Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(427)

Side by Side Diff: src/ppc/lithium-codegen-ppc.cc

Issue 422063005: Contribution of PowerPC port. (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: re-upload - catch up to 8/19 level Created 6 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
1 // Copyright 2012 the V8 project authors. All rights reserved. 1 // Copyright 2012 the V8 project authors. All rights reserved.
2 //
3 // Copyright IBM Corp. 2012, 2013. All rights reserved.
4 //
2 // Use of this source code is governed by a BSD-style license that can be 5 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 6 // found in the LICENSE file.
4 7
5 #include "src/v8.h" 8 #include "src/v8.h"
6 9
7 #include "src/arm/lithium-codegen-arm.h"
8 #include "src/arm/lithium-gap-resolver-arm.h"
9 #include "src/code-stubs.h" 10 #include "src/code-stubs.h"
10 #include "src/hydrogen-osr.h" 11 #include "src/hydrogen-osr.h"
11 #include "src/stub-cache.h" 12 #include "src/stub-cache.h"
12 13
14 #include "src/ppc/lithium-codegen-ppc.h"
15 #include "src/ppc/lithium-gap-resolver-ppc.h"
16
13 namespace v8 { 17 namespace v8 {
14 namespace internal { 18 namespace internal {
15 19
16 20
17 class SafepointGenerator V8_FINAL : public CallWrapper { 21 class SafepointGenerator V8_FINAL : public CallWrapper {
18 public: 22 public:
19 SafepointGenerator(LCodeGen* codegen, 23 SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers,
20 LPointerMap* pointers,
21 Safepoint::DeoptMode mode) 24 Safepoint::DeoptMode mode)
22 : codegen_(codegen), 25 : codegen_(codegen), pointers_(pointers), deopt_mode_(mode) {}
23 pointers_(pointers),
24 deopt_mode_(mode) { }
25 virtual ~SafepointGenerator() {} 26 virtual ~SafepointGenerator() {}
26 27
27 virtual void BeforeCall(int call_size) const V8_OVERRIDE {} 28 virtual void BeforeCall(int call_size) const V8_OVERRIDE {}
28 29
29 virtual void AfterCall() const V8_OVERRIDE { 30 virtual void AfterCall() const V8_OVERRIDE {
30 codegen_->RecordSafepoint(pointers_, deopt_mode_); 31 codegen_->RecordSafepoint(pointers_, deopt_mode_);
31 } 32 }
32 33
33 private: 34 private:
34 LCodeGen* codegen_; 35 LCodeGen* codegen_;
35 LPointerMap* pointers_; 36 LPointerMap* pointers_;
36 Safepoint::DeoptMode deopt_mode_; 37 Safepoint::DeoptMode deopt_mode_;
37 }; 38 };
38 39
39 40
40 #define __ masm()-> 41 #define __ masm()->
41 42
42 bool LCodeGen::GenerateCode() { 43 bool LCodeGen::GenerateCode() {
43 LPhase phase("Z_Code generation", chunk()); 44 LPhase phase("Z_Code generation", chunk());
44 DCHECK(is_unused()); 45 DCHECK(is_unused());
45 status_ = GENERATING; 46 status_ = GENERATING;
46 47
47 // Open a frame scope to indicate that there is a frame on the stack. The 48 // Open a frame scope to indicate that there is a frame on the stack. The
48 // NONE indicates that the scope shouldn't actually generate code to set up 49 // NONE indicates that the scope shouldn't actually generate code to set up
49 // the frame (that is done in GeneratePrologue). 50 // the frame (that is done in GeneratePrologue).
50 FrameScope frame_scope(masm_, StackFrame::NONE); 51 FrameScope frame_scope(masm_, StackFrame::NONE);
51 52
52 return GeneratePrologue() && 53 return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
53 GenerateBody() && 54 GenerateDeoptJumpTable() && GenerateSafepointTable();
54 GenerateDeferredCode() &&
55 GenerateDeoptJumpTable() &&
56 GenerateSafepointTable();
57 } 55 }
58 56
59 57
60 void LCodeGen::FinishCode(Handle<Code> code) { 58 void LCodeGen::FinishCode(Handle<Code> code) {
61 DCHECK(is_done()); 59 DCHECK(is_done());
62 code->set_stack_slots(GetStackSlotCount()); 60 code->set_stack_slots(GetStackSlotCount());
63 code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); 61 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
64 if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code); 62 if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code);
65 PopulateDeoptimizationData(code); 63 PopulateDeoptimizationData(code);
66 } 64 }
67 65
68 66
69 void LCodeGen::SaveCallerDoubles() { 67 void LCodeGen::SaveCallerDoubles() {
70 DCHECK(info()->saves_caller_doubles()); 68 DCHECK(info()->saves_caller_doubles());
71 DCHECK(NeedsEagerFrame()); 69 DCHECK(NeedsEagerFrame());
72 Comment(";;; Save clobbered callee double registers"); 70 Comment(";;; Save clobbered callee double registers");
73 int count = 0; 71 int count = 0;
74 BitVector* doubles = chunk()->allocated_double_registers(); 72 BitVector* doubles = chunk()->allocated_double_registers();
75 BitVector::Iterator save_iterator(doubles); 73 BitVector::Iterator save_iterator(doubles);
76 while (!save_iterator.Done()) { 74 while (!save_iterator.Done()) {
77 __ vstr(DwVfpRegister::FromAllocationIndex(save_iterator.Current()), 75 __ stfd(DoubleRegister::FromAllocationIndex(save_iterator.Current()),
78 MemOperand(sp, count * kDoubleSize)); 76 MemOperand(sp, count * kDoubleSize));
79 save_iterator.Advance(); 77 save_iterator.Advance();
80 count++; 78 count++;
81 } 79 }
82 } 80 }
83 81
84 82
85 void LCodeGen::RestoreCallerDoubles() { 83 void LCodeGen::RestoreCallerDoubles() {
86 DCHECK(info()->saves_caller_doubles()); 84 DCHECK(info()->saves_caller_doubles());
87 DCHECK(NeedsEagerFrame()); 85 DCHECK(NeedsEagerFrame());
88 Comment(";;; Restore clobbered callee double registers"); 86 Comment(";;; Restore clobbered callee double registers");
89 BitVector* doubles = chunk()->allocated_double_registers(); 87 BitVector* doubles = chunk()->allocated_double_registers();
90 BitVector::Iterator save_iterator(doubles); 88 BitVector::Iterator save_iterator(doubles);
91 int count = 0; 89 int count = 0;
92 while (!save_iterator.Done()) { 90 while (!save_iterator.Done()) {
93 __ vldr(DwVfpRegister::FromAllocationIndex(save_iterator.Current()), 91 __ lfd(DoubleRegister::FromAllocationIndex(save_iterator.Current()),
94 MemOperand(sp, count * kDoubleSize)); 92 MemOperand(sp, count * kDoubleSize));
95 save_iterator.Advance(); 93 save_iterator.Advance();
96 count++; 94 count++;
97 } 95 }
98 } 96 }
99 97
100 98
101 bool LCodeGen::GeneratePrologue() { 99 bool LCodeGen::GeneratePrologue() {
102 DCHECK(is_generating()); 100 DCHECK(is_generating());
103 101
104 if (info()->IsOptimizing()) { 102 if (info()->IsOptimizing()) {
105 ProfileEntryHookStub::MaybeCallEntryHook(masm_); 103 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
106 104
107 #ifdef DEBUG 105 #ifdef DEBUG
108 if (strlen(FLAG_stop_at) > 0 && 106 if (strlen(FLAG_stop_at) > 0 &&
109 info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) { 107 info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
110 __ stop("stop_at"); 108 __ stop("stop_at");
111 } 109 }
112 #endif 110 #endif
113 111
114 // r1: Callee's JS function. 112 // r4: Callee's JS function.
115 // cp: Callee's context. 113 // cp: Callee's context.
116 // pp: Callee's constant pool pointer (if FLAG_enable_ool_constant_pool)
117 // fp: Caller's frame pointer. 114 // fp: Caller's frame pointer.
118 // lr: Caller's pc. 115 // lr: Caller's pc.
119 116
120 // Sloppy mode functions and builtins need to replace the receiver with the 117 // Sloppy mode functions and builtins need to replace the receiver with the
121 // global proxy when called as functions (without an explicit receiver 118 // global proxy when called as functions (without an explicit receiver
122 // object). 119 // object).
123 if (info_->this_has_uses() && 120 if (info_->this_has_uses() && info_->strict_mode() == SLOPPY &&
124 info_->strict_mode() == SLOPPY &&
125 !info_->is_native()) { 121 !info_->is_native()) {
126 Label ok; 122 Label ok;
127 int receiver_offset = info_->scope()->num_parameters() * kPointerSize; 123 int receiver_offset = info_->scope()->num_parameters() * kPointerSize;
128 __ ldr(r2, MemOperand(sp, receiver_offset)); 124 __ LoadP(r5, MemOperand(sp, receiver_offset));
129 __ CompareRoot(r2, Heap::kUndefinedValueRootIndex); 125 __ CompareRoot(r5, Heap::kUndefinedValueRootIndex);
130 __ b(ne, &ok); 126 __ bne(&ok);
131 127
132 __ ldr(r2, GlobalObjectOperand()); 128 __ LoadP(r5, GlobalObjectOperand());
133 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalProxyOffset)); 129 __ LoadP(r5, FieldMemOperand(r5, GlobalObject::kGlobalProxyOffset));
134 130
135 __ str(r2, MemOperand(sp, receiver_offset)); 131 __ StoreP(r5, MemOperand(sp, receiver_offset));
136 132
137 __ bind(&ok); 133 __ bind(&ok);
138 } 134 }
139 } 135 }
140 136
141 info()->set_prologue_offset(masm_->pc_offset()); 137 info()->set_prologue_offset(masm_->pc_offset());
142 if (NeedsEagerFrame()) { 138 if (NeedsEagerFrame()) {
143 if (info()->IsStub()) { 139 if (info()->IsStub()) {
144 __ StubPrologue(); 140 __ StubPrologue();
145 } else { 141 } else {
146 __ Prologue(info()->IsCodePreAgingActive()); 142 __ Prologue(info()->IsCodePreAgingActive());
147 } 143 }
148 frame_is_built_ = true; 144 frame_is_built_ = true;
149 info_->AddNoFrameRange(0, masm_->pc_offset()); 145 info_->AddNoFrameRange(0, masm_->pc_offset());
150 } 146 }
151 147
152 // Reserve space for the stack slots needed by the code. 148 // Reserve space for the stack slots needed by the code.
153 int slots = GetStackSlotCount(); 149 int slots = GetStackSlotCount();
154 if (slots > 0) { 150 if (slots > 0) {
151 __ subi(sp, sp, Operand(slots * kPointerSize));
155 if (FLAG_debug_code) { 152 if (FLAG_debug_code) {
156 __ sub(sp, sp, Operand(slots * kPointerSize)); 153 __ Push(r3, r4);
157 __ push(r0); 154 __ li(r0, Operand(slots));
158 __ push(r1); 155 __ mtctr(r0);
159 __ add(r0, sp, Operand(slots * kPointerSize)); 156 __ addi(r3, sp, Operand((slots + 2) * kPointerSize));
160 __ mov(r1, Operand(kSlotsZapValue)); 157 __ mov(r4, Operand(kSlotsZapValue));
161 Label loop; 158 Label loop;
162 __ bind(&loop); 159 __ bind(&loop);
163 __ sub(r0, r0, Operand(kPointerSize)); 160 __ StorePU(r4, MemOperand(r3, -kPointerSize));
164 __ str(r1, MemOperand(r0, 2 * kPointerSize)); 161 __ bdnz(&loop);
165 __ cmp(r0, sp); 162 __ Pop(r3, r4);
166 __ b(ne, &loop);
167 __ pop(r1);
168 __ pop(r0);
169 } else {
170 __ sub(sp, sp, Operand(slots * kPointerSize));
171 } 163 }
172 } 164 }
173 165
174 if (info()->saves_caller_doubles()) { 166 if (info()->saves_caller_doubles()) {
175 SaveCallerDoubles(); 167 SaveCallerDoubles();
176 } 168 }
177 169
178 // Possibly allocate a local context. 170 // Possibly allocate a local context.
179 int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; 171 int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
180 if (heap_slots > 0) { 172 if (heap_slots > 0) {
181 Comment(";;; Allocate local context"); 173 Comment(";;; Allocate local context");
182 bool need_write_barrier = true; 174 bool need_write_barrier = true;
183 // Argument to NewContext is the function, which is in r1. 175 // Argument to NewContext is the function, which is in r4.
184 if (heap_slots <= FastNewContextStub::kMaximumSlots) { 176 if (heap_slots <= FastNewContextStub::kMaximumSlots) {
185 FastNewContextStub stub(isolate(), heap_slots); 177 FastNewContextStub stub(isolate(), heap_slots);
186 __ CallStub(&stub); 178 __ CallStub(&stub);
187 // Result of FastNewContextStub is always in new space. 179 // Result of FastNewContextStub is always in new space.
188 need_write_barrier = false; 180 need_write_barrier = false;
189 } else { 181 } else {
190 __ push(r1); 182 __ push(r4);
191 __ CallRuntime(Runtime::kNewFunctionContext, 1); 183 __ CallRuntime(Runtime::kNewFunctionContext, 1);
192 } 184 }
193 RecordSafepoint(Safepoint::kNoLazyDeopt); 185 RecordSafepoint(Safepoint::kNoLazyDeopt);
194 // Context is returned in both r0 and cp. It replaces the context 186 // Context is returned in both r3 and cp. It replaces the context
195 // passed to us. It's saved in the stack and kept live in cp. 187 // passed to us. It's saved in the stack and kept live in cp.
196 __ mov(cp, r0); 188 __ mr(cp, r3);
197 __ str(r0, MemOperand(fp, StandardFrameConstants::kContextOffset)); 189 __ StoreP(r3, MemOperand(fp, StandardFrameConstants::kContextOffset));
198 // Copy any necessary parameters into the context. 190 // Copy any necessary parameters into the context.
199 int num_parameters = scope()->num_parameters(); 191 int num_parameters = scope()->num_parameters();
200 for (int i = 0; i < num_parameters; i++) { 192 for (int i = 0; i < num_parameters; i++) {
201 Variable* var = scope()->parameter(i); 193 Variable* var = scope()->parameter(i);
202 if (var->IsContextSlot()) { 194 if (var->IsContextSlot()) {
203 int parameter_offset = StandardFrameConstants::kCallerSPOffset + 195 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
204 (num_parameters - 1 - i) * kPointerSize; 196 (num_parameters - 1 - i) * kPointerSize;
205 // Load parameter from stack. 197 // Load parameter from stack.
206 __ ldr(r0, MemOperand(fp, parameter_offset)); 198 __ LoadP(r3, MemOperand(fp, parameter_offset));
207 // Store it in the context. 199 // Store it in the context.
208 MemOperand target = ContextOperand(cp, var->index()); 200 MemOperand target = ContextOperand(cp, var->index());
209 __ str(r0, target); 201 __ StoreP(r3, target, r0);
210 // Update the write barrier. This clobbers r3 and r0. 202 // Update the write barrier. This clobbers r6 and r3.
211 if (need_write_barrier) { 203 if (need_write_barrier) {
212 __ RecordWriteContextSlot( 204 __ RecordWriteContextSlot(cp, target.offset(), r3, r6,
213 cp, 205 GetLinkRegisterState(), kSaveFPRegs);
214 target.offset(),
215 r0,
216 r3,
217 GetLinkRegisterState(),
218 kSaveFPRegs);
219 } else if (FLAG_debug_code) { 206 } else if (FLAG_debug_code) {
220 Label done; 207 Label done;
221 __ JumpIfInNewSpace(cp, r0, &done); 208 __ JumpIfInNewSpace(cp, r3, &done);
222 __ Abort(kExpectedNewSpaceObject); 209 __ Abort(kExpectedNewSpaceObject);
223 __ bind(&done); 210 __ bind(&done);
224 } 211 }
225 } 212 }
226 } 213 }
227 Comment(";;; End allocate local context"); 214 Comment(";;; End allocate local context");
228 } 215 }
229 216
230 // Trace the call. 217 // Trace the call.
231 if (FLAG_trace && info()->IsOptimizing()) { 218 if (FLAG_trace && info()->IsOptimizing()) {
232 // We have not executed any compiled code yet, so cp still holds the 219 // We have not executed any compiled code yet, so cp still holds the
233 // incoming context. 220 // incoming context.
234 __ CallRuntime(Runtime::kTraceEnter, 0); 221 __ CallRuntime(Runtime::kTraceEnter, 0);
235 } 222 }
236 return !is_aborted(); 223 return !is_aborted();
237 } 224 }
238 225
239 226
240 void LCodeGen::GenerateOsrPrologue() { 227 void LCodeGen::GenerateOsrPrologue() {
241 // Generate the OSR entry prologue at the first unknown OSR value, or if there 228 // Generate the OSR entry prologue at the first unknown OSR value, or if there
242 // are none, at the OSR entrypoint instruction. 229 // are none, at the OSR entrypoint instruction.
243 if (osr_pc_offset_ >= 0) return; 230 if (osr_pc_offset_ >= 0) return;
244 231
245 osr_pc_offset_ = masm()->pc_offset(); 232 osr_pc_offset_ = masm()->pc_offset();
246 233
247 // Adjust the frame size, subsuming the unoptimized frame into the 234 // Adjust the frame size, subsuming the unoptimized frame into the
248 // optimized frame. 235 // optimized frame.
249 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); 236 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
250 DCHECK(slots >= 0); 237 DCHECK(slots >= 0);
251 __ sub(sp, sp, Operand(slots * kPointerSize)); 238 __ subi(sp, sp, Operand(slots * kPointerSize));
252 } 239 }
253 240
254 241
255 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) { 242 void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
256 if (instr->IsCall()) { 243 if (instr->IsCall()) {
257 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); 244 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
258 } 245 }
259 if (!instr->IsLazyBailout() && !instr->IsGap()) { 246 if (!instr->IsLazyBailout() && !instr->IsGap()) {
260 safepoints_.BumpLastLazySafepointIndex(); 247 safepoints_.BumpLastLazySafepointIndex();
261 } 248 }
262 } 249 }
263 250
264 251
265 bool LCodeGen::GenerateDeferredCode() { 252 bool LCodeGen::GenerateDeferredCode() {
266 DCHECK(is_generating()); 253 DCHECK(is_generating());
267 if (deferred_.length() > 0) { 254 if (deferred_.length() > 0) {
268 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { 255 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
269 LDeferredCode* code = deferred_[i]; 256 LDeferredCode* code = deferred_[i];
270 257
271 HValue* value = 258 HValue* value =
272 instructions_->at(code->instruction_index())->hydrogen_value(); 259 instructions_->at(code->instruction_index())->hydrogen_value();
273 RecordAndWritePosition( 260 RecordAndWritePosition(
274 chunk()->graph()->SourcePositionToScriptPosition(value->position())); 261 chunk()->graph()->SourcePositionToScriptPosition(value->position()));
275 262
276 Comment(";;; <@%d,#%d> " 263 Comment(
277 "-------------------- Deferred %s --------------------", 264 ";;; <@%d,#%d> "
278 code->instruction_index(), 265 "-------------------- Deferred %s --------------------",
279 code->instr()->hydrogen_value()->id(), 266 code->instruction_index(), code->instr()->hydrogen_value()->id(),
280 code->instr()->Mnemonic()); 267 code->instr()->Mnemonic());
281 __ bind(code->entry()); 268 __ bind(code->entry());
282 if (NeedsDeferredFrame()) { 269 if (NeedsDeferredFrame()) {
283 Comment(";;; Build frame"); 270 Comment(";;; Build frame");
284 DCHECK(!frame_is_built_); 271 DCHECK(!frame_is_built_);
285 DCHECK(info()->IsStub()); 272 DCHECK(info()->IsStub());
286 frame_is_built_ = true; 273 frame_is_built_ = true;
287 __ PushFixedFrame(); 274 __ PushFixedFrame();
288 __ mov(scratch0(), Operand(Smi::FromInt(StackFrame::STUB))); 275 __ LoadSmiLiteral(scratch0(), Smi::FromInt(StackFrame::STUB));
289 __ push(scratch0()); 276 __ push(scratch0());
290 __ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); 277 __ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
291 Comment(";;; Deferred code"); 278 Comment(";;; Deferred code");
292 } 279 }
293 code->Generate(); 280 code->Generate();
294 if (NeedsDeferredFrame()) { 281 if (NeedsDeferredFrame()) {
295 Comment(";;; Destroy frame"); 282 Comment(";;; Destroy frame");
296 DCHECK(frame_is_built_); 283 DCHECK(frame_is_built_);
297 __ pop(ip); 284 __ pop(ip);
298 __ PopFixedFrame(); 285 __ PopFixedFrame();
299 frame_is_built_ = false; 286 frame_is_built_ = false;
300 } 287 }
301 __ jmp(code->exit()); 288 __ b(code->exit());
302 } 289 }
303 } 290 }
304 291
305 // Force constant pool emission at the end of the deferred code to make
306 // sure that no constant pools are emitted after.
307 masm()->CheckConstPool(true, false);
308
309 return !is_aborted(); 292 return !is_aborted();
310 } 293 }
311 294
312 295
313 bool LCodeGen::GenerateDeoptJumpTable() { 296 bool LCodeGen::GenerateDeoptJumpTable() {
314 // Check that the jump table is accessible from everywhere in the function
315 // code, i.e. that offsets to the table can be encoded in the 24bit signed
316 // immediate of a branch instruction.
317 // To simplify we consider the code size from the first instruction to the
318 // end of the jump table. We also don't consider the pc load delta.
319 // Each entry in the jump table generates one instruction and inlines one
320 // 32bit data after it.
321 if (!is_int24((masm()->pc_offset() / Assembler::kInstrSize) +
322 deopt_jump_table_.length() * 7)) {
323 Abort(kGeneratedCodeIsTooLarge);
324 }
325
326 if (deopt_jump_table_.length() > 0) { 297 if (deopt_jump_table_.length() > 0) {
327 Label needs_frame, call_deopt_entry; 298 Label needs_frame, call_deopt_entry;
328 299
329 Comment(";;; -------------------- Jump table --------------------"); 300 Comment(";;; -------------------- Jump table --------------------");
330 Address base = deopt_jump_table_[0].address; 301 Address base = deopt_jump_table_[0].address;
331 302
332 Register entry_offset = scratch0(); 303 Register entry_offset = scratch0();
333 304
334 int length = deopt_jump_table_.length(); 305 int length = deopt_jump_table_.length();
335 for (int i = 0; i < length; i++) { 306 for (int i = 0; i < length; i++) {
307 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
336 __ bind(&deopt_jump_table_[i].label); 308 __ bind(&deopt_jump_table_[i].label);
337 309
338 Deoptimizer::BailoutType type = deopt_jump_table_[i].bailout_type; 310 Deoptimizer::BailoutType type = deopt_jump_table_[i].bailout_type;
339 DCHECK(type == deopt_jump_table_[0].bailout_type); 311 DCHECK(type == deopt_jump_table_[0].bailout_type);
340 Address entry = deopt_jump_table_[i].address; 312 Address entry = deopt_jump_table_[i].address;
341 int id = Deoptimizer::GetDeoptimizationId(isolate(), entry, type); 313 int id = Deoptimizer::GetDeoptimizationId(isolate(), entry, type);
342 DCHECK(id != Deoptimizer::kNotDeoptimizationEntry); 314 DCHECK(id != Deoptimizer::kNotDeoptimizationEntry);
343 Comment(";;; jump table entry %d: deoptimization bailout %d.", i, id); 315 Comment(";;; jump table entry %d: deoptimization bailout %d.", i, id);
344 316
345 // Second-level deopt table entries are contiguous and small, so instead 317 // Second-level deopt table entries are contiguous and small, so instead
346 // of loading the full, absolute address of each one, load an immediate 318 // of loading the full, absolute address of each one, load an immediate
347 // offset which will be added to the base address later. 319 // offset which will be added to the base address later.
348 __ mov(entry_offset, Operand(entry - base)); 320 __ mov(entry_offset, Operand(entry - base));
349 321
350 if (deopt_jump_table_[i].needs_frame) { 322 if (deopt_jump_table_[i].needs_frame) {
351 DCHECK(!info()->saves_caller_doubles()); 323 DCHECK(!info()->saves_caller_doubles());
352 if (needs_frame.is_bound()) { 324 if (needs_frame.is_bound()) {
353 __ b(&needs_frame); 325 __ b(&needs_frame);
354 } else { 326 } else {
355 __ bind(&needs_frame); 327 __ bind(&needs_frame);
356 Comment(";;; call deopt with frame"); 328 Comment(";;; call deopt with frame");
357 __ PushFixedFrame(); 329 __ PushFixedFrame();
358 // This variant of deopt can only be used with stubs. Since we don't 330 // This variant of deopt can only be used with stubs. Since we don't
359 // have a function pointer to install in the stack frame that we're 331 // have a function pointer to install in the stack frame that we're
360 // building, install a special marker there instead. 332 // building, install a special marker there instead.
361 DCHECK(info()->IsStub()); 333 DCHECK(info()->IsStub());
362 __ mov(ip, Operand(Smi::FromInt(StackFrame::STUB))); 334 __ LoadSmiLiteral(r0, Smi::FromInt(StackFrame::STUB));
363 __ push(ip); 335 __ push(r0);
364 __ add(fp, sp, 336 __ addi(fp, sp,
365 Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); 337 Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
366 __ bind(&call_deopt_entry); 338 __ bind(&call_deopt_entry);
367 // Add the base address to the offset previously loaded in 339 // Add the base address to the offset previously loaded in
368 // entry_offset. 340 // entry_offset.
369 __ add(entry_offset, entry_offset, 341 __ mov(ip, Operand(ExternalReference::ForDeoptEntry(base)));
370 Operand(ExternalReference::ForDeoptEntry(base))); 342 __ add(ip, entry_offset, ip);
371 __ blx(entry_offset); 343 __ Call(ip);
372 } 344 }
373
374 masm()->CheckConstPool(false, false);
375 } else { 345 } else {
376 // The last entry can fall through into `call_deopt_entry`, avoiding a 346 // The last entry can fall through into `call_deopt_entry`, avoiding a
377 // branch. 347 // branch.
378 bool need_branch = ((i + 1) != length) || call_deopt_entry.is_bound(); 348 bool need_branch = ((i + 1) != length) || call_deopt_entry.is_bound();
379 349
380 if (need_branch) __ b(&call_deopt_entry); 350 if (need_branch) __ b(&call_deopt_entry);
381
382 masm()->CheckConstPool(false, !need_branch);
383 } 351 }
384 } 352 }
385 353
386 if (!call_deopt_entry.is_bound()) { 354 if (!call_deopt_entry.is_bound()) {
387 Comment(";;; call deopt"); 355 Comment(";;; call deopt");
388 __ bind(&call_deopt_entry); 356 __ bind(&call_deopt_entry);
389 357
390 if (info()->saves_caller_doubles()) { 358 if (info()->saves_caller_doubles()) {
391 DCHECK(info()->IsStub()); 359 DCHECK(info()->IsStub());
392 RestoreCallerDoubles(); 360 RestoreCallerDoubles();
393 } 361 }
394 362
395 // Add the base address to the offset previously loaded in entry_offset. 363 // Add the base address to the offset previously loaded in entry_offset.
396 __ add(entry_offset, entry_offset, 364 __ mov(ip, Operand(ExternalReference::ForDeoptEntry(base)));
397 Operand(ExternalReference::ForDeoptEntry(base))); 365 __ add(ip, entry_offset, ip);
398 __ blx(entry_offset); 366 __ Call(ip);
399 } 367 }
400 } 368 }
401 369
402 // Force constant pool emission at the end of the deopt jump table to make
403 // sure that no constant pools are emitted after.
404 masm()->CheckConstPool(true, false);
405
406 // The deoptimization jump table is the last part of the instruction 370 // The deoptimization jump table is the last part of the instruction
407 // sequence. Mark the generated code as done unless we bailed out. 371 // sequence. Mark the generated code as done unless we bailed out.
408 if (!is_aborted()) status_ = DONE; 372 if (!is_aborted()) status_ = DONE;
409 return !is_aborted(); 373 return !is_aborted();
410 } 374 }
411 375
412 376
413 bool LCodeGen::GenerateSafepointTable() { 377 bool LCodeGen::GenerateSafepointTable() {
414 DCHECK(is_done()); 378 DCHECK(is_done());
415 safepoints_.Emit(masm(), GetStackSlotCount()); 379 safepoints_.Emit(masm(), GetStackSlotCount());
416 return !is_aborted(); 380 return !is_aborted();
417 } 381 }
418 382
419 383
420 Register LCodeGen::ToRegister(int index) const { 384 Register LCodeGen::ToRegister(int index) const {
421 return Register::FromAllocationIndex(index); 385 return Register::FromAllocationIndex(index);
422 } 386 }
423 387
424 388
425 DwVfpRegister LCodeGen::ToDoubleRegister(int index) const { 389 DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
426 return DwVfpRegister::FromAllocationIndex(index); 390 return DoubleRegister::FromAllocationIndex(index);
427 } 391 }
428 392
429 393
430 Register LCodeGen::ToRegister(LOperand* op) const { 394 Register LCodeGen::ToRegister(LOperand* op) const {
431 DCHECK(op->IsRegister()); 395 DCHECK(op->IsRegister());
432 return ToRegister(op->index()); 396 return ToRegister(op->index());
433 } 397 }
434 398
435 399
436 Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) { 400 Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
437 if (op->IsRegister()) { 401 if (op->IsRegister()) {
438 return ToRegister(op->index()); 402 return ToRegister(op->index());
439 } else if (op->IsConstantOperand()) { 403 } else if (op->IsConstantOperand()) {
440 LConstantOperand* const_op = LConstantOperand::cast(op); 404 LConstantOperand* const_op = LConstantOperand::cast(op);
441 HConstant* constant = chunk_->LookupConstant(const_op); 405 HConstant* constant = chunk_->LookupConstant(const_op);
442 Handle<Object> literal = constant->handle(isolate()); 406 Handle<Object> literal = constant->handle(isolate());
443 Representation r = chunk_->LookupLiteralRepresentation(const_op); 407 Representation r = chunk_->LookupLiteralRepresentation(const_op);
444 if (r.IsInteger32()) { 408 if (r.IsInteger32()) {
445 DCHECK(literal->IsNumber()); 409 DCHECK(literal->IsNumber());
446 __ mov(scratch, Operand(static_cast<int32_t>(literal->Number()))); 410 __ LoadIntLiteral(scratch, static_cast<int32_t>(literal->Number()));
447 } else if (r.IsDouble()) { 411 } else if (r.IsDouble()) {
448 Abort(kEmitLoadRegisterUnsupportedDoubleImmediate); 412 Abort(kEmitLoadRegisterUnsupportedDoubleImmediate);
449 } else { 413 } else {
450 DCHECK(r.IsSmiOrTagged()); 414 DCHECK(r.IsSmiOrTagged());
451 __ Move(scratch, literal); 415 __ Move(scratch, literal);
452 } 416 }
453 return scratch; 417 return scratch;
454 } else if (op->IsStackSlot()) { 418 } else if (op->IsStackSlot()) {
455 __ ldr(scratch, ToMemOperand(op)); 419 __ LoadP(scratch, ToMemOperand(op));
456 return scratch; 420 return scratch;
457 } 421 }
458 UNREACHABLE(); 422 UNREACHABLE();
459 return scratch; 423 return scratch;
460 } 424 }
461 425
462 426
463 DwVfpRegister LCodeGen::ToDoubleRegister(LOperand* op) const { 427 void LCodeGen::EmitLoadIntegerConstant(LConstantOperand* const_op,
428 Register dst) {
429 DCHECK(IsInteger32(const_op));
430 HConstant* constant = chunk_->LookupConstant(const_op);
431 int32_t value = constant->Integer32Value();
432 if (IsSmi(const_op)) {
433 __ LoadSmiLiteral(dst, Smi::FromInt(value));
434 } else {
435 __ LoadIntLiteral(dst, value);
436 }
437 }
438
439
440 DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
464 DCHECK(op->IsDoubleRegister()); 441 DCHECK(op->IsDoubleRegister());
465 return ToDoubleRegister(op->index()); 442 return ToDoubleRegister(op->index());
466 } 443 }
467 444
468 445
469 DwVfpRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
470 SwVfpRegister flt_scratch,
471 DwVfpRegister dbl_scratch) {
472 if (op->IsDoubleRegister()) {
473 return ToDoubleRegister(op->index());
474 } else if (op->IsConstantOperand()) {
475 LConstantOperand* const_op = LConstantOperand::cast(op);
476 HConstant* constant = chunk_->LookupConstant(const_op);
477 Handle<Object> literal = constant->handle(isolate());
478 Representation r = chunk_->LookupLiteralRepresentation(const_op);
479 if (r.IsInteger32()) {
480 DCHECK(literal->IsNumber());
481 __ mov(ip, Operand(static_cast<int32_t>(literal->Number())));
482 __ vmov(flt_scratch, ip);
483 __ vcvt_f64_s32(dbl_scratch, flt_scratch);
484 return dbl_scratch;
485 } else if (r.IsDouble()) {
486 Abort(kUnsupportedDoubleImmediate);
487 } else if (r.IsTagged()) {
488 Abort(kUnsupportedTaggedImmediate);
489 }
490 } else if (op->IsStackSlot()) {
491 // TODO(regis): Why is vldr not taking a MemOperand?
492 // __ vldr(dbl_scratch, ToMemOperand(op));
493 MemOperand mem_op = ToMemOperand(op);
494 __ vldr(dbl_scratch, mem_op.rn(), mem_op.offset());
495 return dbl_scratch;
496 }
497 UNREACHABLE();
498 return dbl_scratch;
499 }
500
501
502 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { 446 Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
503 HConstant* constant = chunk_->LookupConstant(op); 447 HConstant* constant = chunk_->LookupConstant(op);
504 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); 448 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
505 return constant->handle(isolate()); 449 return constant->handle(isolate());
506 } 450 }
507 451
508 452
509 bool LCodeGen::IsInteger32(LConstantOperand* op) const { 453 bool LCodeGen::IsInteger32(LConstantOperand* op) const {
510 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); 454 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
511 } 455 }
512 456
513 457
514 bool LCodeGen::IsSmi(LConstantOperand* op) const { 458 bool LCodeGen::IsSmi(LConstantOperand* op) const {
515 return chunk_->LookupLiteralRepresentation(op).IsSmi(); 459 return chunk_->LookupLiteralRepresentation(op).IsSmi();
516 } 460 }
517 461
518 462
519 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { 463 int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
520 return ToRepresentation(op, Representation::Integer32()); 464 return ToRepresentation(op, Representation::Integer32());
521 } 465 }
522 466
523 467
524 int32_t LCodeGen::ToRepresentation(LConstantOperand* op, 468 intptr_t LCodeGen::ToRepresentation(LConstantOperand* op,
525 const Representation& r) const { 469 const Representation& r) const {
526 HConstant* constant = chunk_->LookupConstant(op); 470 HConstant* constant = chunk_->LookupConstant(op);
527 int32_t value = constant->Integer32Value(); 471 int32_t value = constant->Integer32Value();
528 if (r.IsInteger32()) return value; 472 if (r.IsInteger32()) return value;
529 DCHECK(r.IsSmiOrTagged()); 473 DCHECK(r.IsSmiOrTagged());
530 return reinterpret_cast<int32_t>(Smi::FromInt(value)); 474 return reinterpret_cast<intptr_t>(Smi::FromInt(value));
531 } 475 }
532 476
533 477
534 Smi* LCodeGen::ToSmi(LConstantOperand* op) const { 478 Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
535 HConstant* constant = chunk_->LookupConstant(op); 479 HConstant* constant = chunk_->LookupConstant(op);
536 return Smi::FromInt(constant->Integer32Value()); 480 return Smi::FromInt(constant->Integer32Value());
537 } 481 }
538 482
539 483
540 double LCodeGen::ToDouble(LConstantOperand* op) const { 484 double LCodeGen::ToDouble(LConstantOperand* op) const {
(...skipping 51 matching lines...) Expand 10 before | Expand all | Expand 10 after
592 } 536 }
593 537
594 538
595 MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const { 539 MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const {
596 DCHECK(op->IsDoubleStackSlot()); 540 DCHECK(op->IsDoubleStackSlot());
597 if (NeedsEagerFrame()) { 541 if (NeedsEagerFrame()) {
598 return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize); 542 return MemOperand(fp, StackSlotOffset(op->index()) + kPointerSize);
599 } else { 543 } else {
600 // Retrieve parameter without eager stack-frame relative to the 544 // Retrieve parameter without eager stack-frame relative to the
601 // stack-pointer. 545 // stack-pointer.
602 return MemOperand( 546 return MemOperand(sp,
603 sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize); 547 ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
604 } 548 }
605 } 549 }
606 550
607 551
608 void LCodeGen::WriteTranslation(LEnvironment* environment, 552 void LCodeGen::WriteTranslation(LEnvironment* environment,
609 Translation* translation) { 553 Translation* translation) {
610 if (environment == NULL) return; 554 if (environment == NULL) return;
611 555
612 // The translation includes one command per value in the environment. 556 // The translation includes one command per value in the environment.
613 int translation_size = environment->translation_size(); 557 int translation_size = environment->translation_size();
614 // The output frame height does not include the parameters. 558 // The output frame height does not include the parameters.
615 int height = translation_size - environment->parameter_count(); 559 int height = translation_size - environment->parameter_count();
616 560
617 WriteTranslation(environment->outer(), translation); 561 WriteTranslation(environment->outer(), translation);
618 bool has_closure_id = !info()->closure().is_null() && 562 bool has_closure_id =
563 !info()->closure().is_null() &&
619 !info()->closure().is_identical_to(environment->closure()); 564 !info()->closure().is_identical_to(environment->closure());
620 int closure_id = has_closure_id 565 int closure_id = has_closure_id
621 ? DefineDeoptimizationLiteral(environment->closure()) 566 ? DefineDeoptimizationLiteral(environment->closure())
622 : Translation::kSelfLiteralId; 567 : Translation::kSelfLiteralId;
623 568
624 switch (environment->frame_type()) { 569 switch (environment->frame_type()) {
625 case JS_FUNCTION: 570 case JS_FUNCTION:
626 translation->BeginJSFrame(environment->ast_id(), closure_id, height); 571 translation->BeginJSFrame(environment->ast_id(), closure_id, height);
627 break; 572 break;
628 case JS_CONSTRUCT: 573 case JS_CONSTRUCT:
629 translation->BeginConstructStubFrame(closure_id, translation_size); 574 translation->BeginConstructStubFrame(closure_id, translation_size);
630 break; 575 break;
631 case JS_GETTER: 576 case JS_GETTER:
632 DCHECK(translation_size == 1); 577 DCHECK(translation_size == 1);
(...skipping 10 matching lines...) Expand all
643 break; 588 break;
644 case ARGUMENTS_ADAPTOR: 589 case ARGUMENTS_ADAPTOR:
645 translation->BeginArgumentsAdaptorFrame(closure_id, translation_size); 590 translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
646 break; 591 break;
647 } 592 }
648 593
649 int object_index = 0; 594 int object_index = 0;
650 int dematerialized_index = 0; 595 int dematerialized_index = 0;
651 for (int i = 0; i < translation_size; ++i) { 596 for (int i = 0; i < translation_size; ++i) {
652 LOperand* value = environment->values()->at(i); 597 LOperand* value = environment->values()->at(i);
653 AddToTranslation(environment, 598 AddToTranslation(
654 translation, 599 environment, translation, value, environment->HasTaggedValueAt(i),
655 value, 600 environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
656 environment->HasTaggedValueAt(i),
657 environment->HasUint32ValueAt(i),
658 &object_index,
659 &dematerialized_index);
660 } 601 }
661 } 602 }
662 603
663 604
664 void LCodeGen::AddToTranslation(LEnvironment* environment, 605 void LCodeGen::AddToTranslation(LEnvironment* environment,
665 Translation* translation, 606 Translation* translation, LOperand* op,
666 LOperand* op, 607 bool is_tagged, bool is_uint32,
667 bool is_tagged,
668 bool is_uint32,
669 int* object_index_pointer, 608 int* object_index_pointer,
670 int* dematerialized_index_pointer) { 609 int* dematerialized_index_pointer) {
671 if (op == LEnvironment::materialization_marker()) { 610 if (op == LEnvironment::materialization_marker()) {
672 int object_index = (*object_index_pointer)++; 611 int object_index = (*object_index_pointer)++;
673 if (environment->ObjectIsDuplicateAt(object_index)) { 612 if (environment->ObjectIsDuplicateAt(object_index)) {
674 int dupe_of = environment->ObjectDuplicateOfAt(object_index); 613 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
675 translation->DuplicateObject(dupe_of); 614 translation->DuplicateObject(dupe_of);
676 return; 615 return;
677 } 616 }
678 int object_length = environment->ObjectLengthAt(object_index); 617 int object_length = environment->ObjectLengthAt(object_index);
679 if (environment->ObjectIsArgumentsAt(object_index)) { 618 if (environment->ObjectIsArgumentsAt(object_index)) {
680 translation->BeginArgumentsObject(object_length); 619 translation->BeginArgumentsObject(object_length);
681 } else { 620 } else {
682 translation->BeginCapturedObject(object_length); 621 translation->BeginCapturedObject(object_length);
683 } 622 }
684 int dematerialized_index = *dematerialized_index_pointer; 623 int dematerialized_index = *dematerialized_index_pointer;
685 int env_offset = environment->translation_size() + dematerialized_index; 624 int env_offset = environment->translation_size() + dematerialized_index;
686 *dematerialized_index_pointer += object_length; 625 *dematerialized_index_pointer += object_length;
687 for (int i = 0; i < object_length; ++i) { 626 for (int i = 0; i < object_length; ++i) {
688 LOperand* value = environment->values()->at(env_offset + i); 627 LOperand* value = environment->values()->at(env_offset + i);
689 AddToTranslation(environment, 628 AddToTranslation(environment, translation, value,
690 translation,
691 value,
692 environment->HasTaggedValueAt(env_offset + i), 629 environment->HasTaggedValueAt(env_offset + i),
693 environment->HasUint32ValueAt(env_offset + i), 630 environment->HasUint32ValueAt(env_offset + i),
694 object_index_pointer, 631 object_index_pointer, dematerialized_index_pointer);
695 dematerialized_index_pointer);
696 } 632 }
697 return; 633 return;
698 } 634 }
699 635
700 if (op->IsStackSlot()) { 636 if (op->IsStackSlot()) {
701 if (is_tagged) { 637 if (is_tagged) {
702 translation->StoreStackSlot(op->index()); 638 translation->StoreStackSlot(op->index());
703 } else if (is_uint32) { 639 } else if (is_uint32) {
704 translation->StoreUint32StackSlot(op->index()); 640 translation->StoreUint32StackSlot(op->index());
705 } else { 641 } else {
(...skipping 16 matching lines...) Expand all
722 } else if (op->IsConstantOperand()) { 658 } else if (op->IsConstantOperand()) {
723 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); 659 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
724 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); 660 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
725 translation->StoreLiteral(src_index); 661 translation->StoreLiteral(src_index);
726 } else { 662 } else {
727 UNREACHABLE(); 663 UNREACHABLE();
728 } 664 }
729 } 665 }
730 666
731 667
732 int LCodeGen::CallCodeSize(Handle<Code> code, RelocInfo::Mode mode) { 668 void LCodeGen::CallCode(Handle<Code> code, RelocInfo::Mode mode,
733 int size = masm()->CallSize(code, mode); 669 LInstruction* instr) {
734 if (code->kind() == Code::BINARY_OP_IC || 670 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
735 code->kind() == Code::COMPARE_IC) {
736 size += Assembler::kInstrSize; // extra nop() added in CallCodeGeneric.
737 }
738 return size;
739 } 671 }
740 672
741 673
742 void LCodeGen::CallCode(Handle<Code> code, 674 void LCodeGen::CallCodeGeneric(Handle<Code> code, RelocInfo::Mode mode,
743 RelocInfo::Mode mode,
744 LInstruction* instr,
745 TargetAddressStorageMode storage_mode) {
746 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, storage_mode);
747 }
748
749
750 void LCodeGen::CallCodeGeneric(Handle<Code> code,
751 RelocInfo::Mode mode,
752 LInstruction* instr, 675 LInstruction* instr,
753 SafepointMode safepoint_mode, 676 SafepointMode safepoint_mode) {
754 TargetAddressStorageMode storage_mode) {
755 DCHECK(instr != NULL); 677 DCHECK(instr != NULL);
756 // Block literal pool emission to ensure nop indicating no inlined smi code 678 __ Call(code, mode);
757 // is in the correct position.
758 Assembler::BlockConstPoolScope block_const_pool(masm());
759 __ Call(code, mode, TypeFeedbackId::None(), al, storage_mode);
760 RecordSafepointWithLazyDeopt(instr, safepoint_mode); 679 RecordSafepointWithLazyDeopt(instr, safepoint_mode);
761 680
762 // Signal that we don't inline smi code before these stubs in the 681 // Signal that we don't inline smi code before these stubs in the
763 // optimizing code generator. 682 // optimizing code generator.
