r14;
+ Register regexp_data = r15;
+ Register last_match_info_elements = r16;
+ Register code = r17;
+
+ // Ensure register assigments are consistent with callee save masks
+ DCHECK(subject.bit() & kCalleeSaved);
+ DCHECK(regexp_data.bit() & kCalleeSaved);
+ DCHECK(last_match_info_elements.bit() & kCalleeSaved);
+ DCHECK(code.bit() & kCalleeSaved);
// Ensure that a RegExp stack is allocated.
ExternalReference address_of_regexp_stack_memory_address =
ExternalReference::address_of_regexp_stack_memory_address(isolate());
ExternalReference address_of_regexp_stack_memory_size =
ExternalReference::address_of_regexp_stack_memory_size(isolate());
- __ mov(r0, Operand(address_of_regexp_stack_memory_size));
- __ ldr(r0, MemOperand(r0, 0));
- __ cmp(r0, Operand::Zero());
- __ b(eq, &runtime);
+ __ mov(r3, Operand(address_of_regexp_stack_memory_size));
+ __ LoadP(r3, MemOperand(r3, 0));
+ __ cmpi(r3, Operand::Zero());
+ __ beq(&runtime);
// Check that the first argument is a JSRegExp object.
- __ ldr(r0, MemOperand(sp, kJSRegExpOffset));
- __ JumpIfSmi(r0, &runtime);
- __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE);
- __ b(ne, &runtime);
+ __ LoadP(r3, MemOperand(sp, kJSRegExpOffset));
+ __ JumpIfSmi(r3, &runtime);
+ __ CompareObjectType(r3, r4, r4, JS_REGEXP_TYPE);
+ __ bne(&runtime);
// Check that the RegExp has been compiled (data contains a fixed array).
- __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset));
+ __ LoadP(regexp_data, FieldMemOperand(r3, JSRegExp::kDataOffset));
if (FLAG_debug_code) {
- __ SmiTst(regexp_data);
- __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
- __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE);
+ __ TestIfSmi(regexp_data, r0);
+ __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected, cr0);
+ __ CompareObjectType(regexp_data, r3, r3, FIXED_ARRAY_TYPE);
__ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
}
// regexp_data: RegExp data (FixedArray)
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
- __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
- __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
- __ b(ne, &runtime);
+ __ LoadP(r3, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
+ // DCHECK(Smi::FromInt(JSRegExp::IRREGEXP) < (char *)0xffffu);
+ __ CmpSmiLiteral(r3, Smi::FromInt(JSRegExp::IRREGEXP), r0);
+ __ bne(&runtime);
// regexp_data: RegExp data (FixedArray)
// Check that the number of captures fit in the static offsets vector buffer.
- __ ldr(r2,
- FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
+ __ LoadP(r5,
+ FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
// Check (number_of_captures + 1) * 2 <= offsets vector size
// Or number_of_captures * 2 <= offsets vector size - 2
- // Multiplying by 2 comes for free since r2 is smi-tagged.
- STATIC_ASSERT(kSmiTag == 0);
- STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
+ // SmiToShortArrayOffset accomplishes the multiplication by 2 and
+ // SmiUntag (which is a nop for 32-bit).
+ __ SmiToShortArrayOffset(r5, r5);
STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
- __ cmp(r2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
- __ b(hi, &runtime);
+ __ cmpli(r5, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
+ __ bgt(&runtime);
// Reset offset for possibly sliced string.
- __ mov(r9, Operand::Zero());
- __ ldr(subject, MemOperand(sp, kSubjectOffset));
+ __ li(r11, Operand::Zero());
+ __ LoadP(subject, MemOperand(sp, kSubjectOffset));
__ JumpIfSmi(subject, &runtime);
- __ mov(r3, subject); // Make a copy of the original subject string.
- __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
- __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
+ __ mr(r6, subject); // Make a copy of the original subject string.
+ __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
+ __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
// subject: subject string
- // r3: subject string
- // r0: subject string instance type
+ // r6: subject string
+ // r3: subject string instance type
// regexp_data: RegExp data (FixedArray)
// Handle subject string according to its encoding and representation:
// (1) Sequential string? If yes, go to (5).
@@ -2365,281 +2440,291 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
// (8) Short external string or not a string? If yes, bail out to runtime.
// (9) Sliced string. Replace subject with parent. Go to (4).
- Label seq_string /* 5 */, external_string /* 7 */,
- check_underlying /* 4 */, not_seq_nor_cons /* 6 */,
- not_long_external /* 8 */;
+ Label seq_string /* 5 */, external_string /* 7 */, check_underlying /* 4 */,
+ not_seq_nor_cons /* 6 */, not_long_external /* 8 */;
// (1) Sequential string? If yes, go to (5).
- __ and_(r1,
- r0,
- Operand(kIsNotStringMask |
- kStringRepresentationMask |
- kShortExternalStringMask),
- SetCC);
+ STATIC_ASSERT((kIsNotStringMask | kStringRepresentationMask |
+ kShortExternalStringMask) == 0x93);
+ __ andi(r4, r3, Operand(kIsNotStringMask | kStringRepresentationMask |
+ kShortExternalStringMask));
STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
- __ b(eq, &seq_string); // Go to (5).
+ __ beq(&seq_string, cr0); // Go to (5).
// (2) Anything but sequential or cons? If yes, go to (6).
STATIC_ASSERT(kConsStringTag < kExternalStringTag);
STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
- __ cmp(r1, Operand(kExternalStringTag));
- __ b(ge, &not_seq_nor_cons); // Go to (6).
+ STATIC_ASSERT(kExternalStringTag < 0xffffu);
+ __ cmpi(r4, Operand(kExternalStringTag));
+ __ bge(&not_seq_nor_cons); // Go to (6).
// (3) Cons string. Check that it's flat.
// Replace subject with first string and reload instance type.
- __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset));
- __ CompareRoot(r0, Heap::kempty_stringRootIndex);
- __ b(ne, &runtime);
- __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
+ __ LoadP(r3, FieldMemOperand(subject, ConsString::kSecondOffset));
+ __ CompareRoot(r3, Heap::kempty_stringRootIndex);
+ __ bne(&runtime);
+ __ LoadP(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
// (4) Is subject external? If yes, go to (7).
__ bind(&check_underlying);
- __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
- __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
+ __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
+ __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
STATIC_ASSERT(kSeqStringTag == 0);
- __ tst(r0, Operand(kStringRepresentationMask));
+ STATIC_ASSERT(kStringRepresentationMask == 3);
+ __ andi(r0, r3, Operand(kStringRepresentationMask));
// The underlying external string is never a short external string.
STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
- __ b(ne, &external_string); // Go to (7).
+ __ bne(&external_string, cr0); // Go to (7).
// (5) Sequential string. Load regexp code according to encoding.
__ bind(&seq_string);
// subject: sequential subject string (or look-alike, external string)
- // r3: original subject string
- // Load previous index and check range before r3 is overwritten. We have to
- // use r3 instead of subject here because subject might have been only made
+ // r6: original subject string
+ // Load previous index and check range before r6 is overwritten. We have to
+ // use r6 instead of subject here because subject might have been only made
// to look like a sequential string when it actually is an external string.
- __ ldr(r1, MemOperand(sp, kPreviousIndexOffset));
- __ JumpIfNotSmi(r1, &runtime);
- __ ldr(r3, FieldMemOperand(r3, String::kLengthOffset));
- __ cmp(r3, Operand(r1));
- __ b(ls, &runtime);
- __ SmiUntag(r1);
+ __ LoadP(r4, MemOperand(sp, kPreviousIndexOffset));
+ __ JumpIfNotSmi(r4, &runtime);
+ __ LoadP(r6, FieldMemOperand(r6, String::kLengthOffset));
+ __ cmpl(r6, r4);
+ __ ble(&runtime);
+ __ SmiUntag(r4);
STATIC_ASSERT(4 == kOneByteStringTag);
STATIC_ASSERT(kTwoByteStringTag == 0);
- __ and_(r0, r0, Operand(kStringEncodingMask));
- __ mov(r3, Operand(r0, ASR, 2), SetCC);
- __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne);
- __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq);
+ STATIC_ASSERT(kStringEncodingMask == 4);
+ __ ExtractBitMask(r6, r3, kStringEncodingMask, SetRC);
+ __ beq(&encoding_type_UC16, cr0);
+ __ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset));
+ __ b(&br_over);
+ __ bind(&encoding_type_UC16);
+ __ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
+ __ bind(&br_over);
// (E) Carry on. String handling is done.
- // r6: irregexp code
+ // code: irregexp code
// Check that the irregexp code has been generated for the actual string
// encoding. If it has, the field contains a code object otherwise it contains
// a smi (code flushing support).
- __ JumpIfSmi(r6, &runtime);
+ __ JumpIfSmi(code, &runtime);
- // r1: previous index
- // r3: encoding of subject string (1 if ASCII, 0 if two_byte);
- // r6: code
+ // r4: previous index
+ // r6: encoding of subject string (1 if ASCII, 0 if two_byte);
+ // code: Address of generated regexp code
// subject: Subject string
// regexp_data: RegExp data (FixedArray)
// All checks done. Now push arguments for native regexp code.
- __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r0, r2);
+ __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r3, r5);
// Isolates: note we add an additional parameter here (isolate pointer).
- const int kRegExpExecuteArguments = 9;
- const int kParameterRegisters = 4;
+ const int kRegExpExecuteArguments = 10;
+ const int kParameterRegisters = 8;
__ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
// Stack pointer now points to cell where return address is to be written.
// Arguments are before that on the stack or in registers.
- // Argument 9 (sp[20]): Pass current isolate address.
- __ mov(r0, Operand(ExternalReference::isolate_address(isolate())));
- __ str(r0, MemOperand(sp, 5 * kPointerSize));
-
- // Argument 8 (sp[16]): Indicate that this is a direct call from JavaScript.
- __ mov(r0, Operand(1));
- __ str(r0, MemOperand(sp, 4 * kPointerSize));
-
- // Argument 7 (sp[12]): Start (high end) of backtracking stack memory area.
- __ mov(r0, Operand(address_of_regexp_stack_memory_address));
- __ ldr(r0, MemOperand(r0, 0));
- __ mov(r2, Operand(address_of_regexp_stack_memory_size));
- __ ldr(r2, MemOperand(r2, 0));
- __ add(r0, r0, Operand(r2));
- __ str(r0, MemOperand(sp, 3 * kPointerSize));
-
- // Argument 6: Set the number of capture registers to zero to force global
- // regexps to behave as non-global. This does not affect non-global regexps.
- __ mov(r0, Operand::Zero());
- __ str(r0, MemOperand(sp, 2 * kPointerSize));
-
- // Argument 5 (sp[4]): static offsets vector buffer.
- __ mov(r0,
- Operand(ExternalReference::address_of_static_offsets_vector(
- isolate())));
- __ str(r0, MemOperand(sp, 1 * kPointerSize));
-
- // For arguments 4 and 3 get string length, calculate start of string data and
- // calculate the shift of the index (0 for ASCII and 1 for two byte).
- __ add(r7, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
- __ eor(r3, r3, Operand(1));
+ // Argument 10 (in stack parameter area): Pass current isolate address.
+ __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
+ __ StoreP(r3, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize));
+
+ // Argument 9 is a dummy that reserves the space used for
+ // the return address added by the ExitFrame in native calls.
+
+ // Argument 8 (r10): Indicate that this is a direct call from JavaScript.
+ __ li(r10, Operand(1));
+
+ // Argument 7 (r9): Start (high end) of backtracking stack memory area.
+ __ mov(r3, Operand(address_of_regexp_stack_memory_address));
+ __ LoadP(r3, MemOperand(r3, 0));
+ __ mov(r5, Operand(address_of_regexp_stack_memory_size));
+ __ LoadP(r5, MemOperand(r5, 0));
+ __ add(r9, r3, r5);
+
+ // Argument 6 (r8): Set the number of capture registers to zero to force
+ // global egexps to behave as non-global. This does not affect non-global
+ // regexps.
+ __ li(r8, Operand::Zero());
+
+ // Argument 5 (r7): static offsets vector buffer.
+ __ mov(
+ r7,
+ Operand(ExternalReference::address_of_static_offsets_vector(isolate())));
+
+ // For arguments 4 (r6) and 3 (r5) get string length, calculate start of
+ // string data and calculate the shift of the index (0 for ASCII and 1 for
+ // two byte).
+ __ addi(r18, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
+ __ xori(r6, r6, Operand(1));
// Load the length from the original subject string from the previous stack
// frame. Therefore we have to use fp, which points exactly to two pointer
// sizes below the previous sp. (Because creating a new stack frame pushes
// the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
- __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
+ __ LoadP(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
// If slice offset is not 0, load the length from the original sliced string.
- // Argument 4, r3: End of string data
- // Argument 3, r2: Start of string data
+ // Argument 4, r6: End of string data
+ // Argument 3, r5: Start of string data
// Prepare start and end index of the input.
- __ add(r9, r7, Operand(r9, LSL, r3));
- __ add(r2, r9, Operand(r1, LSL, r3));
+ __ ShiftLeft(r11, r11, r6);
+ __ add(r11, r18, r11);
+ __ ShiftLeft(r5, r4, r6);
+ __ add(r5, r11, r5);
- __ ldr(r7, FieldMemOperand(subject, String::kLengthOffset));
- __ SmiUntag(r7);
- __ add(r3, r9, Operand(r7, LSL, r3));
+ __ LoadP(r18, FieldMemOperand(subject, String::kLengthOffset));
+ __ SmiUntag(r18);
+ __ ShiftLeft(r6, r18, r6);
+ __ add(r6, r11, r6);
- // Argument 2 (r1): Previous index.
+ // Argument 2 (r4): Previous index.
// Already there
- // Argument 1 (r0): Subject string.
- __ mov(r0, subject);
+ // Argument 1 (r3): Subject string.
+ __ mr(r3, subject);
// Locate the code entry and call it.
- __ add(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
+ __ addi(code, code, Operand(Code::kHeaderSize - kHeapObjectTag));
+
+
+#if ABI_USES_FUNCTION_DESCRIPTORS && defined(USE_SIMULATOR)
+ // Even Simulated AIX/PPC64 Linux uses a function descriptor for the
+ // RegExp routine. Extract the instruction address here since
+ // DirectCEntryStub::GenerateCall will not do it for calls out to
+ // what it thinks is C code compiled for the simulator/host
+ // platform.
+ __ LoadP(code, MemOperand(code, 0)); // Instruction address
+#endif
+
DirectCEntryStub stub(isolate());
- stub.GenerateCall(masm, r6);
+ stub.GenerateCall(masm, code);
__ LeaveExitFrame(false, no_reg, true);
- last_match_info_elements = r6;
-
- // r0: result
+ // r3: result
// subject: subject string (callee saved)
// regexp_data: RegExp data (callee saved)
// last_match_info_elements: Last match info elements (callee saved)
// Check the result.
Label success;
- __ cmp(r0, Operand(1));
+ __ cmpi(r3, Operand(1));
// We expect exactly one result since we force the called regexp to behave
// as non-global.
- __ b(eq, &success);
+ __ beq(&success);
Label failure;
- __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE));
- __ b(eq, &failure);
- __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
+ __ cmpi(r3, Operand(NativeRegExpMacroAssembler::FAILURE));
+ __ beq(&failure);
+ __ cmpi(r3, Operand(NativeRegExpMacroAssembler::EXCEPTION));
// If not exception it can only be retry. Handle that in the runtime system.
- __ b(ne, &runtime);
+ __ bne(&runtime);
// Result must now be exception. If there is no pending exception already a
// stack overflow (on the backtrack stack) was detected in RegExp code but
// haven't created the exception yet. Handle that in the runtime system.
// TODO(592): Rerunning the RegExp to get the stack overflow exception.
- __ mov(r1, Operand(isolate()->factory()->the_hole_value()));
- __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
+ __ mov(r4, Operand(isolate()->factory()->the_hole_value()));
+ __ mov(r5, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
isolate())));
- __ ldr(r0, MemOperand(r2, 0));
- __ cmp(r0, r1);
- __ b(eq, &runtime);
+ __ LoadP(r3, MemOperand(r5, 0));
+ __ cmp(r3, r4);
+ __ beq(&runtime);
- __ str(r1, MemOperand(r2, 0)); // Clear pending exception.
+ __ StoreP(r4, MemOperand(r5, 0)); // Clear pending exception.
// Check if the exception is a termination. If so, throw as uncatchable.
- __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex);
+ __ CompareRoot(r3, Heap::kTerminationExceptionRootIndex);
Label termination_exception;
- __ b(eq, &termination_exception);
+ __ beq(&termination_exception);
- __ Throw(r0);
+ __ Throw(r3);
__ bind(&termination_exception);
- __ ThrowUncatchable(r0);
+ __ ThrowUncatchable(r3);
__ bind(&failure);
// For failure and exception return null.