764 if (code->kind() == Code::BINARY_OP_IC || 683 if (code->kind() == Code::BINARY_OP_IC || code->kind() == Code::COMPARE_IC) {
765 code->kind() == Code::COMPARE_IC) {
766 __ nop(); 684 __ nop();
767 } 685 }
768 } 686 }
769 687
770 688
771 void LCodeGen::CallRuntime(const Runtime::Function* function, 689 void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments,
772 int num_arguments, 690 LInstruction* instr, SaveFPRegsMode save_doubles) {
773 LInstruction* instr,
774 SaveFPRegsMode save_doubles) {
775 DCHECK(instr != NULL); 691 DCHECK(instr != NULL);
776 692
777 __ CallRuntime(function, num_arguments, save_doubles); 693 __ CallRuntime(function, num_arguments, save_doubles);
778 694
779 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); 695 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
780 } 696 }
781 697
782 698
783 void LCodeGen::LoadContextFromDeferred(LOperand* context) { 699 void LCodeGen::LoadContextFromDeferred(LOperand* context) {
784 if (context->IsRegister()) { 700 if (context->IsRegister()) {
785 __ Move(cp, ToRegister(context)); 701 __ Move(cp, ToRegister(context));
786 } else if (context->IsStackSlot()) { 702 } else if (context->IsStackSlot()) {
787 __ ldr(cp, ToMemOperand(context)); 703 __ LoadP(cp, ToMemOperand(context));
788 } else if (context->IsConstantOperand()) { 704 } else if (context->IsConstantOperand()) {
789 HConstant* constant = 705 HConstant* constant =
790 chunk_->LookupConstant(LConstantOperand::cast(context)); 706 chunk_->LookupConstant(LConstantOperand::cast(context));
791 __ Move(cp, Handle<Object>::cast(constant->handle(isolate()))); 707 __ Move(cp, Handle<Object>::cast(constant->handle(isolate())));
792 } else { 708 } else {
793 UNREACHABLE(); 709 UNREACHABLE();
794 } 710 }
795 } 711 }
796 712
797 713
798 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, 714 void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc,
799 int argc, 715 LInstruction* instr, LOperand* context) {
800 LInstruction* instr,
801 LOperand* context) {
802 LoadContextFromDeferred(context); 716 LoadContextFromDeferred(context);
803 __ CallRuntimeSaveDoubles(id); 717 __ CallRuntimeSaveDoubles(id);
804 RecordSafepointWithRegisters( 718 RecordSafepointWithRegisters(instr->pointer_map(), argc,
805 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); 719 Safepoint::kNoLazyDeopt);
806 } 720 }
807 721
808 722
809 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, 723 void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
810 Safepoint::DeoptMode mode) { 724 Safepoint::DeoptMode mode) {
811 environment->set_has_been_used(); 725 environment->set_has_been_used();
812 if (!environment->HasBeenRegistered()) { 726 if (!environment->HasBeenRegistered()) {
813 // Physical stack frame layout: 727 // Physical stack frame layout:
814 // -x ............. -4 0 ..................................... y 728 // -x ............. -4 0 ..................................... y
815 // [incoming arguments] [spill slots] [pushed outgoing arguments] 729 // [incoming arguments] [spill slots] [pushed outgoing arguments]
(...skipping 12 matching lines...) Expand all
828 for (LEnvironment* e = environment; e != NULL; e = e->outer()) { 742 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
829 ++frame_count; 743 ++frame_count;
830 if (e->frame_type() == JS_FUNCTION) { 744 if (e->frame_type() == JS_FUNCTION) {
831 ++jsframe_count; 745 ++jsframe_count;
832 } 746 }
833 } 747 }
834 Translation translation(&translations_, frame_count, jsframe_count, zone()); 748 Translation translation(&translations_, frame_count, jsframe_count, zone());
835 WriteTranslation(environment, &translation); 749 WriteTranslation(environment, &translation);
836 int deoptimization_index = deoptimizations_.length(); 750 int deoptimization_index = deoptimizations_.length();
837 int pc_offset = masm()->pc_offset(); 751 int pc_offset = masm()->pc_offset();
838 environment->Register(deoptimization_index, 752 environment->Register(deoptimization_index, translation.index(),
839 translation.index(),
840 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); 753 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
841 deoptimizations_.Add(environment, zone()); 754 deoptimizations_.Add(environment, zone());
842 } 755 }
843 } 756 }
844 757
845 758
846 void LCodeGen::DeoptimizeIf(Condition condition, 759 void LCodeGen::DeoptimizeIf(Condition cond, LEnvironment* environment,
847 LEnvironment* environment, 760 Deoptimizer::BailoutType bailout_type,
848 Deoptimizer::BailoutType bailout_type) { 761 CRegister cr) {
849 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); 762 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
850 DCHECK(environment->HasBeenRegistered()); 763 DCHECK(environment->HasBeenRegistered());
851 int id = environment->deoptimization_index(); 764 int id = environment->deoptimization_index();
852 DCHECK(info()->IsOptimizing() || info()->IsStub()); 765 DCHECK(info()->IsOptimizing() || info()->IsStub());
853 Address entry = 766 Address entry =
854 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); 767 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
855 if (entry == NULL) { 768 if (entry == NULL) {
856 Abort(kBailoutWasNotPrepared); 769 Abort(kBailoutWasNotPrepared);
857 return; 770 return;
858 } 771 }
859 772
860 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) { 773 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
774 CRegister alt_cr = cr6;
861 Register scratch = scratch0(); 775 Register scratch = scratch0();
862 ExternalReference count = ExternalReference::stress_deopt_count(isolate()); 776 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
777 Label no_deopt;
778 DCHECK(!alt_cr.is(cr));
779 __ Push(r4, scratch);
780 __ mov(scratch, Operand(count));
781 __ lwz(r4, MemOperand(scratch));
782 __ subi(r4, r4, Operand(1));
783 __ cmpi(r4, Operand::Zero(), alt_cr);
784 __ bne(&no_deopt, alt_cr);
785 __ li(r4, Operand(FLAG_deopt_every_n_times));
786 __ stw(r4, MemOperand(scratch));
787 __ Pop(r4, scratch);
863 788
864 // Store the condition on the stack if necessary 789 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
865 if (condition != al) { 790 __ bind(&no_deopt);
866 __ mov(scratch, Operand::Zero(), LeaveCC, NegateCondition(condition)); 791 __ stw(r4, MemOperand(scratch));
867 __ mov(scratch, Operand(1), LeaveCC, condition); 792 __ Pop(r4, scratch);
868 __ push(scratch);
869 }
870
871 __ push(r1);
872 __ mov(scratch, Operand(count));
873 __ ldr(r1, MemOperand(scratch));
874 __ sub(r1, r1, Operand(1), SetCC);
875 __ mov(r1, Operand(FLAG_deopt_every_n_times), LeaveCC, eq);
876 __ str(r1, MemOperand(scratch));
877 __ pop(r1);
878
879 if (condition != al) {
880 // Clean up the stack before the deoptimizer call
881 __ pop(scratch);
882 }
883
884 __ Call(entry, RelocInfo::RUNTIME_ENTRY, eq);
885
886 // 'Restore' the condition in a slightly hacky way. (It would be better
887 // to use 'msr' and 'mrs' instructions here, but they are not supported by
888 // our ARM simulator).
889 if (condition != al) {
890 condition = ne;
891 __ cmp(scratch, Operand::Zero());
892 }
893 } 793 }
894 794
895 if (info()->ShouldTrapOnDeopt()) { 795 if (info()->ShouldTrapOnDeopt()) {
896 __ stop("trap_on_deopt", condition); 796 __ stop("trap_on_deopt", cond, kDefaultStopCode, cr);
897 } 797 }
898 798
899 DCHECK(info()->IsStub() || frame_is_built_); 799 DCHECK(info()->IsStub() || frame_is_built_);
900 // Go through jump table if we need to handle condition, build frame, or 800 // Go through jump table if we need to handle condition, build frame, or
901 // restore caller doubles. 801 // restore caller doubles.
902 if (condition == al && frame_is_built_ && 802 if (cond == al && frame_is_built_ && !info()->saves_caller_doubles()) {
903 !info()->saves_caller_doubles()) {
904 __ Call(entry, RelocInfo::RUNTIME_ENTRY); 803 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
905 } else { 804 } else {
906 // We often have several deopts to the same entry, reuse the last 805 // We often have several deopts to the same entry, reuse the last
907 // jump entry if this is the case. 806 // jump entry if this is the case.
908 if (deopt_jump_table_.is_empty() || 807 if (deopt_jump_table_.is_empty() ||
909 (deopt_jump_table_.last().address != entry) || 808 (deopt_jump_table_.last().address != entry) ||
910 (deopt_jump_table_.last().bailout_type != bailout_type) || 809 (deopt_jump_table_.last().bailout_type != bailout_type) ||
911 (deopt_jump_table_.last().needs_frame != !frame_is_built_)) { 810 (deopt_jump_table_.last().needs_frame != !frame_is_built_)) {
912 Deoptimizer::JumpTableEntry table_entry(entry, 811 Deoptimizer::JumpTableEntry table_entry(entry, bailout_type,
913 bailout_type,
914 !frame_is_built_); 812 !frame_is_built_);
915 deopt_jump_table_.Add(table_entry, zone()); 813 deopt_jump_table_.Add(table_entry, zone());
916 } 814 }
917 __ b(condition, &deopt_jump_table_.last().label); 815 __ b(cond, &deopt_jump_table_.last().label, cr);
918 } 816 }
919 } 817 }
920 818
921 819
922 void LCodeGen::DeoptimizeIf(Condition condition, 820 void LCodeGen::DeoptimizeIf(Condition cond, LEnvironment* environment,
923 LEnvironment* environment) { 821 CRegister cr) {
924 Deoptimizer::BailoutType bailout_type = info()->IsStub() 822 Deoptimizer::BailoutType bailout_type =
925 ? Deoptimizer::LAZY 823 info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
926 : Deoptimizer::EAGER; 824 DeoptimizeIf(cond, environment, bailout_type, cr);
927 DeoptimizeIf(condition, environment, bailout_type);
928 } 825 }
929 826
930 827
931 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) { 828 void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
932 int length = deoptimizations_.length(); 829 int length = deoptimizations_.length();
933 if (length == 0) return; 830 if (length == 0) return;
934 Handle<DeoptimizationInputData> data = 831 Handle<DeoptimizationInputData> data =
935 DeoptimizationInputData::New(isolate(), length, 0, TENURED); 832 DeoptimizationInputData::New(isolate(), length, 0, TENURED);
936 833
937 Handle<ByteArray> translations = 834 Handle<ByteArray> translations =
938 translations_.CreateByteArray(isolate()->factory()); 835 translations_.CreateByteArray(isolate()->factory());
939 data->SetTranslationByteArray(*translations); 836 data->SetTranslationByteArray(*translations);
940 data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_)); 837 data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
941 data->SetOptimizationId(Smi::FromInt(info_->optimization_id())); 838 data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
942 if (info_->IsOptimizing()) { 839 if (info_->IsOptimizing()) {
943 // Reference to shared function info does not change between phases. 840 // Reference to shared function info does not change between phases.
944 AllowDeferredHandleDereference allow_handle_dereference; 841 AllowDeferredHandleDereference allow_handle_dereference;
945 data->SetSharedFunctionInfo(*info_->shared_info()); 842 data->SetSharedFunctionInfo(*info_->shared_info());
946 } else { 843 } else {
947 data->SetSharedFunctionInfo(Smi::FromInt(0)); 844 data->SetSharedFunctionInfo(Smi::FromInt(0));
948 } 845 }
949 846
950 Handle<FixedArray> literals = 847 Handle<FixedArray> literals =
951 factory()->NewFixedArray(deoptimization_literals_.length(), TENURED); 848 factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
952 { AllowDeferredHandleDereference copy_handles; 849 {
850 AllowDeferredHandleDereference copy_handles;
953 for (int i = 0; i < deoptimization_literals_.length(); i++) { 851 for (int i = 0; i < deoptimization_literals_.length(); i++) {
954 literals->set(i, *deoptimization_literals_[i]); 852 literals->set(i, *deoptimization_literals_[i]);
955 } 853 }
956 data->SetLiteralArray(*literals); 854 data->SetLiteralArray(*literals);
957 } 855 }
958 856
959 data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt())); 857 data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
960 data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_)); 858 data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
961 859
962 // Populate the deoptimization entries. 860 // Populate the deoptimization entries.
(...skipping 18 matching lines...) Expand all
981 return result; 879 return result;
982 } 880 }
983 881
984 882
985 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() { 883 void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
986 DCHECK(deoptimization_literals_.length() == 0); 884 DCHECK(deoptimization_literals_.length() == 0);
987 885
988 const ZoneList<Handle<JSFunction> >* inlined_closures = 886 const ZoneList<Handle<JSFunction> >* inlined_closures =
989 chunk()->inlined_closures(); 887 chunk()->inlined_closures();
990 888
991 for (int i = 0, length = inlined_closures->length(); 889 for (int i = 0, length = inlined_closures->length(); i < length; i++) {
992 i < length;
993 i++) {
994 DefineDeoptimizationLiteral(inlined_closures->at(i)); 890 DefineDeoptimizationLiteral(inlined_closures->at(i));
995 } 891 }
996 892
997 inlined_function_count_ = deoptimization_literals_.length(); 893 inlined_function_count_ = deoptimization_literals_.length();
998 } 894 }
999 895
1000 896
1001 void LCodeGen::RecordSafepointWithLazyDeopt( 897 void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
1002 LInstruction* instr, SafepointMode safepoint_mode) { 898 SafepointMode safepoint_mode) {
1003 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { 899 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
1004 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); 900 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
1005 } else { 901 } else {
1006 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); 902 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
1007 RecordSafepointWithRegisters( 903 RecordSafepointWithRegisters(instr->pointer_map(), 0,
1008 instr->pointer_map(), 0, Safepoint::kLazyDeopt); 904 Safepoint::kLazyDeopt);
1009 } 905 }
1010 } 906 }
1011 907
1012 908
1013 void LCodeGen::RecordSafepoint( 909 void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::Kind kind,
1014 LPointerMap* pointers, 910 int arguments, Safepoint::DeoptMode deopt_mode) {
1015 Safepoint::Kind kind,
1016 int arguments,
1017 Safepoint::DeoptMode deopt_mode) {
1018 DCHECK(expected_safepoint_kind_ == kind); 911 DCHECK(expected_safepoint_kind_ == kind);
1019 912
1020 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); 913 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
1021 Safepoint safepoint = safepoints_.DefineSafepoint(masm(), 914 Safepoint safepoint =
1022 kind, arguments, deopt_mode); 915 safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
1023 for (int i = 0; i < operands->length(); i++) { 916 for (int i = 0; i < operands->length(); i++) {
1024 LOperand* pointer = operands->at(i); 917 LOperand* pointer = operands->at(i);
1025 if (pointer->IsStackSlot()) { 918 if (pointer->IsStackSlot()) {
1026 safepoint.DefinePointerSlot(pointer->index(), zone()); 919 safepoint.DefinePointerSlot(pointer->index(), zone());
1027 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { 920 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
1028 safepoint.DefinePointerRegister(ToRegister(pointer), zone()); 921 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
1029 } 922 }
1030 } 923 }
1031 if (FLAG_enable_ool_constant_pool && (kind & Safepoint::kWithRegisters)) { 924 #if V8_OOL_CONSTANT_POOL
1032 // Register pp always contains a pointer to the constant pool. 925 if (kind & Safepoint::kWithRegisters) {
1033 safepoint.DefinePointerRegister(pp, zone()); 926 // Register always contains a pointer to the constant pool.
927 safepoint.DefinePointerRegister(kConstantPoolRegister, zone());
1034 } 928 }
929 #endif
1035 } 930 }
1036 931
1037 932
1038 void LCodeGen::RecordSafepoint(LPointerMap* pointers, 933 void LCodeGen::RecordSafepoint(LPointerMap* pointers,
1039 Safepoint::DeoptMode deopt_mode) { 934 Safepoint::DeoptMode deopt_mode) {
1040 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); 935 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
1041 } 936 }
1042 937
1043 938
1044 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { 939 void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
1045 LPointerMap empty_pointers(zone()); 940 LPointerMap empty_pointers(zone());
1046 RecordSafepoint(&empty_pointers, deopt_mode); 941 RecordSafepoint(&empty_pointers, deopt_mode);
1047 } 942 }
1048 943
1049 944
1050 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, 945 void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
1051 int arguments, 946 int arguments,
1052 Safepoint::DeoptMode deopt_mode) { 947 Safepoint::DeoptMode deopt_mode) {
1053 RecordSafepoint( 948 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
1054 pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
1055 } 949 }
1056 950
1057 951
1058 void LCodeGen::RecordAndWritePosition(int position) { 952 void LCodeGen::RecordAndWritePosition(int position) {
1059 if (position == RelocInfo::kNoPosition) return; 953 if (position == RelocInfo::kNoPosition) return;
1060 masm()->positions_recorder()->RecordPosition(position); 954 masm()->positions_recorder()->RecordPosition(position);
1061 masm()->positions_recorder()->WriteRecordedPositions(); 955 masm()->positions_recorder()->WriteRecordedPositions();
1062 } 956 }
1063 957
1064 958
1065 static const char* LabelType(LLabel* label) { 959 static const char* LabelType(LLabel* label) {
1066 if (label->is_loop_header()) return " (loop header)"; 960 if (label->is_loop_header()) return " (loop header)";
1067 if (label->is_osr_entry()) return " (OSR entry)"; 961 if (label->is_osr_entry()) return " (OSR entry)";
1068 return ""; 962 return "";
1069 } 963 }
1070 964
1071 965
1072 void LCodeGen::DoLabel(LLabel* label) { 966 void LCodeGen::DoLabel(LLabel* label) {
1073 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", 967 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
1074 current_instruction_, 968 current_instruction_, label->hydrogen_value()->id(),
1075 label->hydrogen_value()->id(), 969 label->block_id(), LabelType(label));
1076 label->block_id(),
1077 LabelType(label));
1078 __ bind(label->label()); 970 __ bind(label->label());
1079 current_block_ = label->block_id(); 971 current_block_ = label->block_id();
1080 DoGap(label); 972 DoGap(label);
1081 } 973 }
1082 974
1083 975
1084 void LCodeGen::DoParallelMove(LParallelMove* move) { 976 void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); }
1085 resolver_.Resolve(move);
1086 }
1087 977
1088 978
1089 void LCodeGen::DoGap(LGap* gap) { 979 void LCodeGen::DoGap(LGap* gap) {
1090 for (int i = LGap::FIRST_INNER_POSITION; 980 for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION;
1091 i <= LGap::LAST_INNER_POSITION;
1092 i++) { 981 i++) {
1093 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); 982 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
1094 LParallelMove* move = gap->GetParallelMove(inner_pos); 983 LParallelMove* move = gap->GetParallelMove(inner_pos);
1095 if (move != NULL) DoParallelMove(move); 984 if (move != NULL) DoParallelMove(move);
1096 } 985 }
1097 } 986 }
1098 987
1099 988
1100 void LCodeGen::DoInstructionGap(LInstructionGap* instr) { 989 void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); }
1101 DoGap(instr);
1102 }
1103 990
1104 991
1105 void LCodeGen::DoParameter(LParameter* instr) { 992 void LCodeGen::DoParameter(LParameter* instr) {
1106 // Nothing to do. 993 // Nothing to do.
1107 } 994 }
1108 995
1109 996
1110 void LCodeGen::DoCallStub(LCallStub* instr) { 997 void LCodeGen::DoCallStub(LCallStub* instr) {
1111 DCHECK(ToRegister(instr->context()).is(cp)); 998 DCHECK(ToRegister(instr->context()).is(cp));
1112 DCHECK(ToRegister(instr->result()).is(r0)); 999 DCHECK(ToRegister(instr->result()).is(r3));
1113 switch (instr->hydrogen()->major_key()) { 1000 switch (instr->hydrogen()->major_key()) {
1114 case CodeStub::RegExpExec: { 1001 case CodeStub::RegExpExec: {
1115 RegExpExecStub stub(isolate()); 1002 RegExpExecStub stub(isolate());
1116 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 1003 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1117 break; 1004 break;
1118 } 1005 }
1119 case CodeStub::SubString: { 1006 case CodeStub::SubString: {
1120 SubStringStub stub(isolate()); 1007 SubStringStub stub(isolate());
1121 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 1008 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1122 break; 1009 break;
(...skipping 19 matching lines...) Expand all
1142 int32_t divisor = instr->divisor(); 1029 int32_t divisor = instr->divisor();
1143 DCHECK(dividend.is(ToRegister(instr->result()))); 1030 DCHECK(dividend.is(ToRegister(instr->result())));
1144 1031
1145 // Theoretically, a variation of the branch-free code for integer division by 1032 // Theoretically, a variation of the branch-free code for integer division by
1146 // a power of 2 (calculating the remainder via an additional multiplication 1033 // a power of 2 (calculating the remainder via an additional multiplication
1147 // (which gets simplified to an 'and') and subtraction) should be faster, and 1034 // (which gets simplified to an 'and') and subtraction) should be faster, and
1148 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to 1035 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
1149 // indicate that positive dividends are heavily favored, so the branching 1036 // indicate that positive dividends are heavily favored, so the branching
1150 // version performs better. 1037 // version performs better.
1151 HMod* hmod = instr->hydrogen(); 1038 HMod* hmod = instr->hydrogen();
1152 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); 1039 int32_t shift = WhichPowerOf2Abs(divisor);
1153 Label dividend_is_not_negative, done; 1040 Label dividend_is_not_negative, done;
1154 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) { 1041 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
1155 __ cmp(dividend, Operand::Zero()); 1042 __ cmpwi(dividend, Operand::Zero());
1156 __ b(pl, &dividend_is_not_negative); 1043 __ bge(&dividend_is_not_negative);
1157 // Note that this is correct even for kMinInt operands. 1044 if (shift) {
1158 __ rsb(dividend, dividend, Operand::Zero()); 1045 // Note that this is correct even for kMinInt operands.
1159 __ and_(dividend, dividend, Operand(mask)); 1046 __ neg(dividend, dividend);
1160 __ rsb(dividend, dividend, Operand::Zero(), SetCC); 1047 __ ExtractBitRange(dividend, dividend, shift - 1, 0);
1161 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { 1048 __ neg(dividend, dividend, LeaveOE, SetRC);
1162 DeoptimizeIf(eq, instr->environment()); 1049 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1050 DeoptimizeIf(eq, instr->environment(), cr0);
1051 }
1052 } else if (!hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1053 __ li(dividend, Operand::Zero());
1054 } else {
1055 DeoptimizeIf(al, instr->environment());
1163 } 1056 }
1164 __ b(&done); 1057 __ b(&done);
1165 } 1058 }
1166 1059
1167 __ bind(&dividend_is_not_negative); 1060 __ bind(&dividend_is_not_negative);
1168 __ and_(dividend, dividend, Operand(mask)); 1061 if (shift) {
1062 __ ExtractBitRange(dividend, dividend, shift - 1, 0);
1063 } else {
1064 __ li(dividend, Operand::Zero());
1065 }
1169 __ bind(&done); 1066 __ bind(&done);
1170 } 1067 }
1171 1068
1172 1069
1173 void LCodeGen::DoModByConstI(LModByConstI* instr) { 1070 void LCodeGen::DoModByConstI(LModByConstI* instr) {
1174 Register dividend = ToRegister(instr->dividend()); 1071 Register dividend = ToRegister(instr->dividend());
1175 int32_t divisor = instr->divisor(); 1072 int32_t divisor = instr->divisor();
1176 Register result = ToRegister(instr->result()); 1073 Register result = ToRegister(instr->result());
1177 DCHECK(!dividend.is(result)); 1074 DCHECK(!dividend.is(result));
1178 1075
1179 if (divisor == 0) { 1076 if (divisor == 0) {
1180 DeoptimizeIf(al, instr->environment()); 1077 DeoptimizeIf(al, instr->environment());
1181 return; 1078 return;
1182 } 1079 }
1183 1080
1184 __ TruncatingDiv(result, dividend, Abs(divisor)); 1081 __ TruncatingDiv(result, dividend, Abs(divisor));
1185 __ mov(ip, Operand(Abs(divisor))); 1082 __ mov(ip, Operand(Abs(divisor)));
1186 __ smull(result, ip, result, ip); 1083 __ mullw(result, result, ip);
1187 __ sub(result, dividend, result, SetCC); 1084 __ sub(result, dividend, result, LeaveOE, SetRC);
1188 1085
1189 // Check for negative zero. 1086 // Check for negative zero.
1190 HMod* hmod = instr->hydrogen(); 1087 HMod* hmod = instr->hydrogen();
1191 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { 1088 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1192 Label remainder_not_zero; 1089 Label remainder_not_zero;
1193 __ b(ne, &remainder_not_zero); 1090 __ bne(&remainder_not_zero, cr0);
1194 __ cmp(dividend, Operand::Zero()); 1091 __ cmpwi(dividend, Operand::Zero());
1195 DeoptimizeIf(lt, instr->environment()); 1092 DeoptimizeIf(lt, instr->environment());
1196 __ bind(&remainder_not_zero); 1093 __ bind(&remainder_not_zero);
1197 } 1094 }
1198 } 1095 }
1199 1096
1200 1097
1201 void LCodeGen::DoModI(LModI* instr) { 1098 void LCodeGen::DoModI(LModI* instr) {
1202 HMod* hmod = instr->hydrogen(); 1099 HMod* hmod = instr->hydrogen();
1203 if (CpuFeatures::IsSupported(SUDIV)) { 1100 Register left_reg = ToRegister(instr->left());
1204 CpuFeatureScope scope(masm(), SUDIV); 1101 Register right_reg = ToRegister(instr->right());
1102 Register result_reg = ToRegister(instr->result());
1103 Register scratch = scratch0();
1104 Label done;
1205 1105
1206 Register left_reg = ToRegister(instr->left()); 1106 if (hmod->CheckFlag(HValue::kCanOverflow)) {
1207 Register right_reg = ToRegister(instr->right()); 1107 __ li(r0, Operand::Zero()); // clear xer
1208 Register result_reg = ToRegister(instr->result()); 1108 __ mtxer(r0);
1109 }
1209 1110
1210 Label done; 1111 __ divw(scratch, left_reg, right_reg, SetOE, SetRC);
1211 // Check for x % 0, sdiv might signal an exception. We have to deopt in this 1112
1212 // case because we can't return a NaN. 1113 // Check for x % 0.
1213 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) { 1114 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1214 __ cmp(right_reg, Operand::Zero()); 1115 __ cmpwi(right_reg, Operand::Zero());
1215 DeoptimizeIf(eq, instr->environment()); 1116 DeoptimizeIf(eq, instr->environment());
1117 }
1118
1119 // Check for kMinInt % -1, divw will return undefined, which is not what we
1120 // want. We have to deopt if we care about -0, because we can't return that.
1121 if (hmod->CheckFlag(HValue::kCanOverflow)) {
1122 Label no_overflow_possible;
1123 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1124 DeoptimizeIf(overflow, instr->environment(), cr0);
1125 } else {
1126 __ bnooverflow(&no_overflow_possible, cr0);
1127 __ li(result_reg, Operand::Zero());
1128 __ b(&done);
1216 } 1129 }
1130 __ bind(&no_overflow_possible);
1131 }
1217 1132
1218 // Check for kMinInt % -1, sdiv will return kMinInt, which is not what we 1133 __ mullw(scratch, right_reg, scratch);
1219 // want. We have to deopt if we care about -0, because we can't return that. 1134 __ sub(result_reg, left_reg, scratch, LeaveOE, SetRC);
1220 if (hmod->CheckFlag(HValue::kCanOverflow)) {
1221 Label no_overflow_possible;
1222 __ cmp(left_reg, Operand(kMinInt));
1223 __ b(ne, &no_overflow_possible);
1224 __ cmp(right_reg, Operand(-1));
1225 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1226 DeoptimizeIf(eq, instr->environment());
1227 } else {
1228 __ b(ne, &no_overflow_possible);
1229 __ mov(result_reg, Operand::Zero());
1230 __ jmp(&done);
1231 }
1232 __ bind(&no_overflow_possible);
1233 }
1234 1135
1235 // For 'r3 = r1 % r2' we can have the following ARM code: 1136 // If we care about -0, test if the dividend is <0 and the result is 0.
1236 // sdiv r3, r1, r2 1137 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1237 // mls r3, r3, r2, r1 1138 __ bne(&done, cr0);
1139 __ cmpwi(left_reg, Operand::Zero());
1140 DeoptimizeIf(lt, instr->environment());
1141 }
1238 1142
1239 __ sdiv(result_reg, left_reg, right_reg); 1143 __ bind(&done);
1240 __ Mls(result_reg, result_reg, right_reg, left_reg);
1241
1242 // If we care about -0, test if the dividend is <0 and the result is 0.
1243 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1244 __ cmp(result_reg, Operand::Zero());
1245 __ b(ne, &done);
1246 __ cmp(left_reg, Operand::Zero());
1247 DeoptimizeIf(lt, instr->environment());
1248 }
1249 __ bind(&done);
1250
1251 } else {
1252 // General case, without any SDIV support.
1253 Register left_reg = ToRegister(instr->left());
1254 Register right_reg = ToRegister(instr->right());
1255 Register result_reg = ToRegister(instr->result());
1256 Register scratch = scratch0();
1257 DCHECK(!scratch.is(left_reg));
1258 DCHECK(!scratch.is(right_reg));
1259 DCHECK(!scratch.is(result_reg));
1260 DwVfpRegister dividend = ToDoubleRegister(instr->temp());
1261 DwVfpRegister divisor = ToDoubleRegister(instr->temp2());
1262 DCHECK(!divisor.is(dividend));
1263 LowDwVfpRegister quotient = double_scratch0();
1264 DCHECK(!quotient.is(dividend));
1265 DCHECK(!quotient.is(divisor));
1266
1267 Label done;
1268 // Check for x % 0, we have to deopt in this case because we can't return a
1269 // NaN.
1270 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1271 __ cmp(right_reg, Operand::Zero());
1272 DeoptimizeIf(eq, instr->environment());
1273 }
1274
1275 __ Move(result_reg, left_reg);
1276 // Load the arguments in VFP registers. The divisor value is preloaded
1277 // before. Be careful that 'right_reg' is only live on entry.
1278 // TODO(svenpanne) The last comments seems to be wrong nowadays.
1279 __ vmov(double_scratch0().low(), left_reg);
1280 __ vcvt_f64_s32(dividend, double_scratch0().low());
1281 __ vmov(double_scratch0().low(), right_reg);
1282 __ vcvt_f64_s32(divisor, double_scratch0().low());
1283
1284 // We do not care about the sign of the divisor. Note that we still handle
1285 // the kMinInt % -1 case correctly, though.
1286 __ vabs(divisor, divisor);
1287 // Compute the quotient and round it to a 32bit integer.
1288 __ vdiv(quotient, dividend, divisor);
1289 __ vcvt_s32_f64(quotient.low(), quotient);
1290 __ vcvt_f64_s32(quotient, quotient.low());
1291
1292 // Compute the remainder in result.
1293 __ vmul(double_scratch0(), divisor, quotient);
1294 __ vcvt_s32_f64(double_scratch0().low(), double_scratch0());
1295 __ vmov(scratch, double_scratch0().low());
1296 __ sub(result_reg, left_reg, scratch, SetCC);
1297
1298 // If we care about -0, test if the dividend is <0 and the result is 0.
1299 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1300 __ b(ne, &done);
1301 __ cmp(left_reg, Operand::Zero());
1302 DeoptimizeIf(mi, instr->environment());
1303 }
1304 __ bind(&done);
1305 }
1306 } 1144 }
1307 1145
1308 1146
1309 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) { 1147 void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
1310 Register dividend = ToRegister(instr->dividend()); 1148 Register dividend = ToRegister(instr->dividend());
1311 int32_t divisor = instr->divisor(); 1149 int32_t divisor = instr->divisor();
1312 Register result = ToRegister(instr->result()); 1150 Register result = ToRegister(instr->result());
1313 DCHECK(divisor == kMinInt || IsPowerOf2(Abs(divisor))); 1151 DCHECK(divisor == kMinInt || IsPowerOf2(Abs(divisor)));
1314 DCHECK(!result.is(dividend)); 1152 DCHECK(!result.is(dividend));
1315 1153
1316 // Check for (0 / -x) that will produce negative zero. 1154 // Check for (0 / -x) that will produce negative zero.
1317 HDiv* hdiv = instr->hydrogen(); 1155 HDiv* hdiv = instr->hydrogen();
1318 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { 1156 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1319 __ cmp(dividend, Operand::Zero()); 1157 __ cmpwi(dividend, Operand::Zero());
1320 DeoptimizeIf(eq, instr->environment()); 1158 DeoptimizeIf(eq, instr->environment());
1321 } 1159 }
1322 // Check for (kMinInt / -1). 1160 // Check for (kMinInt / -1).
1323 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) { 1161 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1324 __ cmp(dividend, Operand(kMinInt)); 1162 __ lis(r0, Operand(SIGN_EXT_IMM16(0x8000)));
1163 __ cmpw(dividend, r0);
1325 DeoptimizeIf(eq, instr->environment()); 1164 DeoptimizeIf(eq, instr->environment());
1326 } 1165 }
1166
1167 int32_t shift = WhichPowerOf2Abs(divisor);
1168
1327 // Deoptimize if remainder will not be 0. 1169 // Deoptimize if remainder will not be 0.
1328 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && 1170 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && shift) {
1329 divisor != 1 && divisor != -1) { 1171 __ TestBitRange(dividend, shift - 1, 0, r0);
1330 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1); 1172 DeoptimizeIf(ne, instr->environment(), cr0);
1331 __ tst(dividend, Operand(mask));
1332 DeoptimizeIf(ne, instr->environment());
1333 } 1173 }
1334 1174
1335 if (divisor == -1) { // Nice shortcut, not needed for correctness. 1175 if (divisor == -1) { // Nice shortcut, not needed for correctness.
1336 __ rsb(result, dividend, Operand(0)); 1176 __ neg(result, dividend);
1337 return; 1177 return;
1338 } 1178 }
1339 int32_t shift = WhichPowerOf2Abs(divisor);
1340 if (shift == 0) { 1179 if (shift == 0) {
1341 __ mov(result, dividend); 1180 __ mr(result, dividend);
1342 } else if (shift == 1) {
1343 __ add(result, dividend, Operand(dividend, LSR, 31));
1344 } else { 1181 } else {
1345 __ mov(result, Operand(dividend, ASR, 31)); 1182 if (shift == 1) {
1346 __ add(result, dividend, Operand(result, LSR, 32 - shift)); 1183 __ srwi(result, dividend, Operand(31));
1184 } else {
1185 __ srawi(result, dividend, 31);
1186 __ srwi(result, result, Operand(32 - shift));
1187 }
1188 __ add(result, dividend, result);
1189 __ srawi(result, result, shift);
1347 } 1190 }
1348 if (shift > 0) __ mov(result, Operand(result, ASR, shift)); 1191 if (divisor < 0) __ neg(result, result);
1349 if (divisor < 0) __ rsb(result, result, Operand(0));
1350 } 1192 }
1351 1193
1352 1194
1353 void LCodeGen::DoDivByConstI(LDivByConstI* instr) { 1195 void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1354 Register dividend = ToRegister(instr->dividend()); 1196 Register dividend = ToRegister(instr->dividend());
1355 int32_t divisor = instr->divisor(); 1197 int32_t divisor = instr->divisor();
1356 Register result = ToRegister(instr->result()); 1198 Register result = ToRegister(instr->result());
1357 DCHECK(!dividend.is(result)); 1199 DCHECK(!dividend.is(result));
1358 1200
1359 if (divisor == 0) { 1201 if (divisor == 0) {
1360 DeoptimizeIf(al, instr->environment()); 1202 DeoptimizeIf(al, instr->environment());
1361 return; 1203 return;
1362 } 1204 }
1363 1205
1364 // Check for (0 / -x) that will produce negative zero. 1206 // Check for (0 / -x) that will produce negative zero.
1365 HDiv* hdiv = instr->hydrogen(); 1207 HDiv* hdiv = instr->hydrogen();
1366 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { 1208 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1367 __ cmp(dividend, Operand::Zero()); 1209 __ cmpwi(dividend, Operand::Zero());
1368 DeoptimizeIf(eq, instr->environment()); 1210 DeoptimizeIf(eq, instr->environment());
1369 } 1211 }
1370 1212
1371 __ TruncatingDiv(result, dividend, Abs(divisor)); 1213 __ TruncatingDiv(result, dividend, Abs(divisor));
1372 if (divisor < 0) __ rsb(result, result, Operand::Zero()); 1214 if (divisor < 0) __ neg(result, result);
1373 1215
1374 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { 1216 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1217 Register scratch = scratch0();
1375 __ mov(ip, Operand(divisor)); 1218 __ mov(ip, Operand(divisor));
1376 __ smull(scratch0(), ip, result, ip); 1219 __ mullw(scratch, result, ip);
1377 __ sub(scratch0(), scratch0(), dividend, SetCC); 1220 __ cmpw(scratch, dividend);
1378 DeoptimizeIf(ne, instr->environment()); 1221 DeoptimizeIf(ne, instr->environment());
1379 } 1222 }
1380 } 1223 }
1381 1224
1382 1225
1383 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI. 1226 // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
1384 void LCodeGen::DoDivI(LDivI* instr) { 1227 void LCodeGen::DoDivI(LDivI* instr) {
1385 HBinaryOperation* hdiv = instr->hydrogen(); 1228 HBinaryOperation* hdiv = instr->hydrogen();
1386 Register dividend = ToRegister(instr->dividend()); 1229 const Register dividend = ToRegister(instr->dividend());
1387 Register divisor = ToRegister(instr->divisor()); 1230 const Register divisor = ToRegister(instr->divisor());
1388 Register result = ToRegister(instr->result()); 1231 Register result = ToRegister(instr->result());
1389 1232
1233 DCHECK(!dividend.is(result));
1234 DCHECK(!divisor.is(result));
1235
1236 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1237 __ li(r0, Operand::Zero()); // clear xer
1238 __ mtxer(r0);
1239 }
1240
1241 __ divw(result, dividend, divisor, SetOE, SetRC);
1242
1390 // Check for x / 0. 1243 // Check for x / 0.
1391 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { 1244 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1392 __ cmp(divisor, Operand::Zero()); 1245 __ cmpwi(divisor, Operand::Zero());
1393 DeoptimizeIf(eq, instr->environment()); 1246 DeoptimizeIf(eq, instr->environment());
1394 } 1247 }
1395 1248
1396 // Check for (0 / -x) that will produce negative zero. 1249 // Check for (0 / -x) that will produce negative zero.
1397 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { 1250 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1398 Label positive; 1251 Label dividend_not_zero;
1399 if (!instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) { 1252 __ cmpwi(dividend, Operand::Zero());
1400 // Do the test only if it hadn't be done above. 1253 __ bne(&dividend_not_zero);
1401 __ cmp(divisor, Operand::Zero()); 1254 __ cmpwi(divisor, Operand::Zero());
1402 } 1255 DeoptimizeIf(lt, instr->environment());
1403 __ b(pl, &positive); 1256 __ bind(&dividend_not_zero);
1404 __ cmp(dividend, Operand::Zero());
1405 DeoptimizeIf(eq, instr->environment());
1406 __ bind(&positive);
1407 } 1257 }
1408 1258
1409 // Check for (kMinInt / -1). 1259 // Check for (kMinInt / -1).
1410 if (hdiv->CheckFlag(HValue::kCanOverflow) && 1260 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1411 (!CpuFeatures::IsSupported(SUDIV) || 1261 Label no_overflow_possible;
1412 !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32))) { 1262 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1413 // We don't need to check for overflow when truncating with sdiv 1263 DeoptimizeIf(overflow, instr->environment(), cr0);
1414 // support because, on ARM, sdiv kMinInt, -1 -> kMinInt. 1264 } else {
1415 __ cmp(dividend, Operand(kMinInt)); 1265 // When truncating, we want kMinInt / -1 = kMinInt.
1416 __ cmp(divisor, Operand(-1), eq); 1266 __ bnooverflow(&no_overflow_possible, cr0);
1417 DeoptimizeIf(eq, instr->environment()); 1267 __ mr(result, dividend);
1268 }
1269 __ bind(&no_overflow_possible);
1418 } 1270 }
1419 1271
1420 if (CpuFeatures::IsSupported(SUDIV)) { 1272 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1421 CpuFeatureScope scope(masm(), SUDIV); 1273 // Deoptimize if remainder is not 0.
1422 __ sdiv(result, dividend, divisor); 1274 Register scratch = scratch0();
1423 } else { 1275 __ mullw(scratch, divisor, result);
1424 DoubleRegister vleft = ToDoubleRegister(instr->temp()); 1276 __ cmpw(dividend, scratch);
1425 DoubleRegister vright = double_scratch0();
1426 __ vmov(double_scratch0().low(), dividend);
1427 __ vcvt_f64_s32(vleft, double_scratch0().low());
1428 __ vmov(double_scratch0().low(), divisor);
1429 __ vcvt_f64_s32(vright, double_scratch0().low());
1430 __ vdiv(vleft, vleft, vright); // vleft now contains the result.
1431 __ vcvt_s32_f64(double_scratch0().low(), vleft);
1432 __ vmov(result, double_scratch0().low());
1433 }
1434
1435 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1436 // Compute remainder and deopt if it's not zero.
1437 Register remainder = scratch0();
1438 __ Mls(remainder, result, divisor, dividend);
1439 __ cmp(remainder, Operand::Zero());
1440 DeoptimizeIf(ne, instr->environment()); 1277 DeoptimizeIf(ne, instr->environment());
1441 } 1278 }
1442 } 1279 }
1443 1280
1444 1281
1445 void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
1446 DwVfpRegister addend = ToDoubleRegister(instr->addend());
1447 DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier());
1448 DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1449
1450 // This is computed in-place.
1451 DCHECK(addend.is(ToDoubleRegister(instr->result())));
1452
1453 __ vmla(addend, multiplier, multiplicand);
1454 }
1455
1456
1457 void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) {
1458 DwVfpRegister minuend = ToDoubleRegister(instr->minuend());
1459 DwVfpRegister multiplier = ToDoubleRegister(instr->multiplier());
1460 DwVfpRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1461
1462 // This is computed in-place.
1463 DCHECK(minuend.is(ToDoubleRegister(instr->result())));
1464
1465 __ vmls(minuend, multiplier, multiplicand);
1466 }
1467
1468
1469 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) { 1282 void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1283 HBinaryOperation* hdiv = instr->hydrogen();
1470 Register dividend = ToRegister(instr->dividend()); 1284 Register dividend = ToRegister(instr->dividend());
1471 Register result = ToRegister(instr->result()); 1285 Register result = ToRegister(instr->result());
1472 int32_t divisor = instr->divisor(); 1286 int32_t divisor = instr->divisor();
1473 1287
1474 // If the divisor is 1, return the dividend.
1475 if (divisor == 1) {
1476 __ Move(result, dividend);
1477 return;
1478 }
1479
1480 // If the divisor is positive, things are easy: There can be no deopts and we 1288 // If the divisor is positive, things are easy: There can be no deopts and we
1481 // can simply do an arithmetic right shift. 1289 // can simply do an arithmetic right shift.
1482 int32_t shift = WhichPowerOf2Abs(divisor); 1290 int32_t shift = WhichPowerOf2Abs(divisor);
1483 if (divisor > 1) { 1291 if (divisor > 0) {
1484 __ mov(result, Operand(dividend, ASR, shift)); 1292 if (shift || !result.is(dividend)) {
1293 __ srawi(result, dividend, shift);
1294 }
1485 return; 1295 return;
1486 } 1296 }
1487 1297
1488 // If the divisor is negative, we have to negate and handle edge cases. 1298 // If the divisor is negative, we have to negate and handle edge cases.
1489 __ rsb(result, dividend, Operand::Zero(), SetCC); 1299 OEBit oe = LeaveOE;
1490 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 1300 #if V8_TARGET_ARCH_PPC64
1301 if (divisor == -1 && hdiv->CheckFlag(HValue::kLeftCanBeMinInt)) {
1302 __ lis(r0, Operand(SIGN_EXT_IMM16(0x8000)));
1303 __ cmpw(dividend, r0);
1491 DeoptimizeIf(eq, instr->environment()); 1304 DeoptimizeIf(eq, instr->environment());
1492 } 1305 }
1306 #else
1307 if (hdiv->CheckFlag(HValue::kLeftCanBeMinInt)) {
1308 __ li(r0, Operand::Zero()); // clear xer
1309 __ mtxer(r0);
1310 oe = SetOE;
1311 }
1312 #endif
1313
1314 __ neg(result, dividend, oe, SetRC);
1315 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1316 DeoptimizeIf(eq, instr->environment(), cr0);
1317 }
1318
1319 // If the negation could not overflow, simply shifting is OK.
1320 #if !V8_TARGET_ARCH_PPC64
1321 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1322 #endif
1323 if (shift) {
1324 __ ShiftRightArithImm(result, result, shift);
1325 }
1326 return;
1327 #if !V8_TARGET_ARCH_PPC64
1328 }
1493 1329
1494 // Dividing by -1 is basically negation, unless we overflow. 1330 // Dividing by -1 is basically negation, unless we overflow.