- __ mov(r0, Operand(isolate()->factory()->null_value()));
- __ add(sp, sp, Operand(4 * kPointerSize));
+ __ mov(r3, Operand(isolate()->factory()->null_value()));
+ __ addi(sp, sp, Operand(4 * kPointerSize));
__ Ret();
// Process the result from the native regexp code.
__ bind(&success);
- __ ldr(r1,
- FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
+ __ LoadP(r4,
+ FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2.
- // Multiplying by 2 comes for free since r1 is smi-tagged.
- STATIC_ASSERT(kSmiTag == 0);
- STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
- __ add(r1, r1, Operand(2)); // r1 was a smi.
-
- __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
- __ JumpIfSmi(r0, &runtime);
- __ CompareObjectType(r0, r2, r2, JS_ARRAY_TYPE);
- __ b(ne, &runtime);
+ // SmiToShortArrayOffset accomplishes the multiplication by 2 and
+ // SmiUntag (which is a nop for 32-bit).
+ __ SmiToShortArrayOffset(r4, r4);
+ __ addi(r4, r4, Operand(2));
+
+ __ LoadP(r3, MemOperand(sp, kLastMatchInfoOffset));
+ __ JumpIfSmi(r3, &runtime);
+ __ CompareObjectType(r3, r5, r5, JS_ARRAY_TYPE);
+ __ bne(&runtime);
// Check that the JSArray is in fast case.
- __ ldr(last_match_info_elements,
- FieldMemOperand(r0, JSArray::kElementsOffset));
- __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
- __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex);
- __ b(ne, &runtime);
+ __ LoadP(last_match_info_elements,
+ FieldMemOperand(r3, JSArray::kElementsOffset));
+ __ LoadP(r3,
+ FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
+ __ CompareRoot(r3, Heap::kFixedArrayMapRootIndex);
+ __ bne(&runtime);
// Check that the last match info has space for the capture registers and the
// additional information.
- __ ldr(r0,
- FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
- __ add(r2, r1, Operand(RegExpImpl::kLastMatchOverhead));
- __ cmp(r2, Operand::SmiUntag(r0));
- __ b(gt, &runtime);
-
- // r1: number of capture registers
- // r4: subject string
+ __ LoadP(
+ r3, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
+ __ addi(r5, r4, Operand(RegExpImpl::kLastMatchOverhead));
+ __ SmiUntag(r0, r3);
+ __ cmp(r5, r0);
+ __ bgt(&runtime);
+
+ // r4: number of capture registers
+ // subject: subject string
// Store the capture count.
- __ SmiTag(r2, r1);
- __ str(r2, FieldMemOperand(last_match_info_elements,
- RegExpImpl::kLastCaptureCountOffset));
+ __ SmiTag(r5, r4);
+ __ StoreP(r5, FieldMemOperand(last_match_info_elements,
+ RegExpImpl::kLastCaptureCountOffset),
+ r0);
// Store last subject and last input.
- __ str(subject,
- FieldMemOperand(last_match_info_elements,
- RegExpImpl::kLastSubjectOffset));
- __ mov(r2, subject);
- __ RecordWriteField(last_match_info_elements,
- RegExpImpl::kLastSubjectOffset,
- subject,
- r3,
- kLRHasNotBeenSaved,
- kDontSaveFPRegs);
- __ mov(subject, r2);
- __ str(subject,
- FieldMemOperand(last_match_info_elements,
- RegExpImpl::kLastInputOffset));
- __ RecordWriteField(last_match_info_elements,
- RegExpImpl::kLastInputOffset,
- subject,
- r3,
- kLRHasNotBeenSaved,
- kDontSaveFPRegs);
+ __ StoreP(subject, FieldMemOperand(last_match_info_elements,
+ RegExpImpl::kLastSubjectOffset),
+ r0);
+ __ mr(r5, subject);
+ __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastSubjectOffset,
+ subject, r10, kLRHasNotBeenSaved, kDontSaveFPRegs);
+ __ mr(subject, r5);
+ __ StoreP(subject, FieldMemOperand(last_match_info_elements,
+ RegExpImpl::kLastInputOffset),
+ r0);
+ __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastInputOffset,
+ subject, r10, kLRHasNotBeenSaved, kDontSaveFPRegs);
// Get the static offsets vector filled by the native regexp code.
ExternalReference address_of_static_offsets_vector =
ExternalReference::address_of_static_offsets_vector(isolate());
- __ mov(r2, Operand(address_of_static_offsets_vector));
+ __ mov(r5, Operand(address_of_static_offsets_vector));
- // r1: number of capture registers
- // r2: offsets vector
- Label next_capture, done;
+ // r4: number of capture registers
+ // r5: offsets vector
+ Label next_capture;
// Capture register counter starts from number of capture registers and
// counts down until wraping after zero.
- __ add(r0,
- last_match_info_elements,
- Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
+ __ addi(
+ r3, last_match_info_elements,
+ Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag - kPointerSize));
+ __ addi(r5, r5, Operand(-kIntSize)); // bias down for lwzu
+ __ mtctr(r4);
__ bind(&next_capture);
- __ sub(r1, r1, Operand(1), SetCC);
- __ b(mi, &done);
// Read the value from the static offsets vector buffer.
- __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex));
+ __ lwzu(r6, MemOperand(r5, kIntSize));
// Store the smi value in the last match info.
- __ SmiTag(r3);
- __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
- __ jmp(&next_capture);
- __ bind(&done);
+ __ SmiTag(r6);
+ __ StorePU(r6, MemOperand(r3, kPointerSize));
+ __ bdnz(&next_capture);
// Return last match info.
- __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset));
- __ add(sp, sp, Operand(4 * kPointerSize));
+ __ LoadP(r3, MemOperand(sp, kLastMatchInfoOffset));
+ __ addi(sp, sp, Operand(4 * kPointerSize));
__ Ret();
// Do the runtime call to execute the regexp.
@@ -2650,39 +2735,39 @@ void RegExpExecStub::Generate(MacroAssembler* masm) {
// (6) Not a long external string? If yes, go to (8).
__ bind(&not_seq_nor_cons);
// Compare flags are still set.
- __ b(gt, &not_long_external); // Go to (8).
+ __ bgt(&not_long_external); // Go to (8).
// (7) External string. Make it, offset-wise, look like a sequential string.
__ bind(&external_string);
- __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset));
- __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset));
+ __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
+ __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
if (FLAG_debug_code) {
// Assert that we do not have a cons or slice (indirect strings) here.
// Sequential strings have already been ruled out.
- __ tst(r0, Operand(kIsIndirectStringMask));
- __ Assert(eq, kExternalStringExpectedButNotFound);
+ STATIC_ASSERT(kIsIndirectStringMask == 1);
+ __ andi(r0, r3, Operand(kIsIndirectStringMask));
+ __ Assert(eq, kExternalStringExpectedButNotFound, cr0);
}
- __ ldr(subject,
- FieldMemOperand(subject, ExternalString::kResourceDataOffset));
+ __ LoadP(subject,
+ FieldMemOperand(subject, ExternalString::kResourceDataOffset));
// Move the pointer so that offset-wise, it looks like a sequential string.
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
- __ sub(subject,
- subject,
- Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
- __ jmp(&seq_string); // Go to (5).
+ __ subi(subject, subject,
+ Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+ __ b(&seq_string); // Go to (5).
// (8) Short external string or not a string? If yes, bail out to runtime.
__ bind(&not_long_external);
- STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
- __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask));
- __ b(ne, &runtime);
+ STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag != 0);
+ __ andi(r0, r4, Operand(kIsNotStringMask | kShortExternalStringMask));
+ __ bne(&runtime, cr0);
// (9) Sliced string. Replace subject with parent. Go to (4).
- // Load offset into r9 and replace subject string with parent.
- __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset));
- __ SmiUntag(r9);
- __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
- __ jmp(&check_underlying); // Go to (4).
+ // Load offset into r11 and replace subject string with parent.
+ __ LoadP(r11, FieldMemOperand(subject, SlicedString::kOffsetOffset));
+ __ SmiUntag(r11);
+ __ LoadP(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
+ __ b(&check_underlying); // Go to (4).
#endif // V8_INTERPRETED_REGEXP
}
@@ -2691,10 +2776,10 @@ static void GenerateRecordCallTarget(MacroAssembler* masm) {
// Cache the called function in a feedback vector slot. Cache states
// are uninitialized, monomorphic (indicated by a JSFunction), and
// megamorphic.
- // r0 : number of arguments to the construct function
- // r1 : the function to call
- // r2 : Feedback vector
- // r3 : slot in feedback vector (Smi)
+ // r3 : number of arguments to the construct function
+ // r4 : the function to call
+ // r5 : Feedback vector
+ // r6 : slot in feedback vector (Smi)
Label initialize, done, miss, megamorphic, not_array_function;
DCHECK_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()),
@@ -2702,13 +2787,14 @@ static void GenerateRecordCallTarget(MacroAssembler* masm) {
DCHECK_EQ(*TypeFeedbackInfo::UninitializedSentinel(masm->isolate()),
masm->isolate()->heap()->uninitialized_symbol());
- // Load the cache state into r4.
- __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
- __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize));
+ // Load the cache state into r7.
+ __ SmiToPtrArrayOffset(r7, r6);
+ __ add(r7, r5, r7);
+ __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize));
// A monomorphic cache hit or an already megamorphic state: invoke the
// function without changing the state.
- __ cmp(r4, r1);
+ __ cmp(r7, r4);
__ b(eq, &done);
if (!FLAG_pretenuring_call_new) {
@@ -2716,39 +2802,40 @@ static void GenerateRecordCallTarget(MacroAssembler* masm) {
// If we didn't have a matching function, and we didn't find the megamorph
// sentinel, then we have in the slot either some other function or an
// AllocationSite. Do a map check on the object in ecx.
- __ ldr(r5, FieldMemOperand(r4, 0));
- __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
- __ b(ne, &miss);
+ __ LoadP(r8, FieldMemOperand(r7, 0));
+ __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
+ __ bne(&miss);
// Make sure the function is the Array() function
- __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4);
- __ cmp(r1, r4);
- __ b(ne, &megamorphic);
- __ jmp(&done);
+ __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7);
+ __ cmp(r4, r7);
+ __ bne(&megamorphic);
+ __ b(&done);
}
__ bind(&miss);
// A monomorphic miss (i.e, here the cache is not uninitialized) goes
// megamorphic.
- __ CompareRoot(r4, Heap::kUninitializedSymbolRootIndex);
- __ b(eq, &initialize);
+ __ CompareRoot(r7, Heap::kUninitializedSymbolRootIndex);
+ __ beq(&initialize);
// MegamorphicSentinel is an immortal immovable object (undefined) so no
// write-barrier is needed.
__ bind(&megamorphic);
- __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
+ __ SmiToPtrArrayOffset(r7, r6);
+ __ add(r7, r5, r7);
__ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex);
- __ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize));
+ __ StoreP(ip, FieldMemOperand(r7, FixedArray::kHeaderSize), r0);
__ jmp(&done);
// An uninitialized cache is patched with the function
__ bind(&initialize);
if (!FLAG_pretenuring_call_new) {
- // Make sure the function is the Array() function
- __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4);
- __ cmp(r1, r4);
- __ b(ne, &not_array_function);
+ // Make sure the function is the Array() function.
+ __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7);
+ __ cmp(r4, r7);
+ __ bne(&not_array_function);
// The target function is the Array constructor,
// Create an AllocationSite if we don't already have it, store it in the
@@ -2757,57 +2844,68 @@ static void GenerateRecordCallTarget(MacroAssembler* masm) {
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Arguments register must be smi-tagged to call out.
- __ SmiTag(r0);
- __ Push(r3, r2, r1, r0);
+ __ SmiTag(r3);
+ __ Push(r6, r5, r4, r3);
CreateAllocationSiteStub create_stub(masm->isolate());
__ CallStub(&create_stub);
- __ Pop(r3, r2, r1, r0);
- __ SmiUntag(r0);
+ __ Pop(r6, r5, r4, r3);
+ __ SmiUntag(r3);
}
__ b(&done);
__ bind(&not_array_function);
}
- __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
- __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
- __ str(r1, MemOperand(r4, 0));
+ __ SmiToPtrArrayOffset(r7, r6);
+ __ add(r7, r5, r7);
+ __ addi(r7, r7, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ StoreP(r4, MemOperand(r7, 0));
- __ Push(r4, r2, r1);
- __ RecordWrite(r2, r4, r1, kLRHasNotBeenSaved, kDontSaveFPRegs,
+ __ Push(r7, r5, r4);
+ __ RecordWrite(r5, r7, r4, kLRHasNotBeenSaved, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
- __ Pop(r4, r2, r1);
+ __ Pop(r7, r5, r4);
__ bind(&done);
}
static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
- // Do not transform the receiver for strict mode functions.
- __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
- __ ldr(r4, FieldMemOperand(r3, SharedFunctionInfo::kCompilerHintsOffset));
- __ tst(r4, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
- kSmiTagSize)));
- __ b(ne, cont);
-
- // Do not transform the receiver for native (Compilerhints already in r3).
- __ tst(r4, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
- __ b(ne, cont);
+ // Do not transform the receiver for strict mode functions and natives.
+ __ LoadP(r6, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
+ __ lwz(r7, FieldMemOperand(r6, SharedFunctionInfo::kCompilerHintsOffset));
+ __ TestBit(r7,
+#if V8_TARGET_ARCH_PPC64
+ SharedFunctionInfo::kStrictModeFunction,
+#else
+ SharedFunctionInfo::kStrictModeFunction + kSmiTagSize,
+#endif
+ r0);
+ __ bne(cont, cr0);
+
+ // Do not transform the receiver for native.
+ __ TestBit(r7,
+#if V8_TARGET_ARCH_PPC64
+ SharedFunctionInfo::kNative,
+#else
+ SharedFunctionInfo::kNative + kSmiTagSize,
+#endif
+ r0);
+ __ bne(cont, cr0);
}
-static void EmitSlowCase(MacroAssembler* masm,
- int argc,
- Label* non_function) {
+static void EmitSlowCase(MacroAssembler* masm, int argc, Label* non_function) {
// Check for function proxy.
- __ cmp(r4, Operand(JS_FUNCTION_PROXY_TYPE));
- __ b(ne, non_function);
- __ push(r1); // put proxy as additional argument
- __ mov(r0, Operand(argc + 1, RelocInfo::NONE32));
- __ mov(r2, Operand::Zero());
- __ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY);
+ STATIC_ASSERT(JS_FUNCTION_PROXY_TYPE < 0xffffu);
+ __ cmpi(r7, Operand(JS_FUNCTION_PROXY_TYPE));
+ __ bne(non_function);
+ __ push(r4); // put proxy as additional argument
+ __ li(r3, Operand(argc + 1));
+ __ li(r5, Operand::Zero());
+ __ GetBuiltinFunction(r4, Builtins::CALL_FUNCTION_PROXY);
{
Handle<Code> adaptor =
masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
@@ -2817,10 +2915,10 @@ static void EmitSlowCase(MacroAssembler* masm,
// CALL_NON_FUNCTION expects the non-function callee as receiver (instead
// of the original receiver from the call site).
__ bind(non_function);
- __ str(r1, MemOperand(sp, argc * kPointerSize));
- __ mov(r0, Operand(argc)); // Set up the number of arguments.
- __ mov(r2, Operand::Zero());
- __ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION);
+ __ StoreP(r4, MemOperand(sp, argc * kPointerSize), r0);
+ __ li(r3, Operand(argc)); // Set up the number of arguments.
+ __ li(r5, Operand::Zero());
+ __ GetBuiltinFunction(r4, Builtins::CALL_NON_FUNCTION);
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
}
@@ -2828,34 +2926,34 @@ static void EmitSlowCase(MacroAssembler* masm,
static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
// Wrap the receiver and patch it back onto the stack.
- { FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL);
- __ Push(r1, r3);
+ {
+ FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL);
+ __ Push(r4, r6);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
- __ pop(r1);
+ __ pop(r4);
}
- __ str(r0, MemOperand(sp, argc * kPointerSize));
- __ jmp(cont);
+ __ StoreP(r3, MemOperand(sp, argc * kPointerSize), r0);
+ __ b(cont);
}
-static void CallFunctionNoFeedback(MacroAssembler* masm,
- int argc, bool needs_checks,
- bool call_as_method) {
- // r1 : the function to call
+static void CallFunctionNoFeedback(MacroAssembler* masm, int argc,
+ bool needs_checks, bool call_as_method) {
+ // r4 : the function to call
Label slow, non_function, wrap, cont;
if (needs_checks) {
// Check that the function is really a JavaScript function.