1495 if (divisor == -1) { 1331 if (divisor == -1) {
1496 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { 1332 DeoptimizeIf(overflow, instr->environment(), cr0);
1497 DeoptimizeIf(vs, instr->environment());
1498 }
1499 return; 1333 return;
1500 } 1334 }
1501 1335
1502 // If the negation could not overflow, simply shifting is OK. 1336 Label overflow, done;
1503 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) { 1337 __ boverflow(&overflow, cr0);
1504 __ mov(result, Operand(result, ASR, shift)); 1338 __ srawi(result, result, shift);
1505 return; 1339 __ b(&done);
1506 } 1340 __ bind(&overflow);
1507 1341 __ mov(result, Operand(kMinInt / divisor));
1508 __ mov(result, Operand(kMinInt / divisor), LeaveCC, vs); 1342 __ bind(&done);
1509 __ mov(result, Operand(result, ASR, shift), LeaveCC, vc); 1343 #endif
1510 } 1344 }
1511 1345
1512 1346
1513 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) { 1347 void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1514 Register dividend = ToRegister(instr->dividend()); 1348 Register dividend = ToRegister(instr->dividend());
1515 int32_t divisor = instr->divisor(); 1349 int32_t divisor = instr->divisor();
1516 Register result = ToRegister(instr->result()); 1350 Register result = ToRegister(instr->result());
1517 DCHECK(!dividend.is(result)); 1351 DCHECK(!dividend.is(result));
1518 1352
1519 if (divisor == 0) { 1353 if (divisor == 0) {
1520 DeoptimizeIf(al, instr->environment()); 1354 DeoptimizeIf(al, instr->environment());
1521 return; 1355 return;
1522 } 1356 }
1523 1357
1524 // Check for (0 / -x) that will produce negative zero. 1358 // Check for (0 / -x) that will produce negative zero.
1525 HMathFloorOfDiv* hdiv = instr->hydrogen(); 1359 HMathFloorOfDiv* hdiv = instr->hydrogen();
1526 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { 1360 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1527 __ cmp(dividend, Operand::Zero()); 1361 __ cmpwi(dividend, Operand::Zero());
1528 DeoptimizeIf(eq, instr->environment()); 1362 DeoptimizeIf(eq, instr->environment());
1529 } 1363 }
1530 1364
1531 // Easy case: We need no dynamic check for the dividend and the flooring 1365 // Easy case: We need no dynamic check for the dividend and the flooring
1532 // division is the same as the truncating division. 1366 // division is the same as the truncating division.
1533 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) || 1367 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1534 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) { 1368 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1535 __ TruncatingDiv(result, dividend, Abs(divisor)); 1369 __ TruncatingDiv(result, dividend, Abs(divisor));
1536 if (divisor < 0) __ rsb(result, result, Operand::Zero()); 1370 if (divisor < 0) __ neg(result, result);
1537 return; 1371 return;
1538 } 1372 }
1539 1373
1540 // In the general case we may need to adjust before and after the truncating 1374 // In the general case we may need to adjust before and after the truncating
1541 // division to get a flooring division. 1375 // division to get a flooring division.
1542 Register temp = ToRegister(instr->temp()); 1376 Register temp = ToRegister(instr->temp());
1543 DCHECK(!temp.is(dividend) && !temp.is(result)); 1377 DCHECK(!temp.is(dividend) && !temp.is(result));
1544 Label needs_adjustment, done; 1378 Label needs_adjustment, done;
1545 __ cmp(dividend, Operand::Zero()); 1379 __ cmpwi(dividend, Operand::Zero());
1546 __ b(divisor > 0 ? lt : gt, &needs_adjustment); 1380 __ b(divisor > 0 ? lt : gt, &needs_adjustment);
1547 __ TruncatingDiv(result, dividend, Abs(divisor)); 1381 __ TruncatingDiv(result, dividend, Abs(divisor));
1548 if (divisor < 0) __ rsb(result, result, Operand::Zero()); 1382 if (divisor < 0) __ neg(result, result);
1549 __ jmp(&done); 1383 __ b(&done);
1550 __ bind(&needs_adjustment); 1384 __ bind(&needs_adjustment);
1551 __ add(temp, dividend, Operand(divisor > 0 ? 1 : -1)); 1385 __ addi(temp, dividend, Operand(divisor > 0 ? 1 : -1));
1552 __ TruncatingDiv(result, temp, Abs(divisor)); 1386 __ TruncatingDiv(result, temp, Abs(divisor));
1553 if (divisor < 0) __ rsb(result, result, Operand::Zero()); 1387 if (divisor < 0) __ neg(result, result);
1554 __ sub(result, result, Operand(1)); 1388 __ subi(result, result, Operand(1));
1555 __ bind(&done); 1389 __ bind(&done);
1556 } 1390 }
1557 1391
1558 1392
1559 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI. 1393 // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
1560 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) { 1394 void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1561 HBinaryOperation* hdiv = instr->hydrogen(); 1395 HBinaryOperation* hdiv = instr->hydrogen();
1562 Register left = ToRegister(instr->dividend()); 1396 const Register dividend = ToRegister(instr->dividend());
1563 Register right = ToRegister(instr->divisor()); 1397 const Register divisor = ToRegister(instr->divisor());
1564 Register result = ToRegister(instr->result()); 1398 Register result = ToRegister(instr->result());
1565 1399
1400 DCHECK(!dividend.is(result));
1401 DCHECK(!divisor.is(result));
1402
1403 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1404 __ li(r0, Operand::Zero()); // clear xer
1405 __ mtxer(r0);
1406 }
1407
1408 __ divw(result, dividend, divisor, SetOE, SetRC);
1409
1566 // Check for x / 0. 1410 // Check for x / 0.
1567 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { 1411 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1568 __ cmp(right, Operand::Zero()); 1412 __ cmpwi(divisor, Operand::Zero());
1569 DeoptimizeIf(eq, instr->environment()); 1413 DeoptimizeIf(eq, instr->environment());
1570 } 1414 }
1571 1415
1572 // Check for (0 / -x) that will produce negative zero. 1416 // Check for (0 / -x) that will produce negative zero.
1573 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { 1417 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1574 Label positive; 1418 Label dividend_not_zero;
1575 if (!instr->hydrogen_value()->CheckFlag(HValue::kCanBeDivByZero)) { 1419 __ cmpwi(dividend, Operand::Zero());
1576 // Do the test only if it hadn't be done above. 1420 __ bne(&dividend_not_zero);
1577 __ cmp(right, Operand::Zero()); 1421 __ cmpwi(divisor, Operand::Zero());
1578 } 1422 DeoptimizeIf(lt, instr->environment());
1579 __ b(pl, &positive); 1423 __ bind(&dividend_not_zero);
1580 __ cmp(left, Operand::Zero());
1581 DeoptimizeIf(eq, instr->environment());
1582 __ bind(&positive);
1583 } 1424 }
1584 1425
1585 // Check for (kMinInt / -1). 1426 // Check for (kMinInt / -1).
1586 if (hdiv->CheckFlag(HValue::kCanOverflow) && 1427 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1587 (!CpuFeatures::IsSupported(SUDIV) || 1428 Label no_overflow_possible;
1588 !hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32))) { 1429 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1589 // We don't need to check for overflow when truncating with sdiv 1430 DeoptimizeIf(overflow, instr->environment(), cr0);
1590 // support because, on ARM, sdiv kMinInt, -1 -> kMinInt. 1431 } else {
1591 __ cmp(left, Operand(kMinInt)); 1432 // When truncating, we want kMinInt / -1 = kMinInt.
1592 __ cmp(right, Operand(-1), eq); 1433 __ bnooverflow(&no_overflow_possible, cr0);
1593 DeoptimizeIf(eq, instr->environment()); 1434 __ mr(result, dividend);
1594 } 1435 }
1595 1436 __ bind(&no_overflow_possible);
1596 if (CpuFeatures::IsSupported(SUDIV)) {
1597 CpuFeatureScope scope(masm(), SUDIV);
1598 __ sdiv(result, left, right);
1599 } else {
1600 DoubleRegister vleft = ToDoubleRegister(instr->temp());
1601 DoubleRegister vright = double_scratch0();
1602 __ vmov(double_scratch0().low(), left);
1603 __ vcvt_f64_s32(vleft, double_scratch0().low());
1604 __ vmov(double_scratch0().low(), right);
1605 __ vcvt_f64_s32(vright, double_scratch0().low());
1606 __ vdiv(vleft, vleft, vright); // vleft now contains the result.
1607 __ vcvt_s32_f64(double_scratch0().low(), vleft);
1608 __ vmov(result, double_scratch0().low());
1609 } 1437 }
1610 1438
1611 Label done; 1439 Label done;
1612 Register remainder = scratch0(); 1440 Register scratch = scratch0();
1613 __ Mls(remainder, result, right, left); 1441 // If both operands have the same sign then we are done.
1614 __ cmp(remainder, Operand::Zero()); 1442 #if V8_TARGET_ARCH_PPC64
1615 __ b(eq, &done); 1443 __ xor_(scratch, dividend, divisor);
1616 __ eor(remainder, remainder, Operand(right)); 1444 __ cmpwi(scratch, Operand::Zero());
1617 __ add(result, result, Operand(remainder, ASR, 31)); 1445 __ bge(&done);
1446 #else
1447 __ xor_(scratch, dividend, divisor, SetRC);
1448 __ bge(&done, cr0);
1449 #endif
1450
1451 // If there is no remainder then we are done.
1452 __ mullw(scratch, divisor, result);
1453 __ cmpw(dividend, scratch);
1454 __ beq(&done);
1455
1456 // We performed a truncating division. Correct the result.
1457 __ subi(result, result, Operand(1));
1618 __ bind(&done); 1458 __ bind(&done);
1619 } 1459 }
1620 1460
1621 1461
1462 void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) {
1463 DoubleRegister addend = ToDoubleRegister(instr->addend());
1464 DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
1465 DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1466 DoubleRegister result = ToDoubleRegister(instr->result());
1467
1468 __ fmadd(result, multiplier, multiplicand, addend);
1469 }
1470
1471
1472 void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) {
1473 DoubleRegister minuend = ToDoubleRegister(instr->minuend());
1474 DoubleRegister multiplier = ToDoubleRegister(instr->multiplier());
1475 DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand());
1476 DoubleRegister result = ToDoubleRegister(instr->result());
1477
1478 __ fmsub(result, multiplier, multiplicand, minuend);
1479 }
1480
1481
1622 void LCodeGen::DoMulI(LMulI* instr) { 1482 void LCodeGen::DoMulI(LMulI* instr) {
1483 Register scratch = scratch0();
1623 Register result = ToRegister(instr->result()); 1484 Register result = ToRegister(instr->result());
1624 // Note that result may alias left. 1485 // Note that result may alias left.
1625 Register left = ToRegister(instr->left()); 1486 Register left = ToRegister(instr->left());
1626 LOperand* right_op = instr->right(); 1487 LOperand* right_op = instr->right();
1627 1488
1628 bool bailout_on_minus_zero = 1489 bool bailout_on_minus_zero =
1629 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); 1490 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
1630 bool overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 1491 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1631 1492
1632 if (right_op->IsConstantOperand()) { 1493 if (right_op->IsConstantOperand()) {
1633 int32_t constant = ToInteger32(LConstantOperand::cast(right_op)); 1494 int32_t constant = ToInteger32(LConstantOperand::cast(right_op));
1634 1495
1635 if (bailout_on_minus_zero && (constant < 0)) { 1496 if (bailout_on_minus_zero && (constant < 0)) {
1636 // The case of a null constant will be handled separately. 1497 // The case of a null constant will be handled separately.
1637 // If constant is negative and left is null, the result should be -0. 1498 // If constant is negative and left is null, the result should be -0.
1638 __ cmp(left, Operand::Zero()); 1499 __ cmpi(left, Operand::Zero());
1639 DeoptimizeIf(eq, instr->environment()); 1500 DeoptimizeIf(eq, instr->environment());
1640 } 1501 }
1641 1502
1642 switch (constant) { 1503 switch (constant) {
1643 case -1: 1504 case -1:
1644 if (overflow) { 1505 if (can_overflow) {
1645 __ rsb(result, left, Operand::Zero(), SetCC); 1506 #if V8_TARGET_ARCH_PPC64
1646 DeoptimizeIf(vs, instr->environment()); 1507 if (instr->hydrogen()->representation().IsSmi()) {
1508 #endif
1509 __ li(r0, Operand::Zero()); // clear xer
1510 __ mtxer(r0);
1511 __ neg(result, left, SetOE, SetRC);
1512 DeoptimizeIf(overflow, instr->environment(), cr0);
1513 #if V8_TARGET_ARCH_PPC64
1514 } else {
1515 __ neg(result, left);
1516 __ TestIfInt32(result, scratch, r0);
1517 DeoptimizeIf(ne, instr->environment());
1518 }
1519 #endif
1647 } else { 1520 } else {
1648 __ rsb(result, left, Operand::Zero()); 1521 __ neg(result, left);
1649 } 1522 }
1650 break; 1523 break;
1651 case 0: 1524 case 0:
1652 if (bailout_on_minus_zero) { 1525 if (bailout_on_minus_zero) {
1653 // If left is strictly negative and the constant is null, the 1526 // If left is strictly negative and the constant is null, the
1654 // result is -0. Deoptimize if required, otherwise return 0. 1527 // result is -0. Deoptimize if required, otherwise return 0.
1655 __ cmp(left, Operand::Zero()); 1528 #if V8_TARGET_ARCH_PPC64
1656 DeoptimizeIf(mi, instr->environment()); 1529 if (instr->hydrogen()->representation().IsSmi()) {
1530 #endif
1531 __ cmpi(left, Operand::Zero());
1532 #if V8_TARGET_ARCH_PPC64
1533 } else {
1534 __ cmpwi(left, Operand::Zero());
1535 }
1536 #endif
1537 DeoptimizeIf(lt, instr->environment());
1657 } 1538 }
1658 __ mov(result, Operand::Zero()); 1539 __ li(result, Operand::Zero());
1659 break; 1540 break;
1660 case 1: 1541 case 1:
1661 __ Move(result, left); 1542 __ Move(result, left);
1662 break; 1543 break;
1663 default: 1544 default:
1664 // Multiplying by powers of two and powers of two plus or minus 1545 // Multiplying by powers of two and powers of two plus or minus
1665 // one can be done faster with shifted operands. 1546 // one can be done faster with shifted operands.
1666 // For other constants we emit standard code. 1547 // For other constants we emit standard code.
1667 int32_t mask = constant >> 31; 1548 int32_t mask = constant >> 31;
1668 uint32_t constant_abs = (constant + mask) ^ mask; 1549 uint32_t constant_abs = (constant + mask) ^ mask;
1669 1550
1670 if (IsPowerOf2(constant_abs)) { 1551 if (IsPowerOf2(constant_abs)) {
1671 int32_t shift = WhichPowerOf2(constant_abs); 1552 int32_t shift = WhichPowerOf2(constant_abs);
1672 __ mov(result, Operand(left, LSL, shift)); 1553 __ ShiftLeftImm(result, left, Operand(shift));
1673 // Correct the sign of the result is the constant is negative. 1554 // Correct the sign of the result if the constant is negative.
1674 if (constant < 0) __ rsb(result, result, Operand::Zero()); 1555 if (constant < 0) __ neg(result, result);
1675 } else if (IsPowerOf2(constant_abs - 1)) { 1556 } else if (IsPowerOf2(constant_abs - 1)) {
1676 int32_t shift = WhichPowerOf2(constant_abs - 1); 1557 int32_t shift = WhichPowerOf2(constant_abs - 1);
1677 __ add(result, left, Operand(left, LSL, shift)); 1558 __ ShiftLeftImm(scratch, left, Operand(shift));
1678 // Correct the sign of the result is the constant is negative. 1559 __ add(result, scratch, left);
1679 if (constant < 0) __ rsb(result, result, Operand::Zero()); 1560 // Correct the sign of the result if the constant is negative.
1561 if (constant < 0) __ neg(result, result);
1680 } else if (IsPowerOf2(constant_abs + 1)) { 1562 } else if (IsPowerOf2(constant_abs + 1)) {
1681 int32_t shift = WhichPowerOf2(constant_abs + 1); 1563 int32_t shift = WhichPowerOf2(constant_abs + 1);
1682 __ rsb(result, left, Operand(left, LSL, shift)); 1564 __ ShiftLeftImm(scratch, left, Operand(shift));
1683 // Correct the sign of the result is the constant is negative. 1565 __ sub(result, scratch, left);
1684 if (constant < 0) __ rsb(result, result, Operand::Zero()); 1566 // Correct the sign of the result if the constant is negative.
1567 if (constant < 0) __ neg(result, result);
1685 } else { 1568 } else {
1686 // Generate standard code. 1569 // Generate standard code.
1687 __ mov(ip, Operand(constant)); 1570 __ mov(ip, Operand(constant));
1688 __ mul(result, left, ip); 1571 __ Mul(result, left, ip);
1689 } 1572 }
1690 } 1573 }
1691 1574
1692 } else { 1575 } else {
1693 DCHECK(right_op->IsRegister()); 1576 DCHECK(right_op->IsRegister());
1694 Register right = ToRegister(right_op); 1577 Register right = ToRegister(right_op);
1695 1578
1696 if (overflow) { 1579 if (can_overflow) {
1697 Register scratch = scratch0(); 1580 #if V8_TARGET_ARCH_PPC64
1581 // result = left * right.
1582 if (instr->hydrogen()->representation().IsSmi()) {
1583 __ SmiUntag(result, left);
1584 __ SmiUntag(scratch, right);
1585 __ Mul(result, result, scratch);
1586 } else {
1587 __ Mul(result, left, right);
1588 }
1589 __ TestIfInt32(result, scratch, r0);
1590 DeoptimizeIf(ne, instr->environment());
1591 if (instr->hydrogen()->representation().IsSmi()) {
1592 __ SmiTag(result);
1593 }
1594 #else
1698 // scratch:result = left * right. 1595 // scratch:result = left * right.
1699 if (instr->hydrogen()->representation().IsSmi()) { 1596 if (instr->hydrogen()->representation().IsSmi()) {
1700 __ SmiUntag(result, left); 1597 __ SmiUntag(result, left);
1701 __ smull(result, scratch, result, right); 1598 __ mulhw(scratch, result, right);
1599 __ mullw(result, result, right);
1702 } else { 1600 } else {
1703 __ smull(result, scratch, left, right); 1601 __ mulhw(scratch, left, right);
1602 __ mullw(result, left, right);
1704 } 1603 }
1705 __ cmp(scratch, Operand(result, ASR, 31)); 1604 __ TestIfInt32(scratch, result, r0);
1706 DeoptimizeIf(ne, instr->environment()); 1605 DeoptimizeIf(ne, instr->environment());
1606 #endif
1707 } else { 1607 } else {
1708 if (instr->hydrogen()->representation().IsSmi()) { 1608 if (instr->hydrogen()->representation().IsSmi()) {
1709 __ SmiUntag(result, left); 1609 __ SmiUntag(result, left);
1710 __ mul(result, result, right); 1610 __ Mul(result, result, right);
1711 } else { 1611 } else {
1712 __ mul(result, left, right); 1612 __ Mul(result, left, right);
1713 } 1613 }
1714 } 1614 }
1715 1615
1716 if (bailout_on_minus_zero) { 1616 if (bailout_on_minus_zero) {
1717 Label done; 1617 Label done;
1718 __ teq(left, Operand(right)); 1618 #if V8_TARGET_ARCH_PPC64
1719 __ b(pl, &done); 1619 if (instr->hydrogen()->representation().IsSmi()) {
1620 #endif
1621 __ xor_(r0, left, right, SetRC);
1622 __ bge(&done, cr0);
1623 #if V8_TARGET_ARCH_PPC64
1624 } else {
1625 __ xor_(r0, left, right);
1626 __ cmpwi(r0, Operand::Zero());
1627 __ bge(&done);
1628 }
1629 #endif
1720 // Bail out if the result is minus zero. 1630 // Bail out if the result is minus zero.
1721 __ cmp(result, Operand::Zero()); 1631 __ cmpi(result, Operand::Zero());
1722 DeoptimizeIf(eq, instr->environment()); 1632 DeoptimizeIf(eq, instr->environment());
1723 __ bind(&done); 1633 __ bind(&done);
1724 } 1634 }
1725 } 1635 }
1726 } 1636 }
1727 1637
1728 1638
1729 void LCodeGen::DoBitI(LBitI* instr) { 1639 void LCodeGen::DoBitI(LBitI* instr) {
1730 LOperand* left_op = instr->left(); 1640 LOperand* left_op = instr->left();
1731 LOperand* right_op = instr->right(); 1641 LOperand* right_op = instr->right();
1732 DCHECK(left_op->IsRegister()); 1642 DCHECK(left_op->IsRegister());
1733 Register left = ToRegister(left_op); 1643 Register left = ToRegister(left_op);
1734 Register result = ToRegister(instr->result()); 1644 Register result = ToRegister(instr->result());
1735 Operand right(no_reg); 1645 Operand right(no_reg);
1736 1646
1737 if (right_op->IsStackSlot()) { 1647 if (right_op->IsStackSlot()) {
1738 right = Operand(EmitLoadRegister(right_op, ip)); 1648 right = Operand(EmitLoadRegister(right_op, ip));
1739 } else { 1649 } else {
1740 DCHECK(right_op->IsRegister() || right_op->IsConstantOperand()); 1650 DCHECK(right_op->IsRegister() || right_op->IsConstantOperand());
1741 right = ToOperand(right_op); 1651 right = ToOperand(right_op);
1652
1653 if (right_op->IsConstantOperand() && is_uint16(right.immediate())) {
1654 switch (instr->op()) {
1655 case Token::BIT_AND:
1656 __ andi(result, left, right);
1657 break;
1658 case Token::BIT_OR:
1659 __ ori(result, left, right);
1660 break;
1661 case Token::BIT_XOR:
1662 __ xori(result, left, right);
1663 break;
1664 default:
1665 UNREACHABLE();
1666 break;
1667 }
1668 return;
1669 }
1742 } 1670 }
1743 1671
1744 switch (instr->op()) { 1672 switch (instr->op()) {
1745 case Token::BIT_AND: 1673 case Token::BIT_AND:
1746 __ and_(result, left, right); 1674 __ And(result, left, right);
1747 break; 1675 break;
1748 case Token::BIT_OR: 1676 case Token::BIT_OR:
1749 __ orr(result, left, right); 1677 __ Or(result, left, right);
1750 break; 1678 break;
1751 case Token::BIT_XOR: 1679 case Token::BIT_XOR:
1752 if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) { 1680 if (right_op->IsConstantOperand() && right.immediate() == int32_t(~0)) {
1753 __ mvn(result, Operand(left)); 1681 __ notx(result, left);
1754 } else { 1682 } else {
1755 __ eor(result, left, right); 1683 __ Xor(result, left, right);
1756 } 1684 }
1757 break; 1685 break;
1758 default: 1686 default:
1759 UNREACHABLE(); 1687 UNREACHABLE();
1760 break; 1688 break;
1761 } 1689 }
1762 } 1690 }
1763 1691
1764 1692
1765 void LCodeGen::DoShiftI(LShiftI* instr) { 1693 void LCodeGen::DoShiftI(LShiftI* instr) {
1766 // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so 1694 // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so
1767 // result may alias either of them. 1695 // result may alias either of them.
1768 LOperand* right_op = instr->right(); 1696 LOperand* right_op = instr->right();
1769 Register left = ToRegister(instr->left()); 1697 Register left = ToRegister(instr->left());
1770 Register result = ToRegister(instr->result()); 1698 Register result = ToRegister(instr->result());
1771 Register scratch = scratch0(); 1699 Register scratch = scratch0();
1772 if (right_op->IsRegister()) { 1700 if (right_op->IsRegister()) {
1773 // Mask the right_op operand. 1701 // Mask the right_op operand.
1774 __ and_(scratch, ToRegister(right_op), Operand(0x1F)); 1702 __ andi(scratch, ToRegister(right_op), Operand(0x1F));
1775 switch (instr->op()) { 1703 switch (instr->op()) {
1776 case Token::ROR: 1704 case Token::ROR:
1777 __ mov(result, Operand(left, ROR, scratch)); 1705 // rotate_right(a, b) == rotate_left(a, 32 - b)
1706 __ subfic(scratch, scratch, Operand(32));
1707 __ rotlw(result, left, scratch);
1778 break; 1708 break;
1779 case Token::SAR: 1709 case Token::SAR:
1780 __ mov(result, Operand(left, ASR, scratch)); 1710 __ sraw(result, left, scratch);
1781 break; 1711 break;
1782 case Token::SHR: 1712 case Token::SHR:
1783 if (instr->can_deopt()) { 1713 if (instr->can_deopt()) {
1784 __ mov(result, Operand(left, LSR, scratch), SetCC); 1714 __ srw(result, left, scratch, SetRC);
1785 DeoptimizeIf(mi, instr->environment()); 1715 #if V8_TARGET_ARCH_PPC64
1716 __ extsw(result, result, SetRC);
1717 #endif
1718 DeoptimizeIf(lt, instr->environment(), cr0);
1786 } else { 1719 } else {
1787 __ mov(result, Operand(left, LSR, scratch)); 1720 __ srw(result, left, scratch);
1788 } 1721 }
1789 break; 1722 break;
1790 case Token::SHL: 1723 case Token::SHL:
1791 __ mov(result, Operand(left, LSL, scratch)); 1724 __ slw(result, left, scratch);
1725 #if V8_TARGET_ARCH_PPC64
1726 __ extsw(result, result);
1727 #endif
1792 break; 1728 break;
1793 default: 1729 default:
1794 UNREACHABLE(); 1730 UNREACHABLE();
1795 break; 1731 break;
1796 } 1732 }
1797 } else { 1733 } else {
1798 // Mask the right_op operand. 1734 // Mask the right_op operand.
1799 int value = ToInteger32(LConstantOperand::cast(right_op)); 1735 int value = ToInteger32(LConstantOperand::cast(right_op));
1800 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F); 1736 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1801 switch (instr->op()) { 1737 switch (instr->op()) {
1802 case Token::ROR: 1738 case Token::ROR:
1803 if (shift_count != 0) { 1739 if (shift_count != 0) {
1804 __ mov(result, Operand(left, ROR, shift_count)); 1740 __ rotrwi(result, left, shift_count);
1805 } else { 1741 } else {
1806 __ Move(result, left); 1742 __ Move(result, left);
1807 } 1743 }
1808 break; 1744 break;
1809 case Token::SAR: 1745 case Token::SAR:
1810 if (shift_count != 0) { 1746 if (shift_count != 0) {
1811 __ mov(result, Operand(left, ASR, shift_count)); 1747 __ srawi(result, left, shift_count);
1812 } else { 1748 } else {
1813 __ Move(result, left); 1749 __ Move(result, left);
1814 } 1750 }
1815 break; 1751 break;
1816 case Token::SHR: 1752 case Token::SHR:
1817 if (shift_count != 0) { 1753 if (shift_count != 0) {
1818 __ mov(result, Operand(left, LSR, shift_count)); 1754 __ srwi(result, left, Operand(shift_count));
1819 } else { 1755 } else {
1820 if (instr->can_deopt()) { 1756 if (instr->can_deopt()) {
1821 __ tst(left, Operand(0x80000000)); 1757 __ cmpwi(left, Operand::Zero());
1822 DeoptimizeIf(ne, instr->environment()); 1758 DeoptimizeIf(lt, instr->environment());
1823 } 1759 }
1824 __ Move(result, left); 1760 __ Move(result, left);
1825 } 1761 }
1826 break; 1762 break;
1827 case Token::SHL: 1763 case Token::SHL:
1828 if (shift_count != 0) { 1764 if (shift_count != 0) {
1765 #if V8_TARGET_ARCH_PPC64
1766 if (instr->hydrogen_value()->representation().IsSmi()) {
1767 __ sldi(result, left, Operand(shift_count));
1768 #else
1829 if (instr->hydrogen_value()->representation().IsSmi() && 1769 if (instr->hydrogen_value()->representation().IsSmi() &&
1830 instr->can_deopt()) { 1770 instr->can_deopt()) {
1831 if (shift_count != 1) { 1771 if (shift_count != 1) {
1832 __ mov(result, Operand(left, LSL, shift_count - 1)); 1772 __ slwi(result, left, Operand(shift_count - 1));
1833 __ SmiTag(result, result, SetCC); 1773 __ SmiTagCheckOverflow(result, result, scratch);
1834 } else { 1774 } else {
1835 __ SmiTag(result, left, SetCC); 1775 __ SmiTagCheckOverflow(result, left, scratch);
1836 } 1776 }
1837 DeoptimizeIf(vs, instr->environment()); 1777 DeoptimizeIf(lt, instr->environment(), cr0);
1778 #endif
1838 } else { 1779 } else {
1839 __ mov(result, Operand(left, LSL, shift_count)); 1780 __ slwi(result, left, Operand(shift_count));
1781 #if V8_TARGET_ARCH_PPC64
1782 __ extsw(result, result);
1783 #endif
1840 } 1784 }
1841 } else { 1785 } else {
1842 __ Move(result, left); 1786 __ Move(result, left);
1843 } 1787 }
1844 break; 1788 break;
1845 default: 1789 default:
1846 UNREACHABLE(); 1790 UNREACHABLE();
1847 break; 1791 break;
1848 } 1792 }
1849 } 1793 }
1850 } 1794 }
1851 1795
1852 1796
1853 void LCodeGen::DoSubI(LSubI* instr) { 1797 void LCodeGen::DoSubI(LSubI* instr) {
1854 LOperand* left = instr->left();
1855 LOperand* right = instr->right(); 1798 LOperand* right = instr->right();
1856 LOperand* result = instr->result(); 1799 Register left = ToRegister(instr->left());
1800 Register result = ToRegister(instr->result());
1857 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 1801 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1858 SBit set_cond = can_overflow ? SetCC : LeaveCC; 1802 if (!can_overflow && right->IsConstantOperand()) {
1803 Operand right_operand = ToOperand(right);
1804 __ Add(result, left, -right_operand.immediate(), r0);
1805 } else {
1806 Register right_reg = EmitLoadRegister(right, ip);
1859 1807
1860 if (right->IsStackSlot()) { 1808 if (!can_overflow) {
1861 Register right_reg = EmitLoadRegister(right, ip); 1809 __ sub(result, left, right_reg);
1862 __ sub(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond); 1810 } else {
1863 } else { 1811 __ SubAndCheckForOverflow(result, left, right_reg, scratch0(), r0);
1864 DCHECK(right->IsRegister() || right->IsConstantOperand()); 1812 // Doptimize on overflow
1865 __ sub(ToRegister(result), ToRegister(left), ToOperand(right), set_cond); 1813 #if V8_TARGET_ARCH_PPC64
1814 if (!instr->hydrogen()->representation().IsSmi()) {
1815 __ extsw(scratch0(), scratch0(), SetRC);
1816 }
1817 #endif
1818 DeoptimizeIf(lt, instr->environment(), cr0);
1819 }
1866 } 1820 }
1867 1821
1868 if (can_overflow) { 1822 #if V8_TARGET_ARCH_PPC64
1869 DeoptimizeIf(vs, instr->environment()); 1823 if (!instr->hydrogen()->representation().IsSmi()) {
1824 __ extsw(result, result);
1870 } 1825 }
1826 #endif
1871 } 1827 }
1872 1828
1873 1829
1874 void LCodeGen::DoRSubI(LRSubI* instr) { 1830 void LCodeGen::DoRSubI(LRSubI* instr) {
1875 LOperand* left = instr->left(); 1831 LOperand* left = instr->left();
1876 LOperand* right = instr->right(); 1832 LOperand* right = instr->right();
1877 LOperand* result = instr->result(); 1833 LOperand* result = instr->result();
1878 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1879 SBit set_cond = can_overflow ? SetCC : LeaveCC;
1880 1834
1881 if (right->IsStackSlot()) { 1835 DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow) &&
1882 Register right_reg = EmitLoadRegister(right, ip); 1836 right->IsConstantOperand());
1883 __ rsb(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond); 1837
1838 Operand right_operand = ToOperand(right);
1839 if (is_int16(right_operand.immediate())) {
1840 __ subfic(ToRegister(result), ToRegister(left), right_operand);
1884 } else { 1841 } else {
1885 DCHECK(right->IsRegister() || right->IsConstantOperand()); 1842 __ mov(r0, right_operand);
1886 __ rsb(ToRegister(result), ToRegister(left), ToOperand(right), set_cond); 1843 __ sub(ToRegister(result), r0, ToRegister(left));
1887 }
1888
1889 if (can_overflow) {
1890 DeoptimizeIf(vs, instr->environment());
1891 } 1844 }
1892 } 1845 }
1893 1846
1894 1847
1895 void LCodeGen::DoConstantI(LConstantI* instr) { 1848 void LCodeGen::DoConstantI(LConstantI* instr) {
1896 __ mov(ToRegister(instr->result()), Operand(instr->value())); 1849 __ mov(ToRegister(instr->result()), Operand(instr->value()));
1897 } 1850 }
1898 1851
1899 1852
1900 void LCodeGen::DoConstantS(LConstantS* instr) { 1853 void LCodeGen::DoConstantS(LConstantS* instr) {
1901 __ mov(ToRegister(instr->result()), Operand(instr->value())); 1854 __ LoadSmiLiteral(ToRegister(instr->result()), instr->value());
1902 } 1855 }
1903 1856
1904 1857
1858 // TODO(penguin): put const to constant pool instead
1859 // of storing double to stack
1905 void LCodeGen::DoConstantD(LConstantD* instr) { 1860 void LCodeGen::DoConstantD(LConstantD* instr) {
1906 DCHECK(instr->result()->IsDoubleRegister()); 1861 DCHECK(instr->result()->IsDoubleRegister());
1907 DwVfpRegister result = ToDoubleRegister(instr->result()); 1862 DoubleRegister result = ToDoubleRegister(instr->result());
1908 double v = instr->value(); 1863 double v = instr->value();
1909 __ Vmov(result, v, scratch0()); 1864 __ LoadDoubleLiteral(result, v, scratch0());
1910 } 1865 }
1911 1866
1912 1867
1913 void LCodeGen::DoConstantE(LConstantE* instr) { 1868 void LCodeGen::DoConstantE(LConstantE* instr) {
1914 __ mov(ToRegister(instr->result()), Operand(instr->value())); 1869 __ mov(ToRegister(instr->result()), Operand(instr->value()));
1915 } 1870 }
1916 1871
1917 1872
1918 void LCodeGen::DoConstantT(LConstantT* instr) { 1873 void LCodeGen::DoConstantT(LConstantT* instr) {
1919 Handle<Object> object = instr->value(isolate()); 1874 Handle<Object> object = instr->value(isolate());
1920 AllowDeferredHandleDereference smi_check; 1875 AllowDeferredHandleDereference smi_check;
1921 __ Move(ToRegister(instr->result()), object); 1876 __ Move(ToRegister(instr->result()), object);
1922 } 1877 }
1923 1878
1924 1879
1925 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) { 1880 void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
1926 Register result = ToRegister(instr->result()); 1881 Register result = ToRegister(instr->result());
1927 Register map = ToRegister(instr->value()); 1882 Register map = ToRegister(instr->value());
1928 __ EnumLength(result, map); 1883 __ EnumLength(result, map);
1929 } 1884 }
1930 1885
1931 1886
1932 void LCodeGen::DoDateField(LDateField* instr) { 1887 void LCodeGen::DoDateField(LDateField* instr) {
1933 Register object = ToRegister(instr->date()); 1888 Register object = ToRegister(instr->date());
1934 Register result = ToRegister(instr->result()); 1889 Register result = ToRegister(instr->result());
1935 Register scratch = ToRegister(instr->temp()); 1890 Register scratch = ToRegister(instr->temp());
1936 Smi* index = instr->index(); 1891 Smi* index = instr->index();
1937 Label runtime, done; 1892 Label runtime, done;
1938 DCHECK(object.is(result)); 1893 DCHECK(object.is(result));
1939 DCHECK(object.is(r0)); 1894 DCHECK(object.is(r3));
1940 DCHECK(!scratch.is(scratch0())); 1895 DCHECK(!scratch.is(scratch0()));
1941 DCHECK(!scratch.is(object)); 1896 DCHECK(!scratch.is(object));
1942 1897
1943 __ SmiTst(object); 1898 __ TestIfSmi(object, r0);
1944 DeoptimizeIf(eq, instr->environment()); 1899 DeoptimizeIf(eq, instr->environment(), cr0);
1945 __ CompareObjectType(object, scratch, scratch, JS_DATE_TYPE); 1900 __ CompareObjectType(object, scratch, scratch, JS_DATE_TYPE);
1946 DeoptimizeIf(ne, instr->environment()); 1901 DeoptimizeIf(ne, instr->environment());
1947 1902
1948 if (index->value() == 0) { 1903 if (index->value() == 0) {
1949 __ ldr(result, FieldMemOperand(object, JSDate::kValueOffset)); 1904 __ LoadP(result, FieldMemOperand(object, JSDate::kValueOffset));
1950 } else { 1905 } else {
1951 if (index->value() < JSDate::kFirstUncachedField) { 1906 if (index->value() < JSDate::kFirstUncachedField) {
1952 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); 1907 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
1953 __ mov(scratch, Operand(stamp)); 1908 __ mov(scratch, Operand(stamp));
1954 __ ldr(scratch, MemOperand(scratch)); 1909 __ LoadP(scratch, MemOperand(scratch));
1955 __ ldr(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset)); 1910 __ LoadP(scratch0(), FieldMemOperand(object, JSDate::kCacheStampOffset));
1956 __ cmp(scratch, scratch0()); 1911 __ cmp(scratch, scratch0());
1957 __ b(ne, &runtime); 1912 __ bne(&runtime);
1958 __ ldr(result, FieldMemOperand(object, JSDate::kValueOffset + 1913 __ LoadP(result,
1959 kPointerSize * index->value())); 1914 FieldMemOperand(object, JSDate::kValueOffset +
1960 __ jmp(&done); 1915 kPointerSize * index->value()));
1916 __ b(&done);
1961 } 1917 }
1962 __ bind(&runtime); 1918 __ bind(&runtime);
1963 __ PrepareCallCFunction(2, scratch); 1919 __ PrepareCallCFunction(2, scratch);
1964 __ mov(r1, Operand(index)); 1920 __ LoadSmiLiteral(r4, index);
1965 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); 1921 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
1966 __ bind(&done); 1922 __ bind(&done);
1967 } 1923 }
1968 } 1924 }
1969 1925
1970 1926
1971 MemOperand LCodeGen::BuildSeqStringOperand(Register string, 1927 MemOperand LCodeGen::BuildSeqStringOperand(Register string, LOperand* index,
1972 LOperand* index,
1973 String::Encoding encoding) { 1928 String::Encoding encoding) {
1974 if (index->IsConstantOperand()) { 1929 if (index->IsConstantOperand()) {
1975 int offset = ToInteger32(LConstantOperand::cast(index)); 1930 int offset = ToInteger32(LConstantOperand::cast(index));
1976 if (encoding == String::TWO_BYTE_ENCODING) { 1931 if (encoding == String::TWO_BYTE_ENCODING) {
1977 offset *= kUC16Size; 1932 offset *= kUC16Size;
1978 } 1933 }
1979 STATIC_ASSERT(kCharSize == 1); 1934 STATIC_ASSERT(kCharSize == 1);
1980 return FieldMemOperand(string, SeqString::kHeaderSize + offset); 1935 return FieldMemOperand(string, SeqString::kHeaderSize + offset);
1981 } 1936 }
1982 Register scratch = scratch0(); 1937 Register scratch = scratch0();
1983 DCHECK(!scratch.is(string)); 1938 DCHECK(!scratch.is(string));
1984 DCHECK(!scratch.is(ToRegister(index))); 1939 DCHECK(!scratch.is(ToRegister(index)));
1985 if (encoding == String::ONE_BYTE_ENCODING) { 1940 if (encoding == String::ONE_BYTE_ENCODING) {
1986 __ add(scratch, string, Operand(ToRegister(index))); 1941 __ add(scratch, string, ToRegister(index));
1987 } else { 1942 } else {
1988 STATIC_ASSERT(kUC16Size == 2); 1943 STATIC_ASSERT(kUC16Size == 2);
1989 __ add(scratch, string, Operand(ToRegister(index), LSL, 1)); 1944 __ ShiftLeftImm(scratch, ToRegister(index), Operand(1));
1945 __ add(scratch, string, scratch);
1990 } 1946 }
1991 return FieldMemOperand(scratch, SeqString::kHeaderSize); 1947 return FieldMemOperand(scratch, SeqString::kHeaderSize);
1992 } 1948 }
1993 1949
1994 1950
1995 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) { 1951 void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
1996 String::Encoding encoding = instr->hydrogen()->encoding(); 1952 String::Encoding encoding = instr->hydrogen()->encoding();
1997 Register string = ToRegister(instr->string()); 1953 Register string = ToRegister(instr->string());
1998 Register result = ToRegister(instr->result()); 1954 Register result = ToRegister(instr->result());
1999 1955
2000 if (FLAG_debug_code) { 1956 if (FLAG_debug_code) {
2001 Register scratch = scratch0(); 1957 Register scratch = scratch0();
2002 __ ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset)); 1958 __ LoadP(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
2003 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 1959 __ lbz(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
2004 1960
2005 __ and_(scratch, scratch, 1961 __ andi(scratch, scratch,
2006 Operand(kStringRepresentationMask | kStringEncodingMask)); 1962 Operand(kStringRepresentationMask | kStringEncodingMask));
2007 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; 1963 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
2008 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; 1964 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
2009 __ cmp(scratch, Operand(encoding == String::ONE_BYTE_ENCODING 1965 __ cmpi(scratch,
2010 ? one_byte_seq_type : two_byte_seq_type)); 1966 Operand(encoding == String::ONE_BYTE_ENCODING ? one_byte_seq_type
1967 : two_byte_seq_type));
2011 __ Check(eq, kUnexpectedStringType); 1968 __ Check(eq, kUnexpectedStringType);
2012 } 1969 }
2013 1970
2014 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding); 1971 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
2015 if (encoding == String::ONE_BYTE_ENCODING) { 1972 if (encoding == String::ONE_BYTE_ENCODING) {
2016 __ ldrb(result, operand); 1973 __ lbz(result, operand);
2017 } else { 1974 } else {
2018 __ ldrh(result, operand); 1975 __ lhz(result, operand);
2019 } 1976 }
2020 } 1977 }
2021 1978
2022 1979
2023 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { 1980 void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
2024 String::Encoding encoding = instr->hydrogen()->encoding(); 1981 String::Encoding encoding = instr->hydrogen()->encoding();
2025 Register string = ToRegister(instr->string()); 1982 Register string = ToRegister(instr->string());
2026 Register value = ToRegister(instr->value()); 1983 Register value = ToRegister(instr->value());
2027 1984
2028 if (FLAG_debug_code) { 1985 if (FLAG_debug_code) {
2029 Register index = ToRegister(instr->index()); 1986 Register index = ToRegister(instr->index());
2030 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; 1987 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
2031 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; 1988 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
2032 int encoding_mask = 1989 int encoding_mask =
2033 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING 1990 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
2034 ? one_byte_seq_type : two_byte_seq_type; 1991 ? one_byte_seq_type
1992 : two_byte_seq_type;
2035 __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask); 1993 __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
2036 } 1994 }
2037 1995
2038 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding); 1996 MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding);
2039 if (encoding == String::ONE_BYTE_ENCODING) { 1997 if (encoding == String::ONE_BYTE_ENCODING) {
2040 __ strb(value, operand); 1998 __ stb(value, operand);
2041 } else { 1999 } else {
2042 __ strh(value, operand); 2000 __ sth(value, operand);
2043 } 2001 }
2044 } 2002 }
2045 2003
2046 2004
2047 void LCodeGen::DoAddI(LAddI* instr) { 2005 void LCodeGen::DoAddI(LAddI* instr) {
2048 LOperand* left = instr->left();
2049 LOperand* right = instr->right(); 2006 LOperand* right = instr->right();
2050 LOperand* result = instr->result(); 2007 Register left = ToRegister(instr->left());
2008 Register result = ToRegister(instr->result());
2051 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); 2009 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
2052 SBit set_cond = can_overflow ? SetCC : LeaveCC; 2010 #if V8_TARGET_ARCH_PPC64
2011 bool isInteger = !(instr->hydrogen()->representation().IsSmi() ||
2012 instr->hydrogen()->representation().IsExternal());
2013 #endif
2053 2014
2054 if (right->IsStackSlot()) { 2015 if (!can_overflow && right->IsConstantOperand()) {
2016 Operand right_operand = ToOperand(right);
2017 __ Add(result, left, right_operand.immediate(), r0);
2018 } else {
2055 Register right_reg = EmitLoadRegister(right, ip); 2019 Register right_reg = EmitLoadRegister(right, ip);
2056 __ add(ToRegister(result), ToRegister(left), Operand(right_reg), set_cond); 2020
2057 } else { 2021 if (!can_overflow) {
2058 DCHECK(right->IsRegister() || right->IsConstantOperand()); 2022 __ add(result, left, right_reg);
2059 __ add(ToRegister(result), ToRegister(left), ToOperand(right), set_cond); 2023 } else { // can_overflow.
2024 __ AddAndCheckForOverflow(result, left, right_reg, scratch0(), r0);
2025 #if V8_TARGET_ARCH_PPC64
2026 if (isInteger) {
2027 __ extsw(scratch0(), scratch0(), SetRC);
2028 }
2029 #endif
2030 // Doptimize on overflow
2031 DeoptimizeIf(lt, instr->environment(), cr0);
2032 }
2060 } 2033 }
2061 2034
2062 if (can_overflow) { 2035 #if V8_TARGET_ARCH_PPC64
2063 DeoptimizeIf(vs, instr->environment()); 2036 if (isInteger) {
2037 __ extsw(result, result);
2064 } 2038 }
2039 #endif
2065 } 2040 }
2066 2041
2067 2042
2068 void LCodeGen::DoMathMinMax(LMathMinMax* instr) { 2043 void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
2069 LOperand* left = instr->left(); 2044 LOperand* left = instr->left();
2070 LOperand* right = instr->right(); 2045 LOperand* right = instr->right();
2071 HMathMinMax::Operation operation = instr->hydrogen()->operation(); 2046 HMathMinMax::Operation operation = instr->hydrogen()->operation();
2047 Condition cond = (operation == HMathMinMax::kMathMin) ? le : ge;
2072 if (instr->hydrogen()->representation().IsSmiOrInteger32()) { 2048 if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
2073 Condition condition = (operation == HMathMinMax::kMathMin) ? le : ge;
2074 Register left_reg = ToRegister(left); 2049 Register left_reg = ToRegister(left);
2075 Operand right_op = (right->IsRegister() || right->IsConstantOperand()) 2050 Register right_reg = EmitLoadRegister(right, ip);
2076 ? ToOperand(right)
2077 : Operand(EmitLoadRegister(right, ip));
2078 Register result_reg = ToRegister(instr->result()); 2051 Register result_reg = ToRegister(instr->result());
2079 __ cmp(left_reg, right_op); 2052 Label return_left, done;
2080 __ Move(result_reg, left_reg, condition); 2053 #if V8_TARGET_ARCH_PPC64
2081 __ mov(result_reg, right_op, LeaveCC, NegateCondition(condition)); 2054 if (instr->hydrogen_value()->representation().IsSmi()) {
2055 #endif
2056 __ cmp(left_reg, right_reg);
2057 #if V8_TARGET_ARCH_PPC64
2058 } else {
2059 __ cmpw(left_reg, right_reg);
2060 }
2061 #endif
2062 __ b(cond, &return_left);
2063 __ Move(result_reg, right_reg);
2064 __ b(&done);
2065 __ bind(&return_left);
2066 __ Move(result_reg, left_reg);
2067 __ bind(&done);
2082 } else { 2068 } else {
2083 DCHECK(instr->hydrogen()->representation().IsDouble()); 2069 DCHECK(instr->hydrogen()->representation().IsDouble());
2084 DwVfpRegister left_reg = ToDoubleRegister(left); 2070 DoubleRegister left_reg = ToDoubleRegister(left);
2085 DwVfpRegister right_reg = ToDoubleRegister(right); 2071 DoubleRegister right_reg = ToDoubleRegister(right);
2086 DwVfpRegister result_reg = ToDoubleRegister(instr->result()); 2072 DoubleRegister result_reg = ToDoubleRegister(instr->result());
2087 Label result_is_nan, return_left, return_right, check_zero, done; 2073 Label check_nan_left, check_zero, return_left, return_right, done;
2088 __ VFPCompareAndSetFlags(left_reg, right_reg); 2074 __ fcmpu(left_reg, right_reg);
2075 __ bunordered(&check_nan_left);
2076 __ beq(&check_zero);
2077 __ b(cond, &return_left);
2078 __ b(&return_right);
2079
2080 __ bind(&check_zero);
2081 __ fcmpu(left_reg, kDoubleRegZero);
2082 __ bne(&return_left); // left == right != 0.
2083
2084 // At this point, both left and right are either 0 or -0.
2085 // N.B. The following works because +0 + -0 == +0
2089 if (operation == HMathMinMax::kMathMin) { 2086 if (operation == HMathMinMax::kMathMin) {
2090 __ b(mi, &return_left); 2087 // For min we want logical-or of sign bit: -(-L + -R)
2091 __ b(gt, &return_right); 2088 __ fneg(left_reg, left_reg);
2089 __ fsub(result_reg, left_reg, right_reg);
2090 __ fneg(result_reg, result_reg);
2092 } else { 2091 } else {
2093 __ b(mi, &return_right); 2092 // For max we want logical-and of sign bit: (L + R)
2094 __ b(gt, &return_left); 2093 __ fadd(result_reg, left_reg, right_reg);
2095 }
2096 __ b(vs, &result_is_nan);
2097 // Left equals right => check for -0.
2098 __ VFPCompareAndSetFlags(left_reg, 0.0);
2099 if (left_reg.is(result_reg) || right_reg.is(result_reg)) {
2100 __ b(ne, &done); // left == right != 0.
2101 } else {
2102 __ b(ne, &return_left); // left == right != 0.
2103 }
2104 // At this point, both left and right are either 0 or -0.
2105 if (operation == HMathMinMax::kMathMin) {
2106 // We could use a single 'vorr' instruction here if we had NEON support.
2107 __ vneg(left_reg, left_reg);
2108 __ vsub(result_reg, left_reg, right_reg);
2109 __ vneg(result_reg, result_reg);
2110 } else {
2111 // Since we operate on +0 and/or -0, vadd and vand have the same effect;
2112 // the decision for vadd is easy because vand is a NEON instruction.
2113 __ vadd(result_reg, left_reg, right_reg);
2114 } 2094 }
2115 __ b(&done); 2095 __ b(&done);
2116 2096
2117 __ bind(&result_is_nan); 2097 __ bind(&check_nan_left);
2118 __ vadd(result_reg, left_reg, right_reg); 2098 __ fcmpu(left_reg, left_reg);
2099 __ bunordered(&return_left); // left == NaN.
2100
2101 __ bind(&return_right);
2102 if (!right_reg.is(result_reg)) {
2103 __ fmr(result_reg, right_reg);
2104 }
2119 __ b(&done); 2105 __ b(&done);
2120 2106
2121 __ bind(&return_right); 2107 __ bind(&return_left);
2122 __ Move(result_reg, right_reg);
2123 if (!left_reg.is(result_reg)) { 2108 if (!left_reg.is(result_reg)) {
2124 __ b(&done); 2109 __ fmr(result_reg, left_reg);
2125 } 2110 }
2126
2127 __ bind(&return_left);
2128 __ Move(result_reg, left_reg);
2129
2130 __ bind(&done); 2111 __ bind(&done);
2131 } 2112 }
2132 } 2113 }
2133 2114
2134 2115
2135 void LCodeGen::DoArithmeticD(LArithmeticD* instr) { 2116 void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
2136 DwVfpRegister left = ToDoubleRegister(instr->left()); 2117 DoubleRegister left = ToDoubleRegister(instr->left());
2137 DwVfpRegister right = ToDoubleRegister(instr->right()); 2118 DoubleRegister right = ToDoubleRegister(instr->right());
2138 DwVfpRegister result = ToDoubleRegister(instr->result()); 2119 DoubleRegister result = ToDoubleRegister(instr->result());
2139 switch (instr->op()) { 2120 switch (instr->op()) {
2140 case Token::ADD: 2121 case Token::ADD:
2141 __ vadd(result, left, right); 2122 __ fadd(result, left, right);
2142 break; 2123 break;
2143 case Token::SUB: 2124 case Token::SUB:
2144 __ vsub(result, left, right); 2125 __ fsub(result, left, right);
2145 break; 2126 break;
2146 case Token::MUL: 2127 case Token::MUL:
2147 __ vmul(result, left, right); 2128 __ fmul(result, left, right);
2148 break; 2129 break;
2149 case Token::DIV: 2130 case Token::DIV:
2150 __ vdiv(result, left, right); 2131 __ fdiv(result, left, right);
2151 break; 2132 break;
2152 case Token::MOD: { 2133 case Token::MOD: {
2153 __ PrepareCallCFunction(0, 2, scratch0()); 2134 __ PrepareCallCFunction(0, 2, scratch0());
2154 __ MovToFloatParameters(left, right); 2135 __ MovToFloatParameters(left, right);
2155 __ CallCFunction( 2136 __ CallCFunction(ExternalReference::mod_two_doubles_operation(isolate()),
2156 ExternalReference::mod_two_doubles_operation(isolate()), 2137 0, 2);
2157 0, 2);
2158 // Move the result in the double result register. 2138 // Move the result in the double result register.
2159 __ MovFromFloatResult(result); 2139 __ MovFromFloatResult(result);
2160 break; 2140 break;
2161 } 2141 }
2162 default: 2142 default:
2163 UNREACHABLE(); 2143 UNREACHABLE();
2164 break; 2144 break;
2165 } 2145 }
2166 } 2146 }
2167 2147
2168 2148
2169 void LCodeGen::DoArithmeticT(LArithmeticT* instr) { 2149 void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
2170 DCHECK(ToRegister(instr->context()).is(cp)); 2150 DCHECK(ToRegister(instr->context()).is(cp));
2171 DCHECK(ToRegister(instr->left()).is(r1)); 2151 DCHECK(ToRegister(instr->left()).is(r4));
2172 DCHECK(ToRegister(instr->right()).is(r0)); 2152 DCHECK(ToRegister(instr->right()).is(r3));
2173 DCHECK(ToRegister(instr->result()).is(r0)); 2153 DCHECK(ToRegister(instr->result()).is(r3));
2174 2154
2175 BinaryOpICStub stub(isolate(), instr->op(), NO_OVERWRITE); 2155 BinaryOpICStub stub(isolate(), instr->op(), NO_OVERWRITE);
2176 // Block literal pool emission to ensure nop indicating no inlined smi code
2177 // is in the correct position.
2178 Assembler::BlockConstPoolScope block_const_pool(masm());
2179 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 2156 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2180 } 2157 }
2181 2158
2182 2159
2183 template<class InstrType> 2160 template <class InstrType>
2184 void LCodeGen::EmitBranch(InstrType instr, Condition condition) { 2161 void LCodeGen::EmitBranch(InstrType instr, Condition cond, CRegister cr) {
2185 int left_block = instr->TrueDestination(chunk_); 2162 int left_block = instr->TrueDestination(chunk_);
2186 int right_block = instr->FalseDestination(chunk_); 2163 int right_block = instr->FalseDestination(chunk_);
2187 2164
2188 int next_block = GetNextEmittedBlock(); 2165 int next_block = GetNextEmittedBlock();
2189 2166
2190 if (right_block == left_block || condition == al) { 2167 if (right_block == left_block || cond == al) {
2191 EmitGoto(left_block); 2168 EmitGoto(left_block);
2192 } else if (left_block == next_block) { 2169 } else if (left_block == next_block) {
2193 __ b(NegateCondition(condition), chunk_->GetAssemblyLabel(right_block)); 2170 __ b(NegateCondition(cond), chunk_->GetAssemblyLabel(right_block), cr);
2194 } else if (right_block == next_block) { 2171 } else if (right_block == next_block) {
2195 __ b(condition, chunk_->GetAssemblyLabel(left_block)); 2172 __ b(cond, chunk_->GetAssemblyLabel(left_block), cr);
2196 } else { 2173 } else {
2197 __ b(condition, chunk_->GetAssemblyLabel(left_block)); 2174 __ b(cond, chunk_->GetAssemblyLabel(left_block), cr);
2198 __ b(chunk_->GetAssemblyLabel(right_block)); 2175 __ b(chunk_->GetAssemblyLabel(right_block));
2199 } 2176 }
2200 } 2177 }
2201 2178
2202 2179
2203 template<class InstrType> 2180 template <class InstrType>
2204 void LCodeGen::EmitFalseBranch(InstrType instr, Condition condition) { 2181 void LCodeGen::EmitFalseBranch(InstrType instr, Condition cond, CRegister cr) {
2205 int false_block = instr->FalseDestination(chunk_); 2182 int false_block = instr->FalseDestination(chunk_);
2206 __ b(condition, chunk_->GetAssemblyLabel(false_block)); 2183 __ b(cond, chunk_->GetAssemblyLabel(false_block), cr);
2207 } 2184 }
2208 2185
2209 2186
2210 void LCodeGen::DoDebugBreak(LDebugBreak* instr) { 2187 void LCodeGen::DoDebugBreak(LDebugBreak* instr) { __ stop("LBreak"); }
2211 __ stop("LBreak");
2212 }
2213 2188
2214 2189
2215 void LCodeGen::DoBranch(LBranch* instr) { 2190 void LCodeGen::DoBranch(LBranch* instr) {
2216 Representation r = instr->hydrogen()->value()->representation(); 2191 Representation r = instr->hydrogen()->value()->representation();
2217 if (r.IsInteger32() || r.IsSmi()) { 2192 DoubleRegister dbl_scratch = double_scratch0();
2193 const uint crZOrNaNBits = (1 << (31 - Assembler::encode_crbit(cr7, CR_EQ)) |
2194 1 << (31 - Assembler::encode_crbit(cr7, CR_FU)));
2195
2196 if (r.IsInteger32()) {
2218 DCHECK(!info()->IsStub()); 2197 DCHECK(!info()->IsStub());
2219 Register reg = ToRegister(instr->value()); 2198 Register reg = ToRegister(instr->value());
2220 __ cmp(reg, Operand::Zero()); 2199 __ cmpwi(reg, Operand::Zero());
2200 EmitBranch(instr, ne);
2201 } else if (r.IsSmi()) {
2202 DCHECK(!info()->IsStub());
2203 Register reg = ToRegister(instr->value());
2204 __ cmpi(reg, Operand::Zero());
2221 EmitBranch(instr, ne); 2205 EmitBranch(instr, ne);
2222 } else if (r.IsDouble()) { 2206 } else if (r.IsDouble()) {
2223 DCHECK(!info()->IsStub()); 2207 DCHECK(!info()->IsStub());
2224 DwVfpRegister reg = ToDoubleRegister(instr->value()); 2208 DoubleRegister reg = ToDoubleRegister(instr->value());
2225 // Test the double value. Zero and NaN are false. 2209 // Test the double value. Zero and NaN are false.
2226 __ VFPCompareAndSetFlags(reg, 0.0); 2210 __ fcmpu(reg, kDoubleRegZero, cr7);
2227 __ cmp(r0, r0, vs); // If NaN, set the Z flag. (NaN -> false) 2211 __ mfcr(r0);
2228 EmitBranch(instr, ne); 2212 __ andi(r0, r0, Operand(crZOrNaNBits));
2213 EmitBranch(instr, eq, cr0);
2229 } else { 2214 } else {
2230 DCHECK(r.IsTagged()); 2215 DCHECK(r.IsTagged());
2231 Register reg = ToRegister(instr->value()); 2216 Register reg = ToRegister(instr->value());
2232 HType type = instr->hydrogen()->value()->type(); 2217 HType type = instr->hydrogen()->value()->type();
2233 if (type.IsBoolean()) { 2218 if (type.IsBoolean()) {
2234 DCHECK(!info()->IsStub()); 2219 DCHECK(!info()->IsStub());
2235 __ CompareRoot(reg, Heap::kTrueValueRootIndex); 2220 __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2236 EmitBranch(instr, eq); 2221 EmitBranch(instr, eq);
2237 } else if (type.IsSmi()) { 2222 } else if (type.IsSmi()) {
2238 DCHECK(!info()->IsStub()); 2223 DCHECK(!info()->IsStub());
2239 __ cmp(reg, Operand::Zero()); 2224 __ cmpi(reg, Operand::Zero());
2240 EmitBranch(instr, ne); 2225 EmitBranch(instr, ne);
2241 } else if (type.IsJSArray()) { 2226 } else if (type.IsJSArray()) {
2242 DCHECK(!info()->IsStub()); 2227 DCHECK(!info()->IsStub());
2243 EmitBranch(instr, al); 2228 EmitBranch(instr, al);
2244 } else if (type.IsHeapNumber()) { 2229 } else if (type.IsHeapNumber()) {
2245 DCHECK(!info()->IsStub()); 2230 DCHECK(!info()->IsStub());
2246 DwVfpRegister dbl_scratch = double_scratch0(); 2231 __ lfd(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2247 __ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2248 // Test the double value. Zero and NaN are false. 2232 // Test the double value. Zero and NaN are false.
2249 __ VFPCompareAndSetFlags(dbl_scratch, 0.0); 2233 __ fcmpu(dbl_scratch, kDoubleRegZero, cr7);
2250 __ cmp(r0, r0, vs); // If NaN, set the Z flag. (NaN) 2234 __ mfcr(r0);
2251 EmitBranch(instr, ne); 2235 __ andi(r0, r0, Operand(crZOrNaNBits));
2236 EmitBranch(instr, eq, cr0);
2252 } else if (type.IsString()) { 2237 } else if (type.IsString()) {
2253 DCHECK(!info()->IsStub()); 2238 DCHECK(!info()->IsStub());
2254 __ ldr(ip, FieldMemOperand(reg, String::kLengthOffset)); 2239 __ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset));
2255 __ cmp(ip, Operand::Zero()); 2240 __ cmpi(ip, Operand::Zero());
2256 EmitBranch(instr, ne); 2241 EmitBranch(instr, ne);
2257 } else { 2242 } else {
2258 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types(); 2243 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
2259 // Avoid deopts in the case where we've never executed this path before. 2244 // Avoid deopts in the case where we've never executed this path before.
2260 if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic(); 2245 if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
2261 2246
2262 if (expected.Contains(ToBooleanStub::UNDEFINED)) { 2247 if (expected.Contains(ToBooleanStub::UNDEFINED)) {
2263 // undefined -> false. 2248 // undefined -> false.
2264 __ CompareRoot(reg, Heap::kUndefinedValueRootIndex); 2249 __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
2265 __ b(eq, instr->FalseLabel(chunk_)); 2250 __ beq(instr->FalseLabel(chunk_));
2266 } 2251 }
2267 if (expected.Contains(ToBooleanStub::BOOLEAN)) { 2252 if (expected.Contains(ToBooleanStub::BOOLEAN)) {
2268 // Boolean -> its value. 2253 // Boolean -> its value.
2269 __ CompareRoot(reg, Heap::kTrueValueRootIndex); 2254 __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2270 __ b(eq, instr->TrueLabel(chunk_)); 2255 __ beq(instr->TrueLabel(chunk_));
2271 __ CompareRoot(reg, Heap::kFalseValueRootIndex); 2256 __ CompareRoot(reg, Heap::kFalseValueRootIndex);
2272 __ b(eq, instr->FalseLabel(chunk_)); 2257 __ beq(instr->FalseLabel(chunk_));
2273 } 2258 }
2274 if (expected.Contains(ToBooleanStub::NULL_TYPE)) { 2259 if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
2275 // 'null' -> false. 2260 // 'null' -> false.
2276 __ CompareRoot(reg, Heap::kNullValueRootIndex); 2261 __ CompareRoot(reg, Heap::kNullValueRootIndex);
2277 __ b(eq, instr->FalseLabel(chunk_)); 2262 __ beq(instr->FalseLabel(chunk_));
2278 } 2263 }
2279 2264
2280 if (expected.Contains(ToBooleanStub::SMI)) { 2265 if (expected.Contains(ToBooleanStub::SMI)) {
2281 // Smis: 0 -> false, all other -> true. 2266 // Smis: 0 -> false, all other -> true.
2282 __ cmp(reg, Operand::Zero()); 2267 __ cmpi(reg, Operand::Zero());
2283 __ b(eq, instr->FalseLabel(chunk_)); 2268 __ beq(instr->FalseLabel(chunk_));
2284 __ JumpIfSmi(reg, instr->TrueLabel(chunk_)); 2269 __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2285 } else if (expected.NeedsMap()) { 2270 } else if (expected.NeedsMap()) {
2286 // If we need a map later and have a Smi -> deopt. 2271 // If we need a map later and have a Smi -> deopt.
2287 __ SmiTst(reg); 2272 __ TestIfSmi(reg, r0);
2288 DeoptimizeIf(eq, instr->environment()); 2273 DeoptimizeIf(eq, instr->environment(), cr0);
2289 } 2274 }
2290 2275
2291 const Register map = scratch0(); 2276 const Register map = scratch0();
2292 if (expected.NeedsMap()) { 2277 if (expected.NeedsMap()) {
2293 __ ldr(map, FieldMemOperand(reg, HeapObject::kMapOffset)); 2278 __ LoadP(map, FieldMemOperand(reg, HeapObject::kMapOffset));
2294 2279
2295 if (expected.CanBeUndetectable()) { 2280 if (expected.CanBeUndetectable()) {
2296 // Undetectable -> false. 2281 // Undetectable -> false.
2297 __ ldrb(ip, FieldMemOperand(map, Map::kBitFieldOffset)); 2282 __ lbz(ip, FieldMemOperand(map, Map::kBitFieldOffset));
2298 __ tst(ip, Operand(1 << Map::kIsUndetectable)); 2283 __ TestBit(ip, Map::kIsUndetectable, r0);
2299 __ b(ne, instr->FalseLabel(chunk_)); 2284 __ bne(instr->FalseLabel(chunk_), cr0);
2300 } 2285 }
2301 } 2286 }
2302 2287
2303 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) { 2288 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
2304 // spec object -> true. 2289 // spec object -> true.
2305 __ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE); 2290 __ CompareInstanceType(map, ip, FIRST_SPEC_OBJECT_TYPE);
2306 __ b(ge, instr->TrueLabel(chunk_)); 2291 __ bge(instr->TrueLabel(chunk_));
2307 } 2292 }
2308 2293
2309 if (expected.Contains(ToBooleanStub::STRING)) { 2294 if (expected.Contains(ToBooleanStub::STRING)) {
2310 // String value -> false iff empty. 2295 // String value -> false iff empty.
2311 Label not_string; 2296 Label not_string;
2312 __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE); 2297 __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE);
2313 __ b(ge, &not_string); 2298 __ bge(&not_string);
2314 __ ldr(ip, FieldMemOperand(reg, String::kLengthOffset)); 2299 __ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset));
2315 __ cmp(ip, Operand::Zero()); 2300 __ cmpi(ip, Operand::Zero());
2316 __ b(ne, instr->TrueLabel(chunk_)); 2301 __ bne(instr->TrueLabel(chunk_));
2317 __ b(instr->FalseLabel(chunk_)); 2302 __ b(instr->FalseLabel(chunk_));
2318 __ bind(&not_string); 2303 __ bind(&not_string);
2319 } 2304 }
2320 2305
2321 if (expected.Contains(ToBooleanStub::SYMBOL)) { 2306 if (expected.Contains(ToBooleanStub::SYMBOL)) {
2322 // Symbol value -> true. 2307 // Symbol value -> true.
2323 __ CompareInstanceType(map, ip, SYMBOL_TYPE); 2308 __ CompareInstanceType(map, ip, SYMBOL_TYPE);
2324 __ b(eq, instr->TrueLabel(chunk_)); 2309 __ beq(instr->TrueLabel(chunk_));
2325 } 2310 }
2326 2311
2327 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) { 2312 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
2328 // heap number -> false iff +0, -0, or NaN. 2313 // heap number -> false iff +0, -0, or NaN.
2329 DwVfpRegister dbl_scratch = double_scratch0();
2330 Label not_heap_number; 2314 Label not_heap_number;
2331 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex); 2315 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
2332 __ b(ne, &not_heap_number); 2316 __ bne(&not_heap_number);
2333 __ vldr(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset)); 2317 __ lfd(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset));
2334 __ VFPCompareAndSetFlags(dbl_scratch, 0.0); 2318 // Test the double value. Zero and NaN are false.
2335 __ cmp(r0, r0, vs); // NaN -> false. 2319 __ fcmpu(dbl_scratch, kDoubleRegZero, cr7);
2336 __ b(eq, instr->FalseLabel(chunk_)); // +0, -0 -> false. 2320 __ mfcr(r0);
2321 __ andi(r0, r0, Operand(crZOrNaNBits));
2322 __ bne(instr->FalseLabel(chunk_), cr0);
2337 __ b(instr->TrueLabel(chunk_)); 2323 __ b(instr->TrueLabel(chunk_));
2338 __ bind(&not_heap_number); 2324 __ bind(&not_heap_number);
2339 } 2325 }
2340 2326
2341 if (!expected.IsGeneric()) { 2327 if (!expected.IsGeneric()) {
2342 // We've seen something for the first time -> deopt. 2328 // We've seen something for the first time -> deopt.
2343 // This can only happen if we are not generic already. 2329 // This can only happen if we are not generic already.
2344 DeoptimizeIf(al, instr->environment()); 2330 DeoptimizeIf(al, instr->environment());
2345 } 2331 }
2346 } 2332 }
2347 } 2333 }
2348 } 2334 }
2349 2335
2350 2336
2351 void LCodeGen::EmitGoto(int block) { 2337 void LCodeGen::EmitGoto(int block) {
2352 if (!IsNextEmittedBlock(block)) { 2338 if (!IsNextEmittedBlock(block)) {
2353 __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block))); 2339 __ b(chunk_->GetAssemblyLabel(LookupDestination(block)));
2354 } 2340 }
2355 } 2341 }
2356 2342
2357 2343
2358 void LCodeGen::DoGoto(LGoto* instr) { 2344 void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); }
2359 EmitGoto(instr->block_id());
2360 }
2361 2345
2362 2346
2363 Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) { 2347 Condition LCodeGen::TokenToCondition(Token::Value op) {
2364 Condition cond = kNoCondition; 2348 Condition cond = kNoCondition;
2365 switch (op) { 2349 switch (op) {
2366 case Token::EQ: 2350 case Token::EQ:
2367 case Token::EQ_STRICT: 2351 case Token::EQ_STRICT:
2368 cond = eq; 2352 cond = eq;
2369 break; 2353 break;
2370 case Token::NE: 2354 case Token::NE:
2371 case Token::NE_STRICT: 2355 case Token::NE_STRICT:
2372 cond = ne; 2356 cond = ne;
2373 break; 2357 break;
2374 case Token::LT: 2358 case Token::LT:
2375 cond = is_unsigned ? lo : lt; 2359 cond = lt;
2376 break; 2360 break;
2377 case Token::GT: 2361 case Token::GT:
2378 cond = is_unsigned ? hi : gt; 2362 cond = gt;
2379 break; 2363 break;
2380 case Token::LTE: 2364 case Token::LTE:
2381 cond = is_unsigned ? ls : le; 2365 cond = le;
2382 break; 2366 break;
2383 case Token::GTE: 2367 case Token::GTE:
2384 cond = is_unsigned ? hs : ge; 2368 cond = ge;
2385 break; 2369 break;
2386 case Token::IN: 2370 case Token::IN:
2387 case Token::INSTANCEOF: 2371 case Token::INSTANCEOF:
2388 default: 2372 default:
2389 UNREACHABLE(); 2373 UNREACHABLE();
2390 } 2374 }
2391 return cond; 2375 return cond;
2392 } 2376 }
2393 2377
2394 2378
2395 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { 2379 void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2396 LOperand* left = instr->left(); 2380 LOperand* left = instr->left();
2397 LOperand* right = instr->right(); 2381 LOperand* right = instr->right();
2398 bool is_unsigned = 2382 bool is_unsigned =
2399 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) || 2383 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2400 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32); 2384 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2401 Condition cond = TokenToCondition(instr->op(), is_unsigned); 2385 Condition cond = TokenToCondition(instr->op());
2402 2386
2403 if (left->IsConstantOperand() && right->IsConstantOperand()) { 2387 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2404 // We can statically evaluate the comparison. 2388 // We can statically evaluate the comparison.
2405 double left_val = ToDouble(LConstantOperand::cast(left)); 2389 double left_val = ToDouble(LConstantOperand::cast(left));
2406 double right_val = ToDouble(LConstantOperand::cast(right)); 2390 double right_val = ToDouble(LConstantOperand::cast(right));
2407 int next_block = EvalComparison(instr->op(), left_val, right_val) ? 2391 int next_block = EvalComparison(instr->op(), left_val, right_val)
2408 instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_); 2392 ? instr->TrueDestination(chunk_)
2393 : instr->FalseDestination(chunk_);
2409 EmitGoto(next_block); 2394 EmitGoto(next_block);
2410 } else { 2395 } else {
2411 if (instr->is_double()) { 2396 if (instr->is_double()) {
2412 // Compare left and right operands as doubles and load the 2397 // Compare left and right operands as doubles and load the
2413 // resulting flags into the normal status register. 2398 // resulting flags into the normal status register.
2414 __ VFPCompareAndSetFlags(ToDoubleRegister(left), ToDoubleRegister(right)); 2399 __ fcmpu(ToDoubleRegister(left), ToDoubleRegister(right));
2415 // If a NaN is involved, i.e. the result is unordered (V set), 2400 // If a NaN is involved, i.e. the result is unordered,
2416 // jump to false block label. 2401 // jump to false block label.
2417 __ b(vs, instr->FalseLabel(chunk_)); 2402 __ bunordered(instr->FalseLabel(chunk_));
2418 } else { 2403 } else {
2419 if (right->IsConstantOperand()) { 2404 if (right->IsConstantOperand()) {
2420 int32_t value = ToInteger32(LConstantOperand::cast(right)); 2405 int32_t value = ToInteger32(LConstantOperand::cast(right));
2421 if (instr->hydrogen_value()->representation().IsSmi()) { 2406 if (instr->hydrogen_value()->representation().IsSmi()) {
2422 __ cmp(ToRegister(left), Operand(Smi::FromInt(value))); 2407 if (is_unsigned) {
2408 __ CmplSmiLiteral(ToRegister(left), Smi::FromInt(value), r0);
2409 } else {
2410 __ CmpSmiLiteral(ToRegister(left), Smi::FromInt(value), r0);
2411 }
2423 } else { 2412 } else {
2424 __ cmp(ToRegister(left), Operand(value)); 2413 if (is_unsigned) {
2414 __ Cmplwi(ToRegister(left), Operand(value), r0);
2415 } else {
2416 __ Cmpwi(ToRegister(left), Operand(value), r0);
2417 }
2425 } 2418 }
2426 } else if (left->IsConstantOperand()) { 2419 } else if (left->IsConstantOperand()) {
2427 int32_t value = ToInteger32(LConstantOperand::cast(left)); 2420 int32_t value = ToInteger32(LConstantOperand::cast(left));
2428 if (instr->hydrogen_value()->representation().IsSmi()) { 2421 if (instr->hydrogen_value()->representation().IsSmi()) {
2429 __ cmp(ToRegister(right), Operand(Smi::FromInt(value))); 2422 if (is_unsigned) {
2423 __ CmplSmiLiteral(ToRegister(right), Smi::FromInt(value), r0);
2424 } else {
2425 __ CmpSmiLiteral(ToRegister(right), Smi::FromInt(value), r0);
2426 }
2430 } else { 2427 } else {
2431 __ cmp(ToRegister(right), Operand(value)); 2428 if (is_unsigned) {
2429 __ Cmplwi(ToRegister(right), Operand(value), r0);
2430 } else {
2431 __ Cmpwi(ToRegister(right), Operand(value), r0);
2432 }
2432 } 2433 }
2433 // We commuted the operands, so commute the condition. 2434 // We commuted the operands, so commute the condition.
2434 cond = CommuteCondition(cond); 2435 cond = CommuteCondition(cond);
2436 } else if (instr->hydrogen_value()->representation().IsSmi()) {
2437 if (is_unsigned) {
2438 __ cmpl(ToRegister(left), ToRegister(right));
2439 } else {
2440 __ cmp(ToRegister(left), ToRegister(right));
2441 }
2435 } else { 2442 } else {
2436 __ cmp(ToRegister(left), ToRegister(right)); 2443 if (is_unsigned) {
2444 __ cmplw(ToRegister(left), ToRegister(right));
2445 } else {
2446 __ cmpw(ToRegister(left), ToRegister(right));
2447 }
2437 } 2448 }
2438 } 2449 }
2439 EmitBranch(instr, cond); 2450 EmitBranch(instr, cond);
2440 } 2451 }
2441 } 2452 }
2442 2453
2443 2454
2444 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { 2455 void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2445 Register left = ToRegister(instr->left()); 2456 Register left = ToRegister(instr->left());
2446 Register right = ToRegister(instr->right()); 2457 Register right = ToRegister(instr->right());
2447 2458
2448 __ cmp(left, Operand(right)); 2459 __ cmp(left, right);
2449 EmitBranch(instr, eq); 2460 EmitBranch(instr, eq);
2450 } 2461 }
2451 2462
2452 2463
2453 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) { 2464 void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2454 if (instr->hydrogen()->representation().IsTagged()) { 2465 if (instr->hydrogen()->representation().IsTagged()) {
2455 Register input_reg = ToRegister(instr->object()); 2466 Register input_reg = ToRegister(instr->object());
2456 __ mov(ip, Operand(factory()->the_hole_value())); 2467 __ mov(ip, Operand(factory()->the_hole_value()));
2457 __ cmp(input_reg, ip); 2468 __ cmp(input_reg, ip);
2458 EmitBranch(instr, eq); 2469 EmitBranch(instr, eq);
2459 return; 2470 return;
2460 } 2471 }
2461 2472
2462 DwVfpRegister input_reg = ToDoubleRegister(instr->object()); 2473 DoubleRegister input_reg = ToDoubleRegister(instr->object());
2463 __ VFPCompareAndSetFlags(input_reg, input_reg); 2474 __ fcmpu(input_reg, input_reg);
2464 EmitFalseBranch(instr, vc); 2475 EmitFalseBranch(instr, ordered);
2465 2476
2466 Register scratch = scratch0(); 2477 Register scratch = scratch0();
2467 __ VmovHigh(scratch, input_reg); 2478 __ MovDoubleHighToInt(scratch, input_reg);
2468 __ cmp(scratch, Operand(kHoleNanUpper32)); 2479 __ Cmpi(scratch, Operand(kHoleNanUpper32), r0);
2469 EmitBranch(instr, eq); 2480 EmitBranch(instr, eq);
2470 } 2481 }
2471 2482
2472 2483
2473 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) { 2484 void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
2474 Representation rep = instr->hydrogen()->value()->representation(); 2485 Representation rep = instr->hydrogen()->value()->representation();
2475 DCHECK(!rep.IsInteger32()); 2486 DCHECK(!rep.IsInteger32());
2476 Register scratch = ToRegister(instr->temp()); 2487 Register scratch = ToRegister(instr->temp());
2477 2488
2478 if (rep.IsDouble()) { 2489 if (rep.IsDouble()) {
2479 DwVfpRegister value = ToDoubleRegister(instr->value()); 2490 DoubleRegister value = ToDoubleRegister(instr->value());
2480 __ VFPCompareAndSetFlags(value, 0.0); 2491 __ fcmpu(value, kDoubleRegZero);
2481 EmitFalseBranch(instr, ne); 2492 EmitFalseBranch(instr, ne);
2482 __ VmovHigh(scratch, value); 2493 #if V8_TARGET_ARCH_PPC64
2483 __ cmp(scratch, Operand(0x80000000)); 2494 __ MovDoubleToInt64(scratch, value);
2495 #else
2496 __ MovDoubleHighToInt(scratch, value);
2497 #endif
2498 __ cmpi(scratch, Operand::Zero());
2499 EmitBranch(instr, lt);
2484 } else { 2500 } else {
2485 Register value = ToRegister(instr->value()); 2501 Register value = ToRegister(instr->value());
2486 __ CheckMap(value, 2502 __ CheckMap(value, scratch, Heap::kHeapNumberMapRootIndex,
2487 scratch, 2503 instr->FalseLabel(chunk()), DO_SMI_CHECK);
2488 Heap::kHeapNumberMapRootIndex, 2504 #if V8_TARGET_ARCH_PPC64
2489 instr->FalseLabel(chunk()), 2505 __ LoadP(scratch, FieldMemOperand(value, HeapNumber::kValueOffset));
2490 DO_SMI_CHECK); 2506 __ li(ip, Operand(1));
2491 __ ldr(scratch, FieldMemOperand(value, HeapNumber::kExponentOffset)); 2507 __ rotrdi(ip, ip, 1); // ip = 0x80000000_00000000
2492 __ ldr(ip, FieldMemOperand(value, HeapNumber::kMantissaOffset)); 2508 __ cmp(scratch, ip);
2493 __ cmp(scratch, Operand(0x80000000)); 2509 #else
2494 __ cmp(ip, Operand(0x00000000), eq); 2510 __ lwz(scratch, FieldMemOperand(value, HeapNumber::kExponentOffset));
2511 __ lwz(ip, FieldMemOperand(value, HeapNumber::kMantissaOffset));
2512 Label skip;
2513 __ lis(r0, Operand(SIGN_EXT_IMM16(0x8000)));
2514 __ cmp(scratch, r0);
2515 __ bne(&skip);
2516 __ cmpi(ip, Operand::Zero());
2517 __ bind(&skip);
2518 #endif
2519 EmitBranch(instr, eq);
2495 } 2520 }
2496 EmitBranch(instr, eq);
2497 } 2521 }
2498 2522
2499 2523
2500 Condition LCodeGen::EmitIsObject(Register input, 2524 Condition LCodeGen::EmitIsObject(Register input, Register temp1,
2501 Register temp1, 2525 Label* is_not_object, Label* is_object) {
2502 Label* is_not_object,
2503 Label* is_object) {
2504 Register temp2 = scratch0(); 2526 Register temp2 = scratch0();
2505 __ JumpIfSmi(input, is_not_object); 2527 __ JumpIfSmi(input, is_not_object);
2506 2528
2507 __ LoadRoot(temp2, Heap::kNullValueRootIndex); 2529 __ LoadRoot(temp2, Heap::kNullValueRootIndex);
2508 __ cmp(input, temp2); 2530 __ cmp(input, temp2);
2509 __ b(eq, is_object); 2531 __ beq(is_object);
2510 2532
2511 // Load map. 2533 // Load map.
2512 __ ldr(temp1, FieldMemOperand(input, HeapObject::kMapOffset)); 2534 __ LoadP(temp1, FieldMemOperand(input, HeapObject::kMapOffset));
2513 // Undetectable objects behave like undefined. 2535 // Undetectable objects behave like undefined.
2514 __ ldrb(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset)); 2536 __ lbz(temp2, FieldMemOperand(temp1, Map::kBitFieldOffset));
2515 __ tst(temp2, Operand(1 << Map::kIsUndetectable)); 2537 __ TestBit(temp2, Map::kIsUndetectable, r0);
2516 __ b(ne, is_not_object); 2538 __ bne(is_not_object, cr0);
2517 2539
2518 // Load instance type and check that it is in object type range. 2540 // Load instance type and check that it is in object type range.
2519 __ ldrb(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset)); 2541 __ lbz(temp2, FieldMemOperand(temp1, Map::kInstanceTypeOffset));
2520 __ cmp(temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); 2542 __ cmpi(temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2521 __ b(lt, is_not_object); 2543 __ blt(is_not_object);
2522 __ cmp(temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); 2544 __ cmpi(temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
2523 return le; 2545 return le;
2524 } 2546 }
2525 2547
2526 2548
2527 void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) { 2549 void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
2528 Register reg = ToRegister(instr->value()); 2550 Register reg = ToRegister(instr->value());
2529 Register temp1 = ToRegister(instr->temp()); 2551 Register temp1 = ToRegister(instr->temp());
2530 2552
2531 Condition true_cond = 2553 Condition true_cond = EmitIsObject(reg, temp1, instr->FalseLabel(chunk_),
2532 EmitIsObject(reg, temp1, 2554 instr->TrueLabel(chunk_));
2533 instr->FalseLabel(chunk_), instr->TrueLabel(chunk_));
2534 2555
2535 EmitBranch(instr, true_cond); 2556 EmitBranch(instr, true_cond);
2536 } 2557 }
2537 2558
2538 2559
2539 Condition LCodeGen::EmitIsString(Register input, 2560 Condition LCodeGen::EmitIsString(Register input, Register temp1,
2540 Register temp1,
2541 Label* is_not_string, 2561 Label* is_not_string,
2542 SmiCheck check_needed = INLINE_SMI_CHECK) { 2562 SmiCheck check_needed = INLINE_SMI_CHECK) {
2543 if (check_needed == INLINE_SMI_CHECK) { 2563 if (check_needed == INLINE_SMI_CHECK) {
2544 __ JumpIfSmi(input, is_not_string); 2564 __ JumpIfSmi(input, is_not_string);
2545 } 2565 }
2546 __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE); 2566 __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
2547 2567
2548 return lt; 2568 return lt;
2549 } 2569 }
2550 2570
2551 2571
2552 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { 2572 void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2553 Register reg = ToRegister(instr->value()); 2573 Register reg = ToRegister(instr->value());
2554 Register temp1 = ToRegister(instr->temp()); 2574 Register temp1 = ToRegister(instr->temp());
2555 2575
2556 SmiCheck check_needed = 2576 SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject()
2557 instr->hydrogen()->value()->type().IsHeapObject() 2577 ? OMIT_SMI_CHECK
2558 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; 2578 : INLINE_SMI_CHECK;
2559 Condition true_cond = 2579 Condition true_cond =
2560 EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed); 2580 EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed);
2561 2581
2562 EmitBranch(instr, true_cond); 2582 EmitBranch(instr, true_cond);
2563 } 2583 }
2564 2584
2565 2585
2566 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { 2586 void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2567 Register input_reg = EmitLoadRegister(instr->value(), ip); 2587 Register input_reg = EmitLoadRegister(instr->value(), ip);
2568 __ SmiTst(input_reg); 2588 __ TestIfSmi(input_reg, r0);
2569 EmitBranch(instr, eq); 2589 EmitBranch(instr, eq, cr0);
2570 } 2590 }
2571 2591
2572 2592
2573 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { 2593 void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2574 Register input = ToRegister(instr->value()); 2594 Register input = ToRegister(instr->value());
2575 Register temp = ToRegister(instr->temp()); 2595 Register temp = ToRegister(instr->temp());
2576 2596
2577 if (!instr->hydrogen()->value()->type().IsHeapObject()) { 2597 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2578 __ JumpIfSmi(input, instr->FalseLabel(chunk_)); 2598 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2579 } 2599 }
2580 __ ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset)); 2600 __ LoadP(temp, FieldMemOperand(input, HeapObject::kMapOffset));
2581 __ ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset)); 2601 __ lbz(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
2582 __ tst(temp, Operand(1 << Map::kIsUndetectable)); 2602 __ TestBit(temp, Map::kIsUndetectable, r0);
2583 EmitBranch(instr, ne); 2603 EmitBranch(instr, ne, cr0);
2584 } 2604 }
2585 2605
2586 2606
2587 static Condition ComputeCompareCondition(Token::Value op) { 2607 static Condition ComputeCompareCondition(Token::Value op) {
2588 switch (op) { 2608 switch (op) {
2589 case Token::EQ_STRICT: 2609 case Token::EQ_STRICT:
2590 case Token::EQ: 2610 case Token::EQ:
2591 return eq; 2611 return eq;
2592 case Token::LT: 2612 case Token::LT:
2593 return lt; 2613 return lt;
2594 case Token::GT: 2614 case Token::GT:
2595 return gt; 2615 return gt;
2596 case Token::LTE: 2616 case Token::LTE:
2597 return le; 2617 return le;
2598 case Token::GTE: 2618 case Token::GTE:
2599 return ge; 2619 return ge;
2600 default: 2620 default:
2601 UNREACHABLE(); 2621 UNREACHABLE();
2602 return kNoCondition; 2622 return kNoCondition;
2603 } 2623 }
2604 } 2624 }
2605 2625
2606 2626
2607 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { 2627 void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2608 DCHECK(ToRegister(instr->context()).is(cp)); 2628 DCHECK(ToRegister(instr->context()).is(cp));
2609 Token::Value op = instr->op(); 2629 Token::Value op = instr->op();
2610 2630
2611 Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op); 2631 Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
2612 CallCode(ic, RelocInfo::CODE_TARGET, instr); 2632 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2613 // This instruction also signals no smi code inlined. 2633 // This instruction also signals no smi code inlined
2614 __ cmp(r0, Operand::Zero()); 2634 __ cmpi(r3, Operand::Zero());
2615 2635
2616 Condition condition = ComputeCompareCondition(op); 2636 Condition condition = ComputeCompareCondition(op);
2617 2637
2618 EmitBranch(instr, condition); 2638 EmitBranch(instr, condition);
2619 } 2639 }
2620 2640
2621 2641
2622 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { 2642 static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2623 InstanceType from = instr->from(); 2643 InstanceType from = instr->from();
2624 InstanceType to = instr->to(); 2644 InstanceType to = instr->to();
2625 if (from == FIRST_TYPE) return to; 2645 if (from == FIRST_TYPE) return to;
2626 DCHECK(from == to || to == LAST_TYPE); 2646 DCHECK(from == to || to == LAST_TYPE);
2627 return from; 2647 return from;
2628 } 2648 }
2629 2649
2630 2650
2631 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { 2651 static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2632 InstanceType from = instr->from(); 2652 InstanceType from = instr->from();
2633 InstanceType to = instr->to(); 2653 InstanceType to = instr->to();
2634 if (from == to) return eq; 2654 if (from == to) return eq;
2635 if (to == LAST_TYPE) return hs; 2655 if (to == LAST_TYPE) return ge;
2636 if (from == FIRST_TYPE) return ls; 2656 if (from == FIRST_TYPE) return le;
2637 UNREACHABLE(); 2657 UNREACHABLE();
2638 return eq; 2658 return eq;
2639 } 2659 }
2640 2660
2641 2661
2642 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { 2662 void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2643 Register scratch = scratch0(); 2663 Register scratch = scratch0();
2644 Register input = ToRegister(instr->value()); 2664 Register input = ToRegister(instr->value());
2645 2665
2646 if (!instr->hydrogen()->value()->type().IsHeapObject()) { 2666 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2647 __ JumpIfSmi(input, instr->FalseLabel(chunk_)); 2667 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2648 } 2668 }
2649 2669
2650 __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen())); 2670 __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
2651 EmitBranch(instr, BranchCondition(instr->hydrogen())); 2671 EmitBranch(instr, BranchCondition(instr->hydrogen()));
2652 } 2672 }
2653 2673
2654 2674
2655 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) { 2675 void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2656 Register input = ToRegister(instr->value()); 2676 Register input = ToRegister(instr->value());
2657 Register result = ToRegister(instr->result()); 2677 Register result = ToRegister(instr->result());
2658 2678
2659 __ AssertString(input); 2679 __ AssertString(input);
2660 2680
2661 __ ldr(result, FieldMemOperand(input, String::kHashFieldOffset)); 2681 __ lwz(result, FieldMemOperand(input, String::kHashFieldOffset));
2662 __ IndexFromHash(result, result); 2682 __ IndexFromHash(result, result);
2663 } 2683 }
2664 2684
2665 2685
2666 void LCodeGen::DoHasCachedArrayIndexAndBranch( 2686 void LCodeGen::DoHasCachedArrayIndexAndBranch(
2667 LHasCachedArrayIndexAndBranch* instr) { 2687 LHasCachedArrayIndexAndBranch* instr) {
2668 Register input = ToRegister(instr->value()); 2688 Register input = ToRegister(instr->value());
2669 Register scratch = scratch0(); 2689 Register scratch = scratch0();
2670 2690
2671 __ ldr(scratch, 2691 __ lwz(scratch, FieldMemOperand(input, String::kHashFieldOffset));
2672 FieldMemOperand(input, String::kHashFieldOffset)); 2692 __ mov(r0, Operand(String::kContainsCachedArrayIndexMask));
2673 __ tst(scratch, Operand(String::kContainsCachedArrayIndexMask)); 2693 __ and_(r0, scratch, r0, SetRC);
2674 EmitBranch(instr, eq); 2694 EmitBranch(instr, eq, cr0);
2675 } 2695 }
2676 2696
2677 2697
2678 // Branches to a label or falls through with the answer in flags. Trashes 2698 // Branches to a label or falls through with the answer in flags. Trashes
2679 // the temp registers, but not the input. 2699 // the temp registers, but not the input.