- // r1: pushed function (to be verified)
- __ JumpIfSmi(r1, &non_function);
+ // r4: pushed function (to be verified)
+ __ JumpIfSmi(r4, &non_function);
// Goto slow case if we do not have a function.
- __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE);
- __ b(ne, &slow);
+ __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE);
+ __ bne(&slow);
}
// Fast-case: Invoke the function now.
- // r1: pushed function
+ // r4: pushed function
ParameterCount actual(argc);
if (call_as_method) {
@@ -2864,20 +2962,20 @@ static void CallFunctionNoFeedback(MacroAssembler* masm,
}
// Compute the receiver in sloppy mode.
- __ ldr(r3, MemOperand(sp, argc * kPointerSize));
+ __ LoadP(r6, MemOperand(sp, argc * kPointerSize), r0);
if (needs_checks) {
- __ JumpIfSmi(r3, &wrap);
- __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE);
- __ b(lt, &wrap);
+ __ JumpIfSmi(r6, &wrap);
+ __ CompareObjectType(r6, r7, r7, FIRST_SPEC_OBJECT_TYPE);
+ __ blt(&wrap);
} else {
- __ jmp(&wrap);
+ __ b(&wrap);
}
__ bind(&cont);
}
- __ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper());
+ __ InvokeFunction(r4, actual, JUMP_FUNCTION, NullCallWrapper());
if (needs_checks) {
// Slow-case: Non-function called.
@@ -2898,101 +2996,105 @@ void CallFunctionStub::Generate(MacroAssembler* masm) {
void CallConstructStub::Generate(MacroAssembler* masm) {
- // r0 : number of arguments
- // r1 : the function to call
- // r2 : feedback vector
- // r3 : (only if r2 is not the megamorphic symbol) slot in feedback
+ // r3 : number of arguments
+ // r4 : the function to call
+ // r5 : feedback vector
+ // r6 : (only if r5 is not the megamorphic symbol) slot in feedback
// vector (Smi)
Label slow, non_function_call;
// Check that the function is not a smi.
- __ JumpIfSmi(r1, &non_function_call);
+ __ JumpIfSmi(r4, &non_function_call);
// Check that the function is a JSFunction.
- __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE);
- __ b(ne, &slow);
+ __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE);
+ __ bne(&slow);
if (RecordCallTarget()) {
GenerateRecordCallTarget(masm);
- __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3));
+ __ SmiToPtrArrayOffset(r8, r6);
+ __ add(r8, r5, r8);
if (FLAG_pretenuring_call_new) {
- // Put the AllocationSite from the feedback vector into r2.
+ // Put the AllocationSite from the feedback vector into r5.
// By adding kPointerSize we encode that we know the AllocationSite
- // entry is at the feedback vector slot given by r3 + 1.
- __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize + kPointerSize));
+ // entry is at the feedback vector slot given by r6 + 1.
+ __ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize + kPointerSize));
} else {
Label feedback_register_initialized;
- // Put the AllocationSite from the feedback vector into r2, or undefined.
- __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize));
- __ ldr(r5, FieldMemOperand(r2, AllocationSite::kMapOffset));
- __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
- __ b(eq, &feedback_register_initialized);
- __ LoadRoot(r2, Heap::kUndefinedValueRootIndex);
+ // Put the AllocationSite from the feedback vector into r5, or undefined.
+ __ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize));
+ __ LoadP(r8, FieldMemOperand(r5, AllocationSite::kMapOffset));
+ __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
+ __ beq(&feedback_register_initialized);
+ __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
__ bind(&feedback_register_initialized);
}
- __ AssertUndefinedOrAllocationSite(r2, r5);
+ __ AssertUndefinedOrAllocationSite(r5, r8);
}
// Jump to the function-specific construct stub.
- Register jmp_reg = r4;
- __ ldr(jmp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
- __ ldr(jmp_reg, FieldMemOperand(jmp_reg,
- SharedFunctionInfo::kConstructStubOffset));
- __ add(pc, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
-
- // r0: number of arguments
- // r1: called object
- // r4: object type
+ Register jmp_reg = r7;
+ __ LoadP(jmp_reg, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
+ __ LoadP(jmp_reg,
+ FieldMemOperand(jmp_reg, SharedFunctionInfo::kConstructStubOffset));
+ __ addi(r0, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
+ __ Jump(r0);
+
+ // r3: number of arguments
+ // r4: called object
+ // r7: object type
Label do_call;
__ bind(&slow);
- __ cmp(r4, Operand(JS_FUNCTION_PROXY_TYPE));
- __ b(ne, &non_function_call);
- __ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
- __ jmp(&do_call);
+ STATIC_ASSERT(JS_FUNCTION_PROXY_TYPE < 0xffffu);
+ __ cmpi(r7, Operand(JS_FUNCTION_PROXY_TYPE));
+ __ bne(&non_function_call);
+ __ GetBuiltinFunction(r4, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
+ __ b(&do_call);
__ bind(&non_function_call);
- __ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
+ __ GetBuiltinFunction(r4, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
__ bind(&do_call);
- // Set expected number of arguments to zero (not changing r0).
- __ mov(r2, Operand::Zero());
+ // Set expected number of arguments to zero (not changing r3).
+ __ li(r5, Operand::Zero());
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
}
static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
- __ ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
- __ ldr(vector, FieldMemOperand(vector,
- JSFunction::kSharedFunctionInfoOffset));
- __ ldr(vector, FieldMemOperand(vector,
- SharedFunctionInfo::kFeedbackVectorOffset));
+ __ LoadP(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ __ LoadP(vector,
+ FieldMemOperand(vector, JSFunction::kSharedFunctionInfoOffset));
+ __ LoadP(vector,
+ FieldMemOperand(vector, SharedFunctionInfo::kFeedbackVectorOffset));
}
void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
- // r1 - function
- // r3 - slot id
+ // r4 - function
+ // r6 - slot id
Label miss;
int argc = state_.arg_count();
ParameterCount actual(argc);
- EmitLoadTypeFeedbackVector(masm, r2);
+ EmitLoadTypeFeedbackVector(masm, r5);
- __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4);
- __ cmp(r1, r4);
- __ b(ne, &miss);
+ __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7);
+ __ cmp(r4, r7);
+ __ bne(&miss);
- __ mov(r0, Operand(arg_count()));
- __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
- __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize));
+ __ mov(r3, Operand(arg_count()));
+ __ SmiToPtrArrayOffset(r7, r6);
+ __ add(r7, r5, r7);
+ __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize));
- // Verify that r4 contains an AllocationSite
- __ ldr(r5, FieldMemOperand(r4, HeapObject::kMapOffset));
- __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
- __ b(ne, &miss);
+ // Verify that r7 contains an AllocationSite
+ __ LoadP(r8, FieldMemOperand(r7, HeapObject::kMapOffset));
+ __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
+ __ bne(&miss);
- __ mov(r2, r4);
+ __ mr(r5, r7);
ArrayConstructorStub stub(masm->isolate(), arg_count());
__ TailCallStub(&stub);
@@ -3000,10 +3102,7 @@ void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
GenerateMiss(masm, IC::kCallIC_Customization_Miss);
// The slow case, we need this no matter what to complete a call after a miss.
- CallFunctionNoFeedback(masm,
- arg_count(),
- true,
- CallAsMethod());
+ CallFunctionNoFeedback(masm, arg_count(), true, CallAsMethod());
// Unreachable.
__ stop("Unexpected code address");
@@ -3011,36 +3110,37 @@ void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
void CallICStub::Generate(MacroAssembler* masm) {
- // r1 - function
- // r3 - slot id (Smi)
+ // r4 - function
+ // r6 - slot id (Smi)
Label extra_checks_or_miss, slow_start;
Label slow, non_function, wrap, cont;
Label have_js_function;
int argc = state_.arg_count();
ParameterCount actual(argc);
- EmitLoadTypeFeedbackVector(masm, r2);
+ EmitLoadTypeFeedbackVector(masm, r5);
- // The checks. First, does r1 match the recorded monomorphic target?
- __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
- __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize));
- __ cmp(r1, r4);
- __ b(ne, &extra_checks_or_miss);
+ // The checks. First, does r4 match the recorded monomorphic target?
+ __ SmiToPtrArrayOffset(r7, r6);
+ __ add(r7, r5, r7);
+ __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize));
+ __ cmp(r4, r7);
+ __ bne(&extra_checks_or_miss);
__ bind(&have_js_function);
if (state_.CallAsMethod()) {
EmitContinueIfStrictOrNative(masm, &cont);
// Compute the receiver in sloppy mode.
- __ ldr(r3, MemOperand(sp, argc * kPointerSize));
+ __ LoadP(r6, MemOperand(sp, argc * kPointerSize), r0);
- __ JumpIfSmi(r3, &wrap);
- __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE);
- __ b(lt, &wrap);
+ __ JumpIfSmi(r6, &wrap);
+ __ CompareObjectType(r6, r7, r7, FIRST_SPEC_OBJECT_TYPE);
+ __ blt(&wrap);
__ bind(&cont);
}
- __ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper());
+ __ InvokeFunction(r4, actual, JUMP_FUNCTION, NullCallWrapper());
__ bind(&slow);
EmitSlowCase(masm, argc, &non_function);
@@ -3053,20 +3153,21 @@ void CallICStub::Generate(MacroAssembler* masm) {
__ bind(&extra_checks_or_miss);
Label miss;
- __ CompareRoot(r4, Heap::kMegamorphicSymbolRootIndex);
- __ b(eq, &slow_start);
- __ CompareRoot(r4, Heap::kUninitializedSymbolRootIndex);
- __ b(eq, &miss);
+ __ CompareRoot(r7, Heap::kMegamorphicSymbolRootIndex);
+ __ beq(&slow_start);
+ __ CompareRoot(r7, Heap::kUninitializedSymbolRootIndex);
+ __ beq(&miss);
if (!FLAG_trace_ic) {
// We are going megamorphic. If the feedback is a JSFunction, it is fine
// to handle it here. More complex cases are dealt with in the runtime.
- __ AssertNotSmi(r4);
- __ CompareObjectType(r4, r5, r5, JS_FUNCTION_TYPE);
- __ b(ne, &miss);
- __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3));
+ __ AssertNotSmi(r7);
+ __ CompareObjectType(r7, r8, r8, JS_FUNCTION_TYPE);
+ __ bne(&miss);
+ __ SmiToPtrArrayOffset(r7, r6);
+ __ add(r7, r5, r7);
__ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex);
- __ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize));
+ __ StoreP(ip, FieldMemOperand(r7, FixedArray::kHeaderSize), r0);
__ jmp(&slow_start);
}
@@ -3077,33 +3178,32 @@ void CallICStub::Generate(MacroAssembler* masm) {
// the slow case
__ bind(&slow_start);
// Check that the function is really a JavaScript function.
- // r1: pushed function (to be verified)
- __ JumpIfSmi(r1, &non_function);
+ // r4: pushed function (to be verified)
+ __ JumpIfSmi(r4, &non_function);
// Goto slow case if we do not have a function.
- __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE);
- __ b(ne, &slow);
- __ jmp(&have_js_function);
+ __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE);
+ __ bne(&slow);
+ __ b(&have_js_function);
}
void CallICStub::GenerateMiss(MacroAssembler* masm, IC::UtilityId id) {
// Get the receiver of the function from the stack; 1 ~ return address.
- __ ldr(r4, MemOperand(sp, (state_.arg_count() + 1) * kPointerSize));
+ __ LoadP(r7, MemOperand(sp, (state_.arg_count() + 1) * kPointerSize), r0);
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Push the receiver and the function and feedback info.
- __ Push(r4, r1, r2, r3);
+ __ Push(r7, r4, r5, r6);
// Call the entry.
- ExternalReference miss = ExternalReference(IC_Utility(id),
- masm->isolate());
+ ExternalReference miss = ExternalReference(IC_Utility(id), masm->isolate());
__ CallExternalReference(miss, 4);
- // Move result to edi and exit the internal frame.
- __ mov(r1, r0);
+ // Move result to r4 and exit the internal frame.
+ __ mr(r4, r3);
}
}
@@ -3119,27 +3219,24 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
__ JumpIfSmi(object_, receiver_not_string_);
// Fetch the instance type of the receiver into result register.
- __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
- __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
+ __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
+ __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
// If the receiver is not a string trigger the non-string case.
- __ tst(result_, Operand(kIsNotStringMask));
- __ b(ne, receiver_not_string_);
+ __ andi(r0, result_, Operand(kIsNotStringMask));
+ __ bne(receiver_not_string_, cr0);
// If the index is non-smi trigger the non-smi case.
__ JumpIfNotSmi(index_, &index_not_smi_);
__ bind(&got_smi_index_);
// Check for index out of range.
- __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset));
- __ cmp(ip, Operand(index_));
- __ b(ls, index_out_of_range_);
+ __ LoadP(ip, FieldMemOperand(object_, String::kLengthOffset));
+ __ cmpl(ip, index_);
+ __ ble(index_out_of_range_);
__ SmiUntag(index_);
- StringCharLoadGenerator::Generate(masm,
- object_,
- index_,
- result_,
+ StringCharLoadGenerator::Generate(masm, object_, index_, result_,
&call_runtime_);
__ SmiTag(result_);
@@ -3148,17 +3245,13 @@ void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
void StringCharCodeAtGenerator::GenerateSlow(
- MacroAssembler* masm,
- const RuntimeCallHelper& call_helper) {
+ MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
__ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
// Index is not a smi.
__ bind(&index_not_smi_);
// If index is a heap number, try converting it to an integer.
- __ CheckMap(index_,
- result_,
- Heap::kHeapNumberMapRootIndex,
- index_not_number_,
+ __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_,
DONT_DO_SMI_CHECK);
call_helper.BeforeCall(masm);
__ push(object_);
@@ -3172,16 +3265,16 @@ void StringCharCodeAtGenerator::GenerateSlow(
}
// Save the conversion result before the pop instructions below
// have a chance to overwrite it.
- __ Move(index_, r0);
+ __ Move(index_, r3);
__ pop(object_);
// Reload the instance type.
- __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
- __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
+ __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
+ __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
call_helper.AfterCall(masm);
// If index is still not a smi, it must be out of range.
__ JumpIfNotSmi(index_, index_out_of_range_);
// Otherwise, return to the fast path.
- __ jmp(&got_smi_index_);
+ __ b(&got_smi_index_);
// Call runtime. We get here when the receiver is a string and the
// index is a number, but the code of getting the actual character
@@ -3191,9 +3284,9 @@ void StringCharCodeAtGenerator::GenerateSlow(
__ SmiTag(index_);
__ Push(object_, index_);
__ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
- __ Move(result_, r0);
+ __ Move(result_, r3);
call_helper.AfterCall(masm);
- __ jmp(&exit_);
+ __ b(&exit_);
__ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
}
@@ -3204,122 +3297,130 @@ void StringCharCodeAtGenerator::GenerateSlow(
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
// Fast case of Heap::LookupSingleCharacterStringFromCode.
- STATIC_ASSERT(kSmiTag == 0);
- STATIC_ASSERT(kSmiShiftSize == 0);
DCHECK(IsPowerOf2(String::kMaxOneByteCharCode + 1));
- __ tst(code_,
- Operand(kSmiTagMask |
- ((~String::kMaxOneByteCharCode) << kSmiTagSize)));
- __ b(ne, &slow_case_);
+ __ LoadSmiLiteral(r0, Smi::FromInt(~String::kMaxOneByteCharCode));
+ __ ori(r0, r0, Operand(kSmiTagMask));
+ __ and_(r0, code_, r0);
+ __ cmpi(r0, Operand::Zero());
+ __ bne(&slow_case_);
__ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
// At this point code register contains smi tagged ASCII char code.
- __ add(result_, result_, Operand::PointerOffsetFromSmiKey(code_));
- __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
+ __ mr(r0, code_);
+ __ SmiToPtrArrayOffset(code_, code_);
+ __ add(result_, result_, code_);
+ __ mr(code_, r0);
+ __ LoadP(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
__ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
- __ b(eq, &slow_case_);
+ __ beq(&slow_case_);
__ bind(&exit_);
}
void StringCharFromCodeGenerator::GenerateSlow(
- MacroAssembler* masm,
- const RuntimeCallHelper& call_helper) {
+ MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
__ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
__ bind(&slow_case_);
call_helper.BeforeCall(masm);
__ push(code_);
__ CallRuntime(Runtime::kCharFromCode, 1);
- __ Move(result_, r0);
+ __ Move(result_, r3);
call_helper.AfterCall(masm);
- __ jmp(&exit_);
+ __ b(&exit_);
__ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
}
-enum CopyCharactersFlags {
- COPY_ASCII = 1,
- DEST_ALWAYS_ALIGNED = 2
-};
+enum CopyCharactersFlags { COPY_ASCII = 1, DEST_ALWAYS_ALIGNED = 2 };
-void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
- Register dest,
- Register src,
- Register count,
+void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest,
+ Register src, Register count,
Register scratch,
String::Encoding encoding) {
if (FLAG_debug_code) {
// Check that destination is word aligned.