2680 void LCodeGen::EmitClassOfTest(Label* is_true, 2700 void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false,
2681 Label* is_false, 2701 Handle<String> class_name, Register input,
2682 Handle<String>class_name, 2702 Register temp, Register temp2) {
2683 Register input,
2684 Register temp,
2685 Register temp2) {
2686 DCHECK(!input.is(temp)); 2703 DCHECK(!input.is(temp));
2687 DCHECK(!input.is(temp2)); 2704 DCHECK(!input.is(temp2));
2688 DCHECK(!temp.is(temp2)); 2705 DCHECK(!temp.is(temp2));
2689 2706
2690 __ JumpIfSmi(input, is_false); 2707 __ JumpIfSmi(input, is_false);
2691 2708
2692 if (String::Equals(isolate()->factory()->Function_string(), class_name)) { 2709 if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2693 // Assuming the following assertions, we can use the same compares to test 2710 // Assuming the following assertions, we can use the same compares to test
2694 // for both being a function type and being in the object type range. 2711 // for both being a function type and being in the object type range.
2695 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); 2712 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
2696 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == 2713 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2697 FIRST_SPEC_OBJECT_TYPE + 1); 2714 FIRST_SPEC_OBJECT_TYPE + 1);
2698 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == 2715 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2699 LAST_SPEC_OBJECT_TYPE - 1); 2716 LAST_SPEC_OBJECT_TYPE - 1);
2700 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); 2717 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
2701 __ CompareObjectType(input, temp, temp2, FIRST_SPEC_OBJECT_TYPE); 2718 __ CompareObjectType(input, temp, temp2, FIRST_SPEC_OBJECT_TYPE);
2702 __ b(lt, is_false); 2719 __ blt(is_false);
2703 __ b(eq, is_true); 2720 __ beq(is_true);
2704 __ cmp(temp2, Operand(LAST_SPEC_OBJECT_TYPE)); 2721 __ cmpi(temp2, Operand(LAST_SPEC_OBJECT_TYPE));
2705 __ b(eq, is_true); 2722 __ beq(is_true);
2706 } else { 2723 } else {
2707 // Faster code path to avoid two compares: subtract lower bound from the 2724 // Faster code path to avoid two compares: subtract lower bound from the
2708 // actual type and do a signed compare with the width of the type range. 2725 // actual type and do a signed compare with the width of the type range.
2709 __ ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset)); 2726 __ LoadP(temp, FieldMemOperand(input, HeapObject::kMapOffset));
2710 __ ldrb(temp2, FieldMemOperand(temp, Map::kInstanceTypeOffset)); 2727 __ lbz(temp2, FieldMemOperand(temp, Map::kInstanceTypeOffset));
2711 __ sub(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); 2728 __ subi(temp2, temp2, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2712 __ cmp(temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE - 2729 __ cmpi(temp2, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
2713 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); 2730 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2714 __ b(gt, is_false); 2731 __ bgt(is_false);
2715 } 2732 }
2716 2733
2717 // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range. 2734 // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
2718 // Check if the constructor in the map is a function. 2735 // Check if the constructor in the map is a function.
2719 __ ldr(temp, FieldMemOperand(temp, Map::kConstructorOffset)); 2736 __ LoadP(temp, FieldMemOperand(temp, Map::kConstructorOffset));
2720 2737
2721 // Objects with a non-function constructor have class 'Object'. 2738 // Objects with a non-function constructor have class 'Object'.
2722 __ CompareObjectType(temp, temp2, temp2, JS_FUNCTION_TYPE); 2739 __ CompareObjectType(temp, temp2, temp2, JS_FUNCTION_TYPE);
2723 if (class_name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("Object"))) { 2740 if (class_name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("Object"))) {
2724 __ b(ne, is_true); 2741 __ bne(is_true);
2725 } else { 2742 } else {
2726 __ b(ne, is_false); 2743 __ bne(is_false);
2727 } 2744 }
2728 2745
2729 // temp now contains the constructor function. Grab the 2746 // temp now contains the constructor function. Grab the
2730 // instance class name from there. 2747 // instance class name from there.
2731 __ ldr(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset)); 2748 __ LoadP(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2732 __ ldr(temp, FieldMemOperand(temp, 2749 __ LoadP(temp,
2733 SharedFunctionInfo::kInstanceClassNameOffset)); 2750 FieldMemOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset));
2734 // The class name we are testing against is internalized since it's a literal. 2751 // The class name we are testing against is internalized since it's a literal.
2735 // The name in the constructor is internalized because of the way the context 2752 // The name in the constructor is internalized because of the way the context
2736 // is booted. This routine isn't expected to work for random API-created 2753 // is booted. This routine isn't expected to work for random API-created
2737 // classes and it doesn't have to because you can't access it with natives 2754 // classes and it doesn't have to because you can't access it with natives
2738 // syntax. Since both sides are internalized it is sufficient to use an 2755 // syntax. Since both sides are internalized it is sufficient to use an
2739 // identity comparison. 2756 // identity comparison.
2740 __ cmp(temp, Operand(class_name)); 2757 __ Cmpi(temp, Operand(class_name), r0);
2741 // End with the answer in flags. 2758 // End with the answer in flags.
2742 } 2759 }
2743 2760
2744 2761
2745 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { 2762 void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2746 Register input = ToRegister(instr->value()); 2763 Register input = ToRegister(instr->value());
2747 Register temp = scratch0(); 2764 Register temp = scratch0();
2748 Register temp2 = ToRegister(instr->temp()); 2765 Register temp2 = ToRegister(instr->temp());
2749 Handle<String> class_name = instr->hydrogen()->class_name(); 2766 Handle<String> class_name = instr->hydrogen()->class_name();
2750 2767
2751 EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), 2768 EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2752 class_name, input, temp, temp2); 2769 class_name, input, temp, temp2);
2753 2770
2754 EmitBranch(instr, eq); 2771 EmitBranch(instr, eq);
2755 } 2772 }
2756 2773
2757 2774
2758 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { 2775 void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2759 Register reg = ToRegister(instr->value()); 2776 Register reg = ToRegister(instr->value());
2760 Register temp = ToRegister(instr->temp()); 2777 Register temp = ToRegister(instr->temp());
2761 2778
2762 __ ldr(temp, FieldMemOperand(reg, HeapObject::kMapOffset)); 2779 __ LoadP(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
2763 __ cmp(temp, Operand(instr->map())); 2780 __ Cmpi(temp, Operand(instr->map()), r0);
2764 EmitBranch(instr, eq); 2781 EmitBranch(instr, eq);
2765 } 2782 }
2766 2783
2767 2784
2768 void LCodeGen::DoInstanceOf(LInstanceOf* instr) { 2785 void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2769 DCHECK(ToRegister(instr->context()).is(cp)); 2786 DCHECK(ToRegister(instr->context()).is(cp));
2770 DCHECK(ToRegister(instr->left()).is(r0)); // Object is in r0. 2787 DCHECK(ToRegister(instr->left()).is(r3)); // Object is in r3.
2771 DCHECK(ToRegister(instr->right()).is(r1)); // Function is in r1. 2788 DCHECK(ToRegister(instr->right()).is(r4)); // Function is in r4.
2772 2789
2773 InstanceofStub stub(isolate(), InstanceofStub::kArgsInRegisters); 2790 InstanceofStub stub(isolate(), InstanceofStub::kArgsInRegisters);
2774 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 2791 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2775 2792
2776 __ cmp(r0, Operand::Zero()); 2793 Label equal, done;
2777 __ mov(r0, Operand(factory()->false_value()), LeaveCC, ne); 2794 __ cmpi(r3, Operand::Zero());
2778 __ mov(r0, Operand(factory()->true_value()), LeaveCC, eq); 2795 __ beq(&equal);
2796 __ mov(r3, Operand(factory()->false_value()));
2797 __ b(&done);
2798
2799 __ bind(&equal);
2800 __ mov(r3, Operand(factory()->true_value()));
2801 __ bind(&done);
2779 } 2802 }
2780 2803
2781 2804
2782 void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) { 2805 void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
2783 class DeferredInstanceOfKnownGlobal V8_FINAL : public LDeferredCode { 2806 class DeferredInstanceOfKnownGlobal V8_FINAL : public LDeferredCode {
2784 public: 2807 public:
2785 DeferredInstanceOfKnownGlobal(LCodeGen* codegen, 2808 DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
2786 LInstanceOfKnownGlobal* instr) 2809 LInstanceOfKnownGlobal* instr)
2787 : LDeferredCode(codegen), instr_(instr) { } 2810 : LDeferredCode(codegen), instr_(instr) {}
2788 virtual void Generate() V8_OVERRIDE { 2811 virtual void Generate() V8_OVERRIDE {
2789 codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_, 2812 codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_);
2790 &load_bool_);
2791 } 2813 }
2792 virtual LInstruction* instr() V8_OVERRIDE { return instr_; } 2814 virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
2793 Label* map_check() { return &map_check_; } 2815 Label* map_check() { return &map_check_; }
2794 Label* load_bool() { return &load_bool_; }
2795 2816
2796 private: 2817 private:
2797 LInstanceOfKnownGlobal* instr_; 2818 LInstanceOfKnownGlobal* instr_;
2798 Label map_check_; 2819 Label map_check_;
2799 Label load_bool_;
2800 }; 2820 };
2801 2821
2802 DeferredInstanceOfKnownGlobal* deferred; 2822 DeferredInstanceOfKnownGlobal* deferred;
2803 deferred = new(zone()) DeferredInstanceOfKnownGlobal(this, instr); 2823 deferred = new (zone()) DeferredInstanceOfKnownGlobal(this, instr);
2804 2824
2805 Label done, false_result; 2825 Label done, false_result;
2806 Register object = ToRegister(instr->value()); 2826 Register object = ToRegister(instr->value());
2807 Register temp = ToRegister(instr->temp()); 2827 Register temp = ToRegister(instr->temp());
2808 Register result = ToRegister(instr->result()); 2828 Register result = ToRegister(instr->result());
2809 2829
2810 // A Smi is not instance of anything. 2830 // A Smi is not instance of anything.
2811 __ JumpIfSmi(object, &false_result); 2831 __ JumpIfSmi(object, &false_result);
2812 2832
2813 // This is the inlined call site instanceof cache. The two occurences of the 2833 // This is the inlined call site instanceof cache. The two occurences of the
2814 // hole value will be patched to the last map/result pair generated by the 2834 // hole value will be patched to the last map/result pair generated by the
2815 // instanceof stub. 2835 // instanceof stub.
2816 Label cache_miss; 2836 Label cache_miss;
2817 Register map = temp; 2837 Register map = temp;
2818 __ ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); 2838 __ LoadP(map, FieldMemOperand(object, HeapObject::kMapOffset));
2819 { 2839 {
2820 // Block constant pool emission to ensure the positions of instructions are 2840 // Block constant pool emission to ensure the positions of instructions are
2821 // as expected by the patcher. See InstanceofStub::Generate(). 2841 // as expected by the patcher. See InstanceofStub::Generate().
2822 Assembler::BlockConstPoolScope block_const_pool(masm()); 2842 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
2823 __ bind(deferred->map_check()); // Label for calculating code patching. 2843 __ bind(deferred->map_check()); // Label for calculating code patching.
2824 // We use Factory::the_hole_value() on purpose instead of loading from the 2844 // We use Factory::the_hole_value() on purpose instead of loading from the
2825 // root array to force relocation to be able to later patch with 2845 // root array to force relocation to be able to later patch with
2826 // the cached map. 2846 // the cached map.
2827 Handle<Cell> cell = factory()->NewCell(factory()->the_hole_value()); 2847 Handle<Cell> cell = factory()->NewCell(factory()->the_hole_value());
2828 __ mov(ip, Operand(Handle<Object>(cell))); 2848 __ mov(ip, Operand(Handle<Object>(cell)));
2829 __ ldr(ip, FieldMemOperand(ip, PropertyCell::kValueOffset)); 2849 __ LoadP(ip, FieldMemOperand(ip, PropertyCell::kValueOffset));
2830 __ cmp(map, Operand(ip)); 2850 __ cmp(map, ip);
2831 __ b(ne, &cache_miss); 2851 __ bne(&cache_miss);
2832 __ bind(deferred->load_bool()); // Label for calculating code patching.
2833 // We use Factory::the_hole_value() on purpose instead of loading from the 2852 // We use Factory::the_hole_value() on purpose instead of loading from the
2834 // root array to force relocation to be able to later patch 2853 // root array to force relocation to be able to later patch
2835 // with true or false. 2854 // with true or false.
2836 __ mov(result, Operand(factory()->the_hole_value())); 2855 __ mov(result, Operand(factory()->the_hole_value()));
2837 } 2856 }
2838 __ b(&done); 2857 __ b(&done);
2839 2858
2840 // The inlined call site cache did not match. Check null and string before 2859 // The inlined call site cache did not match. Check null and string before
2841 // calling the deferred code. 2860 // calling the deferred code.
2842 __ bind(&cache_miss); 2861 __ bind(&cache_miss);
2843 // Null is not instance of anything. 2862 // Null is not instance of anything.
2844 __ LoadRoot(ip, Heap::kNullValueRootIndex); 2863 __ LoadRoot(ip, Heap::kNullValueRootIndex);
2845 __ cmp(object, Operand(ip)); 2864 __ cmp(object, ip);
2846 __ b(eq, &false_result); 2865 __ beq(&false_result);
2847 2866
2848 // String values is not instance of anything. 2867 // String values is not instance of anything.
2849 Condition is_string = masm_->IsObjectStringType(object, temp); 2868 Condition is_string = masm_->IsObjectStringType(object, temp);
2850 __ b(is_string, &false_result); 2869 __ b(is_string, &false_result, cr0);
2851 2870
2852 // Go to the deferred code. 2871 // Go to the deferred code.
2853 __ b(deferred->entry()); 2872 __ b(deferred->entry());
2854 2873
2855 __ bind(&false_result); 2874 __ bind(&false_result);
2856 __ LoadRoot(result, Heap::kFalseValueRootIndex); 2875 __ LoadRoot(result, Heap::kFalseValueRootIndex);
2857 2876
2858 // Here result has either true or false. Deferred code also produces true or 2877 // Here result has either true or false. Deferred code also produces true or
2859 // false object. 2878 // false object.
2860 __ bind(deferred->exit()); 2879 __ bind(deferred->exit());
2861 __ bind(&done); 2880 __ bind(&done);
2862 } 2881 }
2863 2882
2864 2883
2865 void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr, 2884 void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
2866 Label* map_check, 2885 Label* map_check) {
2867 Label* bool_load) {
2868 InstanceofStub::Flags flags = InstanceofStub::kNoFlags; 2886 InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
2869 flags = static_cast<InstanceofStub::Flags>( 2887 flags = static_cast<InstanceofStub::Flags>(flags |
2870 flags | InstanceofStub::kArgsInRegisters); 2888 InstanceofStub::kArgsInRegisters);
2871 flags = static_cast<InstanceofStub::Flags>( 2889 flags = static_cast<InstanceofStub::Flags>(
2872 flags | InstanceofStub::kCallSiteInlineCheck); 2890 flags | InstanceofStub::kCallSiteInlineCheck);
2873 flags = static_cast<InstanceofStub::Flags>( 2891 flags = static_cast<InstanceofStub::Flags>(
2874 flags | InstanceofStub::kReturnTrueFalseObject); 2892 flags | InstanceofStub::kReturnTrueFalseObject);
2875 InstanceofStub stub(isolate(), flags); 2893 InstanceofStub stub(isolate(), flags);
2876 2894
2877 PushSafepointRegistersScope scope(this); 2895 PushSafepointRegistersScope scope(this);
2878 LoadContextFromDeferred(instr->context()); 2896 LoadContextFromDeferred(instr->context());
2879 2897
2880 __ Move(InstanceofStub::right(), instr->function()); 2898 __ Move(InstanceofStub::right(), instr->function());
2881 2899 // Include instructions below in delta: mov + call = mov + (mov + 2)
2882 int call_size = CallCodeSize(stub.GetCode(), RelocInfo::CODE_TARGET); 2900 static const int kAdditionalDelta = (2 * Assembler::kMovInstructions) + 2;
2883 int additional_delta = (call_size / Assembler::kInstrSize) + 4; 2901 int delta = masm_->InstructionsGeneratedSince(map_check) + kAdditionalDelta;
2884 // Make sure that code size is predicable, since we use specific constants
2885 // offsets in the code to find embedded values..
2886 PredictableCodeSizeScope predictable(
2887 masm_, (additional_delta + 1) * Assembler::kInstrSize);
2888 // Make sure we don't emit any additional entries in the constant pool before
2889 // the call to ensure that the CallCodeSize() calculated the correct number of
2890 // instructions for the constant pool load.
2891 { 2902 {
2892 ConstantPoolUnavailableScope constant_pool_unavailable(masm_); 2903 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
2893 int map_check_delta = 2904 // r8 is used to communicate the offset to the location of the map check.
2894 masm_->InstructionsGeneratedSince(map_check) + additional_delta; 2905 __ mov(r8, Operand(delta * Instruction::kInstrSize));
2895 int bool_load_delta =
2896 masm_->InstructionsGeneratedSince(bool_load) + additional_delta;
2897 Label before_push_delta;
2898 __ bind(&before_push_delta);
2899 __ BlockConstPoolFor(additional_delta);
2900 // r5 is used to communicate the offset to the location of the map check.
2901 __ mov(r5, Operand(map_check_delta * kPointerSize));
2902 // r6 is used to communicate the offset to the location of the bool load.
2903 __ mov(r6, Operand(bool_load_delta * kPointerSize));
2904 // The mov above can generate one or two instructions. The delta was
2905 // computed for two instructions, so we need to pad here in case of one
2906 // instruction.
2907 while (masm_->InstructionsGeneratedSince(&before_push_delta) != 4) {
2908 __ nop();
2909 }
2910 } 2906 }
2911 CallCodeGeneric(stub.GetCode(), 2907 CallCodeGeneric(stub.GetCode(), RelocInfo::CODE_TARGET, instr,
2912 RelocInfo::CODE_TARGET,
2913 instr,
2914 RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); 2908 RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
2909 DCHECK(delta == masm_->InstructionsGeneratedSince(map_check));
2915 LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment(); 2910 LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
2916 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); 2911 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
2917 // Put the result value (r0) into the result register slot and 2912 // Put the result value (r3) into the result register slot and
2918 // restore all registers. 2913 // restore all registers.
2919 __ StoreToSafepointRegisterSlot(r0, ToRegister(instr->result())); 2914 __ StoreToSafepointRegisterSlot(r3, ToRegister(instr->result()));
2920 } 2915 }
2921 2916
2922 2917
2923 void LCodeGen::DoCmpT(LCmpT* instr) { 2918 void LCodeGen::DoCmpT(LCmpT* instr) {
2924 DCHECK(ToRegister(instr->context()).is(cp)); 2919 DCHECK(ToRegister(instr->context()).is(cp));
2925 Token::Value op = instr->op(); 2920 Token::Value op = instr->op();
2926 2921
2927 Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op); 2922 Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
2928 CallCode(ic, RelocInfo::CODE_TARGET, instr); 2923 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2929 // This instruction also signals no smi code inlined. 2924 // This instruction also signals no smi code inlined
2930 __ cmp(r0, Operand::Zero()); 2925 __ cmpi(r3, Operand::Zero());
2931 2926
2932 Condition condition = ComputeCompareCondition(op); 2927 Condition condition = ComputeCompareCondition(op);
2933 __ LoadRoot(ToRegister(instr->result()), 2928 Label true_value, done;
2934 Heap::kTrueValueRootIndex, 2929
2935 condition); 2930 __ b(condition, &true_value);
2936 __ LoadRoot(ToRegister(instr->result()), 2931
2937 Heap::kFalseValueRootIndex, 2932 __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
2938 NegateCondition(condition)); 2933 __ b(&done);
2934
2935 __ bind(&true_value);
2936 __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
2937
2938 __ bind(&done);
2939 } 2939 }
2940 2940
2941 2941
2942 void LCodeGen::DoReturn(LReturn* instr) { 2942 void LCodeGen::DoReturn(LReturn* instr) {
2943 if (FLAG_trace && info()->IsOptimizing()) { 2943 if (FLAG_trace && info()->IsOptimizing()) {
2944 // Push the return value on the stack as the parameter. 2944 // Push the return value on the stack as the parameter.
2945 // Runtime::TraceExit returns its parameter in r0. We're leaving the code 2945 // Runtime::TraceExit returns its parameter in r3. We're leaving the code
2946 // managed by the register allocator and tearing down the frame, it's 2946 // managed by the register allocator and tearing down the frame, it's
2947 // safe to write to the context register. 2947 // safe to write to the context register.
2948 __ push(r0); 2948 __ push(r3);
2949 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 2949 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2950 __ CallRuntime(Runtime::kTraceExit, 1); 2950 __ CallRuntime(Runtime::kTraceExit, 1);
2951 } 2951 }
2952 if (info()->saves_caller_doubles()) { 2952 if (info()->saves_caller_doubles()) {
2953 RestoreCallerDoubles(); 2953 RestoreCallerDoubles();
2954 } 2954 }
2955 int no_frame_start = -1; 2955 int no_frame_start = -1;
2956 if (NeedsEagerFrame()) { 2956 if (NeedsEagerFrame()) {
2957 no_frame_start = masm_->LeaveFrame(StackFrame::JAVA_SCRIPT); 2957 no_frame_start = masm_->LeaveFrame(StackFrame::JAVA_SCRIPT);
2958 } 2958 }
2959 if (instr->has_constant_parameter_count()) { 2959 if (instr->has_constant_parameter_count()) {
2960 int parameter_count = ToInteger32(instr->constant_parameter_count()); 2960 int parameter_count = ToInteger32(instr->constant_parameter_count());
2961 int32_t sp_delta = (parameter_count + 1) * kPointerSize; 2961 int32_t sp_delta = (parameter_count + 1) * kPointerSize;
2962 if (sp_delta != 0) { 2962 if (sp_delta != 0) {
2963 __ add(sp, sp, Operand(sp_delta)); 2963 __ addi(sp, sp, Operand(sp_delta));
2964 } 2964 }
2965 } else { 2965 } else {
2966 Register reg = ToRegister(instr->parameter_count()); 2966 Register reg = ToRegister(instr->parameter_count());
2967 // The argument count parameter is a smi 2967 // The argument count parameter is a smi
2968 __ SmiUntag(reg); 2968 __ SmiToPtrArrayOffset(r0, reg);
2969 __ add(sp, sp, Operand(reg, LSL, kPointerSizeLog2)); 2969 __ add(sp, sp, r0);
2970 } 2970 }
2971 2971
2972 __ Jump(lr); 2972 __ blr();
2973 2973
2974 if (no_frame_start != -1) { 2974 if (no_frame_start != -1) {
2975 info_->AddNoFrameRange(no_frame_start, masm_->pc_offset()); 2975 info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
2976 } 2976 }
2977 } 2977 }
2978 2978
2979 2979
2980 void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) { 2980 void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
2981 Register result = ToRegister(instr->result()); 2981 Register result = ToRegister(instr->result());
2982 __ mov(ip, Operand(Handle<Object>(instr->hydrogen()->cell().handle()))); 2982 __ mov(ip, Operand(Handle<Object>(instr->hydrogen()->cell().handle())));
2983 __ ldr(result, FieldMemOperand(ip, Cell::kValueOffset)); 2983 __ LoadP(result, FieldMemOperand(ip, Cell::kValueOffset));
2984 if (instr->hydrogen()->RequiresHoleCheck()) { 2984 if (instr->hydrogen()->RequiresHoleCheck()) {
2985 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); 2985 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
2986 __ cmp(result, ip); 2986 __ cmp(result, ip);
2987 DeoptimizeIf(eq, instr->environment()); 2987 DeoptimizeIf(eq, instr->environment());
2988 } 2988 }
2989 } 2989 }
2990 2990
2991 2991
2992 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) { 2992 void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2993 DCHECK(ToRegister(instr->context()).is(cp)); 2993 DCHECK(ToRegister(instr->context()).is(cp));
2994 DCHECK(ToRegister(instr->global_object()).is(LoadIC::ReceiverRegister())); 2994 DCHECK(ToRegister(instr->global_object()).is(LoadIC::ReceiverRegister()));
2995 DCHECK(ToRegister(instr->result()).is(r0)); 2995 DCHECK(ToRegister(instr->result()).is(r3));
2996 2996
2997 __ mov(LoadIC::NameRegister(), Operand(instr->name())); 2997 __ mov(LoadIC::NameRegister(), Operand(instr->name()));
2998 if (FLAG_vector_ics) { 2998 if (FLAG_vector_ics) {
2999 Register vector = ToRegister(instr->temp_vector()); 2999 Register vector = ToRegister(instr->temp_vector());
3000 DCHECK(vector.is(LoadIC::VectorRegister())); 3000 DCHECK(vector.is(LoadIC::VectorRegister()));
3001 __ Move(vector, instr->hydrogen()->feedback_vector()); 3001 __ Move(vector, instr->hydrogen()->feedback_vector());
3002 // No need to allocate this register. 3002 // No need to allocate this register.
3003 DCHECK(LoadIC::SlotRegister().is(r0)); 3003 DCHECK(LoadIC::SlotRegister().is(r0));
3004 __ mov(LoadIC::SlotRegister(), 3004 __ mov(LoadIC::SlotRegister(),
3005 Operand(Smi::FromInt(instr->hydrogen()->slot()))); 3005 Operand(Smi::FromInt(instr->hydrogen()->slot())));
(...skipping 11 matching lines...) Expand all
3017 // Load the cell. 3017 // Load the cell.
3018 __ mov(cell, Operand(instr->hydrogen()->cell().handle())); 3018 __ mov(cell, Operand(instr->hydrogen()->cell().handle()));
3019 3019
3020 // If the cell we are storing to contains the hole it could have 3020 // If the cell we are storing to contains the hole it could have
3021 // been deleted from the property dictionary. In that case, we need 3021 // been deleted from the property dictionary. In that case, we need
3022 // to update the property details in the property dictionary to mark 3022 // to update the property details in the property dictionary to mark
3023 // it as no longer deleted. 3023 // it as no longer deleted.
3024 if (instr->hydrogen()->RequiresHoleCheck()) { 3024 if (instr->hydrogen()->RequiresHoleCheck()) {
3025 // We use a temp to check the payload (CompareRoot might clobber ip). 3025 // We use a temp to check the payload (CompareRoot might clobber ip).
3026 Register payload = ToRegister(instr->temp()); 3026 Register payload = ToRegister(instr->temp());
3027 __ ldr(payload, FieldMemOperand(cell, Cell::kValueOffset)); 3027 __ LoadP(payload, FieldMemOperand(cell, Cell::kValueOffset));
3028 __ CompareRoot(payload, Heap::kTheHoleValueRootIndex); 3028 __ CompareRoot(payload, Heap::kTheHoleValueRootIndex);
3029 DeoptimizeIf(eq, instr->environment()); 3029 DeoptimizeIf(eq, instr->environment());
3030 } 3030 }
3031 3031
3032 // Store the value. 3032 // Store the value.
3033 __ str(value, FieldMemOperand(cell, Cell::kValueOffset)); 3033 __ StoreP(value, FieldMemOperand(cell, Cell::kValueOffset), r0);
3034 // Cells are always rescanned, so no write barrier here. 3034 // Cells are always rescanned, so no write barrier here.
3035 } 3035 }
3036 3036
3037 3037
3038 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { 3038 void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
3039 Register context = ToRegister(instr->context()); 3039 Register context = ToRegister(instr->context());
3040 Register result = ToRegister(instr->result()); 3040 Register result = ToRegister(instr->result());
3041 __ ldr(result, ContextOperand(context, instr->slot_index())); 3041 __ LoadP(result, ContextOperand(context, instr->slot_index()));
3042 if (instr->hydrogen()->RequiresHoleCheck()) { 3042 if (instr->hydrogen()->RequiresHoleCheck()) {
3043 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); 3043 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
3044 __ cmp(result, ip); 3044 __ cmp(result, ip);
3045 if (instr->hydrogen()->DeoptimizesOnHole()) { 3045 if (instr->hydrogen()->DeoptimizesOnHole()) {
3046 DeoptimizeIf(eq, instr->environment()); 3046 DeoptimizeIf(eq, instr->environment());
3047 } else { 3047 } else {
3048 __ mov(result, Operand(factory()->undefined_value()), LeaveCC, eq); 3048 Label skip;
3049 __ bne(&skip);
3050 __ mov(result, Operand(factory()->undefined_value()));
3051 __ bind(&skip);
3049 } 3052 }
3050 } 3053 }
3051 } 3054 }
3052 3055
3053 3056
3054 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { 3057 void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
3055 Register context = ToRegister(instr->context()); 3058 Register context = ToRegister(instr->context());
3056 Register value = ToRegister(instr->value()); 3059 Register value = ToRegister(instr->value());
3057 Register scratch = scratch0(); 3060 Register scratch = scratch0();
3058 MemOperand target = ContextOperand(context, instr->slot_index()); 3061 MemOperand target = ContextOperand(context, instr->slot_index());
3059 3062
3060 Label skip_assignment; 3063 Label skip_assignment;
3061 3064
3062 if (instr->hydrogen()->RequiresHoleCheck()) { 3065 if (instr->hydrogen()->RequiresHoleCheck()) {
3063 __ ldr(scratch, target); 3066 __ LoadP(scratch, target);
3064 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); 3067 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
3065 __ cmp(scratch, ip); 3068 __ cmp(scratch, ip);
3066 if (instr->hydrogen()->DeoptimizesOnHole()) { 3069 if (instr->hydrogen()->DeoptimizesOnHole()) {
3067 DeoptimizeIf(eq, instr->environment()); 3070 DeoptimizeIf(eq, instr->environment());
3068 } else { 3071 } else {
3069 __ b(ne, &skip_assignment); 3072 __ bne(&skip_assignment);
3070 } 3073 }
3071 } 3074 }
3072 3075
3073 __ str(value, target); 3076 __ StoreP(value, target, r0);
3074 if (instr->hydrogen()->NeedsWriteBarrier()) { 3077 if (instr->hydrogen()->NeedsWriteBarrier()) {
3075 SmiCheck check_needed = 3078 SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject()
3076 instr->hydrogen()->value()->type().IsHeapObject() 3079 ? OMIT_SMI_CHECK
3077 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; 3080 : INLINE_SMI_CHECK;
3078 __ RecordWriteContextSlot(context, 3081 __ RecordWriteContextSlot(context, target.offset(), value, scratch,
3079 target.offset(), 3082 GetLinkRegisterState(), kSaveFPRegs,
3080 value, 3083 EMIT_REMEMBERED_SET, check_needed);
3081 scratch,
3082 GetLinkRegisterState(),
3083 kSaveFPRegs,
3084 EMIT_REMEMBERED_SET,
3085 check_needed);
3086 } 3084 }
3087 3085
3088 __ bind(&skip_assignment); 3086 __ bind(&skip_assignment);
3089 } 3087 }
3090 3088
3091 3089
3092 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { 3090 void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
3093 HObjectAccess access = instr->hydrogen()->access(); 3091 HObjectAccess access = instr->hydrogen()->access();
3094 int offset = access.offset(); 3092 int offset = access.offset();
3095 Register object = ToRegister(instr->object()); 3093 Register object = ToRegister(instr->object());
3096 3094
3097 if (access.IsExternalMemory()) { 3095 if (access.IsExternalMemory()) {
3098 Register result = ToRegister(instr->result()); 3096 Register result = ToRegister(instr->result());
3099 MemOperand operand = MemOperand(object, offset); 3097 MemOperand operand = MemOperand(object, offset);
3100 __ Load(result, operand, access.representation()); 3098 __ LoadRepresentation(result, operand, access.representation(), r0);
3101 return; 3099 return;
3102 } 3100 }
3103 3101
3104 if (instr->hydrogen()->representation().IsDouble()) { 3102 if (instr->hydrogen()->representation().IsDouble()) {
3105 DwVfpRegister result = ToDoubleRegister(instr->result()); 3103 DoubleRegister result = ToDoubleRegister(instr->result());
3106 __ vldr(result, FieldMemOperand(object, offset)); 3104 __ lfd(result, FieldMemOperand(object, offset));
3107 return; 3105 return;
3108 } 3106 }
3109 3107
3110 Register result = ToRegister(instr->result()); 3108 Register result = ToRegister(instr->result());
3111 if (!access.IsInobject()) { 3109 if (!access.IsInobject()) {
3112 __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); 3110 __ LoadP(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
3113 object = result; 3111 object = result;
3114 } 3112 }
3115 MemOperand operand = FieldMemOperand(object, offset); 3113
3116 __ Load(result, operand, access.representation()); 3114 Representation representation = access.representation();
3115
3116 #if V8_TARGET_ARCH_PPC64
3117 // 64-bit Smi optimization
3118 if (representation.IsSmi() &&
3119 instr->hydrogen()->representation().IsInteger32()) {
3120 // Read int value directly from upper half of the smi.
3121 STATIC_ASSERT(kSmiTag == 0);
3122 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
3123 #if V8_TARGET_LITTLE_ENDIAN
3124 offset += kPointerSize / 2;
3125 #endif
3126 representation = Representation::Integer32();
3127 }
3128 #endif
3129
3130 __ LoadRepresentation(result, FieldMemOperand(object, offset), representation,
3131 r0);
3117 } 3132 }
3118 3133
3119 3134
3120 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) { 3135 void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
3121 DCHECK(ToRegister(instr->context()).is(cp)); 3136 DCHECK(ToRegister(instr->context()).is(cp));
3122 DCHECK(ToRegister(instr->object()).is(LoadIC::ReceiverRegister())); 3137 DCHECK(ToRegister(instr->object()).is(LoadIC::ReceiverRegister()));
3123 DCHECK(ToRegister(instr->result()).is(r0)); 3138 DCHECK(ToRegister(instr->result()).is(r3));
3124 3139
3125 // Name is always in r2.
3126 __ mov(LoadIC::NameRegister(), Operand(instr->name())); 3140 __ mov(LoadIC::NameRegister(), Operand(instr->name()));
3127 if (FLAG_vector_ics) { 3141 if (FLAG_vector_ics) {
3128 Register vector = ToRegister(instr->temp_vector()); 3142 Register vector = ToRegister(instr->temp_vector());
3129 DCHECK(vector.is(LoadIC::VectorRegister())); 3143 DCHECK(vector.is(LoadIC::VectorRegister()));
3130 __ Move(vector, instr->hydrogen()->feedback_vector()); 3144 __ Move(vector, instr->hydrogen()->feedback_vector());
3131 // No need to allocate this register. 3145 // No need to allocate this register.
3132 DCHECK(LoadIC::SlotRegister().is(r0)); 3146 DCHECK(LoadIC::SlotRegister().is(r0));
3133 __ mov(LoadIC::SlotRegister(), 3147 __ mov(LoadIC::SlotRegister(),
3134 Operand(Smi::FromInt(instr->hydrogen()->slot()))); 3148 Operand(Smi::FromInt(instr->hydrogen()->slot())));
3135 } 3149 }
3136 Handle<Code> ic = LoadIC::initialize_stub(isolate(), NOT_CONTEXTUAL); 3150 Handle<Code> ic = LoadIC::initialize_stub(isolate(), NOT_CONTEXTUAL);
3137 CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); 3151 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3138 } 3152 }
3139 3153
3140 3154
3141 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { 3155 void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
3142 Register scratch = scratch0(); 3156 Register scratch = scratch0();
3143 Register function = ToRegister(instr->function()); 3157 Register function = ToRegister(instr->function());
3144 Register result = ToRegister(instr->result()); 3158 Register result = ToRegister(instr->result());
3145 3159
3146 // Get the prototype or initial map from the function. 3160 // Get the prototype or initial map from the function.
3147 __ ldr(result, 3161 __ LoadP(result,
3148 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); 3162 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
3149 3163
3150 // Check that the function has a prototype or an initial map. 3164 // Check that the function has a prototype or an initial map.
3151 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); 3165 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
3152 __ cmp(result, ip); 3166 __ cmp(result, ip);
3153 DeoptimizeIf(eq, instr->environment()); 3167 DeoptimizeIf(eq, instr->environment());
3154 3168
3155 // If the function does not have an initial map, we're done. 3169 // If the function does not have an initial map, we're done.
3156 Label done; 3170 Label done;
3157 __ CompareObjectType(result, scratch, scratch, MAP_TYPE); 3171 __ CompareObjectType(result, scratch, scratch, MAP_TYPE);
3158 __ b(ne, &done); 3172 __ bne(&done);
3159 3173
3160 // Get the prototype from the initial map. 3174 // Get the prototype from the initial map.
3161 __ ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); 3175 __ LoadP(result, FieldMemOperand(result, Map::kPrototypeOffset));
3162 3176
3163 // All done. 3177 // All done.
3164 __ bind(&done); 3178 __ bind(&done);
3165 } 3179 }
3166 3180
3167 3181
3168 void LCodeGen::DoLoadRoot(LLoadRoot* instr) { 3182 void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
3169 Register result = ToRegister(instr->result()); 3183 Register result = ToRegister(instr->result());
3170 __ LoadRoot(result, instr->index()); 3184 __ LoadRoot(result, instr->index());
3171 } 3185 }
3172 3186
3173 3187
3174 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { 3188 void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
3175 Register arguments = ToRegister(instr->arguments()); 3189 Register arguments = ToRegister(instr->arguments());
3176 Register result = ToRegister(instr->result()); 3190 Register result = ToRegister(instr->result());
3177 // There are two words between the frame pointer and the last argument. 3191 // There are two words between the frame pointer and the last argument.
3178 // Subtracting from length accounts for one of them add one more. 3192 // Subtracting from length accounts for one of them add one more.
3179 if (instr->length()->IsConstantOperand()) { 3193 if (instr->length()->IsConstantOperand()) {
3180 int const_length = ToInteger32(LConstantOperand::cast(instr->length())); 3194 int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
3181 if (instr->index()->IsConstantOperand()) { 3195 if (instr->index()->IsConstantOperand()) {
3182 int const_index = ToInteger32(LConstantOperand::cast(instr->index())); 3196 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
3183 int index = (const_length - const_index) + 1; 3197 int index = (const_length - const_index) + 1;
3184 __ ldr(result, MemOperand(arguments, index * kPointerSize)); 3198 __ LoadP(result, MemOperand(arguments, index * kPointerSize), r0);
3185 } else { 3199 } else {
3186 Register index = ToRegister(instr->index()); 3200 Register index = ToRegister(instr->index());
3187 __ rsb(result, index, Operand(const_length + 1)); 3201 __ subfic(result, index, Operand(const_length + 1));
3188 __ ldr(result, MemOperand(arguments, result, LSL, kPointerSizeLog2)); 3202 __ ShiftLeftImm(result, result, Operand(kPointerSizeLog2));
3203 __ LoadPX(result, MemOperand(arguments, result));
3189 } 3204 }
3190 } else if (instr->index()->IsConstantOperand()) { 3205 } else if (instr->index()->IsConstantOperand()) {
3191 Register length = ToRegister(instr->length()); 3206 Register length = ToRegister(instr->length());
3192 int const_index = ToInteger32(LConstantOperand::cast(instr->index())); 3207 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
3193 int loc = const_index - 1; 3208 int loc = const_index - 1;
3194 if (loc != 0) { 3209 if (loc != 0) {
3195 __ sub(result, length, Operand(loc)); 3210 __ subi(result, length, Operand(loc));
3196 __ ldr(result, MemOperand(arguments, result, LSL, kPointerSizeLog2)); 3211 __ ShiftLeftImm(result, result, Operand(kPointerSizeLog2));
3197 } else { 3212 __ LoadPX(result, MemOperand(arguments, result));
3198 __ ldr(result, MemOperand(arguments, length, LSL, kPointerSizeLog2));
3199 }
3200 } else { 3213 } else {
3214 __ ShiftLeftImm(result, length, Operand(kPointerSizeLog2));
3215 __ LoadPX(result, MemOperand(arguments, result));
3216 }
3217 } else {
3201 Register length = ToRegister(instr->length()); 3218 Register length = ToRegister(instr->length());
3202 Register index = ToRegister(instr->index()); 3219 Register index = ToRegister(instr->index());
3203 __ sub(result, length, index); 3220 __ sub(result, length, index);
3204 __ add(result, result, Operand(1)); 3221 __ addi(result, result, Operand(1));
3205 __ ldr(result, MemOperand(arguments, result, LSL, kPointerSizeLog2)); 3222 __ ShiftLeftImm(result, result, Operand(kPointerSizeLog2));
3223 __ LoadPX(result, MemOperand(arguments, result));
3206 } 3224 }
3207 } 3225 }
3208 3226
3209 3227
3210 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) { 3228 void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
3211 Register external_pointer = ToRegister(instr->elements()); 3229 Register external_pointer = ToRegister(instr->elements());
3212 Register key = no_reg; 3230 Register key = no_reg;
3213 ElementsKind elements_kind = instr->elements_kind(); 3231 ElementsKind elements_kind = instr->elements_kind();
3214 bool key_is_constant = instr->key()->IsConstantOperand(); 3232 bool key_is_constant = instr->key()->IsConstantOperand();
3215 int constant_key = 0; 3233 int constant_key = 0;
3216 if (key_is_constant) { 3234 if (key_is_constant) {
3217 constant_key = ToInteger32(LConstantOperand::cast(instr->key())); 3235 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3218 if (constant_key & 0xF0000000) { 3236 if (constant_key & 0xF0000000) {
3219 Abort(kArrayIndexConstantValueTooBig); 3237 Abort(kArrayIndexConstantValueTooBig);
3220 } 3238 }
3221 } else { 3239 } else {
3222 key = ToRegister(instr->key()); 3240 key = ToRegister(instr->key());
3223 } 3241 }
3224 int element_size_shift = ElementsKindToShiftSize(elements_kind); 3242 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3225 int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) 3243 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
3226 ? (element_size_shift - kSmiTagSize) : element_size_shift;
3227 int base_offset = instr->base_offset(); 3244 int base_offset = instr->base_offset();
3228 3245
3229 if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS || 3246 if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
3230 elements_kind == FLOAT32_ELEMENTS || 3247 elements_kind == FLOAT32_ELEMENTS ||
3231 elements_kind == EXTERNAL_FLOAT64_ELEMENTS || 3248 elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
3232 elements_kind == FLOAT64_ELEMENTS) { 3249 elements_kind == FLOAT64_ELEMENTS) {
3233 int base_offset = instr->base_offset(); 3250 DoubleRegister result = ToDoubleRegister(instr->result());
3234 DwVfpRegister result = ToDoubleRegister(instr->result()); 3251 if (key_is_constant) {
3235 Operand operand = key_is_constant 3252 __ Add(scratch0(), external_pointer, constant_key << element_size_shift,
3236 ? Operand(constant_key << element_size_shift) 3253 r0);
3237 : Operand(key, LSL, shift_size); 3254 } else {
3238 __ add(scratch0(), external_pointer, operand); 3255 __ IndexToArrayOffset(r0, key, element_size_shift, key_is_smi);
3256 __ add(scratch0(), external_pointer, r0);
3257 }
3239 if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS || 3258 if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
3240 elements_kind == FLOAT32_ELEMENTS) { 3259 elements_kind == FLOAT32_ELEMENTS) {
3241 __ vldr(double_scratch0().low(), scratch0(), base_offset); 3260 __ lfs(result, MemOperand(scratch0(), base_offset));
3242 __ vcvt_f64_f32(result, double_scratch0().low()); 3261 } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS
3243 } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS 3262 __ lfd(result, MemOperand(scratch0(), base_offset));
3244 __ vldr(result, scratch0(), base_offset);
3245 } 3263 }
3246 } else { 3264 } else {
3247 Register result = ToRegister(instr->result()); 3265 Register result = ToRegister(instr->result());
3248 MemOperand mem_operand = PrepareKeyedOperand( 3266 MemOperand mem_operand =
3249 key, external_pointer, key_is_constant, constant_key, 3267 PrepareKeyedOperand(key, external_pointer, key_is_constant, key_is_smi,
3250 element_size_shift, shift_size, base_offset); 3268 constant_key, element_size_shift, base_offset);
3251 switch (elements_kind) { 3269 switch (elements_kind) {
3252 case EXTERNAL_INT8_ELEMENTS: 3270 case EXTERNAL_INT8_ELEMENTS:
3253 case INT8_ELEMENTS: 3271 case INT8_ELEMENTS:
3254 __ ldrsb(result, mem_operand); 3272 if (key_is_constant) {
3273 __ LoadByte(result, mem_operand, r0);
3274 } else {
3275 __ lbzx(result, mem_operand);
3276 }
3277 __ extsb(result, result);
3255 break; 3278 break;
3256 case EXTERNAL_UINT8_CLAMPED_ELEMENTS: 3279 case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
3257 case EXTERNAL_UINT8_ELEMENTS: 3280 case EXTERNAL_UINT8_ELEMENTS:
3258 case UINT8_ELEMENTS: 3281 case UINT8_ELEMENTS:
3259 case UINT8_CLAMPED_ELEMENTS: 3282 case UINT8_CLAMPED_ELEMENTS:
3260 __ ldrb(result, mem_operand); 3283 if (key_is_constant) {
3284 __ LoadByte(result, mem_operand, r0);
3285 } else {
3286 __ lbzx(result, mem_operand);
3287 }
3261 break; 3288 break;
3262 case EXTERNAL_INT16_ELEMENTS: 3289 case EXTERNAL_INT16_ELEMENTS:
3263 case INT16_ELEMENTS: 3290 case INT16_ELEMENTS:
3264 __ ldrsh(result, mem_operand); 3291 if (key_is_constant) {
3292 __ LoadHalfWord(result, mem_operand, r0);
3293 } else {
3294 __ lhzx(result, mem_operand);
3295 }
3296 __ extsh(result, result);
3265 break; 3297 break;
3266 case EXTERNAL_UINT16_ELEMENTS: 3298 case EXTERNAL_UINT16_ELEMENTS:
3267 case UINT16_ELEMENTS: 3299 case UINT16_ELEMENTS:
3268 __ ldrh(result, mem_operand); 3300 if (key_is_constant) {
3301 __ LoadHalfWord(result, mem_operand, r0);
3302 } else {
3303 __ lhzx(result, mem_operand);
3304 }
3269 break; 3305 break;
3270 case EXTERNAL_INT32_ELEMENTS: 3306 case EXTERNAL_INT32_ELEMENTS:
3271 case INT32_ELEMENTS: 3307 case INT32_ELEMENTS:
3272 __ ldr(result, mem_operand); 3308 if (key_is_constant) {
3309 __ LoadWord(result, mem_operand, r0);
3310 } else {
3311 __ lwzx(result, mem_operand);
3312 }
3313 #if V8_TARGET_ARCH_PPC64
3314 __ extsw(result, result);
3315 #endif
3273 break; 3316 break;
3274 case EXTERNAL_UINT32_ELEMENTS: 3317 case EXTERNAL_UINT32_ELEMENTS:
3275 case UINT32_ELEMENTS: 3318 case UINT32_ELEMENTS:
3276 __ ldr(result, mem_operand); 3319 if (key_is_constant) {
3320 __ LoadWord(result, mem_operand, r0);
3321 } else {
3322 __ lwzx(result, mem_operand);
3323 }
3277 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { 3324 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
3278 __ cmp(result, Operand(0x80000000)); 3325 __ lis(r0, Operand(SIGN_EXT_IMM16(0x8000)));
3279 DeoptimizeIf(cs, instr->environment()); 3326 __ cmplw(result, r0);
3327 DeoptimizeIf(ge, instr->environment());
3280 } 3328 }
3281 break; 3329 break;
3282 case FLOAT32_ELEMENTS: 3330 case FLOAT32_ELEMENTS:
3283 case FLOAT64_ELEMENTS: 3331 case FLOAT64_ELEMENTS:
3284 case EXTERNAL_FLOAT32_ELEMENTS: 3332 case EXTERNAL_FLOAT32_ELEMENTS:
3285 case EXTERNAL_FLOAT64_ELEMENTS: 3333 case EXTERNAL_FLOAT64_ELEMENTS:
3286 case FAST_HOLEY_DOUBLE_ELEMENTS: 3334 case FAST_HOLEY_DOUBLE_ELEMENTS:
3287 case FAST_HOLEY_ELEMENTS: 3335 case FAST_HOLEY_ELEMENTS:
3288 case FAST_HOLEY_SMI_ELEMENTS: 3336 case FAST_HOLEY_SMI_ELEMENTS:
3289 case FAST_DOUBLE_ELEMENTS: 3337 case FAST_DOUBLE_ELEMENTS:
3290 case FAST_ELEMENTS: 3338 case FAST_ELEMENTS:
3291 case FAST_SMI_ELEMENTS: 3339 case FAST_SMI_ELEMENTS:
3292 case DICTIONARY_ELEMENTS: 3340 case DICTIONARY_ELEMENTS:
3293 case SLOPPY_ARGUMENTS_ELEMENTS: 3341 case SLOPPY_ARGUMENTS_ELEMENTS:
3294 UNREACHABLE(); 3342 UNREACHABLE();
3295 break; 3343 break;
3296 } 3344 }
3297 } 3345 }
3298 } 3346 }
3299 3347
3300 3348
3301 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) { 3349 void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
3302 Register elements = ToRegister(instr->elements()); 3350 Register elements = ToRegister(instr->elements());
3303 bool key_is_constant = instr->key()->IsConstantOperand(); 3351 bool key_is_constant = instr->key()->IsConstantOperand();
3304 Register key = no_reg; 3352 Register key = no_reg;
3305 DwVfpRegister result = ToDoubleRegister(instr->result()); 3353 DoubleRegister result = ToDoubleRegister(instr->result());
3306 Register scratch = scratch0(); 3354 Register scratch = scratch0();
3307 3355
3308 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); 3356 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
3309 3357 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
3310 int base_offset = instr->base_offset(); 3358 int constant_key = 0;
3311 if (key_is_constant) { 3359 if (key_is_constant) {
3312 int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); 3360 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3313 if (constant_key & 0xF0000000) { 3361 if (constant_key & 0xF0000000) {
3314 Abort(kArrayIndexConstantValueTooBig); 3362 Abort(kArrayIndexConstantValueTooBig);
3315 } 3363 }
3316 base_offset += constant_key * kDoubleSize; 3364 } else {
3317 }
3318 __ add(scratch, elements, Operand(base_offset));
3319
3320 if (!key_is_constant) {
3321 key = ToRegister(instr->key()); 3365 key = ToRegister(instr->key());
3322 int shift_size = (instr->hydrogen()->key()->representation().IsSmi())
3323 ? (element_size_shift - kSmiTagSize) : element_size_shift;
3324 __ add(scratch, scratch, Operand(key, LSL, shift_size));
3325 } 3366 }
3326 3367
3327 __ vldr(result, scratch, 0); 3368 int base_offset = instr->base_offset() + constant_key * kDoubleSize;
3369 if (!key_is_constant) {
3370 __ IndexToArrayOffset(r0, key, element_size_shift, key_is_smi);
3371 __ add(scratch, elements, r0);
3372 elements = scratch;
3373 }
3374 if (!is_int16(base_offset)) {
3375 __ Add(scratch, elements, base_offset, r0);
3376 base_offset = 0;
3377 elements = scratch;
3378 }
3379 __ lfd(result, MemOperand(elements, base_offset));
3328 3380
3329 if (instr->hydrogen()->RequiresHoleCheck()) { 3381 if (instr->hydrogen()->RequiresHoleCheck()) {
3330 __ ldr(scratch, MemOperand(scratch, sizeof(kHoleNanLower32))); 3382 if (is_int16(base_offset + Register::kExponentOffset)) {
3331 __ cmp(scratch, Operand(kHoleNanUpper32)); 3383 __ lwz(scratch,
3384 MemOperand(elements, base_offset + Register::kExponentOffset));
3385 } else {
3386 __ addi(scratch, elements, Operand(base_offset));
3387 __ lwz(scratch, MemOperand(scratch, Register::kExponentOffset));
3388 }
3389 __ Cmpi(scratch, Operand(kHoleNanUpper32), r0);
3332 DeoptimizeIf(eq, instr->environment()); 3390 DeoptimizeIf(eq, instr->environment());
3333 } 3391 }
3334 } 3392 }
3335 3393
3336 3394
3337 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) { 3395 void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
3396 HLoadKeyed* hinstr = instr->hydrogen();
3338 Register elements = ToRegister(instr->elements()); 3397 Register elements = ToRegister(instr->elements());
3339 Register result = ToRegister(instr->result()); 3398 Register result = ToRegister(instr->result());
3340 Register scratch = scratch0(); 3399 Register scratch = scratch0();
3341 Register store_base = scratch; 3400 Register store_base = scratch;
3342 int offset = instr->base_offset(); 3401 int offset = instr->base_offset();
3343 3402
3344 if (instr->key()->IsConstantOperand()) { 3403 if (instr->key()->IsConstantOperand()) {
3345 LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); 3404 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3346 offset += ToInteger32(const_operand) * kPointerSize; 3405 offset += ToInteger32(const_operand) * kPointerSize;
3347 store_base = elements; 3406 store_base = elements;
3348 } else { 3407 } else {
3349 Register key = ToRegister(instr->key()); 3408 Register key = ToRegister(instr->key());
3350 // Even though the HLoadKeyed instruction forces the input 3409 // Even though the HLoadKeyed instruction forces the input
3351 // representation for the key to be an integer, the input gets replaced 3410 // representation for the key to be an integer, the input gets replaced
3352 // during bound check elimination with the index argument to the bounds 3411 // during bound check elimination with the index argument to the bounds
3353 // check, which can be tagged, so that case must be handled here, too. 3412 // check, which can be tagged, so that case must be handled here, too.
3354 if (instr->hydrogen()->key()->representation().IsSmi()) { 3413 if (hinstr->key()->representation().IsSmi()) {
3355 __ add(scratch, elements, Operand::PointerOffsetFromSmiKey(key)); 3414 __ SmiToPtrArrayOffset(r0, key);
3356 } else { 3415 } else {
3357 __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2)); 3416 __ ShiftLeftImm(r0, key, Operand(kPointerSizeLog2));
3358 } 3417 }
3418 __ add(scratch, elements, r0);
3359 } 3419 }
3360 __ ldr(result, MemOperand(store_base, offset)); 3420
3421 bool requires_hole_check = hinstr->RequiresHoleCheck();
3422 Representation representation = hinstr->representation();
3423
3424 #if V8_TARGET_ARCH_PPC64
3425 // 64-bit Smi optimization
3426 if (representation.IsInteger32() &&
3427 hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
3428 DCHECK(!requires_hole_check);
3429 // Read int value directly from upper half of the smi.
3430 STATIC_ASSERT(kSmiTag == 0);
3431 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
3432 #if V8_TARGET_LITTLE_ENDIAN
3433 offset += kPointerSize / 2;
3434 #endif
3435 }
3436 #endif
3437
3438 __ LoadRepresentation(result, MemOperand(store_base, offset), representation,
3439 r0);
3361 3440
3362 // Check for the hole value. 3441 // Check for the hole value.
3363 if (instr->hydrogen()->RequiresHoleCheck()) { 3442 if (requires_hole_check) {
3364 if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) { 3443 if (IsFastSmiElementsKind(hinstr->elements_kind())) {
3365 __ SmiTst(result); 3444 __ TestIfSmi(result, r0);
3366 DeoptimizeIf(ne, instr->environment()); 3445 DeoptimizeIf(ne, instr->environment(), cr0);
3367 } else { 3446 } else {
3368 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); 3447 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
3369 __ cmp(result, scratch); 3448 __ cmp(result, scratch);
3370 DeoptimizeIf(eq, instr->environment()); 3449 DeoptimizeIf(eq, instr->environment());
3371 } 3450 }
3372 } 3451 }
3373 } 3452 }
3374 3453
3375 3454
3376 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) { 3455 void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
3377 if (instr->is_typed_elements()) { 3456 if (instr->is_typed_elements()) {
3378 DoLoadKeyedExternalArray(instr); 3457 DoLoadKeyedExternalArray(instr);
3379 } else if (instr->hydrogen()->representation().IsDouble()) { 3458 } else if (instr->hydrogen()->representation().IsDouble()) {
3380 DoLoadKeyedFixedDoubleArray(instr); 3459 DoLoadKeyedFixedDoubleArray(instr);
3381 } else { 3460 } else {
3382 DoLoadKeyedFixedArray(instr); 3461 DoLoadKeyedFixedArray(instr);
3383 } 3462 }
3384 } 3463 }
3385 3464
3386 3465
3387 MemOperand LCodeGen::PrepareKeyedOperand(Register key, 3466 MemOperand LCodeGen::PrepareKeyedOperand(Register key, Register base,
3388 Register base, 3467 bool key_is_constant, bool key_is_smi,
3389 bool key_is_constant,
3390 int constant_key, 3468 int constant_key,
3391 int element_size, 3469 int element_size_shift,
3392 int shift_size,
3393 int base_offset) { 3470 int base_offset) {
3471 Register scratch = scratch0();
3472
3394 if (key_is_constant) { 3473 if (key_is_constant) {
3395 return MemOperand(base, (constant_key << element_size) + base_offset); 3474 return MemOperand(base, (constant_key << element_size_shift) + base_offset);
3396 } 3475 }
3397 3476
3398 if (base_offset == 0) { 3477 bool needs_shift =
3399 if (shift_size >= 0) { 3478 (element_size_shift != (key_is_smi ? kSmiTagSize + kSmiShiftSize : 0));
3400 return MemOperand(base, key, LSL, shift_size); 3479
3401 } else { 3480 if (!(base_offset || needs_shift)) {
3402 DCHECK_EQ(-1, shift_size); 3481 return MemOperand(base, key);
3403 return MemOperand(base, key, LSR, 1);
3404 }
3405 } 3482 }
3406 3483
3407 if (shift_size >= 0) { 3484 if (needs_shift) {
3408 __ add(scratch0(), base, Operand(key, LSL, shift_size)); 3485 __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi);
3409 return MemOperand(scratch0(), base_offset); 3486 key = scratch;
3410 } else {
3411 DCHECK_EQ(-1, shift_size);
3412 __ add(scratch0(), base, Operand(key, ASR, 1));
3413 return MemOperand(scratch0(), base_offset);
3414 } 3487 }
3488
3489 if (base_offset) {
3490 __ Add(scratch, key, base_offset, r0);
3491 }
3492
3493 return MemOperand(base, scratch);
3415 } 3494 }
3416 3495
3417 3496
3418 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) { 3497 void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3419 DCHECK(ToRegister(instr->context()).is(cp)); 3498 DCHECK(ToRegister(instr->context()).is(cp));
3420 DCHECK(ToRegister(instr->object()).is(LoadIC::ReceiverRegister())); 3499 DCHECK(ToRegister(instr->object()).is(LoadIC::ReceiverRegister()));
3421 DCHECK(ToRegister(instr->key()).is(LoadIC::NameRegister())); 3500 DCHECK(ToRegister(instr->key()).is(LoadIC::NameRegister()));
3422 3501
3423 if (FLAG_vector_ics) { 3502 if (FLAG_vector_ics) {
3424 Register vector = ToRegister(instr->temp_vector()); 3503 Register vector = ToRegister(instr->temp_vector());
3425 DCHECK(vector.is(LoadIC::VectorRegister())); 3504 DCHECK(vector.is(LoadIC::VectorRegister()));
3426 __ Move(vector, instr->hydrogen()->feedback_vector()); 3505 __ Move(vector, instr->hydrogen()->feedback_vector());
3427 // No need to allocate this register. 3506 // No need to allocate this register.
3428 DCHECK(LoadIC::SlotRegister().is(r0)); 3507 DCHECK(LoadIC::SlotRegister().is(r0));
3429 __ mov(LoadIC::SlotRegister(), 3508 __ mov(LoadIC::SlotRegister(),
3430 Operand(Smi::FromInt(instr->hydrogen()->slot()))); 3509 Operand(Smi::FromInt(instr->hydrogen()->slot())));
3431 } 3510 }
3432 3511
3433 Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize(); 3512 Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
3434 CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); 3513 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3435 } 3514 }
3436 3515
3437 3516
3438 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { 3517 void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
3439 Register scratch = scratch0(); 3518 Register scratch = scratch0();
3440 Register result = ToRegister(instr->result()); 3519 Register result = ToRegister(instr->result());
3441 3520
3442 if (instr->hydrogen()->from_inlined()) { 3521 if (instr->hydrogen()->from_inlined()) {
3443 __ sub(result, sp, Operand(2 * kPointerSize)); 3522 __ subi(result, sp, Operand(2 * kPointerSize));
3444 } else { 3523 } else {
3445 // Check if the calling frame is an arguments adaptor frame. 3524 // Check if the calling frame is an arguments adaptor frame.
3446 Label done, adapted; 3525 Label done, adapted;
3447 __ ldr(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 3526 __ LoadP(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3448 __ ldr(result, MemOperand(scratch, StandardFrameConstants::kContextOffset)); 3527 __ LoadP(result,
3449 __ cmp(result, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); 3528 MemOperand(scratch, StandardFrameConstants::kContextOffset));
3529 __ CmpSmiLiteral(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
3450 3530
3451 // Result is the frame pointer for the frame if not adapted and for the real 3531 // Result is the frame pointer for the frame if not adapted and for the real
3452 // frame below the adaptor frame if adapted. 3532 // frame below the adaptor frame if adapted.
3453 __ mov(result, fp, LeaveCC, ne); 3533 __ beq(&adapted);
3454 __ mov(result, scratch, LeaveCC, eq); 3534 __ mr(result, fp);
3535 __ b(&done);
3536
3537 __ bind(&adapted);
3538 __ mr(result, scratch);
3539 __ bind(&done);
3455 } 3540 }
3456 } 3541 }
3457 3542
3458 3543
3459 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { 3544 void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
3460 Register elem = ToRegister(instr->elements()); 3545 Register elem = ToRegister(instr->elements());
3461 Register result = ToRegister(instr->result()); 3546 Register result = ToRegister(instr->result());
3462 3547
3463 Label done; 3548 Label done;
3464 3549
3465 // If no arguments adaptor frame the number of arguments is fixed. 3550 // If no arguments adaptor frame the number of arguments is fixed.
3466 __ cmp(fp, elem); 3551 __ cmp(fp, elem);
3467 __ mov(result, Operand(scope()->num_parameters())); 3552 __ mov(result, Operand(scope()->num_parameters()));
3468 __ b(eq, &done); 3553 __ beq(&done);
3469 3554
3470 // Arguments adaptor frame present. Get argument length from there. 3555 // Arguments adaptor frame present. Get argument length from there.
3471 __ ldr(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 3556 __ LoadP(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3472 __ ldr(result, 3557 __ LoadP(result,
3473 MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset)); 3558 MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset));
3474 __ SmiUntag(result); 3559 __ SmiUntag(result);
3475 3560
3476 // Argument length is in result register. 3561 // Argument length is in result register.
3477 __ bind(&done); 3562 __ bind(&done);
3478 } 3563 }
3479 3564
3480 3565
3481 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { 3566 void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
3482 Register receiver = ToRegister(instr->receiver()); 3567 Register receiver = ToRegister(instr->receiver());
3483 Register function = ToRegister(instr->function()); 3568 Register function = ToRegister(instr->function());
3484 Register result = ToRegister(instr->result()); 3569 Register result = ToRegister(instr->result());
3485 Register scratch = scratch0(); 3570 Register scratch = scratch0();
3486 3571
3487 // If the receiver is null or undefined, we have to pass the global 3572 // If the receiver is null or undefined, we have to pass the global
3488 // object as a receiver to normal functions. Values have to be 3573 // object as a receiver to normal functions. Values have to be
3489 // passed unchanged to builtins and strict-mode functions. 3574 // passed unchanged to builtins and strict-mode functions.
3490 Label global_object, result_in_receiver; 3575 Label global_object, result_in_receiver;
3491 3576
3492 if (!instr->hydrogen()->known_function()) { 3577 if (!instr->hydrogen()->known_function()) {
3493 // Do not transform the receiver to object for strict mode 3578 // Do not transform the receiver to object for strict mode
3494 // functions. 3579 // functions.
3495 __ ldr(scratch, 3580 __ LoadP(scratch,
3496 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); 3581 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
3497 __ ldr(scratch, 3582 __ lwz(scratch,
3498 FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); 3583 FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
3499 int mask = 1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize); 3584 __ TestBit(scratch,
3500 __ tst(scratch, Operand(mask)); 3585 #if V8_TARGET_ARCH_PPC64
3501 __ b(ne, &result_in_receiver); 3586 SharedFunctionInfo::kStrictModeFunction,
3587 #else
3588 SharedFunctionInfo::kStrictModeFunction + kSmiTagSize,
3589 #endif
3590 r0);
3591 __ bne(&result_in_receiver, cr0);
3502 3592
3503 // Do not transform the receiver to object for builtins. 3593 // Do not transform the receiver to object for builtins.
3504 __ tst(scratch, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize))); 3594 __ TestBit(scratch,
3505 __ b(ne, &result_in_receiver); 3595 #if V8_TARGET_ARCH_PPC64
3596 SharedFunctionInfo::kNative,
3597 #else
3598 SharedFunctionInfo::kNative + kSmiTagSize,
3599 #endif
3600 r0);
3601 __ bne(&result_in_receiver, cr0);
3506 } 3602 }
3507 3603
3508 // Normal function. Replace undefined or null with global receiver. 3604 // Normal function. Replace undefined or null with global receiver.
3509 __ LoadRoot(scratch, Heap::kNullValueRootIndex); 3605 __ LoadRoot(scratch, Heap::kNullValueRootIndex);
3510 __ cmp(receiver, scratch); 3606 __ cmp(receiver, scratch);
3511 __ b(eq, &global_object); 3607 __ beq(&global_object);
3512 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); 3608 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
3513 __ cmp(receiver, scratch); 3609 __ cmp(receiver, scratch);
3514 __ b(eq, &global_object); 3610 __ beq(&global_object);
3515 3611
3516 // Deoptimize if the receiver is not a JS object. 3612 // Deoptimize if the receiver is not a JS object.
3517 __ SmiTst(receiver); 3613 __ TestIfSmi(receiver, r0);
3518 DeoptimizeIf(eq, instr->environment()); 3614 DeoptimizeIf(eq, instr->environment(), cr0);
3519 __ CompareObjectType(receiver, scratch, scratch, FIRST_SPEC_OBJECT_TYPE); 3615 __ CompareObjectType(receiver, scratch, scratch, FIRST_SPEC_OBJECT_TYPE);
3520 DeoptimizeIf(lt, instr->environment()); 3616 DeoptimizeIf(lt, instr->environment());
3521 3617
3522 __ b(&result_in_receiver); 3618 __ b(&result_in_receiver);
3523 __ bind(&global_object); 3619 __ bind(&global_object);
3524 __ ldr(result, FieldMemOperand(function, JSFunction::kContextOffset)); 3620 __ LoadP(result, FieldMemOperand(function, JSFunction::kContextOffset));
3525 __ ldr(result, 3621 __ LoadP(result, ContextOperand(result, Context::GLOBAL_OBJECT_INDEX));
3526 ContextOperand(result, Context::GLOBAL_OBJECT_INDEX)); 3622 __ LoadP(result, FieldMemOperand(result, GlobalObject::kGlobalProxyOffset));
3527 __ ldr(result, FieldMemOperand(result, GlobalObject::kGlobalProxyOffset));
3528
3529 if (result.is(receiver)) { 3623 if (result.is(receiver)) {
3530 __ bind(&result_in_receiver); 3624 __ bind(&result_in_receiver);
3531 } else { 3625 } else {
3532 Label result_ok; 3626 Label result_ok;
3533 __ b(&result_ok); 3627 __ b(&result_ok);
3534 __ bind(&result_in_receiver); 3628 __ bind(&result_in_receiver);
3535 __ mov(result, receiver); 3629 __ mr(result, receiver);
3536 __ bind(&result_ok); 3630 __ bind(&result_ok);
3537 } 3631 }
3538 } 3632 }
3539 3633
3540 3634
3541 void LCodeGen::DoApplyArguments(LApplyArguments* instr) { 3635 void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
3542 Register receiver = ToRegister(instr->receiver()); 3636 Register receiver = ToRegister(instr->receiver());
3543 Register function = ToRegister(instr->function()); 3637 Register function = ToRegister(instr->function());
3544 Register length = ToRegister(instr->length()); 3638 Register length = ToRegister(instr->length());
3545 Register elements = ToRegister(instr->elements()); 3639 Register elements = ToRegister(instr->elements());
3546 Register scratch = scratch0(); 3640 Register scratch = scratch0();
3547 DCHECK(receiver.is(r0)); // Used for parameter count. 3641 DCHECK(receiver.is(r3)); // Used for parameter count.
3548 DCHECK(function.is(r1)); // Required by InvokeFunction. 3642 DCHECK(function.is(r4)); // Required by InvokeFunction.
3549 DCHECK(ToRegister(instr->result()).is(r0)); 3643 DCHECK(ToRegister(instr->result()).is(r3));
3550 3644
3551 // Copy the arguments to this function possibly from the 3645 // Copy the arguments to this function possibly from the
3552 // adaptor frame below it. 3646 // adaptor frame below it.
3553 const uint32_t kArgumentsLimit = 1 * KB; 3647 const uint32_t kArgumentsLimit = 1 * KB;
3554 __ cmp(length, Operand(kArgumentsLimit)); 3648 __ cmpli(length, Operand(kArgumentsLimit));
3555 DeoptimizeIf(hi, instr->environment()); 3649 DeoptimizeIf(gt, instr->environment());
3556 3650
3557 // Push the receiver and use the register to keep the original 3651 // Push the receiver and use the register to keep the original
3558 // number of arguments. 3652 // number of arguments.
3559 __ push(receiver); 3653 __ push(receiver);
3560 __ mov(receiver, length); 3654 __ mr(receiver, length);
3561 // The arguments are at a one pointer size offset from elements. 3655 // The arguments are at a one pointer size offset from elements.
3562 __ add(elements, elements, Operand(1 * kPointerSize)); 3656 __ addi(elements, elements, Operand(1 * kPointerSize));
3563 3657
3564 // Loop through the arguments pushing them onto the execution 3658 // Loop through the arguments pushing them onto the execution
3565 // stack. 3659 // stack.
3566 Label invoke, loop; 3660 Label invoke, loop;
3567 // length is a small non-negative integer, due to the test above. 3661 // length is a small non-negative integer, due to the test above.
3568 __ cmp(length, Operand::Zero()); 3662 __ cmpi(length, Operand::Zero());
3569 __ b(eq, &invoke); 3663 __ beq(&invoke);
3664 __ mtctr(length);
3570 __ bind(&loop); 3665 __ bind(&loop);
3571 __ ldr(scratch, MemOperand(elements, length, LSL, 2)); 3666 __ ShiftLeftImm(r0, length, Operand(kPointerSizeLog2));
3667 __ LoadPX(scratch, MemOperand(elements, r0));
3572 __ push(scratch); 3668 __ push(scratch);
3573 __ sub(length, length, Operand(1), SetCC); 3669 __ addi(length, length, Operand(-1));
3574 __ b(ne, &loop); 3670 __ bdnz(&loop);
3575 3671
3576 __ bind(&invoke); 3672 __ bind(&invoke);
3577 DCHECK(instr->HasPointerMap()); 3673 DCHECK(instr->HasPointerMap());
3578 LPointerMap* pointers = instr->pointer_map(); 3674 LPointerMap* pointers = instr->pointer_map();
3579 SafepointGenerator safepoint_generator( 3675 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
3580 this, pointers, Safepoint::kLazyDeopt); 3676 // The number of arguments is stored in receiver which is r3, as expected
3581 // The number of arguments is stored in receiver which is r0, as expected
3582 // by InvokeFunction. 3677 // by InvokeFunction.
3583 ParameterCount actual(receiver); 3678 ParameterCount actual(receiver);
3584 __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator); 3679 __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
3585 } 3680 }
3586 3681
3587 3682
3588 void LCodeGen::DoPushArgument(LPushArgument* instr) { 3683 void LCodeGen::DoPushArgument(LPushArgument* instr) {
3589 LOperand* argument = instr->value(); 3684 LOperand* argument = instr->value();
3590 if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) { 3685 if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
3591 Abort(kDoPushArgumentNotImplementedForDoubleType); 3686 Abort(kDoPushArgumentNotImplementedForDoubleType);
3592 } else { 3687 } else {
3593 Register argument_reg = EmitLoadRegister(argument, ip); 3688 Register argument_reg = EmitLoadRegister(argument, ip);
3594 __ push(argument_reg); 3689 __ push(argument_reg);
3595 } 3690 }
3596 } 3691 }
3597 3692
3598 3693
3599 void LCodeGen::DoDrop(LDrop* instr) { 3694 void LCodeGen::DoDrop(LDrop* instr) { __ Drop(instr->count()); }
3600 __ Drop(instr->count());
3601 }
3602 3695
3603 3696
3604 void LCodeGen::DoThisFunction(LThisFunction* instr) { 3697 void LCodeGen::DoThisFunction(LThisFunction* instr) {
3605 Register result = ToRegister(instr->result()); 3698 Register result = ToRegister(instr->result());
3606 __ ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 3699 __ LoadP(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
3607 } 3700 }
3608 3701
3609 3702
3610 void LCodeGen::DoContext(LContext* instr) { 3703 void LCodeGen::DoContext(LContext* instr) {
3611 // If there is a non-return use, the context must be moved to a register. 3704 // If there is a non-return use, the context must be moved to a register.
3612 Register result = ToRegister(instr->result()); 3705 Register result = ToRegister(instr->result());
3613 if (info()->IsOptimizing()) { 3706 if (info()->IsOptimizing()) {
3614 __ ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset)); 3707 __ LoadP(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
3615 } else { 3708 } else {
3616 // If there is no frame, the context must be in cp. 3709 // If there is no frame, the context must be in cp.
3617 DCHECK(result.is(cp)); 3710 DCHECK(result.is(cp));
3618 } 3711 }
3619 } 3712 }
3620 3713
3621 3714
3622 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { 3715 void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3623 DCHECK(ToRegister(instr->context()).is(cp)); 3716 DCHECK(ToRegister(instr->context()).is(cp));
3624 __ push(cp); // The context is the first argument. 3717 __ push(cp); // The context is the first argument.
3625 __ Move(scratch0(), instr->hydrogen()->pairs()); 3718 __ Move(scratch0(), instr->hydrogen()->pairs());
3626 __ push(scratch0()); 3719 __ push(scratch0());
3627 __ mov(scratch0(), Operand(Smi::FromInt(instr->hydrogen()->flags()))); 3720 __ LoadSmiLiteral(scratch0(), Smi::FromInt(instr->hydrogen()->flags()));
3628 __ push(scratch0()); 3721 __ push(scratch0());
3629 CallRuntime(Runtime::kDeclareGlobals, 3, instr); 3722 CallRuntime(Runtime::kDeclareGlobals, 3, instr);
3630 } 3723 }
3631 3724
3632 3725
3633 void LCodeGen::CallKnownFunction(Handle<JSFunction> function, 3726 void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3634 int formal_parameter_count, 3727 int formal_parameter_count, int arity,
3635 int arity, 3728 LInstruction* instr, R4State r4_state) {
3636 LInstruction* instr,
3637 R1State r1_state) {
3638 bool dont_adapt_arguments = 3729 bool dont_adapt_arguments =
3639 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; 3730 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3640 bool can_invoke_directly = 3731 bool can_invoke_directly =
3641 dont_adapt_arguments || formal_parameter_count == arity; 3732 dont_adapt_arguments || formal_parameter_count == arity;
3642 3733
3643 LPointerMap* pointers = instr->pointer_map(); 3734 LPointerMap* pointers = instr->pointer_map();
3644 3735
3645 if (can_invoke_directly) { 3736 if (can_invoke_directly) {
3646 if (r1_state == R1_UNINITIALIZED) { 3737 if (r4_state == R4_UNINITIALIZED) {
3647 __ Move(r1, function); 3738 __ Move(r4, function);
3648 } 3739 }
3649 3740
3650 // Change context. 3741 // Change context.
3651 __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); 3742 __ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
3652 3743
3653 // Set r0 to arguments count if adaption is not needed. Assumes that r0 3744 // Set r3 to arguments count if adaption is not needed. Assumes that r3
3654 // is available to write to at this point. 3745 // is available to write to at this point.
3655 if (dont_adapt_arguments) { 3746 if (dont_adapt_arguments) {
3656 __ mov(r0, Operand(arity)); 3747 __ mov(r3, Operand(arity));
3657 } 3748 }
3658 3749
3659 // Invoke function. 3750 // Invoke function.
3660 __ ldr(ip, FieldMemOperand(r1, JSFunction::kCodeEntryOffset)); 3751 if (function.is_identical_to(info()->closure())) {
3661 __ Call(ip); 3752 __ CallSelf();
3753 } else {
3754 __ LoadP(ip, FieldMemOperand(r4, JSFunction::kCodeEntryOffset));
3755 __ Call(ip);
3756 }
3662 3757
3663 // Set up deoptimization. 3758 // Set up deoptimization.
3664 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); 3759 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3665 } else { 3760 } else {
3666 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); 3761 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3667 ParameterCount count(arity); 3762 ParameterCount count(arity);
3668 ParameterCount expected(formal_parameter_count); 3763 ParameterCount expected(formal_parameter_count);
3669 __ InvokeFunction(function, expected, count, CALL_FUNCTION, generator); 3764 __ InvokeFunction(function, expected, count, CALL_FUNCTION, generator);
3670 } 3765 }
3671 } 3766 }
3672 3767
3673 3768
3674 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) { 3769 void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3675 DCHECK(instr->context() != NULL); 3770 DCHECK(instr->context() != NULL);
3676 DCHECK(ToRegister(instr->context()).is(cp)); 3771 DCHECK(ToRegister(instr->context()).is(cp));
3677 Register input = ToRegister(instr->value()); 3772 Register input = ToRegister(instr->value());
3678 Register result = ToRegister(instr->result()); 3773 Register result = ToRegister(instr->result());
3679 Register scratch = scratch0(); 3774 Register scratch = scratch0();
3680 3775
3681 // Deoptimize if not a heap number. 3776 // Deoptimize if not a heap number.
3682 __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); 3777 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
3683 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); 3778 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
3684 __ cmp(scratch, Operand(ip)); 3779 __ cmp(scratch, ip);
3685 DeoptimizeIf(ne, instr->environment()); 3780 DeoptimizeIf(ne, instr->environment());
3686 3781
3687 Label done; 3782 Label done;
3688 Register exponent = scratch0(); 3783 Register exponent = scratch0();
3689 scratch = no_reg; 3784 scratch = no_reg;
3690 __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); 3785 __ lwz(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3691 // Check the sign of the argument. If the argument is positive, just 3786 // Check the sign of the argument. If the argument is positive, just
3692 // return it. 3787 // return it.
3693 __ tst(exponent, Operand(HeapNumber::kSignMask)); 3788 __ cmpwi(exponent, Operand::Zero());
3694 // Move the input to the result if necessary. 3789 // Move the input to the result if necessary.
3695 __ Move(result, input); 3790 __ Move(result, input);
3696 __ b(eq, &done); 3791 __ bge(&done);
3697 3792
3698 // Input is negative. Reverse its sign. 3793 // Input is negative. Reverse its sign.
3699 // Preserve the value of all registers. 3794 // Preserve the value of all registers.
3700 { 3795 {
3701 PushSafepointRegistersScope scope(this); 3796 PushSafepointRegistersScope scope(this);
3702 3797
3703 // Registers were saved at the safepoint, so we can use 3798 // Registers were saved at the safepoint, so we can use
3704 // many scratch registers. 3799 // many scratch registers.
3705 Register tmp1 = input.is(r1) ? r0 : r1; 3800 Register tmp1 = input.is(r4) ? r3 : r4;
3706 Register tmp2 = input.is(r2) ? r0 : r2; 3801 Register tmp2 = input.is(r5) ? r3 : r5;
3707 Register tmp3 = input.is(r3) ? r0 : r3; 3802 Register tmp3 = input.is(r6) ? r3 : r6;
3708 Register tmp4 = input.is(r4) ? r0 : r4; 3803 Register tmp4 = input.is(r7) ? r3 : r7;
3709 3804
3710 // exponent: floating point exponent value. 3805 // exponent: floating point exponent value.
3711 3806
3712 Label allocated, slow; 3807 Label allocated, slow;
3713 __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex); 3808 __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex);
3714 __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow); 3809 __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow);
3715 __ b(&allocated); 3810 __ b(&allocated);
3716 3811
3717 // Slow case: Call the runtime system to do the number allocation. 3812 // Slow case: Call the runtime system to do the number allocation.
3718 __ bind(&slow); 3813 __ bind(&slow);
3719 3814
3720 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr, 3815 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3721 instr->context()); 3816 instr->context());
3722 // Set the pointer to the new heap number in tmp. 3817 // Set the pointer to the new heap number in tmp.
3723 if (!tmp1.is(r0)) __ mov(tmp1, Operand(r0)); 3818 if (!tmp1.is(r3)) __ mr(tmp1, r3);
3724 // Restore input_reg after call to runtime. 3819 // Restore input_reg after call to runtime.
3725 __ LoadFromSafepointRegisterSlot(input, input); 3820 __ LoadFromSafepointRegisterSlot(input, input);
3726 __ ldr(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); 3821 __ lwz(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset));
3727 3822
3728 __ bind(&allocated); 3823 __ bind(&allocated);
3729 // exponent: floating point exponent value. 3824 // exponent: floating point exponent value.
3730 // tmp1: allocated heap number. 3825 // tmp1: allocated heap number.
3731 __ bic(exponent, exponent, Operand(HeapNumber::kSignMask)); 3826 STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
3732 __ str(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset)); 3827 __ clrlwi(exponent, exponent, Operand(1)); // clear sign bit
3733 __ ldr(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset)); 3828 __ stw(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset));
3734 __ str(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset)); 3829 __ lwz(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset));
3830 __ stw(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset));
3735 3831
3736 __ StoreToSafepointRegisterSlot(tmp1, result); 3832 __ StoreToSafepointRegisterSlot(tmp1, result);
3737 } 3833 }
3738 3834
3739 __ bind(&done); 3835 __ bind(&done);
3740 } 3836 }
3741 3837
3742 3838
3743 void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) { 3839 void LCodeGen::EmitMathAbs(LMathAbs* instr) {
3744 Register input = ToRegister(instr->value()); 3840 Register input = ToRegister(instr->value());
3745 Register result = ToRegister(instr->result()); 3841 Register result = ToRegister(instr->result());
3746 __ cmp(input, Operand::Zero()); 3842 Label done;
3747 __ Move(result, input, pl); 3843 __ cmpi(input, Operand::Zero());
3748 // We can make rsb conditional because the previous cmp instruction 3844 __ Move(result, input);
3749 // will clear the V (overflow) flag and rsb won't set this flag 3845 __ bge(&done);
3750 // if input is positive. 3846 __ li(r0, Operand::Zero()); // clear xer
3751 __ rsb(result, input, Operand::Zero(), SetCC, mi); 3847 __ mtxer(r0);
3848 __ neg(result, result, SetOE, SetRC);
3752 // Deoptimize on overflow. 3849 // Deoptimize on overflow.
3753 DeoptimizeIf(vs, instr->environment()); 3850 DeoptimizeIf(overflow, instr->environment(), cr0);
3851 __ bind(&done);
3754 } 3852 }
3755 3853
3756 3854
3855 #if V8_TARGET_ARCH_PPC64
3856 void LCodeGen::EmitInteger32MathAbs(LMathAbs* instr) {
3857 Register input = ToRegister(instr->value());
3858 Register result = ToRegister(instr->result());
3859 Label done;
3860 __ cmpwi(input, Operand::Zero());
3861 __ Move(result, input);
3862 __ bge(&done);
3863
3864 // Deoptimize on overflow.
3865 __ lis(r0, Operand(SIGN_EXT_IMM16(0x8000)));
3866 __ cmpw(input, r0);
3867 DeoptimizeIf(eq, instr->environment());
3868
3869 __ neg(result, result);
3870 __ bind(&done);
3871 }
3872 #endif
3873
3874
3757 void LCodeGen::DoMathAbs(LMathAbs* instr) { 3875 void LCodeGen::DoMathAbs(LMathAbs* instr) {
3758 // Class for deferred case. 3876 // Class for deferred case.
3759 class DeferredMathAbsTaggedHeapNumber V8_FINAL : public LDeferredCode { 3877 class DeferredMathAbsTaggedHeapNumber V8_FINAL : public LDeferredCode {
3760 public: 3878 public:
3761 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr) 3879 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
3762 : LDeferredCode(codegen), instr_(instr) { } 3880 : LDeferredCode(codegen), instr_(instr) {}
3763 virtual void Generate() V8_OVERRIDE { 3881 virtual void Generate() V8_OVERRIDE {
3764 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); 3882 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3765 } 3883 }
3766 virtual LInstruction* instr() V8_OVERRIDE { return instr_; } 3884 virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
3885
3767 private: 3886 private:
3768 LMathAbs* instr_; 3887 LMathAbs* instr_;
3769 }; 3888 };
3770 3889
3771 Representation r = instr->hydrogen()->value()->representation(); 3890 Representation r = instr->hydrogen()->value()->representation();
3772 if (r.IsDouble()) { 3891 if (r.IsDouble()) {
3773 DwVfpRegister input = ToDoubleRegister(instr->value()); 3892 DoubleRegister input = ToDoubleRegister(instr->value());
3774 DwVfpRegister result = ToDoubleRegister(instr->result()); 3893 DoubleRegister result = ToDoubleRegister(instr->result());
3775 __ vabs(result, input); 3894 __ fabs(result, input);
3895 #if V8_TARGET_ARCH_PPC64
3896 } else if (r.IsInteger32()) {
3897 EmitInteger32MathAbs(instr);
3898 } else if (r.IsSmi()) {
3899 #else
3776 } else if (r.IsSmiOrInteger32()) { 3900 } else if (r.IsSmiOrInteger32()) {
3777 EmitIntegerMathAbs(instr); 3901 #endif
3902 EmitMathAbs(instr);
3778 } else { 3903 } else {
3779 // Representation is tagged. 3904 // Representation is tagged.
3780 DeferredMathAbsTaggedHeapNumber* deferred = 3905 DeferredMathAbsTaggedHeapNumber* deferred =
3781 new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr); 3906 new (zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
3782 Register input = ToRegister(instr->value()); 3907 Register input = ToRegister(instr->value());
3783 // Smi check. 3908 // Smi check.
3784 __ JumpIfNotSmi(input, deferred->entry()); 3909 __ JumpIfNotSmi(input, deferred->entry());
3785 // If smi, handle it directly. 3910 // If smi, handle it directly.
3786 EmitIntegerMathAbs(instr); 3911 EmitMathAbs(instr);
3787 __ bind(deferred->exit()); 3912 __ bind(deferred->exit());
3788 } 3913 }
3789 } 3914 }
3790 3915
3791 3916
3792 void LCodeGen::DoMathFloor(LMathFloor* instr) { 3917 void LCodeGen::DoMathFloor(LMathFloor* instr) {
3793 DwVfpRegister input = ToDoubleRegister(instr->value()); 3918 DoubleRegister input = ToDoubleRegister(instr->value());
3794 Register result = ToRegister(instr->result()); 3919 Register result = ToRegister(instr->result());
3795 Register input_high = scratch0(); 3920 Register input_high = scratch0();
3921 Register scratch = ip;
3796 Label done, exact; 3922 Label done, exact;
3797 3923
3798 __ TryInt32Floor(result, input, input_high, double_scratch0(), &done, &exact); 3924 __ TryInt32Floor(result, input, input_high, scratch, double_scratch0(), &done,
3925 &exact);
3799 DeoptimizeIf(al, instr->environment()); 3926 DeoptimizeIf(al, instr->environment());
3800 3927
3801 __ bind(&exact); 3928 __ bind(&exact);
3802 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 3929 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3803 // Test for -0. 3930 // Test for -0.