- __ tst(dest, Operand(kPointerAlignmentMask));
- __ Check(eq, kDestinationOfCopyNotAligned);
+ __ andi(r0, dest, Operand(kPointerAlignmentMask));
+ __ Check(eq, kDestinationOfCopyNotAligned, cr0);
}
- // Assumes word reads and writes are little endian.
// Nothing to do for zero characters.
Label done;
if (encoding == String::TWO_BYTE_ENCODING) {
- __ add(count, count, Operand(count), SetCC);
+ // double the length
+ __ add(count, count, count, LeaveOE, SetRC);
+ __ beq(&done, cr0);
+ } else {
+ __ cmpi(count, Operand::Zero());
+ __ beq(&done);
}
- Register limit = count; // Read until dest equals this.
- __ add(limit, dest, Operand(count));
-
- Label loop_entry, loop;
- // Copy bytes from src to dest until dest hits limit.
- __ b(&loop_entry);
- __ bind(&loop);
- __ ldrb(scratch, MemOperand(src, 1, PostIndex), lt);
- __ strb(scratch, MemOperand(dest, 1, PostIndex));
- __ bind(&loop_entry);
- __ cmp(dest, Operand(limit));
- __ b(lt, &loop);
+ // Copy count bytes from src to dst.
+ Label byte_loop;
+ __ mtctr(count);
+ __ bind(&byte_loop);
+ __ lbz(scratch, MemOperand(src));
+ __ addi(src, src, Operand(1));
+ __ stb(scratch, MemOperand(dest));
+ __ addi(dest, dest, Operand(1));
+ __ bdnz(&byte_loop);
__ bind(&done);
}
-void StringHelper::GenerateHashInit(MacroAssembler* masm,
- Register hash,
- Register character) {
+void StringHelper::GenerateHashInit(MacroAssembler* masm, Register hash,
+ Register character, Register scratch) {
// hash = character + (character << 10);
__ LoadRoot(hash, Heap::kHashSeedRootIndex);
// Untag smi seed and add the character.
- __ add(hash, character, Operand(hash, LSR, kSmiTagSize));
+ __ SmiUntag(scratch, hash);
+ __ add(hash, character, scratch);
// hash += hash << 10;
- __ add(hash, hash, Operand(hash, LSL, 10));
+ __ slwi(scratch, hash, Operand(10));
+ __ add(hash, hash, scratch);
// hash ^= hash >> 6;
- __ eor(hash, hash, Operand(hash, LSR, 6));
+ __ srwi(scratch, hash, Operand(6));
+ __ xor_(hash, hash, scratch);
}
-void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
- Register hash,
- Register character) {
+void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, Register hash,
+ Register character,
+ Register scratch) {
// hash += character;
- __ add(hash, hash, Operand(character));
+ __ add(hash, hash, character);
// hash += hash << 10;
- __ add(hash, hash, Operand(hash, LSL, 10));
+ __ slwi(scratch, hash, Operand(10));
+ __ add(hash, hash, scratch);
// hash ^= hash >> 6;
- __ eor(hash, hash, Operand(hash, LSR, 6));
+ __ srwi(scratch, hash, Operand(6));
+ __ xor_(hash, hash, scratch);
}
-void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
- Register hash) {
+void StringHelper::GenerateHashGetHash(MacroAssembler* masm, Register hash,
+ Register scratch) {
// hash += hash << 3;
- __ add(hash, hash, Operand(hash, LSL, 3));
+ __ slwi(scratch, hash, Operand(3));
+ __ add(hash, hash, scratch);
// hash ^= hash >> 11;
- __ eor(hash, hash, Operand(hash, LSR, 11));
+ __ srwi(scratch, hash, Operand(11));
+ __ xor_(hash, hash, scratch);
// hash += hash << 15;
- __ add(hash, hash, Operand(hash, LSL, 15));
+ __ slwi(scratch, hash, Operand(15));
+ __ add(hash, hash, scratch);
- __ and_(hash, hash, Operand(String::kHashBitMask), SetCC);
+ __ mov(scratch, Operand(String::kHashBitMask));
+ __ and_(hash, hash, scratch, SetRC);
// if (hash == 0) hash = 27;
- __ mov(hash, Operand(StringHasher::kZeroHash), LeaveCC, eq);
+ Label done;
+ __ bne(&done, cr0);
+ __ li(hash, Operand(StringHasher::kZeroHash));
+ __ bind(&done);
}
@@ -3343,98 +3444,97 @@ void SubStringStub::Generate(MacroAssembler* masm) {
const int kFromOffset = 1 * kPointerSize;
const int kStringOffset = 2 * kPointerSize;
- __ Ldrd(r2, r3, MemOperand(sp, kToOffset));
- STATIC_ASSERT(kFromOffset == kToOffset + 4);
- STATIC_ASSERT(kSmiTag == 0);
- STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
-
- // Arithmetic shift right by one un-smi-tags. In this case we rotate right
- // instead because we bail out on non-smi values: ROR and ASR are equivalent
- // for smis but they set the flags in a way that's easier to optimize.
- __ mov(r2, Operand(r2, ROR, 1), SetCC);
- __ mov(r3, Operand(r3, ROR, 1), SetCC, cc);
- // If either to or from had the smi tag bit set, then C is set now, and N
- // has the same value: we rotated by 1, so the bottom bit is now the top bit.
- // We want to bailout to runtime here if From is negative. In that case, the
- // next instruction is not executed and we fall through to bailing out to
- // runtime.
- // Executed if both r2 and r3 are untagged integers.
- __ sub(r2, r2, Operand(r3), SetCC, cc);
- // One of the above un-smis or the above SUB could have set N==1.
- __ b(mi, &runtime); // Either "from" or "to" is not an smi, or from > to.
+ __ LoadP(r5, MemOperand(sp, kToOffset));
+ __ LoadP(r6, MemOperand(sp, kFromOffset));
+
+ // If either to or from had the smi tag bit set, then fail to generic runtime
+ __ JumpIfNotSmi(r5, &runtime);
+ __ JumpIfNotSmi(r6, &runtime);
+ __ SmiUntag(r5);
+ __ SmiUntag(r6, SetRC);
+ // Both r5 and r6 are untagged integers.
+
+ // We want to bailout to runtime here if From is negative.
+ __ blt(&runtime, cr0); // From < 0.
+
+ __ cmpl(r6, r5);
+ __ bgt(&runtime); // Fail if from > to.
+ __ sub(r5, r5, r6);
// Make sure first argument is a string.
- __ ldr(r0, MemOperand(sp, kStringOffset));
- __ JumpIfSmi(r0, &runtime);
- Condition is_string = masm->IsObjectStringType(r0, r1);
- __ b(NegateCondition(is_string), &runtime);
+ __ LoadP(r3, MemOperand(sp, kStringOffset));
+ __ JumpIfSmi(r3, &runtime);
+ Condition is_string = masm->IsObjectStringType(r3, r4);
+ __ b(NegateCondition(is_string), &runtime, cr0);
Label single_char;
- __ cmp(r2, Operand(1));
+ __ cmpi(r5, Operand(1));
__ b(eq, &single_char);
// Short-cut for the case of trivial substring.
- Label return_r0;
- // r0: original string
- // r2: result string length
- __ ldr(r4, FieldMemOperand(r0, String::kLengthOffset));
- __ cmp(r2, Operand(r4, ASR, 1));
+ Label return_r3;
+ // r3: original string
+ // r5: result string length
+ __ LoadP(r7, FieldMemOperand(r3, String::kLengthOffset));
+ __ SmiUntag(r0, r7);
+ __ cmpl(r5, r0);
// Return original string.
- __ b(eq, &return_r0);
+ __ beq(&return_r3);
// Longer than original string's length or negative: unsafe arguments.
- __ b(hi, &runtime);
+ __ bgt(&runtime);
// Shorter than original string's length: an actual substring.
// Deal with different string types: update the index if necessary
- // and put the underlying string into r5.
- // r0: original string
- // r1: instance type
- // r2: length
- // r3: from index (untagged)
+ // and put the underlying string into r8.
+ // r3: original string
+ // r4: instance type
+ // r5: length
+ // r6: from index (untagged)
Label underlying_unpacked, sliced_string, seq_or_external_string;
// If the string is not indirect, it can only be sequential or external.
STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
STATIC_ASSERT(kIsIndirectStringMask != 0);
- __ tst(r1, Operand(kIsIndirectStringMask));
- __ b(eq, &seq_or_external_string);
+ __ andi(r0, r4, Operand(kIsIndirectStringMask));
+ __ beq(&seq_or_external_string, cr0);
- __ tst(r1, Operand(kSlicedNotConsMask));
- __ b(ne, &sliced_string);
+ __ andi(r0, r4, Operand(kSlicedNotConsMask));
+ __ bne(&sliced_string, cr0);
// Cons string. Check whether it is flat, then fetch first part.
- __ ldr(r5, FieldMemOperand(r0, ConsString::kSecondOffset));
- __ CompareRoot(r5, Heap::kempty_stringRootIndex);
- __ b(ne, &runtime);
- __ ldr(r5, FieldMemOperand(r0, ConsString::kFirstOffset));
+ __ LoadP(r8, FieldMemOperand(r3, ConsString::kSecondOffset));
+ __ CompareRoot(r8, Heap::kempty_stringRootIndex);
+ __ bne(&runtime);
+ __ LoadP(r8, FieldMemOperand(r3, ConsString::kFirstOffset));
// Update instance type.
- __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
- __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
- __ jmp(&underlying_unpacked);
+ __ LoadP(r4, FieldMemOperand(r8, HeapObject::kMapOffset));
+ __ lbz(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
+ __ b(&underlying_unpacked);
__ bind(&sliced_string);
// Sliced string. Fetch parent and correct start index by offset.
- __ ldr(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
- __ ldr(r4, FieldMemOperand(r0, SlicedString::kOffsetOffset));
- __ add(r3, r3, Operand(r4, ASR, 1)); // Add offset to index.
+ __ LoadP(r8, FieldMemOperand(r3, SlicedString::kParentOffset));
+ __ LoadP(r7, FieldMemOperand(r3, SlicedString::kOffsetOffset));
+ __ SmiUntag(r4, r7);
+ __ add(r6, r6, r4); // Add offset to index.
// Update instance type.
- __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset));
- __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset));
- __ jmp(&underlying_unpacked);
+ __ LoadP(r4, FieldMemOperand(r8, HeapObject::kMapOffset));
+ __ lbz(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
+ __ b(&underlying_unpacked);
__ bind(&seq_or_external_string);
// Sequential or external string. Just move string to the expected register.
- __ mov(r5, r0);
+ __ mr(r8, r3);
__ bind(&underlying_unpacked);
if (FLAG_string_slices) {
Label copy_routine;
- // r5: underlying subject string
- // r1: instance type of underlying subject string
- // r2: length
- // r3: adjusted start index (untagged)
- __ cmp(r2, Operand(SlicedString::kMinLength));
+ // r8: underlying subject string
+ // r4: instance type of underlying subject string
+ // r5: length
+ // r6: adjusted start index (untagged)
+ __ cmpi(r5, Operand(SlicedString::kMinLength));
// Short slice. Copy instead of slicing.
- __ b(lt, &copy_routine);
+ __ blt(&copy_routine);
// Allocate new sliced string. At this point we do not reload the instance
// type including the string encoding because we simply rely on the info
// provided by the original string. It does not matter if the original
@@ -3443,89 +3543,89 @@ void SubStringStub::Generate(MacroAssembler* masm) {
Label two_byte_slice, set_slice_header;
STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
- __ tst(r1, Operand(kStringEncodingMask));
- __ b(eq, &two_byte_slice);
- __ AllocateAsciiSlicedString(r0, r2, r6, r4, &runtime);
- __ jmp(&set_slice_header);
+ __ andi(r0, r4, Operand(kStringEncodingMask));
+ __ beq(&two_byte_slice, cr0);
+ __ AllocateAsciiSlicedString(r3, r5, r9, r10, &runtime);
+ __ b(&set_slice_header);
__ bind(&two_byte_slice);
- __ AllocateTwoByteSlicedString(r0, r2, r6, r4, &runtime);
+ __ AllocateTwoByteSlicedString(r3, r5, r9, r10, &runtime);
__ bind(&set_slice_header);
- __ mov(r3, Operand(r3, LSL, 1));
- __ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset));
- __ str(r3, FieldMemOperand(r0, SlicedString::kOffsetOffset));
- __ jmp(&return_r0);
+ __ SmiTag(r6);
+ __ StoreP(r8, FieldMemOperand(r3, SlicedString::kParentOffset), r0);
+ __ StoreP(r6, FieldMemOperand(r3, SlicedString::kOffsetOffset), r0);
+ __ b(&return_r3);
__ bind(&copy_routine);
}
- // r5: underlying subject string
- // r1: instance type of underlying subject string
- // r2: length
- // r3: adjusted start index (untagged)
+ // r8: underlying subject string
+ // r4: instance type of underlying subject string
+ // r5: length
+ // r6: adjusted start index (untagged)
Label two_byte_sequential, sequential_string, allocate_result;
STATIC_ASSERT(kExternalStringTag != 0);
STATIC_ASSERT(kSeqStringTag == 0);
- __ tst(r1, Operand(kExternalStringTag));
- __ b(eq, &sequential_string);
+ __ andi(r0, r4, Operand(kExternalStringTag));
+ __ beq(&sequential_string, cr0);
// Handle external string.
// Rule out short external strings.
STATIC_ASSERT(kShortExternalStringTag != 0);
- __ tst(r1, Operand(kShortExternalStringTag));
- __ b(ne, &runtime);
- __ ldr(r5, FieldMemOperand(r5, ExternalString::kResourceDataOffset));
- // r5 already points to the first character of underlying string.
- __ jmp(&allocate_result);
+ __ andi(r0, r4, Operand(kShortExternalStringTag));
+ __ bne(&runtime, cr0);
+ __ LoadP(r8, FieldMemOperand(r8, ExternalString::kResourceDataOffset));
+ // r8 already points to the first character of underlying string.
+ __ b(&allocate_result);
__ bind(&sequential_string);
// Locate first character of underlying subject string.
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
- __ add(r5, r5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+ __ addi(r8, r8, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ bind(&allocate_result);
// Sequential acii string. Allocate the result.
STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
- __ tst(r1, Operand(kStringEncodingMask));
- __ b(eq, &two_byte_sequential);
+ __ andi(r0, r4, Operand(kStringEncodingMask));
+ __ beq(&two_byte_sequential, cr0);
// Allocate and copy the resulting ASCII string.
- __ AllocateAsciiString(r0, r2, r4, r6, r1, &runtime);
+ __ AllocateAsciiString(r3, r5, r7, r9, r10, &runtime);
// Locate first character of substring to copy.
- __ add(r5, r5, r3);
+ __ add(r8, r8, r6);
// Locate first character of result.
- __ add(r1, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+ __ addi(r4, r3, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
- // r0: result string
- // r1: first character of result string
- // r2: result string length
- // r5: first character of substring to copy
+ // r3: result string
+ // r4: first character of result string
+ // r5: result string length
+ // r8: first character of substring to copy
STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
- StringHelper::GenerateCopyCharacters(
- masm, r1, r5, r2, r3, String::ONE_BYTE_ENCODING);
- __ jmp(&return_r0);
+ StringHelper::GenerateCopyCharacters(masm, r4, r8, r5, r6,
+ String::ONE_BYTE_ENCODING);
+ __ b(&return_r3);
// Allocate and copy the resulting two-byte string.
__ bind(&two_byte_sequential);
- __ AllocateTwoByteString(r0, r2, r4, r6, r1, &runtime);
+ __ AllocateTwoByteString(r3, r5, r7, r9, r10, &runtime);
// Locate first character of substring to copy.
- STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
- __ add(r5, r5, Operand(r3, LSL, 1));
+ __ ShiftLeftImm(r4, r6, Operand(1));
+ __ add(r8, r8, r4);
// Locate first character of result.
- __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
+ __ addi(r4, r3, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
- // r0: result string.
- // r1: first character of result.
- // r2: result length.
- // r5: first character of substring to copy.
+ // r3: result string.
+ // r4: first character of result.
+ // r5: result length.
+ // r8: first character of substring to copy.
STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
- StringHelper::GenerateCopyCharacters(
- masm, r1, r5, r2, r3, String::TWO_BYTE_ENCODING);
+ StringHelper::GenerateCopyCharacters(masm, r4, r8, r5, r6,
+ String::TWO_BYTE_ENCODING);
- __ bind(&return_r0);
+ __ bind(&return_r3);
Counters* counters = isolate()->counters();
- __ IncrementCounter(counters->sub_string_native(), 1, r3, r4);
+ __ IncrementCounter(counters->sub_string_native(), 1, r6, r7);
__ Drop(3);
__ Ret();
@@ -3534,13 +3634,13 @@ void SubStringStub::Generate(MacroAssembler* masm) {
__ TailCallRuntime(Runtime::kSubString, 3, 1);
__ bind(&single_char);
- // r0: original string
- // r1: instance type
- // r2: length
- // r3: from index (untagged)
- __ SmiTag(r3, r3);
- StringCharAtGenerator generator(
- r0, r3, r2, r0, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER);
+ // r3: original string
+ // r4: instance type
+ // r5: length
+ // r6: from index (untagged)
+ __ SmiTag(r6, r6);
+ StringCharAtGenerator generator(r3, r6, r5, r3, &runtime, &runtime, &runtime,
+ STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm);
__ Drop(3);
__ Ret();
@@ -3552,107 +3652,105 @@ void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
- Register scratch2,
- Register scratch3) {
+ Register scratch2) {
Register length = scratch1;
// Compare lengths.
Label strings_not_equal, check_zero_length;
- __ ldr(length, FieldMemOperand(left, String::kLengthOffset));
- __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
+ __ LoadP(length, FieldMemOperand(left, String::kLengthOffset));
+ __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
__ cmp(length, scratch2);
- __ b(eq, &check_zero_length);
+ __ beq(&check_zero_length);
__ bind(&strings_not_equal);
- __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL)));
+ __ LoadSmiLiteral(r3, Smi::FromInt(NOT_EQUAL));
__ Ret();
// Check if the length is zero.
Label compare_chars;
__ bind(&check_zero_length);
STATIC_ASSERT(kSmiTag == 0);
- __ cmp(length, Operand::Zero());
- __ b(ne, &compare_chars);
- __ mov(r0, Operand(Smi::FromInt(EQUAL)));
+ __ cmpi(length, Operand::Zero());
+ __ bne(&compare_chars);
+ __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
__ Ret();
// Compare characters.
__ bind(&compare_chars);
- GenerateAsciiCharsCompareLoop(masm,
- left, right, length, scratch2, scratch3,
+ GenerateAsciiCharsCompareLoop(masm, left, right, length, scratch2,
&strings_not_equal);
// Characters are equal.
- __ mov(r0, Operand(Smi::FromInt(EQUAL)));
+ __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
__ Ret();
}
-void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
- Register left,
- Register right,
- Register scratch1,
- Register scratch2,
- Register scratch3,
- Register scratch4) {
- Label result_not_equal, compare_lengths;
+void StringCompareStub::GenerateCompareFlatAsciiStrings(
+ MacroAssembler* masm, Register left, Register right, Register scratch1,
+ Register scratch2, Register scratch3) {
+ Label skip, result_not_equal, compare_lengths;
// Find minimum length and length difference.
- __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
- __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
- __ sub(scratch3, scratch1, Operand(scratch2), SetCC);
+ __ LoadP(scratch1, FieldMemOperand(left, String::kLengthOffset));
+ __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
+ __ sub(scratch3, scratch1, scratch2, LeaveOE, SetRC);
Register length_delta = scratch3;
- __ mov(scratch1, scratch2, LeaveCC, gt);
+ __ ble(&skip, cr0);
+ __ mr(scratch1, scratch2);
+ __ bind(&skip);
Register min_length = scratch1;
STATIC_ASSERT(kSmiTag == 0);
- __ cmp(min_length, Operand::Zero());
- __ b(eq, &compare_lengths);
+ __ cmpi(min_length, Operand::Zero());
+ __ beq(&compare_lengths);
// Compare loop.
- GenerateAsciiCharsCompareLoop(masm,
- left, right, min_length, scratch2, scratch4,
+ GenerateAsciiCharsCompareLoop(masm, left, right, min_length, scratch2,
&result_not_equal);
// Compare lengths - strings up to min-length are equal.
__ bind(&compare_lengths);
DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
// Use length_delta as result if it's zero.
- __ mov(r0, Operand(length_delta), SetCC);
+ __ mr(r3, length_delta);
+ __ cmpi(r3, Operand::Zero());
__ bind(&result_not_equal);
// Conditionally update the result based either on length_delta or
// the last comparion performed in the loop above.
- __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt);
- __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt);
+ Label less_equal, equal;
+ __ ble(&less_equal);
+ __ LoadSmiLiteral(r3, Smi::FromInt(GREATER));
+ __ Ret();
+ __ bind(&less_equal);
+ __ beq(&equal);
+ __ LoadSmiLiteral(r3, Smi::FromInt(LESS));
+ __ bind(&equal);
__ Ret();
}
void StringCompareStub::GenerateAsciiCharsCompareLoop(
- MacroAssembler* masm,
- Register left,
- Register right,
- Register length,
- Register scratch1,
- Register scratch2,
- Label* chars_not_equal) {
+ MacroAssembler* masm, Register left, Register right, Register length,
+ Register scratch1, Label* chars_not_equal) {
// Change index to run from -length to -1 by adding length to string
// start. This means that loop ends when index reaches zero, which
// doesn't need an additional compare.
__ SmiUntag(length);
- __ add(scratch1, length,
- Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
- __ add(left, left, Operand(scratch1));
- __ add(right, right, Operand(scratch1));
- __ rsb(length, length, Operand::Zero());
+ __ addi(scratch1, length,
+ Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
+ __ add(left, left, scratch1);
+ __ add(right, right, scratch1);
+ __ subfic(length, length, Operand::Zero());
Register index = length; // index = -length;
// Compare loop.
Label loop;
__ bind(&loop);
- __ ldrb(scratch1, MemOperand(left, index));
- __ ldrb(scratch2, MemOperand(right, index));
- __ cmp(scratch1, scratch2);
- __ b(ne, chars_not_equal);
- __ add(index, index, Operand(1), SetCC);
- __ b(ne, &loop);
+ __ lbzx(scratch1, MemOperand(left, index));
+ __ lbzx(r0, MemOperand(right, index));
+ __ cmp(scratch1, r0);
+ __ bne(chars_not_equal);
+ __ addi(index, index, Operand(1));
+ __ cmpi(index, Operand::Zero());
+ __ bne(&loop);
}
@@ -3664,27 +3762,28 @@ void StringCompareStub::Generate(MacroAssembler* masm) {
// Stack frame on entry.
// sp[0]: right string
// sp[4]: left string
- __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1.
+ __ LoadP(r3, MemOperand(sp)); // Load right in r3, left in r4.
+ __ LoadP(r4, MemOperand(sp, kPointerSize));
Label not_same;
- __ cmp(r0, r1);
- __ b(ne, &not_same);
+ __ cmp(r3, r4);
+ __ bne(&not_same);
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
- __ mov(r0, Operand(Smi::FromInt(EQUAL)));
- __ IncrementCounter(counters->string_compare_native(), 1, r1, r2);
- __ add(sp, sp, Operand(2 * kPointerSize));
+ __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
+ __ IncrementCounter(counters->string_compare_native(), 1, r4, r5);
+ __ addi(sp, sp, Operand(2 * kPointerSize));
__ Ret();
__ bind(&not_same);
// Check that both objects are sequential ASCII strings.
- __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime);
+ __ JumpIfNotBothSequentialAsciiStrings(r4, r3, r5, r6, &runtime);
// Compare flat ASCII strings natively. Remove arguments from stack first.
- __ IncrementCounter(counters->string_compare_native(), 1, r2, r3);
- __ add(sp, sp, Operand(2 * kPointerSize));
- GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5);
+ __ IncrementCounter(counters->string_compare_native(), 1, r5, r6);
+ __ addi(sp, sp, Operand(2 * kPointerSize));
+ GenerateCompareFlatAsciiStrings(masm, r4, r3, r5, r6, r7);
// Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
@@ -3695,25 +3794,25 @@ void StringCompareStub::Generate(MacroAssembler* masm) {
void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
- // -- r1 : left
- // -- r0 : right
+ // -- r4 : left
+ // -- r3 : right
// -- lr : return address
// -----------------------------------
- // Load r2 with the allocation site. We stick an undefined dummy value here
+ // Load r5 with the allocation site. We stick an undefined dummy value here
// and replace it with the real allocation site later when we instantiate this
// stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
- __ Move(r2, handle(isolate()->heap()->undefined_value()));
+ __ Move(r5, handle(isolate()->heap()->undefined_value()));
// Make sure that we actually patched the allocation site.
if (FLAG_debug_code) {
- __ tst(r2, Operand(kSmiTagMask));
- __ Assert(ne, kExpectedAllocationSite);
- __ push(r2);
- __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset));
+ __ TestIfSmi(r5, r0);
+ __ Assert(ne, kExpectedAllocationSite, cr0);
+ __ push(r5);
+ __ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex);
- __ cmp(r2, ip);
- __ pop(r2);
+ __ cmp(r5, ip);
+ __ pop(r5);
__ Assert(eq, kExpectedAllocationSite);
}
@@ -3727,16 +3826,18 @@ void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
DCHECK(state_ == CompareIC::SMI);
Label miss;
- __ orr(r2, r1, r0);
- __ JumpIfNotSmi(r2, &miss);
+ __ orx(r5, r4, r3);
+ __ JumpIfNotSmi(r5, &miss);
if (GetCondition() == eq) {
// For equality we do not care about the sign of the result.
- __ sub(r0, r0, r1, SetCC);
+ // __ sub(r3, r3, r4, SetCC);
+ __ sub(r3, r3, r4);
} else {
// Untag before subtracting to avoid handling overflow.
- __ SmiUntag(r1);
- __ sub(r0, r1, Operand::SmiUntag(r0));
+ __ SmiUntag(r4);
+ __ SmiUntag(r3);
+ __ sub(r3, r4, r3);
}
__ Ret();
@@ -3751,48 +3852,55 @@ void ICCompareStub::GenerateNumbers(MacroAssembler* masm) {
Label generic_stub;
Label unordered, maybe_undefined1, maybe_undefined2;
Label miss;
+ Label equal, less_than;
if (left_ == CompareIC::SMI) {
- __ JumpIfNotSmi(r1, &miss);
+ __ JumpIfNotSmi(r4, &miss);
}
if (right_ == CompareIC::SMI) {
- __ JumpIfNotSmi(r0, &miss);
+ __ JumpIfNotSmi(r3, &miss);
}
// Inlining the double comparison and falling back to the general compare
// stub if NaN is involved.
// Load left and right operand.
Label done, left, left_smi, right_smi;
- __ JumpIfSmi(r0, &right_smi);
- __ CheckMap(r0, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
+ __ JumpIfSmi(r3, &right_smi);
+ __ CheckMap(r3, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
DONT_DO_SMI_CHECK);
- __ sub(r2, r0, Operand(kHeapObjectTag));
- __ vldr(d1, r2, HeapNumber::kValueOffset);
+ __ lfd(d1, FieldMemOperand(r3, HeapNumber::kValueOffset));
__ b(&left);
__ bind(&right_smi);
- __ SmiToDouble(d1, r0);
+ __ SmiToDouble(d1, r3);
__ bind(&left);
- __ JumpIfSmi(r1, &left_smi);
- __ CheckMap(r1, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
+ __ JumpIfSmi(r4, &left_smi);
+ __ CheckMap(r4, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
DONT_DO_SMI_CHECK);
- __ sub(r2, r1, Operand(kHeapObjectTag));
- __ vldr(d0, r2, HeapNumber::kValueOffset);
+ __ lfd(d0, FieldMemOperand(r4, HeapNumber::kValueOffset));
__ b(&done);
__ bind(&left_smi);
- __ SmiToDouble(d0, r1);
+ __ SmiToDouble(d0, r4);
__ bind(&done);
- // Compare operands.
- __ VFPCompareAndSetFlags(d0, d1);
+
+ // Compare operands
+ __ fcmpu(d0, d1);
// Don't base result on status bits when a NaN is involved.
- __ b(vs, &unordered);
+ __ bunordered(&unordered);
// Return a result of -1, 0, or 1, based on status bits.
- __ mov(r0, Operand(EQUAL), LeaveCC, eq);
- __ mov(r0, Operand(LESS), LeaveCC, lt);
- __ mov(r0, Operand(GREATER), LeaveCC, gt);
+ __ beq(&equal);
+ __ blt(&less_than);
+ // assume greater than
+ __ li(r3, Operand(GREATER));
+ __ Ret();
+ __ bind(&equal);
+ __ li(r3, Operand(EQUAL));
+ __ Ret();
+ __ bind(&less_than);
+ __ li(r3, Operand(LESS));
__ Ret();
__ bind(&unordered);
@@ -3803,18 +3911,18 @@ void ICCompareStub::GenerateNumbers(MacroAssembler* masm) {
__ bind(&maybe_undefined1);
if (Token::IsOrderedRelationalCompareOp(op_)) {
- __ CompareRoot(r0, Heap::kUndefinedValueRootIndex);
- __ b(ne, &miss);
- __ JumpIfSmi(r1, &unordered);
- __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE);
- __ b(ne, &maybe_undefined2);
- __ jmp(&unordered);
+ __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
+ __ bne(&miss);
+ __ JumpIfSmi(r4, &unordered);
+ __ CompareObjectType(r4, r5, r5, HEAP_NUMBER_TYPE);
+ __ bne(&maybe_undefined2);
+ __ b(&unordered);
}
__ bind(&maybe_undefined2);
if (Token::IsOrderedRelationalCompareOp(op_)) {
- __ CompareRoot(r1, Heap::kUndefinedValueRootIndex);
- __ b(eq, &unordered);
+ __ CompareRoot(r4, Heap::kUndefinedValueRootIndex);
+ __ beq(&unordered);
}
__ bind(&miss);
@@ -3824,35 +3932,37 @@ void ICCompareStub::GenerateNumbers(MacroAssembler* masm) {
void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) {
DCHECK(state_ == CompareIC::INTERNALIZED_STRING);
- Label miss;
+ Label miss, not_equal;
// Registers containing left and right operands respectively.
- Register left = r1;
- Register right = r0;
- Register tmp1 = r2;
- Register tmp2 = r3;
+ Register left = r4;
+ Register right = r3;
+ Register tmp1 = r5;
+ Register tmp2 = r6;
// Check that both operands are heap objects.
__ JumpIfEitherSmi(left, right, &miss);
- // Check that both operands are internalized strings.
- __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
- __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
- __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
- __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
+ // Check that both operands are symbols.
+ __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
+ __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
+ __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
+ __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
- __ orr(tmp1, tmp1, Operand(tmp2));
- __ tst(tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
- __ b(ne, &miss);
+ __ orx(tmp1, tmp1, tmp2);
+ __ andi(r0, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
+ __ bne(&miss, cr0);
// Internalized strings are compared by identity.
__ cmp(left, right);
- // Make sure r0 is non-zero. At this point input operands are
+ __ bne(&not_equal);
+ // Make sure r3 is non-zero. At this point input operands are
// guaranteed to be non-zero.
- DCHECK(right.is(r0));
+ DCHECK(right.is(r3));
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
- __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
+ __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
+ __ bind(&not_equal);
__ Ret();
__ bind(&miss);
@@ -3866,32 +3976,33 @@ void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) {
Label miss;
// Registers containing left and right operands respectively.
- Register left = r1;
- Register right = r0;
- Register tmp1 = r2;
- Register tmp2 = r3;
+ Register left = r4;
+ Register right = r3;
+ Register tmp1 = r5;
+ Register tmp2 = r6;
// Check that both operands are heap objects.
__ JumpIfEitherSmi(left, right, &miss);
// Check that both operands are unique names. This leaves the instance
// types loaded in tmp1 and tmp2.
- __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
- __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
- __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
- __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
+ __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
+ __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
+ __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
+ __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueName(tmp1, &miss);
__ JumpIfNotUniqueName(tmp2, &miss);
// Unique names are compared by identity.
__ cmp(left, right);
- // Make sure r0 is non-zero. At this point input operands are
+ __ bne(&miss);
+ // Make sure r3 is non-zero. At this point input operands are
// guaranteed to be non-zero.
- DCHECK(right.is(r0));
+ DCHECK(right.is(r3));
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
- __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
+ __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
__ Ret();
__ bind(&miss);
@@ -3901,38 +4012,40 @@ void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) {
void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
DCHECK(state_ == CompareIC::STRING);
- Label miss;
+ Label miss, not_identical, is_symbol;
bool equality = Token::IsEqualityOp(op_);
// Registers containing left and right operands respectively.