3804 __ cmp(result, Operand::Zero()); 3931 __ cmpi(result, Operand::Zero());
3805 __ b(ne, &done); 3932 __ bne(&done);
3806 __ cmp(input_high, Operand::Zero()); 3933 __ cmpwi(input_high, Operand::Zero());
3807 DeoptimizeIf(mi, instr->environment()); 3934 DeoptimizeIf(lt, instr->environment());
3808 } 3935 }
3809 __ bind(&done); 3936 __ bind(&done);
3810 } 3937 }
3811 3938
3812 3939
3813 void LCodeGen::DoMathRound(LMathRound* instr) { 3940 void LCodeGen::DoMathRound(LMathRound* instr) {
3814 DwVfpRegister input = ToDoubleRegister(instr->value()); 3941 DoubleRegister input = ToDoubleRegister(instr->value());
3815 Register result = ToRegister(instr->result()); 3942 Register result = ToRegister(instr->result());
3816 DwVfpRegister double_scratch1 = ToDoubleRegister(instr->temp()); 3943 DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp());
3817 DwVfpRegister input_plus_dot_five = double_scratch1; 3944 DoubleRegister input_plus_dot_five = double_scratch1;
3818 Register input_high = scratch0(); 3945 Register scratch1 = scratch0();
3819 DwVfpRegister dot_five = double_scratch0(); 3946 Register scratch2 = ip;
3947 DoubleRegister dot_five = double_scratch0();
3820 Label convert, done; 3948 Label convert, done;
3821 3949
3822 __ Vmov(dot_five, 0.5, scratch0()); 3950 __ LoadDoubleLiteral(dot_five, 0.5, r0);
3823 __ vabs(double_scratch1, input); 3951 __ fabs(double_scratch1, input);
3824 __ VFPCompareAndSetFlags(double_scratch1, dot_five); 3952 __ fcmpu(double_scratch1, dot_five);
3953 DeoptimizeIf(unordered, instr->environment());
3825 // If input is in [-0.5, -0], the result is -0. 3954 // If input is in [-0.5, -0], the result is -0.
3826 // If input is in [+0, +0.5[, the result is +0. 3955 // If input is in [+0, +0.5[, the result is +0.
3827 // If the input is +0.5, the result is 1. 3956 // If the input is +0.5, the result is 1.
3828 __ b(hi, &convert); // Out of [-0.5, +0.5]. 3957 __ bgt(&convert); // Out of [-0.5, +0.5].
3829 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 3958 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3830 __ VmovHigh(input_high, input); 3959 #if V8_TARGET_ARCH_PPC64
3831 __ cmp(input_high, Operand::Zero()); 3960 __ MovDoubleToInt64(scratch1, input);
3832 DeoptimizeIf(mi, instr->environment()); // [-0.5, -0]. 3961 #else
3962 __ MovDoubleHighToInt(scratch1, input);
3963 #endif
3964 __ cmpi(scratch1, Operand::Zero());
3965 DeoptimizeIf(lt, instr->environment()); // [-0.5, -0].
3833 } 3966 }
3834 __ VFPCompareAndSetFlags(input, dot_five); 3967 Label return_zero;
3835 __ mov(result, Operand(1), LeaveCC, eq); // +0.5. 3968 __ fcmpu(input, dot_five);
3969 __ bne(&return_zero);
3970 __ li(result, Operand(1)); // +0.5.
3971 __ b(&done);
3836 // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on 3972 // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on
3837 // flag kBailoutOnMinusZero. 3973 // flag kBailoutOnMinusZero.
3838 __ mov(result, Operand::Zero(), LeaveCC, ne); 3974 __ bind(&return_zero);
3975 __ li(result, Operand::Zero());
3839 __ b(&done); 3976 __ b(&done);
3840 3977
3841 __ bind(&convert); 3978 __ bind(&convert);
3842 __ vadd(input_plus_dot_five, input, dot_five); 3979 __ fadd(input_plus_dot_five, input, dot_five);
3843 // Reuse dot_five (double_scratch0) as we no longer need this value. 3980 // Reuse dot_five (double_scratch0) as we no longer need this value.
3844 __ TryInt32Floor(result, input_plus_dot_five, input_high, double_scratch0(), 3981 __ TryInt32Floor(result, input_plus_dot_five, scratch1, scratch2,
3845 &done, &done); 3982 double_scratch0(), &done, &done);
3846 DeoptimizeIf(al, instr->environment()); 3983 DeoptimizeIf(al, instr->environment());
3847 __ bind(&done); 3984 __ bind(&done);
3848 } 3985 }
3849 3986
3850 3987
3851 void LCodeGen::DoMathFround(LMathFround* instr) { 3988 void LCodeGen::DoMathFround(LMathFround* instr) {
3852 DwVfpRegister input_reg = ToDoubleRegister(instr->value()); 3989 DoubleRegister input_reg = ToDoubleRegister(instr->value());
3853 DwVfpRegister output_reg = ToDoubleRegister(instr->result()); 3990 DoubleRegister output_reg = ToDoubleRegister(instr->result());
3854 LowDwVfpRegister scratch = double_scratch0(); 3991 __ frsp(output_reg, input_reg);
3855 __ vcvt_f32_f64(scratch.low(), input_reg);
3856 __ vcvt_f64_f32(output_reg, scratch.low());
3857 } 3992 }
3858 3993
3859 3994
3860 void LCodeGen::DoMathSqrt(LMathSqrt* instr) { 3995 void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3861 DwVfpRegister input = ToDoubleRegister(instr->value()); 3996 DoubleRegister input = ToDoubleRegister(instr->value());
3862 DwVfpRegister result = ToDoubleRegister(instr->result()); 3997 DoubleRegister result = ToDoubleRegister(instr->result());
3863 __ vsqrt(result, input); 3998 __ fsqrt(result, input);
3864 } 3999 }
3865 4000
3866 4001
3867 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { 4002 void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3868 DwVfpRegister input = ToDoubleRegister(instr->value()); 4003 DoubleRegister input = ToDoubleRegister(instr->value());
3869 DwVfpRegister result = ToDoubleRegister(instr->result()); 4004 DoubleRegister result = ToDoubleRegister(instr->result());
3870 DwVfpRegister temp = double_scratch0(); 4005 DoubleRegister temp = double_scratch0();
3871 4006
3872 // Note that according to ECMA-262 15.8.2.13: 4007 // Note that according to ECMA-262 15.8.2.13:
3873 // Math.pow(-Infinity, 0.5) == Infinity 4008 // Math.pow(-Infinity, 0.5) == Infinity
3874 // Math.sqrt(-Infinity) == NaN 4009 // Math.sqrt(-Infinity) == NaN
3875 Label done; 4010 Label skip, done;
3876 __ vmov(temp, -V8_INFINITY, scratch0()); 4011
3877 __ VFPCompareAndSetFlags(input, temp); 4012 __ LoadDoubleLiteral(temp, -V8_INFINITY, scratch0());
3878 __ vneg(result, temp, eq); 4013 __ fcmpu(input, temp);
3879 __ b(&done, eq); 4014 __ bne(&skip);
4015 __ fneg(result, temp);
4016 __ b(&done);
3880 4017
3881 // Add +0 to convert -0 to +0. 4018 // Add +0 to convert -0 to +0.
3882 __ vadd(result, input, kDoubleRegZero); 4019 __ bind(&skip);
3883 __ vsqrt(result, result); 4020 __ fadd(result, input, kDoubleRegZero);
4021 __ fsqrt(result, result);
3884 __ bind(&done); 4022 __ bind(&done);
3885 } 4023 }
3886 4024
3887 4025
3888 void LCodeGen::DoPower(LPower* instr) { 4026 void LCodeGen::DoPower(LPower* instr) {
3889 Representation exponent_type = instr->hydrogen()->right()->representation(); 4027 Representation exponent_type = instr->hydrogen()->right()->representation();
3890 // Having marked this as a call, we can use any registers. 4028 // Having marked this as a call, we can use any registers.
3891 // Just make sure that the input/output registers are the expected ones. 4029 // Just make sure that the input/output registers are the expected ones.
3892 DCHECK(!instr->right()->IsDoubleRegister() || 4030 DCHECK(!instr->right()->IsDoubleRegister() ||
3893 ToDoubleRegister(instr->right()).is(d1)); 4031 ToDoubleRegister(instr->right()).is(d2));
3894 DCHECK(!instr->right()->IsRegister() || 4032 DCHECK(!instr->right()->IsRegister() || ToRegister(instr->right()).is(r5));
3895 ToRegister(instr->right()).is(r2)); 4033 DCHECK(ToDoubleRegister(instr->left()).is(d1));
3896 DCHECK(ToDoubleRegister(instr->left()).is(d0)); 4034 DCHECK(ToDoubleRegister(instr->result()).is(d3));
3897 DCHECK(ToDoubleRegister(instr->result()).is(d2));
3898 4035
3899 if (exponent_type.IsSmi()) { 4036 if (exponent_type.IsSmi()) {
3900 MathPowStub stub(isolate(), MathPowStub::TAGGED); 4037 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3901 __ CallStub(&stub); 4038 __ CallStub(&stub);
3902 } else if (exponent_type.IsTagged()) { 4039 } else if (exponent_type.IsTagged()) {
3903 Label no_deopt; 4040 Label no_deopt;
3904 __ JumpIfSmi(r2, &no_deopt); 4041 __ JumpIfSmi(r5, &no_deopt);
3905 __ ldr(r6, FieldMemOperand(r2, HeapObject::kMapOffset)); 4042 __ LoadP(r10, FieldMemOperand(r5, HeapObject::kMapOffset));
3906 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); 4043 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
3907 __ cmp(r6, Operand(ip)); 4044 __ cmp(r10, ip);
3908 DeoptimizeIf(ne, instr->environment()); 4045 DeoptimizeIf(ne, instr->environment());
3909 __ bind(&no_deopt); 4046 __ bind(&no_deopt);
3910 MathPowStub stub(isolate(), MathPowStub::TAGGED); 4047 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3911 __ CallStub(&stub); 4048 __ CallStub(&stub);
3912 } else if (exponent_type.IsInteger32()) { 4049 } else if (exponent_type.IsInteger32()) {
3913 MathPowStub stub(isolate(), MathPowStub::INTEGER); 4050 MathPowStub stub(isolate(), MathPowStub::INTEGER);
3914 __ CallStub(&stub); 4051 __ CallStub(&stub);
3915 } else { 4052 } else {
3916 DCHECK(exponent_type.IsDouble()); 4053 DCHECK(exponent_type.IsDouble());
3917 MathPowStub stub(isolate(), MathPowStub::DOUBLE); 4054 MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3918 __ CallStub(&stub); 4055 __ CallStub(&stub);
3919 } 4056 }
3920 } 4057 }
3921 4058
3922 4059
3923 void LCodeGen::DoMathExp(LMathExp* instr) { 4060 void LCodeGen::DoMathExp(LMathExp* instr) {
3924 DwVfpRegister input = ToDoubleRegister(instr->value()); 4061 DoubleRegister input = ToDoubleRegister(instr->value());
3925 DwVfpRegister result = ToDoubleRegister(instr->result()); 4062 DoubleRegister result = ToDoubleRegister(instr->result());
3926 DwVfpRegister double_scratch1 = ToDoubleRegister(instr->double_temp()); 4063 DoubleRegister double_scratch1 = ToDoubleRegister(instr->double_temp());
3927 DwVfpRegister double_scratch2 = double_scratch0(); 4064 DoubleRegister double_scratch2 = double_scratch0();
3928 Register temp1 = ToRegister(instr->temp1()); 4065 Register temp1 = ToRegister(instr->temp1());
3929 Register temp2 = ToRegister(instr->temp2()); 4066 Register temp2 = ToRegister(instr->temp2());
3930 4067
3931 MathExpGenerator::EmitMathExp( 4068 MathExpGenerator::EmitMathExp(masm(), input, result, double_scratch1,
3932 masm(), input, result, double_scratch1, double_scratch2, 4069 double_scratch2, temp1, temp2, scratch0());
3933 temp1, temp2, scratch0());
3934 } 4070 }
3935 4071
3936 4072
3937 void LCodeGen::DoMathLog(LMathLog* instr) { 4073 void LCodeGen::DoMathLog(LMathLog* instr) {
3938 __ PrepareCallCFunction(0, 1, scratch0()); 4074 __ PrepareCallCFunction(0, 1, scratch0());
3939 __ MovToFloatParameter(ToDoubleRegister(instr->value())); 4075 __ MovToFloatParameter(ToDoubleRegister(instr->value()));
3940 __ CallCFunction(ExternalReference::math_log_double_function(isolate()), 4076 __ CallCFunction(ExternalReference::math_log_double_function(isolate()), 0,
3941 0, 1); 4077 1);
3942 __ MovFromFloatResult(ToDoubleRegister(instr->result())); 4078 __ MovFromFloatResult(ToDoubleRegister(instr->result()));
3943 } 4079 }
3944 4080
3945 4081
3946 void LCodeGen::DoMathClz32(LMathClz32* instr) { 4082 void LCodeGen::DoMathClz32(LMathClz32* instr) {
3947 Register input = ToRegister(instr->value()); 4083 Register input = ToRegister(instr->value());
3948 Register result = ToRegister(instr->result()); 4084 Register result = ToRegister(instr->result());
3949 __ clz(result, input); 4085 __ cntlzw_(result, input);
3950 } 4086 }
3951 4087
3952 4088
3953 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { 4089 void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3954 DCHECK(ToRegister(instr->context()).is(cp)); 4090 DCHECK(ToRegister(instr->context()).is(cp));
3955 DCHECK(ToRegister(instr->function()).is(r1)); 4091 DCHECK(ToRegister(instr->function()).is(r4));
3956 DCHECK(instr->HasPointerMap()); 4092 DCHECK(instr->HasPointerMap());
3957 4093
3958 Handle<JSFunction> known_function = instr->hydrogen()->known_function(); 4094 Handle<JSFunction> known_function = instr->hydrogen()->known_function();
3959 if (known_function.is_null()) { 4095 if (known_function.is_null()) {
3960 LPointerMap* pointers = instr->pointer_map(); 4096 LPointerMap* pointers = instr->pointer_map();
3961 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); 4097 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3962 ParameterCount count(instr->arity()); 4098 ParameterCount count(instr->arity());
3963 __ InvokeFunction(r1, count, CALL_FUNCTION, generator); 4099 __ InvokeFunction(r4, count, CALL_FUNCTION, generator);
3964 } else { 4100 } else {
3965 CallKnownFunction(known_function, 4101 CallKnownFunction(known_function,
3966 instr->hydrogen()->formal_parameter_count(), 4102 instr->hydrogen()->formal_parameter_count(),
3967 instr->arity(), 4103 instr->arity(), instr, R4_CONTAINS_TARGET);
3968 instr,
3969 R1_CONTAINS_TARGET);
3970 } 4104 }
3971 } 4105 }
3972 4106
3973 4107
3974 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) { 4108 void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3975 DCHECK(ToRegister(instr->result()).is(r0)); 4109 DCHECK(ToRegister(instr->result()).is(r3));
3976 4110
3977 LPointerMap* pointers = instr->pointer_map(); 4111 LPointerMap* pointers = instr->pointer_map();
3978 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); 4112 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3979 4113
3980 if (instr->target()->IsConstantOperand()) { 4114 if (instr->target()->IsConstantOperand()) {
3981 LConstantOperand* target = LConstantOperand::cast(instr->target()); 4115 LConstantOperand* target = LConstantOperand::cast(instr->target());
3982 Handle<Code> code = Handle<Code>::cast(ToHandle(target)); 4116 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3983 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET)); 4117 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
3984 PlatformInterfaceDescriptor* call_descriptor = 4118 __ Call(code, RelocInfo::CODE_TARGET);
3985 instr->descriptor()->platform_specific_descriptor();
3986 __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None(), al,
3987 call_descriptor->storage_mode());
3988 } else { 4119 } else {
3989 DCHECK(instr->target()->IsRegister()); 4120 DCHECK(instr->target()->IsRegister());
3990 Register target = ToRegister(instr->target()); 4121 Register target = ToRegister(instr->target());
3991 generator.BeforeCall(__ CallSize(target)); 4122 generator.BeforeCall(__ CallSize(target));
3992 // Make sure we don't emit any additional entries in the constant pool 4123 __ addi(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3993 // before the call to ensure that the CallCodeSize() calculated the correct
3994 // number of instructions for the constant pool load.
3995 {
3996 ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
3997 __ add(target, target, Operand(Code::kHeaderSize - kHeapObjectTag));
3998 }
3999 __ Call(target); 4124 __ Call(target);
4000 } 4125 }
4001 generator.AfterCall(); 4126 generator.AfterCall();
4002 } 4127 }
4003 4128
4004 4129
4005 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) { 4130 void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
4006 DCHECK(ToRegister(instr->function()).is(r1)); 4131 DCHECK(ToRegister(instr->function()).is(r4));
4007 DCHECK(ToRegister(instr->result()).is(r0)); 4132 DCHECK(ToRegister(instr->result()).is(r3));
4008 4133
4009 if (instr->hydrogen()->pass_argument_count()) { 4134 if (instr->hydrogen()->pass_argument_count()) {
4010 __ mov(r0, Operand(instr->arity())); 4135 __ mov(r3, Operand(instr->arity()));
4011 } 4136 }
4012 4137
4013 // Change context. 4138 // Change context.
4014 __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); 4139 __ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
4015 4140
4016 // Load the code entry address 4141 // Load the code entry address
4017 __ ldr(ip, FieldMemOperand(r1, JSFunction::kCodeEntryOffset)); 4142 __ LoadP(ip, FieldMemOperand(r4, JSFunction::kCodeEntryOffset));
4018 __ Call(ip); 4143 __ Call(ip);
4019 4144
4020 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); 4145 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
4021 } 4146 }
4022 4147
4023 4148
4024 void LCodeGen::DoCallFunction(LCallFunction* instr) { 4149 void LCodeGen::DoCallFunction(LCallFunction* instr) {
4025 DCHECK(ToRegister(instr->context()).is(cp)); 4150 DCHECK(ToRegister(instr->context()).is(cp));
4026 DCHECK(ToRegister(instr->function()).is(r1)); 4151 DCHECK(ToRegister(instr->function()).is(r4));
4027 DCHECK(ToRegister(instr->result()).is(r0)); 4152 DCHECK(ToRegister(instr->result()).is(r3));
4028 4153
4029 int arity = instr->arity(); 4154 int arity = instr->arity();
4030 CallFunctionStub stub(isolate(), arity, instr->hydrogen()->function_flags()); 4155 CallFunctionStub stub(isolate(), arity, instr->hydrogen()->function_flags());
4031 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 4156 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4032 } 4157 }
4033 4158
4034 4159
4035 void LCodeGen::DoCallNew(LCallNew* instr) { 4160 void LCodeGen::DoCallNew(LCallNew* instr) {
4036 DCHECK(ToRegister(instr->context()).is(cp)); 4161 DCHECK(ToRegister(instr->context()).is(cp));
4037 DCHECK(ToRegister(instr->constructor()).is(r1)); 4162 DCHECK(ToRegister(instr->constructor()).is(r4));
4038 DCHECK(ToRegister(instr->result()).is(r0)); 4163 DCHECK(ToRegister(instr->result()).is(r3));
4039 4164
4040 __ mov(r0, Operand(instr->arity())); 4165 __ mov(r3, Operand(instr->arity()));
4041 // No cell in r2 for construct type feedback in optimized code 4166 // No cell in r5 for construct type feedback in optimized code
4042 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); 4167 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
4043 CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS); 4168 CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
4044 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); 4169 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
4045 } 4170 }
4046 4171
4047 4172
4048 void LCodeGen::DoCallNewArray(LCallNewArray* instr) { 4173 void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
4049 DCHECK(ToRegister(instr->context()).is(cp)); 4174 DCHECK(ToRegister(instr->context()).is(cp));
4050 DCHECK(ToRegister(instr->constructor()).is(r1)); 4175 DCHECK(ToRegister(instr->constructor()).is(r4));
4051 DCHECK(ToRegister(instr->result()).is(r0)); 4176 DCHECK(ToRegister(instr->result()).is(r3));
4052 4177
4053 __ mov(r0, Operand(instr->arity())); 4178 __ mov(r3, Operand(instr->arity()));
4054 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); 4179 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
4055 ElementsKind kind = instr->hydrogen()->elements_kind(); 4180 ElementsKind kind = instr->hydrogen()->elements_kind();
4056 AllocationSiteOverrideMode override_mode = 4181 AllocationSiteOverrideMode override_mode =
4057 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) 4182 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
4058 ? DISABLE_ALLOCATION_SITES 4183 ? DISABLE_ALLOCATION_SITES
4059 : DONT_OVERRIDE; 4184 : DONT_OVERRIDE;
4060 4185
4061 if (instr->arity() == 0) { 4186 if (instr->arity() == 0) {
4062 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode); 4187 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
4063 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); 4188 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
4064 } else if (instr->arity() == 1) { 4189 } else if (instr->arity() == 1) {
4065 Label done; 4190 Label done;
4066 if (IsFastPackedElementsKind(kind)) { 4191 if (IsFastPackedElementsKind(kind)) {
4067 Label packed_case; 4192 Label packed_case;
4068 // We might need a change here 4193 // We might need a change here
4069 // look at the first argument 4194 // look at the first argument
4070 __ ldr(r5, MemOperand(sp, 0)); 4195 __ LoadP(r8, MemOperand(sp, 0));
4071 __ cmp(r5, Operand::Zero()); 4196 __ cmpi(r8, Operand::Zero());
4072 __ b(eq, &packed_case); 4197 __ beq(&packed_case);
4073 4198
4074 ElementsKind holey_kind = GetHoleyElementsKind(kind); 4199 ElementsKind holey_kind = GetHoleyElementsKind(kind);
4075 ArraySingleArgumentConstructorStub stub(isolate(), 4200 ArraySingleArgumentConstructorStub stub(isolate(), holey_kind,
4076 holey_kind,
4077 override_mode); 4201 override_mode);
4078 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); 4202 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
4079 __ jmp(&done); 4203 __ b(&done);
4080 __ bind(&packed_case); 4204 __ bind(&packed_case);
4081 } 4205 }
4082 4206
4083 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode); 4207 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
4084 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); 4208 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
4085 __ bind(&done); 4209 __ bind(&done);
4086 } else { 4210 } else {
4087 ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode); 4211 ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
4088 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr); 4212 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
4089 } 4213 }
4090 } 4214 }
4091 4215
4092 4216
4093 void LCodeGen::DoCallRuntime(LCallRuntime* instr) { 4217 void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
4094 CallRuntime(instr->function(), instr->arity(), instr); 4218 CallRuntime(instr->function(), instr->arity(), instr);
4095 } 4219 }
4096 4220
4097 4221
4098 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) { 4222 void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
4099 Register function = ToRegister(instr->function()); 4223 Register function = ToRegister(instr->function());
4100 Register code_object = ToRegister(instr->code_object()); 4224 Register code_object = ToRegister(instr->code_object());
4101 __ add(code_object, code_object, Operand(Code::kHeaderSize - kHeapObjectTag)); 4225 __ addi(code_object, code_object,
4102 __ str(code_object, 4226 Operand(Code::kHeaderSize - kHeapObjectTag));
4103 FieldMemOperand(function, JSFunction::kCodeEntryOffset)); 4227 __ StoreP(code_object,
4228 FieldMemOperand(function, JSFunction::kCodeEntryOffset), r0);
4104 } 4229 }
4105 4230
4106 4231
4107 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { 4232 void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
4108 Register result = ToRegister(instr->result()); 4233 Register result = ToRegister(instr->result());
4109 Register base = ToRegister(instr->base_object()); 4234 Register base = ToRegister(instr->base_object());
4110 if (instr->offset()->IsConstantOperand()) { 4235 if (instr->offset()->IsConstantOperand()) {
4111 LConstantOperand* offset = LConstantOperand::cast(instr->offset()); 4236 LConstantOperand* offset = LConstantOperand::cast(instr->offset());
4112 __ add(result, base, Operand(ToInteger32(offset))); 4237 __ Add(result, base, ToInteger32(offset), r0);
4113 } else { 4238 } else {
4114 Register offset = ToRegister(instr->offset()); 4239 Register offset = ToRegister(instr->offset());
4115 __ add(result, base, offset); 4240 __ add(result, base, offset);
4116 } 4241 }
4117 } 4242 }
4118 4243
4119 4244
4120 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { 4245 void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
4246 HStoreNamedField* hinstr = instr->hydrogen();
4121 Representation representation = instr->representation(); 4247 Representation representation = instr->representation();
4122 4248
4123 Register object = ToRegister(instr->object()); 4249 Register object = ToRegister(instr->object());
4124 Register scratch = scratch0(); 4250 Register scratch = scratch0();
4125 HObjectAccess access = instr->hydrogen()->access(); 4251 HObjectAccess access = hinstr->access();
4126 int offset = access.offset(); 4252 int offset = access.offset();
4127 4253
4128 if (access.IsExternalMemory()) { 4254 if (access.IsExternalMemory()) {
4129 Register value = ToRegister(instr->value()); 4255 Register value = ToRegister(instr->value());
4130 MemOperand operand = MemOperand(object, offset); 4256 MemOperand operand = MemOperand(object, offset);
4131 __ Store(value, operand, representation); 4257 __ StoreRepresentation(value, operand, representation, r0);
4132 return; 4258 return;
4133 } 4259 }
4134 4260
4135 __ AssertNotSmi(object); 4261 __ AssertNotSmi(object);
4136 4262
4137 DCHECK(!representation.IsSmi() || 4263 #if V8_TARGET_ARCH_PPC64
4138 !instr->value()->IsConstantOperand() || 4264 DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() ||
4265 IsInteger32(LConstantOperand::cast(instr->value())));
4266 #else
4267 DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() ||
4139 IsSmi(LConstantOperand::cast(instr->value()))); 4268 IsSmi(LConstantOperand::cast(instr->value())));
4269 #endif
4140 if (representation.IsDouble()) { 4270 if (representation.IsDouble()) {
4141 DCHECK(access.IsInobject()); 4271 DCHECK(access.IsInobject());
4142 DCHECK(!instr->hydrogen()->has_transition()); 4272 DCHECK(!hinstr->has_transition());
4143 DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); 4273 DCHECK(!hinstr->NeedsWriteBarrier());
4144 DwVfpRegister value = ToDoubleRegister(instr->value()); 4274 DoubleRegister value = ToDoubleRegister(instr->value());
4145 __ vstr(value, FieldMemOperand(object, offset)); 4275 __ stfd(value, FieldMemOperand(object, offset));
4146 return; 4276 return;
4147 } 4277 }
4148 4278
4149 if (instr->hydrogen()->has_transition()) { 4279 if (hinstr->has_transition()) {
4150 Handle<Map> transition = instr->hydrogen()->transition_map(); 4280 Handle<Map> transition = hinstr->transition_map();
4151 AddDeprecationDependency(transition); 4281 AddDeprecationDependency(transition);
4152 __ mov(scratch, Operand(transition)); 4282 __ mov(scratch, Operand(transition));
4153 __ str(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); 4283 __ StoreP(scratch, FieldMemOperand(object, HeapObject::kMapOffset), r0);
4154 if (instr->hydrogen()->NeedsWriteBarrierForMap()) { 4284 if (hinstr->NeedsWriteBarrierForMap()) {
4155 Register temp = ToRegister(instr->temp()); 4285 Register temp = ToRegister(instr->temp());
4156 // Update the write barrier for the map field. 4286 // Update the write barrier for the map field.
4157 __ RecordWriteForMap(object, 4287 __ RecordWriteForMap(object, scratch, temp, GetLinkRegisterState(),
4158 scratch,
4159 temp,
4160 GetLinkRegisterState(),
4161 kSaveFPRegs); 4288 kSaveFPRegs);
4162 } 4289 }
4163 } 4290 }
4164 4291
4165 // Do the store. 4292 // Do the store.
4166 Register value = ToRegister(instr->value()); 4293 Register value = ToRegister(instr->value());
4294
4295 #if V8_TARGET_ARCH_PPC64
4296 // 64-bit Smi optimization
4297 if (representation.IsSmi() &&
4298 hinstr->value()->representation().IsInteger32()) {
4299 DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
4300 // Store int value directly to upper half of the smi.
4301 STATIC_ASSERT(kSmiTag == 0);
4302 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
4303 #if V8_TARGET_LITTLE_ENDIAN
4304 offset += kPointerSize / 2;
4305 #endif
4306 representation = Representation::Integer32();
4307 }
4308 #endif
4309
4167 if (access.IsInobject()) { 4310 if (access.IsInobject()) {
4168 MemOperand operand = FieldMemOperand(object, offset); 4311 MemOperand operand = FieldMemOperand(object, offset);
4169 __ Store(value, operand, representation); 4312 __ StoreRepresentation(value, operand, representation, r0);
4170 if (instr->hydrogen()->NeedsWriteBarrier()) { 4313 if (hinstr->NeedsWriteBarrier()) {
4171 // Update the write barrier for the object for in-object properties. 4314 // Update the write barrier for the object for in-object properties.
4172 __ RecordWriteField(object, 4315 __ RecordWriteField(
4173 offset, 4316 object, offset, value, scratch, GetLinkRegisterState(), kSaveFPRegs,
4174 value, 4317 EMIT_REMEMBERED_SET, hinstr->SmiCheckForWriteBarrier(),
4175 scratch, 4318 hinstr->PointersToHereCheckForValue());
4176 GetLinkRegisterState(),
4177 kSaveFPRegs,
4178 EMIT_REMEMBERED_SET,
4179 instr->hydrogen()->SmiCheckForWriteBarrier(),
4180 instr->hydrogen()->PointersToHereCheckForValue());
4181 } 4319 }
4182 } else { 4320 } else {
4183 __ ldr(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset)); 4321 __ LoadP(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset));
4184 MemOperand operand = FieldMemOperand(scratch, offset); 4322 MemOperand operand = FieldMemOperand(scratch, offset);
4185 __ Store(value, operand, representation); 4323 __ StoreRepresentation(value, operand, representation, r0);
4186 if (instr->hydrogen()->NeedsWriteBarrier()) { 4324 if (hinstr->NeedsWriteBarrier()) {
4187 // Update the write barrier for the properties array. 4325 // Update the write barrier for the properties array.
4188 // object is used as a scratch register. 4326 // object is used as a scratch register.
4189 __ RecordWriteField(scratch, 4327 __ RecordWriteField(
4190 offset, 4328 scratch, offset, value, object, GetLinkRegisterState(), kSaveFPRegs,
4191 value, 4329 EMIT_REMEMBERED_SET, hinstr->SmiCheckForWriteBarrier(),
4192 object, 4330 hinstr->PointersToHereCheckForValue());
4193 GetLinkRegisterState(),
4194 kSaveFPRegs,
4195 EMIT_REMEMBERED_SET,
4196 instr->hydrogen()->SmiCheckForWriteBarrier(),
4197 instr->hydrogen()->PointersToHereCheckForValue());
4198 } 4331 }
4199 } 4332 }
4200 } 4333 }
4201 4334
4202 4335
4203 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) { 4336 void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
4204 DCHECK(ToRegister(instr->context()).is(cp)); 4337 DCHECK(ToRegister(instr->context()).is(cp));
4205 DCHECK(ToRegister(instr->object()).is(StoreIC::ReceiverRegister())); 4338 DCHECK(ToRegister(instr->object()).is(StoreIC::ReceiverRegister()));
4206 DCHECK(ToRegister(instr->value()).is(StoreIC::ValueRegister())); 4339 DCHECK(ToRegister(instr->value()).is(StoreIC::ValueRegister()));
4207 4340
4208 __ mov(StoreIC::NameRegister(), Operand(instr->name())); 4341 __ mov(StoreIC::NameRegister(), Operand(instr->name()));
4209 Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode()); 4342 Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode());
4210 CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); 4343 CallCode(ic, RelocInfo::CODE_TARGET, instr);
4211 } 4344 }
4212 4345
4213 4346
4214 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { 4347 void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
4215 Condition cc = instr->hydrogen()->allow_equality() ? hi : hs; 4348 Representation representation = instr->hydrogen()->length()->representation();
4216 if (instr->index()->IsConstantOperand()) { 4349 DCHECK(representation.Equals(instr->hydrogen()->index()->representation()));
4217 Operand index = ToOperand(instr->index()); 4350 DCHECK(representation.IsSmiOrInteger32());
4351
4352 Condition cc = instr->hydrogen()->allow_equality() ? lt : le;
4353 if (instr->length()->IsConstantOperand()) {
4354 int32_t length = ToInteger32(LConstantOperand::cast(instr->length()));
4355 Register index = ToRegister(instr->index());
4356 if (representation.IsSmi()) {
4357 __ Cmpli(index, Operand(Smi::FromInt(length)), r0);
4358 } else {
4359 __ Cmplwi(index, Operand(length), r0);
4360 }
4361 cc = CommuteCondition(cc);
4362 } else if (instr->index()->IsConstantOperand()) {
4363 int32_t index = ToInteger32(LConstantOperand::cast(instr->index()));
4218 Register length = ToRegister(instr->length()); 4364 Register length = ToRegister(instr->length());
4219 __ cmp(length, index); 4365 if (representation.IsSmi()) {
4220 cc = CommuteCondition(cc); 4366 __ Cmpli(length, Operand(Smi::FromInt(index)), r0);
4367 } else {
4368 __ Cmplwi(length, Operand(index), r0);
4369 }
4221 } else { 4370 } else {
4222 Register index = ToRegister(instr->index()); 4371 Register index = ToRegister(instr->index());
4223 Operand length = ToOperand(instr->length()); 4372 Register length = ToRegister(instr->length());
4224 __ cmp(index, length); 4373 if (representation.IsSmi()) {
4374 __ cmpl(length, index);
4375 } else {
4376 __ cmplw(length, index);
4377 }
4225 } 4378 }
4226 if (FLAG_debug_code && instr->hydrogen()->skip_check()) { 4379 if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
4227 Label done; 4380 Label done;
4228 __ b(NegateCondition(cc), &done); 4381 __ b(NegateCondition(cc), &done);
4229 __ stop("eliminated bounds check failed"); 4382 __ stop("eliminated bounds check failed");
4230 __ bind(&done); 4383 __ bind(&done);
4231 } else { 4384 } else {
4232 DeoptimizeIf(cc, instr->environment()); 4385 DeoptimizeIf(cc, instr->environment());
4233 } 4386 }
4234 } 4387 }
4235 4388
4236 4389
4237 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) { 4390 void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
4238 Register external_pointer = ToRegister(instr->elements()); 4391 Register external_pointer = ToRegister(instr->elements());
4239 Register key = no_reg; 4392 Register key = no_reg;
4240 ElementsKind elements_kind = instr->elements_kind(); 4393 ElementsKind elements_kind = instr->elements_kind();
4241 bool key_is_constant = instr->key()->IsConstantOperand(); 4394 bool key_is_constant = instr->key()->IsConstantOperand();
4242 int constant_key = 0; 4395 int constant_key = 0;
4243 if (key_is_constant) { 4396 if (key_is_constant) {
4244 constant_key = ToInteger32(LConstantOperand::cast(instr->key())); 4397 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4245 if (constant_key & 0xF0000000) { 4398 if (constant_key & 0xF0000000) {
4246 Abort(kArrayIndexConstantValueTooBig); 4399 Abort(kArrayIndexConstantValueTooBig);
4247 } 4400 }
4248 } else { 4401 } else {
4249 key = ToRegister(instr->key()); 4402 key = ToRegister(instr->key());
4250 } 4403 }
4251 int element_size_shift = ElementsKindToShiftSize(elements_kind); 4404 int element_size_shift = ElementsKindToShiftSize(elements_kind);
4252 int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) 4405 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
4253 ? (element_size_shift - kSmiTagSize) : element_size_shift;
4254 int base_offset = instr->base_offset(); 4406 int base_offset = instr->base_offset();
4255 4407
4256 if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS || 4408 if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
4257 elements_kind == FLOAT32_ELEMENTS || 4409 elements_kind == FLOAT32_ELEMENTS ||
4258 elements_kind == EXTERNAL_FLOAT64_ELEMENTS || 4410 elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
4259 elements_kind == FLOAT64_ELEMENTS) { 4411 elements_kind == FLOAT64_ELEMENTS) {
4260 Register address = scratch0(); 4412 Register address = scratch0();
4261 DwVfpRegister value(ToDoubleRegister(instr->value())); 4413 DoubleRegister value(ToDoubleRegister(instr->value()));
4262 if (key_is_constant) { 4414 if (key_is_constant) {
4263 if (constant_key != 0) { 4415 if (constant_key != 0) {
4264 __ add(address, external_pointer, 4416 __ Add(address, external_pointer, constant_key << element_size_shift,
4265 Operand(constant_key << element_size_shift)); 4417 r0);
4266 } else { 4418 } else {
4267 address = external_pointer; 4419 address = external_pointer;
4268 } 4420 }
4269 } else { 4421 } else {
4270 __ add(address, external_pointer, Operand(key, LSL, shift_size)); 4422 __ IndexToArrayOffset(r0, key, element_size_shift, key_is_smi);
4423 __ add(address, external_pointer, r0);
4271 } 4424 }
4272 if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS || 4425 if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
4273 elements_kind == FLOAT32_ELEMENTS) { 4426 elements_kind == FLOAT32_ELEMENTS) {
4274 __ vcvt_f32_f64(double_scratch0().low(), value); 4427 __ frsp(double_scratch0(), value);
4275 __ vstr(double_scratch0().low(), address, base_offset); 4428 __ stfs(double_scratch0(), MemOperand(address, base_offset));
4276 } else { // Storing doubles, not floats. 4429 } else { // Storing doubles, not floats.
4277 __ vstr(value, address, base_offset); 4430 __ stfd(value, MemOperand(address, base_offset));
4278 } 4431 }
4279 } else { 4432 } else {
4280 Register value(ToRegister(instr->value())); 4433 Register value(ToRegister(instr->value()));
4281 MemOperand mem_operand = PrepareKeyedOperand( 4434 MemOperand mem_operand =
4282 key, external_pointer, key_is_constant, constant_key, 4435 PrepareKeyedOperand(key, external_pointer, key_is_constant, key_is_smi,
4283 element_size_shift, shift_size, 4436 constant_key, element_size_shift, base_offset);
4284 base_offset);
4285 switch (elements_kind) { 4437 switch (elements_kind) {
4286 case EXTERNAL_UINT8_CLAMPED_ELEMENTS: 4438 case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
4287 case EXTERNAL_INT8_ELEMENTS: 4439 case EXTERNAL_INT8_ELEMENTS:
4288 case EXTERNAL_UINT8_ELEMENTS: 4440 case EXTERNAL_UINT8_ELEMENTS:
4289 case UINT8_ELEMENTS: 4441 case UINT8_ELEMENTS:
4290 case UINT8_CLAMPED_ELEMENTS: 4442 case UINT8_CLAMPED_ELEMENTS:
4291 case INT8_ELEMENTS: 4443 case INT8_ELEMENTS:
4292 __ strb(value, mem_operand); 4444 if (key_is_constant) {
4445 __ StoreByte(value, mem_operand, r0);
4446 } else {
4447 __ stbx(value, mem_operand);
4448 }
4293 break; 4449 break;
4294 case EXTERNAL_INT16_ELEMENTS: 4450 case EXTERNAL_INT16_ELEMENTS:
4295 case EXTERNAL_UINT16_ELEMENTS: 4451 case EXTERNAL_UINT16_ELEMENTS:
4296 case INT16_ELEMENTS: 4452 case INT16_ELEMENTS:
4297 case UINT16_ELEMENTS: 4453 case UINT16_ELEMENTS:
4298 __ strh(value, mem_operand); 4454 if (key_is_constant) {
4455 __ StoreHalfWord(value, mem_operand, r0);
4456 } else {
4457 __ sthx(value, mem_operand);
4458 }
4299 break; 4459 break;
4300 case EXTERNAL_INT32_ELEMENTS: 4460 case EXTERNAL_INT32_ELEMENTS:
4301 case EXTERNAL_UINT32_ELEMENTS: 4461 case EXTERNAL_UINT32_ELEMENTS:
4302 case INT32_ELEMENTS: 4462 case INT32_ELEMENTS:
4303 case UINT32_ELEMENTS: 4463 case UINT32_ELEMENTS:
4304 __ str(value, mem_operand); 4464 if (key_is_constant) {
4465 __ StoreWord(value, mem_operand, r0);
4466 } else {
4467 __ stwx(value, mem_operand);
4468 }
4305 break; 4469 break;
4306 case FLOAT32_ELEMENTS: 4470 case FLOAT32_ELEMENTS:
4307 case FLOAT64_ELEMENTS: 4471 case FLOAT64_ELEMENTS:
4308 case EXTERNAL_FLOAT32_ELEMENTS: 4472 case EXTERNAL_FLOAT32_ELEMENTS:
4309 case EXTERNAL_FLOAT64_ELEMENTS: 4473 case EXTERNAL_FLOAT64_ELEMENTS:
4310 case FAST_DOUBLE_ELEMENTS: 4474 case FAST_DOUBLE_ELEMENTS:
4311 case FAST_ELEMENTS: 4475 case FAST_ELEMENTS:
4312 case FAST_SMI_ELEMENTS: 4476 case FAST_SMI_ELEMENTS:
4313 case FAST_HOLEY_DOUBLE_ELEMENTS: 4477 case FAST_HOLEY_DOUBLE_ELEMENTS:
4314 case FAST_HOLEY_ELEMENTS: 4478 case FAST_HOLEY_ELEMENTS:
4315 case FAST_HOLEY_SMI_ELEMENTS: 4479 case FAST_HOLEY_SMI_ELEMENTS:
4316 case DICTIONARY_ELEMENTS: 4480 case DICTIONARY_ELEMENTS:
4317 case SLOPPY_ARGUMENTS_ELEMENTS: 4481 case SLOPPY_ARGUMENTS_ELEMENTS:
4318 UNREACHABLE(); 4482 UNREACHABLE();
4319 break; 4483 break;
4320 } 4484 }
4321 } 4485 }
4322 } 4486 }
4323 4487
4324 4488
4325 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) { 4489 void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
4326 DwVfpRegister value = ToDoubleRegister(instr->value()); 4490 DoubleRegister value = ToDoubleRegister(instr->value());
4327 Register elements = ToRegister(instr->elements()); 4491 Register elements = ToRegister(instr->elements());
4492 Register key = no_reg;
4328 Register scratch = scratch0(); 4493 Register scratch = scratch0();
4329 DwVfpRegister double_scratch = double_scratch0(); 4494 DoubleRegister double_scratch = double_scratch0();
4330 bool key_is_constant = instr->key()->IsConstantOperand(); 4495 bool key_is_constant = instr->key()->IsConstantOperand();
4331 int base_offset = instr->base_offset(); 4496 int constant_key = 0;
4332 4497
4333 // Calculate the effective address of the slot in the array to store the 4498 // Calculate the effective address of the slot in the array to store the
4334 // double value. 4499 // double value.
4335 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
4336 if (key_is_constant) { 4500 if (key_is_constant) {
4337 int constant_key = ToInteger32(LConstantOperand::cast(instr->key())); 4501 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
4338 if (constant_key & 0xF0000000) { 4502 if (constant_key & 0xF0000000) {
4339 Abort(kArrayIndexConstantValueTooBig); 4503 Abort(kArrayIndexConstantValueTooBig);
4340 } 4504 }
4341 __ add(scratch, elements,
4342 Operand((constant_key << element_size_shift) + base_offset));
4343 } else { 4505 } else {
4344 int shift_size = (instr->hydrogen()->key()->representation().IsSmi()) 4506 key = ToRegister(instr->key());
4345 ? (element_size_shift - kSmiTagSize) : element_size_shift; 4507 }
4346 __ add(scratch, elements, Operand(base_offset)); 4508 int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS);
4347 __ add(scratch, scratch, 4509 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
4348 Operand(ToRegister(instr->key()), LSL, shift_size)); 4510 int base_offset = instr->base_offset() + constant_key * kDoubleSize;
4511 if (!key_is_constant) {
4512 __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi);
4513 __ add(scratch, elements, scratch);
4514 elements = scratch;
4515 }
4516 if (!is_int16(base_offset)) {
4517 __ Add(scratch, elements, base_offset, r0);
4518 base_offset = 0;
4519 elements = scratch;
4349 } 4520 }
4350 4521
4351 if (instr->NeedsCanonicalization()) { 4522 if (instr->NeedsCanonicalization()) {
4352 // Force a canonical NaN. 4523 // Force a canonical NaN.
4353 if (masm()->emit_debug_code()) { 4524 __ CanonicalizeNaN(double_scratch, value);
4354 __ vmrs(ip); 4525 __ stfd(double_scratch, MemOperand(elements, base_offset));
4355 __ tst(ip, Operand(kVFPDefaultNaNModeControlBit));
4356 __ Assert(ne, kDefaultNaNModeNotSet);
4357 }
4358 __ VFPCanonicalizeNaN(double_scratch, value);
4359 __ vstr(double_scratch, scratch, 0);
4360 } else { 4526 } else {
4361 __ vstr(value, scratch, 0); 4527 __ stfd(value, MemOperand(elements, base_offset));
4362 } 4528 }
4363 } 4529 }
4364 4530
4365 4531
4366 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) { 4532 void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
4533 HStoreKeyed* hinstr = instr->hydrogen();
4367 Register value = ToRegister(instr->value()); 4534 Register value = ToRegister(instr->value());
4368 Register elements = ToRegister(instr->elements()); 4535 Register elements = ToRegister(instr->elements());
4369 Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) 4536 Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
4370 : no_reg;
4371 Register scratch = scratch0(); 4537 Register scratch = scratch0();
4372 Register store_base = scratch; 4538 Register store_base = scratch;
4373 int offset = instr->base_offset(); 4539 int offset = instr->base_offset();
4374 4540
4375 // Do the store. 4541 // Do the store.
4376 if (instr->key()->IsConstantOperand()) { 4542 if (instr->key()->IsConstantOperand()) {
4377 DCHECK(!instr->hydrogen()->NeedsWriteBarrier()); 4543 DCHECK(!hinstr->NeedsWriteBarrier());
4378 LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); 4544 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
4379 offset += ToInteger32(const_operand) * kPointerSize; 4545 offset += ToInteger32(const_operand) * kPointerSize;
4380 store_base = elements; 4546 store_base = elements;
4381 } else { 4547 } else {
4382 // Even though the HLoadKeyed instruction forces the input 4548 // Even though the HLoadKeyed instruction forces the input
4383 // representation for the key to be an integer, the input gets replaced 4549 // representation for the key to be an integer, the input gets replaced
4384 // during bound check elimination with the index argument to the bounds 4550 // during bound check elimination with the index argument to the bounds
4385 // check, which can be tagged, so that case must be handled here, too. 4551 // check, which can be tagged, so that case must be handled here, too.