- Register left = r1;
- Register right = r0;
- Register tmp1 = r2;
- Register tmp2 = r3;
- Register tmp3 = r4;
- Register tmp4 = r5;
+ Register left = r4;
+ Register right = r3;
+ Register tmp1 = r5;
+ Register tmp2 = r6;
+ Register tmp3 = r7;
+ Register tmp4 = r8;
// Check that both operands are heap objects.
__ JumpIfEitherSmi(left, right, &miss);
// Check that both operands are strings. This leaves the instance
// types loaded in tmp1 and tmp2.
- __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
- __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
- __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
- __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
+ __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
+ __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
+ __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
+ __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
- __ orr(tmp3, tmp1, tmp2);
- __ tst(tmp3, Operand(kIsNotStringMask));
- __ b(ne, &miss);
+ __ orx(tmp3, tmp1, tmp2);
+ __ andi(r0, tmp3, Operand(kIsNotStringMask));
+ __ bne(&miss, cr0);
// Fast check for identical strings.
__ cmp(left, right);
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
- __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq);
- __ Ret(eq);
+ __ bne(&not_identical);
+ __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
+ __ Ret();
+ __ bind(&not_identical);
// Handle not identical strings.
@@ -3942,26 +4055,28 @@ void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
if (equality) {
DCHECK(GetCondition() == eq);
STATIC_ASSERT(kInternalizedTag == 0);
- __ orr(tmp3, tmp1, Operand(tmp2));
- __ tst(tmp3, Operand(kIsNotInternalizedMask));
- // Make sure r0 is non-zero. At this point input operands are
+ __ orx(tmp3, tmp1, tmp2);
+ __ andi(r0, tmp3, Operand(kIsNotInternalizedMask));
+ __ bne(&is_symbol, cr0);
+ // Make sure r3 is non-zero. At this point input operands are
// guaranteed to be non-zero.
- DCHECK(right.is(r0));
- __ Ret(eq);
+ DCHECK(right.is(r3));
+ __ Ret();
+ __ bind(&is_symbol);
}
// Check that both strings are sequential ASCII.
Label runtime;
- __ JumpIfBothInstanceTypesAreNotSequentialAscii(
- tmp1, tmp2, tmp3, tmp4, &runtime);
+ __ JumpIfBothInstanceTypesAreNotSequentialAscii(tmp1, tmp2, tmp3, tmp4,
+ &runtime);
// Compare flat ASCII strings. Returns when done.
if (equality) {
- StringCompareStub::GenerateFlatAsciiStringEquals(
- masm, left, right, tmp1, tmp2, tmp3);
+ StringCompareStub::GenerateFlatAsciiStringEquals(masm, left, right, tmp1,
+ tmp2);
} else {
- StringCompareStub::GenerateCompareFlatAsciiStrings(
- masm, left, right, tmp1, tmp2, tmp3, tmp4);
+ StringCompareStub::GenerateCompareFlatAsciiStrings(masm, left, right, tmp1,
+ tmp2, tmp3);
}
// Handle more complex cases in runtime.
@@ -3981,16 +4096,16 @@ void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
DCHECK(state_ == CompareIC::OBJECT);
Label miss;
- __ and_(r2, r1, Operand(r0));
- __ JumpIfSmi(r2, &miss);
+ __ and_(r5, r4, r3);
+ __ JumpIfSmi(r5, &miss);
- __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE);
- __ b(ne, &miss);
- __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE);
- __ b(ne, &miss);
+ __ CompareObjectType(r3, r5, r5, JS_OBJECT_TYPE);
+ __ bne(&miss);
+ __ CompareObjectType(r4, r5, r5, JS_OBJECT_TYPE);
+ __ bne(&miss);
DCHECK(GetCondition() == eq);
- __ sub(r0, r0, Operand(r1));
+ __ sub(r3, r3, r4);
__ Ret();
__ bind(&miss);
@@ -4000,16 +4115,16 @@ void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
Label miss;
- __ and_(r2, r1, Operand(r0));
- __ JumpIfSmi(r2, &miss);
- __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset));
- __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
- __ cmp(r2, Operand(known_map_));
- __ b(ne, &miss);
- __ cmp(r3, Operand(known_map_));
- __ b(ne, &miss);
-
- __ sub(r0, r0, Operand(r1));
+ __ and_(r5, r4, r3);
+ __ JumpIfSmi(r5, &miss);
+ __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
+ __ LoadP(r6, FieldMemOperand(r4, HeapObject::kMapOffset));
+ __ Cmpi(r5, Operand(known_map_), r0);
+ __ bne(&miss);
+ __ Cmpi(r6, Operand(known_map_), r0);
+ __ bne(&miss);
+
+ __ sub(r3, r3, r4);
__ Ret();
__ bind(&miss);
@@ -4017,7 +4132,6 @@ void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
}
-
void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
{
// Call the runtime system in a fresh internal frame.
@@ -4025,49 +4139,57 @@ void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
- __ Push(r1, r0);
- __ Push(lr, r1, r0);
- __ mov(ip, Operand(Smi::FromInt(op_)));
+ __ Push(r4, r3);
+ __ mflr(r0);
+ __ Push(r0, r4, r3);
+ __ LoadSmiLiteral(ip, Smi::FromInt(op_));
__ push(ip);
__ CallExternalReference(miss, 3);
// Compute the entry point of the rewritten stub.
- __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag));
+ __ addi(r5, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
// Restore registers.
- __ pop(lr);
- __ Pop(r1, r0);
+ __ pop(r0);
+ __ mtlr(r0);
+ __ Pop(r4, r3);
}
- __ Jump(r2);
+ __ Jump(r5);
}
+// This stub is paired with DirectCEntryStub::GenerateCall
void DirectCEntryStub::Generate(MacroAssembler* masm) {
// Place the return address on the stack, making the call
// GC safe. The RegExp backend also relies on this.
- __ str(lr, MemOperand(sp, 0));
- __ blx(ip); // Call the C++ function.
- __ VFPEnsureFPSCRState(r2);
- __ ldr(pc, MemOperand(sp, 0));
+ __ mflr(r0);
+ __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
+ __ Call(ip); // Call the C++ function.
+ __ LoadP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
+ __ mtlr(r0);
+ __ blr();
}
-void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
- Register target) {
- intptr_t code =
- reinterpret_cast<intptr_t>(GetCode().location());
+void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) {
+#if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR)
+ // Native AIX/PPC64 Linux use a function descriptor.
+ __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize));
+ __ LoadP(ip, MemOperand(target, 0)); // Instruction address
+#else
+ // ip needs to be set for DirectCEentryStub::Generate, and also
+ // for ABI_TOC_ADDRESSABILITY_VIA_IP.
__ Move(ip, target);
- __ mov(lr, Operand(code, RelocInfo::CODE_TARGET));
- __ blx(lr); // Call the stub.
+#endif
+
+ intptr_t code = reinterpret_cast<intptr_t>(GetCode().location());
+ __ mov(r0, Operand(code, RelocInfo::CODE_TARGET));
+ __ Call(r0); // Call the stub.
}
-void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
- Label* miss,
- Label* done,
- Register receiver,
- Register properties,
- Handle<Name> name,
- Register scratch0) {
+void NameDictionaryLookupStub::GenerateNegativeLookup(
+ MacroAssembler* masm, Label* miss, Label* done, Register receiver,
+ Register properties, Handle<Name> name, Register scratch0) {
DCHECK(name->IsUniqueName());
// If names of slots in range from 1 to kProbes - 1 for the hash value are
// not equal to the name and kProbes-th slot is not used (its name is the
@@ -4079,64 +4201,68 @@ void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
// Compute the masked index: (hash + i + i * i) & mask.
Register index = scratch0;
// Capacity is smi 2^n.
- __ ldr(index, FieldMemOperand(properties, kCapacityOffset));
- __ sub(index, index, Operand(1));
- __ and_(index, index, Operand(
- Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i))));
+ __ LoadP(index, FieldMemOperand(properties, kCapacityOffset));
+ __ subi(index, index, Operand(1));
+ __ LoadSmiLiteral(
+ ip, Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)));
+ __ and_(index, index, ip);
// Scale the index by multiplying by the entry size.
DCHECK(NameDictionary::kEntrySize == 3);
- __ add(index, index, Operand(index, LSL, 1)); // index *= 3.
+ __ ShiftLeftImm(ip, index, Operand(1));
+ __ add(index, index, ip); // index *= 3.
Register entity_name = scratch0;
// Having undefined at this place means the name is not contained.
- DCHECK_EQ(kSmiTagSize, 1);
Register tmp = properties;
- __ add(tmp, properties, Operand(index, LSL, 1));
- __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
+ __ SmiToPtrArrayOffset(ip, index);
+ __ add(tmp, properties, ip);
+ __ LoadP(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
DCHECK(!tmp.is(entity_name));
__ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
__ cmp(entity_name, tmp);
- __ b(eq, done);
+ __ beq(done);
// Load the hole ready for use below:
__ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
// Stop if found the property.
- __ cmp(entity_name, Operand(Handle<Name>(name)));
- __ b(eq, miss);
+ __ Cmpi(entity_name, Operand(Handle<Name>(name)), r0);
+ __ beq(miss);
Label good;
__ cmp(entity_name, tmp);
- __ b(eq, &good);
+ __ beq(&good);
// Check if the entry name is not a unique name.
- __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
- __ ldrb(entity_name,
- FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
+ __ LoadP(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
+ __ lbz(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueName(entity_name, miss);
__ bind(&good);
// Restore the properties.
- __ ldr(properties,
- FieldMemOperand(receiver, JSObject::kPropertiesOffset));
+ __ LoadP(properties,
+ FieldMemOperand(receiver, JSObject::kPropertiesOffset));
}
- const int spill_mask =
- (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() |
- r2.bit() | r1.bit() | r0.bit());
+ const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() |
+ r5.bit() | r4.bit() | r3.bit());
+
+ __ mflr(r0);
+ __ MultiPush(spill_mask);
- __ stm(db_w, sp, spill_mask);
- __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
- __ mov(r1, Operand(Handle<Name>(name)));
+ __ LoadP(r3, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
+ __ mov(r4, Operand(Handle<Name>(name)));
NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
__ CallStub(&stub);
- __ cmp(r0, Operand::Zero());
- __ ldm(ia_w, sp, spill_mask);
+ __ cmpi(r3, Operand::Zero());
+
+ __ MultiPop(spill_mask); // MultiPop does not touch condition flags
+ __ mtlr(r0);
- __ b(eq, done);
- __ b(ne, miss);
+ __ beq(done);
+ __ bne(miss);
}
@@ -4144,13 +4270,9 @@ void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
// |done| label if a property with the given name is found. Jump to
// the |miss| label otherwise.
// If lookup was successful |scratch2| will be equal to elements + 4 * index.
-void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
- Label* miss,
- Label* done,
- Register elements,
- Register name,
- Register scratch1,
- Register scratch2) {
+void NameDictionaryLookupStub::GeneratePositiveLookup(
+ MacroAssembler* masm, Label* miss, Label* done, Register elements,
+ Register name, Register scratch1, Register scratch2) {
DCHECK(!elements.is(scratch1));
DCHECK(!elements.is(scratch2));
DCHECK(!name.is(scratch1));
@@ -4159,61 +4281,65 @@ void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
__ AssertName(name);
// Compute the capacity mask.
- __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset));
- __ SmiUntag(scratch1);
- __ sub(scratch1, scratch1, Operand(1));
+ __ LoadP(scratch1, FieldMemOperand(elements, kCapacityOffset));
+ __ SmiUntag(scratch1); // convert smi to int
+ __ subi(scratch1, scratch1, Operand(1));
// Generate an unrolled loop that performs a few probes before
// giving up. Measurements done on Gmail indicate that 2 probes
// cover ~93% of loads from dictionaries.
for (int i = 0; i < kInlinedProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
- __ ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
+ __ lwz(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
if (i > 0) {
// Add the probe offset (i + i * i) left shifted to avoid right shifting
// the hash in a separate instruction. The value hash + i + i * i is right
// shifted in the following and instruction.
DCHECK(NameDictionary::GetProbeOffset(i) <
1 << (32 - Name::kHashFieldOffset));
- __ add(scratch2, scratch2, Operand(
- NameDictionary::GetProbeOffset(i) << Name::kHashShift));
+ __ addi(scratch2, scratch2,
+ Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
}
- __ and_(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift));
+ __ srwi(scratch2, scratch2, Operand(Name::kHashShift));
+ __ and_(scratch2, scratch1, scratch2);
// Scale the index by multiplying by the element size.
DCHECK(NameDictionary::kEntrySize == 3);
// scratch2 = scratch2 * 3.
- __ add(scratch2, scratch2, Operand(scratch2, LSL, 1));
+ __ ShiftLeftImm(ip, scratch2, Operand(1));
+ __ add(scratch2, scratch2, ip);
// Check if the key is identical to the name.
- __ add(scratch2, elements, Operand(scratch2, LSL, 2));
- __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset));
- __ cmp(name, Operand(ip));
- __ b(eq, done);
+ __ ShiftLeftImm(ip, scratch2, Operand(kPointerSizeLog2));
+ __ add(scratch2, elements, ip);
+ __ LoadP(ip, FieldMemOperand(scratch2, kElementsStartOffset));
+ __ cmp(name, ip);
+ __ beq(done);
}
- const int spill_mask =
- (lr.bit() | r6.bit() | r5.bit() | r4.bit() |
- r3.bit() | r2.bit() | r1.bit() | r0.bit()) &
- ~(scratch1.bit() | scratch2.bit());
+ const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() |
+ r5.bit() | r4.bit() | r3.bit()) &
+ ~(scratch1.bit() | scratch2.bit());
- __ stm(db_w, sp, spill_mask);
- if (name.is(r0)) {
- DCHECK(!elements.is(r1));
- __ Move(r1, name);
- __ Move(r0, elements);
+ __ mflr(r0);
+ __ MultiPush(spill_mask);
+ if (name.is(r3)) {
+ DCHECK(!elements.is(r4));
+ __ mr(r4, name);
+ __ mr(r3, elements);
} else {
- __ Move(r0, elements);
- __ Move(r1, name);
+ __ mr(r3, elements);
+ __ mr(r4, name);
}
NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
__ CallStub(&stub);
- __ cmp(r0, Operand::Zero());
- __ mov(scratch2, Operand(r2));
- __ ldm(ia_w, sp, spill_mask);
+ __ cmpi(r3, Operand::Zero());
+ __ mr(scratch2, r5);
+ __ MultiPop(spill_mask);
+ __ mtlr(r0);
- __ b(ne, done);
- __ b(eq, miss);
+ __ bne(done);
+ __ beq(miss);
}
@@ -4222,29 +4348,30 @@ void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
// we cannot call anything that could cause a GC from this stub.
// Registers:
// result: NameDictionary to probe
- // r1: key
+ // r4: key
// dictionary: NameDictionary to probe.
// index: will hold an index of entry if lookup is successful.
// might alias with result_.
// Returns:
// result_ is zero if lookup failed, non zero otherwise.
- Register result = r0;
- Register dictionary = r0;
- Register key = r1;
- Register index = r2;
- Register mask = r3;
- Register hash = r4;
- Register undefined = r5;
- Register entry_key = r6;
+ Register result = r3;
+ Register dictionary = r3;
+ Register key = r4;
+ Register index = r5;
+ Register mask = r6;
+ Register hash = r7;
+ Register undefined = r8;
+ Register entry_key = r9;
+ Register scratch = r9;
Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
- __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset));
+ __ LoadP(mask, FieldMemOperand(dictionary, kCapacityOffset));
__ SmiUntag(mask);
- __ sub(mask, mask, Operand(1));
+ __ subi(mask, mask, Operand(1));
- __ ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
+ __ lwz(hash, FieldMemOperand(key, Name::kHashFieldOffset));
__ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
@@ -4257,34 +4384,36 @@ void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
// shifted in the following and instruction.
DCHECK(NameDictionary::GetProbeOffset(i) <
1 << (32 - Name::kHashFieldOffset));
- __ add(index, hash, Operand(
- NameDictionary::GetProbeOffset(i) << Name::kHashShift));
+ __ addi(index, hash,
+ Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
} else {
- __ mov(index, Operand(hash));
+ __ mr(index, hash);
}
- __ and_(index, mask, Operand(index, LSR, Name::kHashShift));
+ __ srwi(r0, index, Operand(Name::kHashShift));
+ __ and_(index, mask, r0);
// Scale the index by multiplying by the entry size.
DCHECK(NameDictionary::kEntrySize == 3);
- __ add(index, index, Operand(index, LSL, 1)); // index *= 3.
+ __ ShiftLeftImm(scratch, index, Operand(1));
+ __ add(index, index, scratch); // index *= 3.
DCHECK_EQ(kSmiTagSize, 1);
- __ add(index, dictionary, Operand(index, LSL, 2));
- __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
+ __ ShiftLeftImm(scratch, index, Operand(kPointerSizeLog2));
+ __ add(index, dictionary, scratch);
+ __ LoadP(entry_key, FieldMemOperand(index, kElementsStartOffset));
// Having undefined at this place means the name is not contained.
- __ cmp(entry_key, Operand(undefined));
- __ b(eq, &not_in_dictionary);
+ __ cmp(entry_key, undefined);
+ __ beq(&not_in_dictionary);
// Stop if found the property.
- __ cmp(entry_key, Operand(key));
- __ b(eq, &in_dictionary);
+ __ cmp(entry_key, key);
+ __ beq(&in_dictionary);
if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
// Check if the entry name is not a unique name.
- __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
- __ ldrb(entry_key,
- FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
+ __ LoadP(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
+ __ lbz(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueName(entry_key, &maybe_in_dictionary);
}
}
@@ -4294,16 +4423,16 @@ void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
// treated as a lookup success. For positive lookup probing failure
// should be treated as lookup failure.
if (mode_ == POSITIVE_LOOKUP) {
- __ mov(result, Operand::Zero());
+ __ li(result, Operand::Zero());
__ Ret();
}
__ bind(&in_dictionary);
- __ mov(result, Operand(1));
+ __ li(result, Operand(1));
__ Ret();
__ bind(&not_in_dictionary);
- __ mov(result, Operand::Zero());
+ __ li(result, Operand::Zero());
__ Ret();
}
@@ -4326,24 +4455,19 @@ void RecordWriteStub::Generate(MacroAssembler* masm) {
Label skip_to_incremental_noncompacting;
Label skip_to_incremental_compacting;
- // The first two instructions are generated with labels so as to get the
- // offset fixed up correctly by the bind(Label*) call. We patch it back and
- // forth between a compare instructions (a nop in this position) and the
- // real branch when we start and stop incremental heap marking.
+ // The first two branch instructions are generated with labels so as to
+ // get the offset fixed up correctly by the bind(Label*) call. We patch
+ // it back and forth between branch condition True and False
+ // when we start and stop incremental heap marking.
// See RecordWriteStub::Patch for details.
- {
- // Block literal pool emission, as the position of these two instructions
- // is assumed by the patching code.
- Assembler::BlockConstPoolScope block_const_pool(masm);
- __ b(&skip_to_incremental_noncompacting);
- __ b(&skip_to_incremental_compacting);
- }
+
+ // Clear the bit, branch on True for NOP action initially
+ __ crclr(Assembler::encode_crbit(cr2, CR_LT));
+ __ blt(&skip_to_incremental_noncompacting, cr2);
+ __ blt(&skip_to_incremental_compacting, cr2);
if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
- __ RememberedSetHelper(object_,
- address_,
- value_,
- save_fp_regs_mode_,
+ __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_,
MacroAssembler::kReturnAtEnd);
}
__ Ret();
@@ -4356,10 +4480,7 @@ void RecordWriteStub::Generate(MacroAssembler* masm) {
// Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
// Will be checked in IncrementalMarking::ActivateGeneratedStub.
- DCHECK(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12));
- DCHECK(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12));
- PatchBranchIntoNop(masm, 0);
- PatchBranchIntoNop(masm, Assembler::kInstrSize);
+ // patching not required on PPC as the initial path is effectively NOP
}
@@ -4369,15 +4490,12 @@ void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
Label dont_need_remembered_set;
- __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
+ __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
__ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
- regs_.scratch0(),
- &dont_need_remembered_set);
+ regs_.scratch0(), &dont_need_remembered_set);
- __ CheckPageFlag(regs_.object(),
- regs_.scratch0(),
- 1 << MemoryChunk::SCAN_ON_SCAVENGE,
- ne,
+ __ CheckPageFlag(regs_.object(), regs_.scratch0(),
+ 1 << MemoryChunk::SCAN_ON_SCAVENGE, ne,
&dont_need_remembered_set);
// First notify the incremental marker if necessary, then update the
@@ -4386,10 +4504,7 @@ void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
InformIncrementalMarker(masm);
regs_.Restore(masm);
- __ RememberedSetHelper(object_,
- address_,
- value_,
- save_fp_regs_mode_,
+ __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_,
MacroAssembler::kReturnAtEnd);
__ bind(&dont_need_remembered_set);
@@ -4408,13 +4523,13 @@ void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
int argument_count = 3;
__ PrepareCallCFunction(argument_count, regs_.scratch0());
Register address =
- r0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
+ r3.is(regs_.address()) ? regs_.scratch0() : regs_.address();
DCHECK(!address.is(regs_.object()));
- DCHECK(!address.is(r0));
- __ Move(address, regs_.address());
- __ Move(r0, regs_.object());
- __ Move(r1, address);
- __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
+ DCHECK(!address.is(r3));
+ __ mr(address, regs_.address());
+ __ mr(r3, regs_.object());
+ __ mr(r4, address);
+ __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(
@@ -4425,22 +4540,24 @@ void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
- MacroAssembler* masm,
- OnNoNeedToInformIncrementalMarker on_no_need,
+ MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need,
Mode mode) {
Label on_black;
Label need_incremental;
Label need_incremental_pop_scratch;
- __ and_(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask));
- __ ldr(regs_.scratch1(),
- MemOperand(regs_.scratch0(),
- MemoryChunk::kWriteBarrierCounterOffset));
- __ sub(regs_.scratch1(), regs_.scratch1(), Operand(1), SetCC);
- __ str(regs_.scratch1(),
- MemOperand(regs_.scratch0(),
- MemoryChunk::kWriteBarrierCounterOffset));
- __ b(mi, &need_incremental);
+ DCHECK((~Page::kPageAlignmentMask & 0xffff) == 0);
+ __ lis(r0, Operand((~Page::kPageAlignmentMask >> 16)));
+ __ and_(regs_.scratch0(), regs_.object(), r0);
+ __ LoadP(
+ regs_.scratch1(),
+ MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset));
+ __ subi(regs_.scratch1(), regs_.scratch1(), Operand(1));
+ __ StoreP(
+ regs_.scratch1(),
+ MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset));
+ __ cmpi(regs_.scratch1(), Operand::Zero()); // PPC, we could do better here
+ __ blt(&need_incremental);
// Let's look at the color of the object: If it is not black we don't have
// to inform the incremental marker.
@@ -4448,10 +4565,7 @@ void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
regs_.Restore(masm);
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
- __ RememberedSetHelper(object_,
- address_,
- value_,
- save_fp_regs_mode_,
+ __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_,
MacroAssembler::kReturnAtEnd);
} else {
__ Ret();
@@ -4460,21 +4574,19 @@ void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
__ bind(&on_black);
// Get the value from the slot.
- __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0));
+ __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
if (mode == INCREMENTAL_COMPACTION) {
Label ensure_not_white;
__ CheckPageFlag(regs_.scratch0(), // Contains value.
regs_.scratch1(), // Scratch.
- MemoryChunk::kEvacuationCandidateMask,
- eq,
+ MemoryChunk::kEvacuationCandidateMask, eq,
&ensure_not_white);
__ CheckPageFlag(regs_.object(),
regs_.scratch1(), // Scratch.
- MemoryChunk::kSkipEvacuationSlotsRecordingMask,
- eq,
+ MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq,
&need_incremental);
__ bind(&ensure_not_white);
@@ -4485,17 +4597,14 @@ void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
__ Push(regs_.object(), regs_.address());
__ EnsureNotWhite(regs_.scratch0(), // The value.
regs_.scratch1(), // Scratch.
- regs_.object(), // Scratch.
- regs_.address(), // Scratch.
+ regs_.object(), // Scratch.
+ regs_.address(), // Scratch.
&need_incremental_pop_scratch);
__ Pop(regs_.object(), regs_.address());
regs_.Restore(masm);
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
- __ RememberedSetHelper(object_,
- address_,
- value_,
- save_fp_regs_mode_,
+ __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_,
MacroAssembler::kReturnAtEnd);
} else {
__ Ret();
@@ -4512,11 +4621,11 @@ void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
- // -- r0 : element value to store
- // -- r3 : element index as smi
+ // -- r3 : element value to store
+ // -- r6 : element index as smi
// -- sp[0] : array literal index in function as smi
// -- sp[4] : array literal
- // clobbers r1, r2, r4
+ // clobbers r3, r5, r7
// -----------------------------------
Label element_done;
@@ -4526,48 +4635,55 @@ void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
Label fast_elements;
// Get array literal index, array literal and its map.
- __ ldr(r4, MemOperand(sp, 0 * kPointerSize));
- __ ldr(r1, MemOperand(sp, 1 * kPointerSize));
- __ ldr(r2, FieldMemOperand(r1, JSObject::kMapOffset));
+ __ LoadP(r7, MemOperand(sp, 0 * kPointerSize));
+ __ LoadP(r4, MemOperand(sp, 1 * kPointerSize));
+ __ LoadP(r5, FieldMemOperand(r4, JSObject::kMapOffset));
- __ CheckFastElements(r2, r5, &double_elements);
+ __ CheckFastElements(r5, r8, &double_elements);
// FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS
- __ JumpIfSmi(r0, &smi_element);
- __ CheckFastSmiElements(r2, r5, &fast_elements);
+ __ JumpIfSmi(r3, &smi_element);
+ __ CheckFastSmiElements(r5, r8, &fast_elements);
// Store into the array literal requires a elements transition. Call into
// the runtime.
__ bind(&slow_elements);
// call.
- __ Push(r1, r3, r0);
- __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
- __ ldr(r5, FieldMemOperand(r5, JSFunction::kLiteralsOffset));
- __ Push(r5, r4);
+ __ Push(r4, r6, r3);
+ __ LoadP(r8, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
+ __ LoadP(r8, FieldMemOperand(r8, JSFunction::kLiteralsOffset));
+ __ Push(r8, r7);
__ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
// Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
__ bind(&fast_elements);
- __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
- __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3));
- __ add(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
- __ str(r0, MemOperand(r6, 0));
+ __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset));
+ __ SmiToPtrArrayOffset(r9, r6);
+ __ add(r9, r8, r9);
+#if V8_TARGET_ARCH_PPC64
+ // add due to offset alignment requirements of StorePU
+ __ addi(r9, r9, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ __ StoreP(r3, MemOperand(r9));
+#else
+ __ StorePU(r3, MemOperand(r9, FixedArray::kHeaderSize - kHeapObjectTag));
+#endif
// Update the write barrier for the array store.
- __ RecordWrite(r5, r6, r0, kLRHasNotBeenSaved, kDontSaveFPRegs,
+ __ RecordWrite(r8, r9, r3, kLRHasNotBeenSaved, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
__ Ret();
// Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
// and value is Smi.
__ bind(&smi_element);
- __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
- __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3));
- __ str(r0, FieldMemOperand(r6, FixedArray::kHeaderSize));
+ __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset));
+ __ SmiToPtrArrayOffset(r9, r6);
+ __ add(r9, r8, r9);
+ __ StoreP(r3, FieldMemOperand(r9, FixedArray::kHeaderSize), r0);
__ Ret();
// Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
__ bind(&double_elements);
- __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset));
- __ StoreNumberToDoubleElements(r0, r3, r5, r6, d0, &slow_elements);
+ __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset));
+ __ StoreNumberToDoubleElements(r3, r6, r8, r9, d0, &slow_elements);
__ Ret();
}
@@ -4577,25 +4693,31 @@ void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
__ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
int parameter_count_offset =
StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
- __ ldr(r1, MemOperand(fp, parameter_count_offset));
+ __ LoadP(r4, MemOperand(fp, parameter_count_offset));
if (function_mode_ == JS_FUNCTION_STUB_MODE) {
- __ add(r1, r1, Operand(1));
+ __ addi(r4, r4, Operand(1));
}
masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
- __ mov(r1, Operand(r1, LSL, kPointerSizeLog2));
- __ add(sp, sp, r1);
+ __ slwi(r4, r4, Operand(kPointerSizeLog2));
+ __ add(sp, sp, r4);
__ Ret();
}
void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
if (masm->isolate()->function_entry_hook() != NULL) {
+ PredictableCodeSizeScope predictable(masm,
+#if V8_TARGET_ARCH_PPC64
+ 12 * Assembler::kInstrSize);
+#else
+ 9 * Assembler::kInstrSize);
+#endif
ProfileEntryHookStub stub(masm->isolate());
- int code_size = masm->CallStubSize(&stub) + 2 * Assembler::kInstrSize;
- PredictableCodeSizeScope predictable(masm, code_size);
- __ push(lr);
+ __ mflr(r0);
+ __ push(r0);
__ CallStub(&stub);
- __ pop(lr);
+ __ pop(r0);
+ __ mtlr(r0);
}
}
@@ -4603,78 +4725,91 @@ void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
// The entry hook is a "push lr" instruction, followed by a call.
const int32_t kReturnAddressDistanceFromFunctionStart =
- 3 * Assembler::kInstrSize;
-
- // This should contain all kCallerSaved registers.
- const RegList kSavedRegs =
- 1 << 0 | // r0
- 1 << 1 | // r1
- 1 << 2 | // r2
- 1 << 3 | // r3
- 1 << 5 | // r5
- 1 << 9; // r9
- // We also save lr, so the count here is one higher than the mask indicates.
- const int32_t kNumSavedRegs = 7;
+ Assembler::kCallTargetAddressOffset + 2 * Assembler::kInstrSize;
- DCHECK((kCallerSaved & kSavedRegs) == kCallerSaved);
+ // This should contain all kJSCallerSaved registers.
+ const RegList kSavedRegs = kJSCallerSaved | // Caller saved registers.
+ r15.bit(); // Saved stack pointer.
+
+ // We also save lr, so the count here is one higher than the mask indicates.
+ const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
// Save all caller-save registers as this may be called from anywhere.
- __ stm(db_w, sp, kSavedRegs | lr.bit());
+ __ mflr(r0);
+ __ MultiPush(kSavedRegs | r0.bit());
// Compute the function's address for the first argument.
- __ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart));
+ __ mr(r3, r0);
+ __ subi(r3, r3, Operand(kReturnAddressDistanceFromFunctionStart));
// The caller's return address is above the saved temporaries.
// Grab that for the second argument to the hook.
- __ add(r1, sp, Operand(kNumSavedRegs * kPointerSize));
+ __ addi(r4, sp, Operand(kNumSavedRegs * kPointerSize));
// Align the stack if necessary.
int frame_alignment = masm->ActivationFrameAlignment();
if (frame_alignment > kPointerSize) {
- __ mov(r5, sp);
+ __ mr(r15, sp);
DCHECK(IsPowerOf2(frame_alignment));
- __ and_(sp, sp, Operand(-frame_alignment));
+ __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
}
-#if V8_HOST_ARCH_ARM
- int32_t entry_hook =
- reinterpret_cast<int32_t>(isolate()->function_entry_hook());
+#if !defined(USE_SIMULATOR)
+ uintptr_t entry_hook =
+ reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
__ mov(ip, Operand(entry_hook));
+
+#if ABI_USES_FUNCTION_DESCRIPTORS
+ // Function descriptor
+ __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize));
+ __ LoadP(ip, MemOperand(ip, 0));
+#elif ABI_TOC_ADDRESSABILITY_VIA_IP
+// ip set above, so nothing to do.
+#endif
+
+ // PPC LINUX ABI:
+ __ li(r0, Operand::Zero());
+ __ StorePU(r0, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize));
#else
// Under the simulator we need to indirect the entry hook through a
// trampoline function at a known address.
// It additionally takes an isolate as a third parameter
- __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
+ __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
- __ mov(ip, Operand(ExternalReference(&dispatcher,
- ExternalReference::BUILTIN_CALL,
- isolate())));
+ __ mov(ip, Operand(ExternalReference(
+ &dispatcher, ExternalReference::BUILTIN_CALL, isolate())));
#endif
__ Call(ip);
+#if !defined(USE_SIMULATOR)
+ __ addi(sp, sp, Operand(kNumRequiredStackFrameSlots * kPointerSize));
+#endif
+
// Restore the stack pointer if needed.
if (frame_alignment > kPointerSize) {
- __ mov(sp, r5);
+ __ mr(sp, r15);
}
- // Also pop pc to get Ret(0).
- __ ldm(ia_w, sp, kSavedRegs | pc.bit());
+ // Also pop lr to get Ret(0).
+ __ MultiPop(kSavedRegs | r0.bit());
+ __ mtlr(r0);
+ __ Ret();
}
-template<class T>
+template <class T>
static void CreateArrayDispatch(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
if (mode == DISABLE_ALLOCATION_SITES) {
T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
- int last_index = GetSequenceIndexFromFastElementsKind(
- TERMINAL_FAST_ELEMENTS_KIND);
+ int last_index =
+ GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
- __ cmp(r3, Operand(kind));
+ __ Cmpi(r6, Operand(kind), r0);
T stub(masm->isolate(), kind);
__ TailCallStub(&stub, eq);
}
@@ -4689,10 +4824,10 @@ static void CreateArrayDispatch(MacroAssembler* masm,
static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
- // r2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
- // r3 - kind (if mode != DISABLE_ALLOCATION_SITES)
- // r0 - number of arguments
- // r1 - constructor?
+ // r5 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
+ // r6 - kind (if mode != DISABLE_ALLOCATION_SITES)
+ // r3 - number of arguments
+ // r4 - constructor?
// sp[0] - last argument
Label normal_sequence;
if (mode == DONT_OVERRIDE) {
@@ -4704,54 +4839,54 @@ static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
// is the low bit set? If so, we are holey and that is good.
- __ tst(r3, Operand(1));
- __ b(ne, &normal_sequence);
+ __ andi(r0, r6, Operand(1));
+ __ bne(&normal_sequence, cr0);
}
// look at the first argument
- __ ldr(r5, MemOperand(sp, 0));
- __ cmp(r5, Operand::Zero());
- __ b(eq, &normal_sequence);
+ __ LoadP(r8, MemOperand(sp, 0));
+ __ cmpi(r8, Operand::Zero());
+ __ beq(&normal_sequence);
if (mode == DISABLE_ALLOCATION_SITES) {
ElementsKind initial = GetInitialFastElementsKind();
ElementsKind holey_initial = GetHoleyElementsKind(initial);
- ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
- holey_initial,
- DISABLE_ALLOCATION_SITES);
+ ArraySingleArgumentConstructorStub stub_holey(
+ masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub_holey);
__ bind(&normal_sequence);
- ArraySingleArgumentConstructorStub stub(masm->isolate(),
- initial,
+ ArraySingleArgumentConstructorStub stub(masm->isolate(), initial,
DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
// We are going to create a holey array, but our kind is non-holey.
// Fix kind and retry (only if we have an allocation site in the slot).
- __ add(r3, r3, Operand(1));
+ __ addi(r6, r6, Operand(1));
if (FLAG_debug_code) {
- __ ldr(r5, FieldMemOperand(r2, 0));
- __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex);
+ __ LoadP(r8, FieldMemOperand(r5, 0));
+ __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
__ Assert(eq, kExpectedAllocationSite);
}
- // Save the resulting elements kind in type info. We can't just store r3
+ // Save the resulting elements kind in type info. We can't just store r6
// in the AllocationSite::transition_info field because elements kind is
// restricted to a portion of the field...upper bits need to be left alone.
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
- __ ldr(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
- __ add(r4, r4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley)));
- __ str(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
+ __ LoadP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
+ __ AddSmiLiteral(r7, r7, Smi::FromInt(kFastElementsKindPackedToHoley), r0);
+ __ StoreP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset),
+ r0);
__ bind(&normal_sequence);
- int last_index = GetSequenceIndexFromFastElementsKind(
- TERMINAL_FAST_ELEMENTS_KIND);
+ int last_index =
+ GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
- __ cmp(r3, Operand(kind));
+ __ mov(r0, Operand(kind));
+ __ cmp(r6, r0);
ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
__ TailCallStub(&stub, eq);
}
@@ -4764,10 +4899,10 @@ static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
}
-template<class T>
+template <class T>
static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
- int to_index = GetSequenceIndexFromFastElementsKind(
- TERMINAL_FAST_ELEMENTS_KIND);
+ int to_index =
+ GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= to_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
T stub(isolate, kind);
@@ -4792,7 +4927,7 @@ void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
Isolate* isolate) {
- ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
+ ElementsKind kinds[2] = {FAST_ELEMENTS, FAST_HOLEY_ELEMENTS};
for (int i = 0; i < 2; i++) {
// For internal arrays we only need a few things
InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
@@ -4806,17 +4941,16 @@ void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
void ArrayConstructorStub::GenerateDispatchToArrayStub(
- MacroAssembler* masm,
- AllocationSiteOverrideMode mode) {
+ MacroAssembler* masm, AllocationSiteOverrideMode mode) {
if (argument_count_ == ANY) {
Label not_zero_case, not_one_case;
- __ tst(r0, r0);
- __ b(ne, &not_zero_case);
+ __ cmpi(r3, Operand::Zero());
+ __ bne(&not_zero_case);
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
__ bind(&not_zero_case);
- __ cmp(r0, Operand(1));
- __ b(gt, &not_one_case);
+ __ cmpi(r3, Operand(1));
+ __ bgt(&not_one_case);
CreateArrayDispatchOneArgument(masm, mode);
__ bind(&not_one_case);
@@ -4835,9 +4969,9 @@ void ArrayConstructorStub::GenerateDispatchToArrayStub(
void ArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
- // -- r0 : argc (only if argument_count_ == ANY)
- // -- r1 : constructor
- // -- r2 : AllocationSite or undefined
+ // -- r3 : argc (only if argument_count_ == ANY)
+ // -- r4 : constructor
+ // -- r5 : AllocationSite or undefined
// -- sp[0] : return address
// -- sp[4] : last argument
// -----------------------------------
@@ -4847,26 +4981,26 @@ void ArrayConstructorStub::Generate(MacroAssembler* masm) {
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
- __ ldr(r4, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
+ __ LoadP(r7, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
- __ tst(r4, Operand(kSmiTagMask));
- __ Assert(ne, kUnexpectedInitialMapForArrayFunction);
- __ CompareObjectType(r4, r4, r5, MAP_TYPE);
+ __ TestIfSmi(r7, r0);
+ __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
+ __ CompareObjectType(r7, r7, r8, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForArrayFunction);
- // We should either have undefined in r2 or a valid AllocationSite
- __ AssertUndefinedOrAllocationSite(r2, r4);
+ // We should either have undefined in r5 or a valid AllocationSite
+ __ AssertUndefinedOrAllocationSite(r5, r7);
}
Label no_info;
// Get the elements kind and case on that.
- __ CompareRoot(r2, Heap::kUndefinedValueRootIndex);
- __ b(eq, &no_info);
+ __ CompareRoot(r5, Heap::kUndefinedValueRootIndex);
+ __ beq(&no_info);
- __ ldr(r3, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset));
- __ SmiUntag(r3);
+ __ LoadP(r6, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
+ __ SmiUntag(r6);
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
- __ and_(r3, r3, Operand(AllocationSite::ElementsKindBits::kMask));
+ __ And(r6, r6, Operand(AllocationSite::ElementsKindBits::kMask));
GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
__ bind(&no_info);
@@ -4874,24 +5008,24 @@ void ArrayConstructorStub::Generate(MacroAssembler* masm) {
}
-void InternalArrayConstructorStub::GenerateCase(
- MacroAssembler* masm, ElementsKind kind) {
- __ cmp(r0, Operand(1));
+void InternalArrayConstructorStub::GenerateCase(MacroAssembler* masm,
+ ElementsKind kind) {
+ __ cmpli(r3, Operand(1));
InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
- __ TailCallStub(&stub0, lo);
+ __ TailCallStub(&stub0, lt);
InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
- __ TailCallStub(&stubN, hi);
+ __ TailCallStub(&stubN, gt);
if (IsFastPackedElementsKind(kind)) {
// We might need to create a holey array
// look at the first argument
- __ ldr(r3, MemOperand(sp, 0));
- __ cmp(r3, Operand::Zero());
+ __ LoadP(r6, MemOperand(sp, 0));
+ __ cmpi(r6, Operand::Zero());
- InternalArraySingleArgumentConstructorStub
- stub1_holey(isolate(), GetHoleyElementsKind(kind));
+ InternalArraySingleArgumentConstructorStub stub1_holey(
+ isolate(), GetHoleyElementsKind(kind));
__ TailCallStub(&stub1_holey, ne);
}
@@ -4902,8 +5036,8 @@ void InternalArrayConstructorStub::GenerateCase(
void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
- // -- r0 : argc
- // -- r1 : constructor
+ // -- r3 : argc
+ // -- r4 : constructor
// -- sp[0] : return address
// -- sp[4] : last argument
// -----------------------------------
@@ -4913,35 +5047,33 @@ void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
- __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
+ __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
- __ tst(r3, Operand(kSmiTagMask));
- __ Assert(ne, kUnexpectedInitialMapForArrayFunction);
- __ CompareObjectType(r3, r3, r4, MAP_TYPE);
+ __ TestIfSmi(r6, r0);
+ __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
+ __ CompareObjectType(r6, r6, r7, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForArrayFunction);
}
// Figure out the right elements kind
- __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
- // Load the map's "bit field 2" into |result|. We only need the first byte,
- // but the following bit field extraction takes care of that anyway.
- __ ldr(r3, FieldMemOperand(r3, Map::kBitField2Offset));
+ __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
+ // Load the map's "bit field 2" into |result|.
+ __ lbz(r6, FieldMemOperand(r6, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
- __ DecodeField<Map::ElementsKindBits>(r3);
+ __ DecodeField<Map::ElementsKindBits>(r6);
if (FLAG_debug_code) {
Label done;
- __ cmp(r3, Operand(FAST_ELEMENTS));
- __ b(eq, &done);
- __ cmp(r3, Operand(FAST_HOLEY_ELEMENTS));
- __ Assert(eq,
- kInvalidElementsKindForInternalArrayOrInternalPackedArray);
+ __ cmpi(r6, Operand(FAST_ELEMENTS));
+ __ beq(&done);
+ __ cmpi(r6, Operand(FAST_HOLEY_ELEMENTS));
+ __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
__ bind(&done);
}
Label fast_elements_case;
- __ cmp(r3, Operand(FAST_ELEMENTS));
- __ b(eq, &fast_elements_case);
+ __ cmpi(r6, Operand(FAST_ELEMENTS));
+ __ beq(&fast_elements_case);
GenerateCase(masm, FAST_HOLEY_ELEMENTS);
__ bind(&fast_elements_case);
@@ -4951,10 +5083,10 @@ void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
void CallApiFunctionStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
- // -- r0 : callee
- // -- r4 : call_data
- // -- r2 : holder
- // -- r1 : api_function_address
+ // -- r3 : callee
+ // -- r7 : call_data
+ // -- r5 : holder
+ // -- r4 : api_function_address
// -- cp : context
// --
// -- sp[0] : last argument
@@ -4963,10 +5095,10 @@ void CallApiFunctionStub::Generate(MacroAssembler* masm) {
// -- sp[argc * 4] : receiver
// -----------------------------------
- Register callee = r0;
- Register call_data = r4;
- Register holder = r2;
- Register api_function_address = r1;
+ Register callee = r3;
+ Register call_data = r7;
+ Register holder = r5;
+ Register api_function_address = r4;
Register context = cp;
int argc = ArgumentBits::decode(bit_field_);
@@ -4987,7 +5119,7 @@ void CallApiFunctionStub::Generate(MacroAssembler* masm) {
// context save
__ push(context);
// load context from callee
- __ ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset));
+ __ LoadP(context, FieldMemOperand(callee, JSFunction::kContextOffset));
// callee
__ push(callee);
@@ -5004,37 +5136,41 @@ void CallApiFunctionStub::Generate(MacroAssembler* masm) {
// return value default
__ push(scratch);
// isolate
- __ mov(scratch,
- Operand(ExternalReference::isolate_address(isolate())));
+ __ mov(scratch, Operand(ExternalReference::isolate_address(isolate())));
__ push(scratch);
// holder
__ push(holder);
// Prepare arguments.
- __ mov(scratch, sp);
+ __ mr(scratch, sp);
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
- const int kApiStackSpace = 4;
+ // PPC LINUX ABI:
+ //
+ // Create 5 extra slots on stack:
+ // [0] space for DirectCEntryStub's LR save
+ // [1-4] FunctionCallbackInfo
+ const int kApiStackSpace = 5;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, kApiStackSpace);
- DCHECK(!api_function_address.is(r0) && !scratch.is(r0));
- // r0 = FunctionCallbackInfo&
+ DCHECK(!api_function_address.is(r3) && !scratch.is(r3));
+ // r3 = FunctionCallbackInfo&
// Arguments is after the return address.
- __ add(r0, sp, Operand(1 * kPointerSize));
+ __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));
// FunctionCallbackInfo::implicit_args_
- __ str(scratch, MemOperand(r0, 0 * kPointerSize));
+ __ StoreP(scratch, MemOperand(r3, 0 * kPointerSize));
// FunctionCallbackInfo::values_
- __ add(ip, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize));
- __ str(ip, MemOperand(r0, 1 * kPointerSize));
+ __ addi(ip, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize));
+ __ StoreP(ip, MemOperand(r3, 1 * kPointerSize));
// FunctionCallbackInfo::length_ = argc
- __ mov(ip, Operand(argc));
- __ str(ip, MemOperand(r0, 2 * kPointerSize));
+ __ li(ip, Operand(argc));
+ __ stw(ip, MemOperand(r3, 2 * kPointerSize));
// FunctionCallbackInfo::is_construct_call = 0
- __ mov(ip, Operand::Zero());
- __ str(ip, MemOperand(r0, 3 * kPointerSize));
+ __ li(ip, Operand::Zero());
+ __ stw(ip, MemOperand(r3, 2 * kPointerSize + kIntSize));
const int kStackUnwindSpace = argc + FCA::kArgsLength + 1;
ExternalReference thunk_ref =
@@ -5052,10 +5188,8 @@ void CallApiFunctionStub::Generate(MacroAssembler* masm) {
}
MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
- __ CallApiFunctionAndReturn(api_function_address,
- thunk_ref,
- kStackUnwindSpace,
- return_value_operand,
+ __ CallApiFunctionAndReturn(api_function_address, thunk_ref,
+ kStackUnwindSpace, return_value_operand,
&context_restore_operand);
}
@@ -5065,37 +5199,62 @@ void CallApiGetterStub::Generate(MacroAssembler* masm) {
// -- sp[0] : name
// -- sp[4 - kArgsLength*4] : PropertyCallbackArguments object
// -- ...
- // -- r2 : api_function_address
+ // -- r5 : api_function_address
// -----------------------------------
- Register api_function_address = r2;
+ Register api_function_address = r5;
- __ mov(r0, sp); // r0 = Handle<Name>
- __ add(r1, r0, Operand(1 * kPointerSize)); // r1 = PCA
+ __ mr(r3, sp); // r0 = Handle<Name>
+ __ addi(r4, r3, Operand(1 * kPointerSize)); // r4 = PCA
+
+// If ABI passes Handles (pointer-sized struct) in a register:
+//
+// Create 2 extra slots on stack:
+// [0] space for DirectCEntryStub's LR save
+// [1] AccessorInfo&
+//
+// Otherwise:
+//
+// Create 3 extra slots on stack:
+// [0] space for DirectCEntryStub's LR save
+// [1] copy of Handle (first arg)
+// [2] AccessorInfo&
+#if ABI_PASSES_HANDLES_IN_REGS
+ const int kAccessorInfoSlot = kStackFrameExtraParamSlot + 1;
+ const int kApiStackSpace = 2;
+#else
+ const int kArg0Slot = kStackFrameExtraParamSlot + 1;
+ const int kAccessorInfoSlot = kArg0Slot + 1;
+ const int kApiStackSpace = 3;
+#endif
- const int kApiStackSpace = 1;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, kApiStackSpace);
+#if !ABI_PASSES_HANDLES_IN_REGS
+ // pass 1st arg by reference
+ __ StoreP(r3, MemOperand(sp, kArg0Slot * kPointerSize));
+ __ addi(r3, sp, Operand(kArg0Slot * kPointerSize));
+#endif
+
// Create PropertyAccessorInfo instance on the stack above the exit frame with
- // r1 (internal::Object** args_) as the data.
- __ str(r1, MemOperand(sp, 1 * kPointerSize));
- __ add(r1, sp, Operand(1 * kPointerSize)); // r1 = AccessorInfo&
+ // r4 (internal::Object** args_) as the data.
+ __ StoreP(r4, MemOperand(sp, kAccessorInfoSlot * kPointerSize));
+ // r4 = AccessorInfo&
+ __ addi(r4, sp, Operand(kAccessorInfoSlot * kPointerSize));
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback(isolate());
- __ CallApiFunctionAndReturn(api_function_address,
- thunk_ref,
+ __ CallApiFunctionAndReturn(api_function_address, thunk_ref,
kStackUnwindSpace,
- MemOperand(fp, 6 * kPointerSize),
- NULL);
+ MemOperand(fp, 6 * kPointerSize), NULL);
}
#undef __
+}
+} // namespace v8::internal
-} } // namespace v8::internal
-
-#endif // V8_TARGET_ARCH_ARM
+#endif // V8_TARGET_ARCH_PPC
« src/hydrogen-bch.cc ('K') | « src/ppc/code-stubs-ppc.h ('k') | src/ppc/codegen-ppc.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698