4386 if (instr->hydrogen()->key()->representation().IsSmi()) { 4552 if (hinstr->key()->representation().IsSmi()) {
4387 __ add(scratch, elements, Operand::PointerOffsetFromSmiKey(key)); 4553 __ SmiToPtrArrayOffset(scratch, key);
4388 } else { 4554 } else {
4389 __ add(scratch, elements, Operand(key, LSL, kPointerSizeLog2)); 4555 __ ShiftLeftImm(scratch, key, Operand(kPointerSizeLog2));
4390 } 4556 }
4557 __ add(scratch, elements, scratch);
4391 } 4558 }
4392 __ str(value, MemOperand(store_base, offset));
4393 4559
4394 if (instr->hydrogen()->NeedsWriteBarrier()) { 4560 Representation representation = hinstr->value()->representation();
4395 SmiCheck check_needed = 4561
4396 instr->hydrogen()->value()->type().IsHeapObject() 4562 #if V8_TARGET_ARCH_PPC64
4397 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; 4563 // 64-bit Smi optimization
4564 if (representation.IsInteger32()) {
4565 DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
4566 DCHECK(hinstr->elements_kind() == FAST_SMI_ELEMENTS);
4567 // Store int value directly to upper half of the smi.
4568 STATIC_ASSERT(kSmiTag == 0);
4569 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
4570 #if V8_TARGET_LITTLE_ENDIAN
4571 offset += kPointerSize / 2;
4572 #endif
4573 }
4574 #endif
4575
4576 __ StoreRepresentation(value, MemOperand(store_base, offset), representation,
4577 r0);
4578
4579 if (hinstr->NeedsWriteBarrier()) {
4580 SmiCheck check_needed = hinstr->value()->type().IsHeapObject()
4581 ? OMIT_SMI_CHECK
4582 : INLINE_SMI_CHECK;
4398 // Compute address of modified element and store it into key register. 4583 // Compute address of modified element and store it into key register.
4399 __ add(key, store_base, Operand(offset)); 4584 __ Add(key, store_base, offset, r0);
4400 __ RecordWrite(elements, 4585 __ RecordWrite(elements, key, value, GetLinkRegisterState(), kSaveFPRegs,
4401 key, 4586 EMIT_REMEMBERED_SET, check_needed,
4402 value, 4587 hinstr->PointersToHereCheckForValue());
4403 GetLinkRegisterState(),
4404 kSaveFPRegs,
4405 EMIT_REMEMBERED_SET,
4406 check_needed,
4407 instr->hydrogen()->PointersToHereCheckForValue());
4408 } 4588 }
4409 } 4589 }
4410 4590
4411 4591
4412 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) { 4592 void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
4413 // By cases: external, fast double 4593 // By cases: external, fast double
4414 if (instr->is_typed_elements()) { 4594 if (instr->is_typed_elements()) {
4415 DoStoreKeyedExternalArray(instr); 4595 DoStoreKeyedExternalArray(instr);
4416 } else if (instr->hydrogen()->value()->representation().IsDouble()) { 4596 } else if (instr->hydrogen()->value()->representation().IsDouble()) {
4417 DoStoreKeyedFixedDoubleArray(instr); 4597 DoStoreKeyedFixedDoubleArray(instr);
4418 } else { 4598 } else {
4419 DoStoreKeyedFixedArray(instr); 4599 DoStoreKeyedFixedArray(instr);
4420 } 4600 }
4421 } 4601 }
4422 4602
4423 4603
4424 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) { 4604 void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
4425 DCHECK(ToRegister(instr->context()).is(cp)); 4605 DCHECK(ToRegister(instr->context()).is(cp));
4426 DCHECK(ToRegister(instr->object()).is(KeyedStoreIC::ReceiverRegister())); 4606 DCHECK(ToRegister(instr->object()).is(KeyedStoreIC::ReceiverRegister()));
4427 DCHECK(ToRegister(instr->key()).is(KeyedStoreIC::NameRegister())); 4607 DCHECK(ToRegister(instr->key()).is(KeyedStoreIC::NameRegister()));
4428 DCHECK(ToRegister(instr->value()).is(KeyedStoreIC::ValueRegister())); 4608 DCHECK(ToRegister(instr->value()).is(KeyedStoreIC::ValueRegister()));
4429 4609
4430 Handle<Code> ic = instr->strict_mode() == STRICT 4610 Handle<Code> ic =
4431 ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict() 4611 (instr->strict_mode() == STRICT)
4432 : isolate()->builtins()->KeyedStoreIC_Initialize(); 4612 ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
4433 CallCode(ic, RelocInfo::CODE_TARGET, instr, NEVER_INLINE_TARGET_ADDRESS); 4613 : isolate()->builtins()->KeyedStoreIC_Initialize();
4614 CallCode(ic, RelocInfo::CODE_TARGET, instr);
4434 } 4615 }
4435 4616
4436 4617
4437 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { 4618 void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4438 Register object_reg = ToRegister(instr->object()); 4619 Register object_reg = ToRegister(instr->object());
4439 Register scratch = scratch0(); 4620 Register scratch = scratch0();
4440 4621
4441 Handle<Map> from_map = instr->original_map(); 4622 Handle<Map> from_map = instr->original_map();
4442 Handle<Map> to_map = instr->transitioned_map(); 4623 Handle<Map> to_map = instr->transitioned_map();
4443 ElementsKind from_kind = instr->from_kind(); 4624 ElementsKind from_kind = instr->from_kind();
4444 ElementsKind to_kind = instr->to_kind(); 4625 ElementsKind to_kind = instr->to_kind();
4445 4626
4446 Label not_applicable; 4627 Label not_applicable;
4447 __ ldr(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset)); 4628 __ LoadP(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset));
4448 __ cmp(scratch, Operand(from_map)); 4629 __ Cmpi(scratch, Operand(from_map), r0);
4449 __ b(ne, &not_applicable); 4630 __ bne(&not_applicable);
4450 4631
4451 if (IsSimpleMapChangeTransition(from_kind, to_kind)) { 4632 if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
4452 Register new_map_reg = ToRegister(instr->new_map_temp()); 4633 Register new_map_reg = ToRegister(instr->new_map_temp());
4453 __ mov(new_map_reg, Operand(to_map)); 4634 __ mov(new_map_reg, Operand(to_map));
4454 __ str(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset)); 4635 __ StoreP(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset),
4636 r0);
4455 // Write barrier. 4637 // Write barrier.
4456 __ RecordWriteForMap(object_reg, 4638 __ RecordWriteForMap(object_reg, new_map_reg, scratch,
4457 new_map_reg, 4639 GetLinkRegisterState(), kDontSaveFPRegs);
4458 scratch,
4459 GetLinkRegisterState(),
4460 kDontSaveFPRegs);
4461 } else { 4640 } else {
4462 DCHECK(ToRegister(instr->context()).is(cp)); 4641 DCHECK(ToRegister(instr->context()).is(cp));
4463 DCHECK(object_reg.is(r0)); 4642 DCHECK(object_reg.is(r3));
4464 PushSafepointRegistersScope scope(this); 4643 PushSafepointRegistersScope scope(this);
4465 __ Move(r1, to_map); 4644 __ Move(r4, to_map);
4466 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE; 4645 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
4467 TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array); 4646 TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
4468 __ CallStub(&stub); 4647 __ CallStub(&stub);
4469 RecordSafepointWithRegisters( 4648 RecordSafepointWithRegisters(instr->pointer_map(), 0,
4470 instr->pointer_map(), 0, Safepoint::kLazyDeopt); 4649 Safepoint::kLazyDeopt);
4471 } 4650 }
4472 __ bind(&not_applicable); 4651 __ bind(&not_applicable);
4473 } 4652 }
4474 4653
4475 4654
4476 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) { 4655 void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4477 Register object = ToRegister(instr->object()); 4656 Register object = ToRegister(instr->object());
4478 Register temp = ToRegister(instr->temp()); 4657 Register temp = ToRegister(instr->temp());
4479 Label no_memento_found; 4658 Label no_memento_found;
4480 __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found); 4659 __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
4481 DeoptimizeIf(eq, instr->environment()); 4660 DeoptimizeIf(eq, instr->environment());
4482 __ bind(&no_memento_found); 4661 __ bind(&no_memento_found);
4483 } 4662 }
4484 4663
4485 4664
4486 void LCodeGen::DoStringAdd(LStringAdd* instr) { 4665 void LCodeGen::DoStringAdd(LStringAdd* instr) {
4487 DCHECK(ToRegister(instr->context()).is(cp)); 4666 DCHECK(ToRegister(instr->context()).is(cp));
4488 DCHECK(ToRegister(instr->left()).is(r1)); 4667 DCHECK(ToRegister(instr->left()).is(r4));
4489 DCHECK(ToRegister(instr->right()).is(r0)); 4668 DCHECK(ToRegister(instr->right()).is(r3));
4490 StringAddStub stub(isolate(), 4669 StringAddStub stub(isolate(), instr->hydrogen()->flags(),
4491 instr->hydrogen()->flags(),
4492 instr->hydrogen()->pretenure_flag()); 4670 instr->hydrogen()->pretenure_flag());
4493 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 4671 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4494 } 4672 }
4495 4673
4496 4674
4497 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { 4675 void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4498 class DeferredStringCharCodeAt V8_FINAL : public LDeferredCode { 4676 class DeferredStringCharCodeAt V8_FINAL : public LDeferredCode {
4499 public: 4677 public:
4500 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) 4678 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
4501 : LDeferredCode(codegen), instr_(instr) { } 4679 : LDeferredCode(codegen), instr_(instr) {}
4502 virtual void Generate() V8_OVERRIDE { 4680 virtual void Generate() V8_OVERRIDE {
4503 codegen()->DoDeferredStringCharCodeAt(instr_); 4681 codegen()->DoDeferredStringCharCodeAt(instr_);
4504 } 4682 }
4505 virtual LInstruction* instr() V8_OVERRIDE { return instr_; } 4683 virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4684
4506 private: 4685 private:
4507 LStringCharCodeAt* instr_; 4686 LStringCharCodeAt* instr_;
4508 }; 4687 };
4509 4688
4510 DeferredStringCharCodeAt* deferred = 4689 DeferredStringCharCodeAt* deferred =
4511 new(zone()) DeferredStringCharCodeAt(this, instr); 4690 new (zone()) DeferredStringCharCodeAt(this, instr);
4512 4691
4513 StringCharLoadGenerator::Generate(masm(), 4692 StringCharLoadGenerator::Generate(
4514 ToRegister(instr->string()), 4693 masm(), ToRegister(instr->string()), ToRegister(instr->index()),
4515 ToRegister(instr->index()), 4694 ToRegister(instr->result()), deferred->entry());
4516 ToRegister(instr->result()),
4517 deferred->entry());
4518 __ bind(deferred->exit()); 4695 __ bind(deferred->exit());
4519 } 4696 }
4520 4697
4521 4698
4522 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { 4699 void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4523 Register string = ToRegister(instr->string()); 4700 Register string = ToRegister(instr->string());
4524 Register result = ToRegister(instr->result()); 4701 Register result = ToRegister(instr->result());
4525 Register scratch = scratch0(); 4702 Register scratch = scratch0();
4526 4703
4527 // TODO(3095996): Get rid of this. For now, we need to make the 4704 // TODO(3095996): Get rid of this. For now, we need to make the
4528 // result register contain a valid pointer because it is already 4705 // result register contain a valid pointer because it is already
4529 // contained in the register pointer map. 4706 // contained in the register pointer map.
4530 __ mov(result, Operand::Zero()); 4707 __ li(result, Operand::Zero());
4531 4708
4532 PushSafepointRegistersScope scope(this); 4709 PushSafepointRegistersScope scope(this);
4533 __ push(string); 4710 __ push(string);
4534 // Push the index as a smi. This is safe because of the checks in 4711 // Push the index as a smi. This is safe because of the checks in
4535 // DoStringCharCodeAt above. 4712 // DoStringCharCodeAt above.
4536 if (instr->index()->IsConstantOperand()) { 4713 if (instr->index()->IsConstantOperand()) {
4537 int const_index = ToInteger32(LConstantOperand::cast(instr->index())); 4714 int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
4538 __ mov(scratch, Operand(Smi::FromInt(const_index))); 4715 __ LoadSmiLiteral(scratch, Smi::FromInt(const_index));
4539 __ push(scratch); 4716 __ push(scratch);
4540 } else { 4717 } else {
4541 Register index = ToRegister(instr->index()); 4718 Register index = ToRegister(instr->index());
4542 __ SmiTag(index); 4719 __ SmiTag(index);
4543 __ push(index); 4720 __ push(index);
4544 } 4721 }
4545 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr, 4722 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
4546 instr->context()); 4723 instr->context());
4547 __ AssertSmi(r0); 4724 __ AssertSmi(r3);
4548 __ SmiUntag(r0); 4725 __ SmiUntag(r3);
4549 __ StoreToSafepointRegisterSlot(r0, result); 4726 __ StoreToSafepointRegisterSlot(r3, result);
4550 } 4727 }
4551 4728
4552 4729
4553 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { 4730 void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4554 class DeferredStringCharFromCode V8_FINAL : public LDeferredCode { 4731 class DeferredStringCharFromCode : public LDeferredCode {
4555 public: 4732 public:
4556 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) 4733 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
4557 : LDeferredCode(codegen), instr_(instr) { } 4734 : LDeferredCode(codegen), instr_(instr) {}
4558 virtual void Generate() V8_OVERRIDE { 4735 virtual void Generate() V8_OVERRIDE {
4559 codegen()->DoDeferredStringCharFromCode(instr_); 4736 codegen()->DoDeferredStringCharFromCode(instr_);
4560 } 4737 }
4561 virtual LInstruction* instr() V8_OVERRIDE { return instr_; } 4738 virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4739
4562 private: 4740 private:
4563 LStringCharFromCode* instr_; 4741 LStringCharFromCode* instr_;
4564 }; 4742 };
4565 4743
4566 DeferredStringCharFromCode* deferred = 4744 DeferredStringCharFromCode* deferred =
4567 new(zone()) DeferredStringCharFromCode(this, instr); 4745 new (zone()) DeferredStringCharFromCode(this, instr);
4568 4746
4569 DCHECK(instr->hydrogen()->value()->representation().IsInteger32()); 4747 DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4570 Register char_code = ToRegister(instr->char_code()); 4748 Register char_code = ToRegister(instr->char_code());
4571 Register result = ToRegister(instr->result()); 4749 Register result = ToRegister(instr->result());
4572 DCHECK(!char_code.is(result)); 4750 DCHECK(!char_code.is(result));
4573 4751
4574 __ cmp(char_code, Operand(String::kMaxOneByteCharCode)); 4752 __ cmpli(char_code, Operand(String::kMaxOneByteCharCode));
4575 __ b(hi, deferred->entry()); 4753 __ bgt(deferred->entry());
4576 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); 4754 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
4577 __ add(result, result, Operand(char_code, LSL, kPointerSizeLog2)); 4755 __ ShiftLeftImm(r0, char_code, Operand(kPointerSizeLog2));
4578 __ ldr(result, FieldMemOperand(result, FixedArray::kHeaderSize)); 4756 __ add(result, result, r0);
4757 __ LoadP(result, FieldMemOperand(result, FixedArray::kHeaderSize));
4579 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); 4758 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
4580 __ cmp(result, ip); 4759 __ cmp(result, ip);
4581 __ b(eq, deferred->entry()); 4760 __ beq(deferred->entry());
4582 __ bind(deferred->exit()); 4761 __ bind(deferred->exit());
4583 } 4762 }
4584 4763
4585 4764
4586 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { 4765 void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4587 Register char_code = ToRegister(instr->char_code()); 4766 Register char_code = ToRegister(instr->char_code());
4588 Register result = ToRegister(instr->result()); 4767 Register result = ToRegister(instr->result());
4589 4768
4590 // TODO(3095996): Get rid of this. For now, we need to make the 4769 // TODO(3095996): Get rid of this. For now, we need to make the
4591 // result register contain a valid pointer because it is already 4770 // result register contain a valid pointer because it is already
4592 // contained in the register pointer map. 4771 // contained in the register pointer map.
4593 __ mov(result, Operand::Zero()); 4772 __ li(result, Operand::Zero());
4594 4773
4595 PushSafepointRegistersScope scope(this); 4774 PushSafepointRegistersScope scope(this);
4596 __ SmiTag(char_code); 4775 __ SmiTag(char_code);
4597 __ push(char_code); 4776 __ push(char_code);
4598 CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context()); 4777 CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
4599 __ StoreToSafepointRegisterSlot(r0, result); 4778 __ StoreToSafepointRegisterSlot(r3, result);
4600 } 4779 }
4601 4780
4602 4781
4603 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { 4782 void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4604 LOperand* input = instr->value(); 4783 LOperand* input = instr->value();
4605 DCHECK(input->IsRegister() || input->IsStackSlot()); 4784 DCHECK(input->IsRegister() || input->IsStackSlot());
4606 LOperand* output = instr->result(); 4785 LOperand* output = instr->result();
4607 DCHECK(output->IsDoubleRegister()); 4786 DCHECK(output->IsDoubleRegister());
4608 SwVfpRegister single_scratch = double_scratch0().low();
4609 if (input->IsStackSlot()) { 4787 if (input->IsStackSlot()) {
4610 Register scratch = scratch0(); 4788 Register scratch = scratch0();
4611 __ ldr(scratch, ToMemOperand(input)); 4789 __ LoadP(scratch, ToMemOperand(input));
4612 __ vmov(single_scratch, scratch); 4790 __ ConvertIntToDouble(scratch, ToDoubleRegister(output));
4613 } else { 4791 } else {
4614 __ vmov(single_scratch, ToRegister(input)); 4792 __ ConvertIntToDouble(ToRegister(input), ToDoubleRegister(output));
4615 } 4793 }
4616 __ vcvt_f64_s32(ToDoubleRegister(output), single_scratch);
4617 } 4794 }
4618 4795
4619 4796
4620 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { 4797 void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4621 LOperand* input = instr->value(); 4798 LOperand* input = instr->value();
4622 LOperand* output = instr->result(); 4799 LOperand* output = instr->result();
4623 4800 __ ConvertUnsignedIntToDouble(ToRegister(input), ToDoubleRegister(output));
4624 SwVfpRegister flt_scratch = double_scratch0().low();
4625 __ vmov(flt_scratch, ToRegister(input));
4626 __ vcvt_f64_u32(ToDoubleRegister(output), flt_scratch);
4627 } 4801 }
4628 4802
4629 4803
4630 void LCodeGen::DoNumberTagI(LNumberTagI* instr) { 4804 void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
4631 class DeferredNumberTagI V8_FINAL : public LDeferredCode { 4805 class DeferredNumberTagI V8_FINAL : public LDeferredCode {
4632 public: 4806 public:
4633 DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr) 4807 DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
4634 : LDeferredCode(codegen), instr_(instr) { } 4808 : LDeferredCode(codegen), instr_(instr) {}
4635 virtual void Generate() V8_OVERRIDE { 4809 virtual void Generate() V8_OVERRIDE {
4636 codegen()->DoDeferredNumberTagIU(instr_, 4810 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
4637 instr_->value(), 4811 instr_->temp2(), SIGNED_INT32);
4638 instr_->temp1(),
4639 instr_->temp2(),
4640 SIGNED_INT32);
4641 } 4812 }
4642 virtual LInstruction* instr() V8_OVERRIDE { return instr_; } 4813 virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4814
4643 private: 4815 private:
4644 LNumberTagI* instr_; 4816 LNumberTagI* instr_;
4645 }; 4817 };
4646 4818
4647 Register src = ToRegister(instr->value()); 4819 Register src = ToRegister(instr->value());
4648 Register dst = ToRegister(instr->result()); 4820 Register dst = ToRegister(instr->result());
4649 4821
4650 DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr); 4822 DeferredNumberTagI* deferred = new (zone()) DeferredNumberTagI(this, instr);
4651 __ SmiTag(dst, src, SetCC); 4823 #if V8_TARGET_ARCH_PPC64
4652 __ b(vs, deferred->entry()); 4824 __ SmiTag(dst, src);
4825 #else
4826 __ SmiTagCheckOverflow(dst, src, r0);
4827 __ BranchOnOverflow(deferred->entry());
4828 #endif
4653 __ bind(deferred->exit()); 4829 __ bind(deferred->exit());
4654 } 4830 }
4655 4831
4656 4832
4657 void LCodeGen::DoNumberTagU(LNumberTagU* instr) { 4833 void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4658 class DeferredNumberTagU V8_FINAL : public LDeferredCode { 4834 class DeferredNumberTagU V8_FINAL : public LDeferredCode {
4659 public: 4835 public:
4660 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr) 4836 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4661 : LDeferredCode(codegen), instr_(instr) { } 4837 : LDeferredCode(codegen), instr_(instr) {}
4662 virtual void Generate() V8_OVERRIDE { 4838 virtual void Generate() V8_OVERRIDE {
4663 codegen()->DoDeferredNumberTagIU(instr_, 4839 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
4664 instr_->value(), 4840 instr_->temp2(), UNSIGNED_INT32);
4665 instr_->temp1(),
4666 instr_->temp2(),
4667 UNSIGNED_INT32);
4668 } 4841 }
4669 virtual LInstruction* instr() V8_OVERRIDE { return instr_; } 4842 virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4843
4670 private: 4844 private:
4671 LNumberTagU* instr_; 4845 LNumberTagU* instr_;
4672 }; 4846 };
4673 4847
4674 Register input = ToRegister(instr->value()); 4848 Register input = ToRegister(instr->value());
4675 Register result = ToRegister(instr->result()); 4849 Register result = ToRegister(instr->result());
4676 4850
4677 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr); 4851 DeferredNumberTagU* deferred = new (zone()) DeferredNumberTagU(this, instr);
4678 __ cmp(input, Operand(Smi::kMaxValue)); 4852 __ Cmpli(input, Operand(Smi::kMaxValue), r0);
4679 __ b(hi, deferred->entry()); 4853 __ bgt(deferred->entry());
4680 __ SmiTag(result, input); 4854 __ SmiTag(result, input);
4681 __ bind(deferred->exit()); 4855 __ bind(deferred->exit());
4682 } 4856 }
4683 4857
4684 4858
4685 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr, 4859 void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr, LOperand* value,
4686 LOperand* value, 4860 LOperand* temp1, LOperand* temp2,
4687 LOperand* temp1,
4688 LOperand* temp2,
4689 IntegerSignedness signedness) { 4861 IntegerSignedness signedness) {
4690 Label done, slow; 4862 Label done, slow;
4691 Register src = ToRegister(value); 4863 Register src = ToRegister(value);
4692 Register dst = ToRegister(instr->result()); 4864 Register dst = ToRegister(instr->result());
4693 Register tmp1 = scratch0(); 4865 Register tmp1 = scratch0();
4694 Register tmp2 = ToRegister(temp1); 4866 Register tmp2 = ToRegister(temp1);
4695 Register tmp3 = ToRegister(temp2); 4867 Register tmp3 = ToRegister(temp2);
4696 LowDwVfpRegister dbl_scratch = double_scratch0(); 4868 DoubleRegister dbl_scratch = double_scratch0();
4697 4869
4698 if (signedness == SIGNED_INT32) { 4870 if (signedness == SIGNED_INT32) {
4699 // There was overflow, so bits 30 and 31 of the original integer 4871 // There was overflow, so bits 30 and 31 of the original integer
4700 // disagree. Try to allocate a heap number in new space and store 4872 // disagree. Try to allocate a heap number in new space and store
4701 // the value in there. If that fails, call the runtime system. 4873 // the value in there. If that fails, call the runtime system.
4702 if (dst.is(src)) { 4874 if (dst.is(src)) {
4703 __ SmiUntag(src, dst); 4875 __ SmiUntag(src, dst);
4704 __ eor(src, src, Operand(0x80000000)); 4876 __ xoris(src, src, Operand(HeapNumber::kSignMask >> 16));
4705 } 4877 }
4706 __ vmov(dbl_scratch.low(), src); 4878 __ ConvertIntToDouble(src, dbl_scratch);
4707 __ vcvt_f64_s32(dbl_scratch, dbl_scratch.low());
4708 } else { 4879 } else {
4709 __ vmov(dbl_scratch.low(), src); 4880 __ ConvertUnsignedIntToDouble(src, dbl_scratch);
4710 __ vcvt_f64_u32(dbl_scratch, dbl_scratch.low());
4711 } 4881 }
4712 4882
4713 if (FLAG_inline_new) { 4883 if (FLAG_inline_new) {
4714 __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex); 4884 __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex);
4715 __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow, DONT_TAG_RESULT); 4885 __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow);
4716 __ b(&done); 4886 __ b(&done);
4717 } 4887 }
4718 4888
4719 // Slow case: Call the runtime system to do the number allocation. 4889 // Slow case: Call the runtime system to do the number allocation.
4720 __ bind(&slow); 4890 __ bind(&slow);
4721 { 4891 {
4722 // TODO(3095996): Put a valid pointer value in the stack slot where the 4892 // TODO(3095996): Put a valid pointer value in the stack slot where the
4723 // result register is stored, as this register is in the pointer map, but 4893 // result register is stored, as this register is in the pointer map, but
4724 // contains an integer value. 4894 // contains an integer value.
4725 __ mov(dst, Operand::Zero()); 4895 __ li(dst, Operand::Zero());
4726 4896
4727 // Preserve the value of all registers. 4897 // Preserve the value of all registers.
4728 PushSafepointRegistersScope scope(this); 4898 PushSafepointRegistersScope scope(this);
4729 4899
4730 // NumberTagI and NumberTagD use the context from the frame, rather than 4900 // NumberTagI and NumberTagD use the context from the frame, rather than
4731 // the environment's HContext or HInlinedContext value. 4901 // the environment's HContext or HInlinedContext value.
4732 // They only call Runtime::kAllocateHeapNumber. 4902 // They only call Runtime::kAllocateHeapNumber.
4733 // The corresponding HChange instructions are added in a phase that does 4903 // The corresponding HChange instructions are added in a phase that does
4734 // not have easy access to the local context. 4904 // not have easy access to the local context.
4735 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 4905 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4736 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); 4906 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4737 RecordSafepointWithRegisters( 4907 RecordSafepointWithRegisters(instr->pointer_map(), 0,
4738 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); 4908 Safepoint::kNoLazyDeopt);
4739 __ sub(r0, r0, Operand(kHeapObjectTag)); 4909 __ StoreToSafepointRegisterSlot(r3, dst);
4740 __ StoreToSafepointRegisterSlot(r0, dst);
4741 } 4910 }
4742 4911
4743 // Done. Put the value in dbl_scratch into the value of the allocated heap 4912 // Done. Put the value in dbl_scratch into the value of the allocated heap
4744 // number. 4913 // number.
4745 __ bind(&done); 4914 __ bind(&done);
4746 __ vstr(dbl_scratch, dst, HeapNumber::kValueOffset); 4915 __ stfd(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
4747 __ add(dst, dst, Operand(kHeapObjectTag));
4748 } 4916 }
4749 4917
4750 4918
4751 void LCodeGen::DoNumberTagD(LNumberTagD* instr) { 4919 void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4752 class DeferredNumberTagD V8_FINAL : public LDeferredCode { 4920 class DeferredNumberTagD V8_FINAL : public LDeferredCode {
4753 public: 4921 public:
4754 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) 4922 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4755 : LDeferredCode(codegen), instr_(instr) { } 4923 : LDeferredCode(codegen), instr_(instr) {}
4756 virtual void Generate() V8_OVERRIDE { 4924 virtual void Generate() V8_OVERRIDE {
4757 codegen()->DoDeferredNumberTagD(instr_); 4925 codegen()->DoDeferredNumberTagD(instr_);
4758 } 4926 }
4759 virtual LInstruction* instr() V8_OVERRIDE { return instr_; } 4927 virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4928
4760 private: 4929 private:
4761 LNumberTagD* instr_; 4930 LNumberTagD* instr_;
4762 }; 4931 };
4763 4932
4764 DwVfpRegister input_reg = ToDoubleRegister(instr->value()); 4933 DoubleRegister input_reg = ToDoubleRegister(instr->value());
4765 Register scratch = scratch0(); 4934 Register scratch = scratch0();
4766 Register reg = ToRegister(instr->result()); 4935 Register reg = ToRegister(instr->result());
4767 Register temp1 = ToRegister(instr->temp()); 4936 Register temp1 = ToRegister(instr->temp());
4768 Register temp2 = ToRegister(instr->temp2()); 4937 Register temp2 = ToRegister(instr->temp2());
4769 4938
4770 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr); 4939 DeferredNumberTagD* deferred = new (zone()) DeferredNumberTagD(this, instr);
4771 if (FLAG_inline_new) { 4940 if (FLAG_inline_new) {
4772 __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex); 4941 __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
4773 // We want the untagged address first for performance 4942 __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
4774 __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry(),
4775 DONT_TAG_RESULT);
4776 } else { 4943 } else {
4777 __ jmp(deferred->entry()); 4944 __ b(deferred->entry());
4778 } 4945 }
4779 __ bind(deferred->exit()); 4946 __ bind(deferred->exit());
4780 __ vstr(input_reg, reg, HeapNumber::kValueOffset); 4947 __ stfd(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset));
4781 // Now that we have finished with the object's real address tag it
4782 __ add(reg, reg, Operand(kHeapObjectTag));
4783 } 4948 }
4784 4949
4785 4950
4786 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { 4951 void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4787 // TODO(3095996): Get rid of this. For now, we need to make the 4952 // TODO(3095996): Get rid of this. For now, we need to make the
4788 // result register contain a valid pointer because it is already 4953 // result register contain a valid pointer because it is already
4789 // contained in the register pointer map. 4954 // contained in the register pointer map.
4790 Register reg = ToRegister(instr->result()); 4955 Register reg = ToRegister(instr->result());
4791 __ mov(reg, Operand::Zero()); 4956 __ li(reg, Operand::Zero());
4792 4957
4793 PushSafepointRegistersScope scope(this); 4958 PushSafepointRegistersScope scope(this);
4794 // NumberTagI and NumberTagD use the context from the frame, rather than 4959 // NumberTagI and NumberTagD use the context from the frame, rather than
4795 // the environment's HContext or HInlinedContext value. 4960 // the environment's HContext or HInlinedContext value.
4796 // They only call Runtime::kAllocateHeapNumber. 4961 // They only call Runtime::kAllocateHeapNumber.
4797 // The corresponding HChange instructions are added in a phase that does 4962 // The corresponding HChange instructions are added in a phase that does
4798 // not have easy access to the local context. 4963 // not have easy access to the local context.
4799 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 4964 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4800 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); 4965 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4801 RecordSafepointWithRegisters( 4966 RecordSafepointWithRegisters(instr->pointer_map(), 0,
4802 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); 4967 Safepoint::kNoLazyDeopt);
4803 __ sub(r0, r0, Operand(kHeapObjectTag)); 4968 __ StoreToSafepointRegisterSlot(r3, reg);
4804 __ StoreToSafepointRegisterSlot(r0, reg);
4805 } 4969 }
4806 4970
4807 4971
4808 void LCodeGen::DoSmiTag(LSmiTag* instr) { 4972 void LCodeGen::DoSmiTag(LSmiTag* instr) {
4809 HChange* hchange = instr->hydrogen(); 4973 HChange* hchange = instr->hydrogen();
4810 Register input = ToRegister(instr->value()); 4974 Register input = ToRegister(instr->value());
4811 Register output = ToRegister(instr->result()); 4975 Register output = ToRegister(instr->result());
4812 if (hchange->CheckFlag(HValue::kCanOverflow) && 4976 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4813 hchange->value()->CheckFlag(HValue::kUint32)) { 4977 hchange->value()->CheckFlag(HValue::kUint32)) {
4814 __ tst(input, Operand(0xc0000000)); 4978 __ TestUnsignedSmiCandidate(input, r0);
4815 DeoptimizeIf(ne, instr->environment()); 4979 DeoptimizeIf(ne, instr->environment(), cr0);
4816 } 4980 }
4981 #if !V8_TARGET_ARCH_PPC64
4817 if (hchange->CheckFlag(HValue::kCanOverflow) && 4982 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4818 !hchange->value()->CheckFlag(HValue::kUint32)) { 4983 !hchange->value()->CheckFlag(HValue::kUint32)) {
4819 __ SmiTag(output, input, SetCC); 4984 __ SmiTagCheckOverflow(output, input, r0);
4820 DeoptimizeIf(vs, instr->environment()); 4985 DeoptimizeIf(lt, instr->environment(), cr0);
4821 } else { 4986 } else {
4987 #endif
4822 __ SmiTag(output, input); 4988 __ SmiTag(output, input);
4989 #if !V8_TARGET_ARCH_PPC64
4823 } 4990 }
4991 #endif
4824 } 4992 }
4825 4993
4826 4994
4827 void LCodeGen::DoSmiUntag(LSmiUntag* instr) { 4995 void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4996 Register scratch = scratch0();
4828 Register input = ToRegister(instr->value()); 4997 Register input = ToRegister(instr->value());
4829 Register result = ToRegister(instr->result()); 4998 Register result = ToRegister(instr->result());
4830 if (instr->needs_check()) { 4999 if (instr->needs_check()) {
4831 STATIC_ASSERT(kHeapObjectTag == 1); 5000 STATIC_ASSERT(kHeapObjectTag == 1);
4832 // If the input is a HeapObject, SmiUntag will set the carry flag. 5001 // If the input is a HeapObject, value of scratch won't be zero.
4833 __ SmiUntag(result, input, SetCC); 5002 __ andi(scratch, input, Operand(kHeapObjectTag));
4834 DeoptimizeIf(cs, instr->environment()); 5003 __ SmiUntag(result, input);
5004 DeoptimizeIf(ne, instr->environment(), cr0);
4835 } else { 5005 } else {
4836 __ SmiUntag(result, input); 5006 __ SmiUntag(result, input);
4837 } 5007 }
4838 } 5008 }
4839 5009
4840 5010
4841 void LCodeGen::EmitNumberUntagD(Register input_reg, 5011 void LCodeGen::EmitNumberUntagD(Register input_reg, DoubleRegister result_reg,
4842 DwVfpRegister result_reg,
4843 bool can_convert_undefined_to_nan, 5012 bool can_convert_undefined_to_nan,
4844 bool deoptimize_on_minus_zero, 5013 bool deoptimize_on_minus_zero,
4845 LEnvironment* env, 5014 LEnvironment* env, NumberUntagDMode mode) {
4846 NumberUntagDMode mode) {
4847 Register scratch = scratch0(); 5015 Register scratch = scratch0();
4848 SwVfpRegister flt_scratch = double_scratch0().low();
4849 DCHECK(!result_reg.is(double_scratch0())); 5016 DCHECK(!result_reg.is(double_scratch0()));
5017
4850 Label convert, load_smi, done; 5018 Label convert, load_smi, done;
5019
4851 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) { 5020 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4852 // Smi check. 5021 // Smi check.
4853 __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi); 5022 __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi);
5023
4854 // Heap number map check. 5024 // Heap number map check.
4855 __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); 5025 __ LoadP(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4856 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); 5026 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
4857 __ cmp(scratch, Operand(ip)); 5027 __ cmp(scratch, ip);
4858 if (can_convert_undefined_to_nan) { 5028 if (can_convert_undefined_to_nan) {
4859 __ b(ne, &convert); 5029 __ bne(&convert);
4860 } else { 5030 } else {
4861 DeoptimizeIf(ne, env); 5031 DeoptimizeIf(ne, env);
4862 } 5032 }
4863 // load heap number 5033 // load heap number
4864 __ vldr(result_reg, input_reg, HeapNumber::kValueOffset - kHeapObjectTag); 5034 __ lfd(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4865 if (deoptimize_on_minus_zero) { 5035 if (deoptimize_on_minus_zero) {
4866 __ VmovLow(scratch, result_reg); 5036 #if V8_TARGET_ARCH_PPC64
4867 __ cmp(scratch, Operand::Zero()); 5037 __ MovDoubleToInt64(scratch, result_reg);
4868 __ b(ne, &done); 5038 // rotate left by one for simple compare.
4869 __ VmovHigh(scratch, result_reg); 5039 __ rldicl(scratch, scratch, 1, 0);
4870 __ cmp(scratch, Operand(HeapNumber::kSignMask)); 5040 __ cmpi(scratch, Operand(1));
5041 #else
5042 __ MovDoubleToInt64(scratch, ip, result_reg);
5043 __ cmpi(ip, Operand::Zero());
5044 __ bne(&done);
5045 __ Cmpi(scratch, Operand(HeapNumber::kSignMask), r0);
5046 #endif
4871 DeoptimizeIf(eq, env); 5047 DeoptimizeIf(eq, env);
4872 } 5048 }
4873 __ jmp(&done); 5049 __ b(&done);
4874 if (can_convert_undefined_to_nan) { 5050 if (can_convert_undefined_to_nan) {
4875 __ bind(&convert); 5051 __ bind(&convert);
4876 // Convert undefined (and hole) to NaN. 5052 // Convert undefined (and hole) to NaN.
4877 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); 5053 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
4878 __ cmp(input_reg, Operand(ip)); 5054 __ cmp(input_reg, ip);
4879 DeoptimizeIf(ne, env); 5055 DeoptimizeIf(ne, env);
4880 __ LoadRoot(scratch, Heap::kNanValueRootIndex); 5056 __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4881 __ vldr(result_reg, scratch, HeapNumber::kValueOffset - kHeapObjectTag); 5057 __ lfd(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset));
4882 __ jmp(&done); 5058 __ b(&done);
4883 } 5059 }
4884 } else { 5060 } else {
4885 __ SmiUntag(scratch, input_reg); 5061 __ SmiUntag(scratch, input_reg);
4886 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI); 5062 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4887 } 5063 }
4888 // Smi to double register conversion 5064 // Smi to double register conversion
4889 __ bind(&load_smi); 5065 __ bind(&load_smi);
4890 // scratch: untagged value of input_reg 5066 // scratch: untagged value of input_reg
4891 __ vmov(flt_scratch, scratch); 5067 __ ConvertIntToDouble(scratch, result_reg);
4892 __ vcvt_f64_s32(result_reg, flt_scratch);
4893 __ bind(&done); 5068 __ bind(&done);
4894 } 5069 }
4895 5070
4896 5071
4897 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) { 5072 void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
4898 Register input_reg = ToRegister(instr->value()); 5073 Register input_reg = ToRegister(instr->value());
4899 Register scratch1 = scratch0(); 5074 Register scratch1 = scratch0();
4900 Register scratch2 = ToRegister(instr->temp()); 5075 Register scratch2 = ToRegister(instr->temp());
4901 LowDwVfpRegister double_scratch = double_scratch0(); 5076 DoubleRegister double_scratch = double_scratch0();
4902 DwVfpRegister double_scratch2 = ToDoubleRegister(instr->temp2()); 5077 DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2());
4903 5078
4904 DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2)); 5079 DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2));
4905 DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1)); 5080 DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1));
4906 5081
4907 Label done; 5082 Label done;
4908 5083
4909 // The input was optimistically untagged; revert it.
4910 // The carry flag is set when we reach this deferred code as we just executed
4911 // SmiUntag(heap_object, SetCC)
4912 STATIC_ASSERT(kHeapObjectTag == 1);
4913 __ adc(scratch2, input_reg, Operand(input_reg));
4914
4915 // Heap number map check. 5084 // Heap number map check.
4916 __ ldr(scratch1, FieldMemOperand(scratch2, HeapObject::kMapOffset)); 5085 __ LoadP(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset));
4917 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); 5086 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
4918 __ cmp(scratch1, Operand(ip)); 5087 __ cmp(scratch1, ip);
4919 5088
4920 if (instr->truncating()) { 5089 if (instr->truncating()) {
4921 // Performs a truncating conversion of a floating point number as used by 5090 // Performs a truncating conversion of a floating point number as used by
4922 // the JS bitwise operations. 5091 // the JS bitwise operations.
4923 Label no_heap_number, check_bools, check_false; 5092 Label no_heap_number, check_bools, check_false;
4924 __ b(ne, &no_heap_number); 5093 __ bne(&no_heap_number);
5094 __ mr(scratch2, input_reg);
4925 __ TruncateHeapNumberToI(input_reg, scratch2); 5095 __ TruncateHeapNumberToI(input_reg, scratch2);
4926 __ b(&done); 5096 __ b(&done);
4927 5097
4928 // Check for Oddballs. Undefined/False is converted to zero and True to one 5098 // Check for Oddballs. Undefined/False is converted to zero and True to one
4929 // for truncating conversions. 5099 // for truncating conversions.
4930 __ bind(&no_heap_number); 5100 __ bind(&no_heap_number);
4931 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); 5101 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
4932 __ cmp(scratch2, Operand(ip)); 5102 __ cmp(input_reg, ip);
4933 __ b(ne, &check_bools); 5103 __ bne(&check_bools);
4934 __ mov(input_reg, Operand::Zero()); 5104 __ li(input_reg, Operand::Zero());
4935 __ b(&done); 5105 __ b(&done);
4936 5106
4937 __ bind(&check_bools); 5107 __ bind(&check_bools);
4938 __ LoadRoot(ip, Heap::kTrueValueRootIndex); 5108 __ LoadRoot(ip, Heap::kTrueValueRootIndex);
4939 __ cmp(scratch2, Operand(ip)); 5109 __ cmp(input_reg, ip);
4940 __ b(ne, &check_false); 5110 __ bne(&check_false);
4941 __ mov(input_reg, Operand(1)); 5111 __ li(input_reg, Operand(1));
4942 __ b(&done); 5112 __ b(&done);
4943 5113
4944 __ bind(&check_false); 5114 __ bind(&check_false);
4945 __ LoadRoot(ip, Heap::kFalseValueRootIndex); 5115 __ LoadRoot(ip, Heap::kFalseValueRootIndex);
4946 __ cmp(scratch2, Operand(ip)); 5116 __ cmp(input_reg, ip);
4947 DeoptimizeIf(ne, instr->environment()); 5117 DeoptimizeIf(ne, instr->environment());
4948 __ mov(input_reg, Operand::Zero()); 5118 __ li(input_reg, Operand::Zero());
4949 __ b(&done);
4950 } else { 5119 } else {
4951 // Deoptimize if we don't have a heap number. 5120 // Deoptimize if we don't have a heap number.
4952 DeoptimizeIf(ne, instr->environment()); 5121 DeoptimizeIf(ne, instr->environment());
4953 5122
4954 __ sub(ip, scratch2, Operand(kHeapObjectTag)); 5123 __ lfd(double_scratch2,
4955 __ vldr(double_scratch2, ip, HeapNumber::kValueOffset); 5124 FieldMemOperand(input_reg, HeapNumber::kValueOffset));
4956 __ TryDoubleToInt32Exact(input_reg, double_scratch2, double_scratch); 5125 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5126 // preserve heap number pointer in scratch2 for minus zero check below
5127 __ mr(scratch2, input_reg);
5128 }
5129 __ TryDoubleToInt32Exact(input_reg, double_scratch2, scratch1,
5130 double_scratch);
4957 DeoptimizeIf(ne, instr->environment()); 5131 DeoptimizeIf(ne, instr->environment());
4958 5132
4959 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 5133 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4960 __ cmp(input_reg, Operand::Zero()); 5134 __ cmpi(input_reg, Operand::Zero());
4961 __ b(ne, &done); 5135 __ bne(&done);
4962 __ VmovHigh(scratch1, double_scratch2); 5136 __ lwz(scratch1,
4963 __ tst(scratch1, Operand(HeapNumber::kSignMask)); 5137 FieldMemOperand(scratch2, HeapNumber::kValueOffset +
4964 DeoptimizeIf(ne, instr->environment()); 5138 Register::kExponentOffset));
5139 __ cmpwi(scratch1, Operand::Zero());
5140 DeoptimizeIf(lt, instr->environment());
4965 } 5141 }
4966 } 5142 }
4967 __ bind(&done); 5143 __ bind(&done);
4968 } 5144 }
4969 5145
4970 5146
4971 void LCodeGen::DoTaggedToI(LTaggedToI* instr) { 5147 void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4972 class DeferredTaggedToI V8_FINAL : public LDeferredCode { 5148 class DeferredTaggedToI V8_FINAL : public LDeferredCode {
4973 public: 5149 public:
4974 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) 5150 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
4975 : LDeferredCode(codegen), instr_(instr) { } 5151 : LDeferredCode(codegen), instr_(instr) {}
4976 virtual void Generate() V8_OVERRIDE { 5152 virtual void Generate() V8_OVERRIDE {
4977 codegen()->DoDeferredTaggedToI(instr_); 5153 codegen()->DoDeferredTaggedToI(instr_);
4978 } 5154 }
4979 virtual LInstruction* instr() V8_OVERRIDE { return instr_; } 5155 virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
5156
4980 private: 5157 private:
4981 LTaggedToI* instr_; 5158 LTaggedToI* instr_;
4982 }; 5159 };
4983 5160
4984 LOperand* input = instr->value(); 5161 LOperand* input = instr->value();
4985 DCHECK(input->IsRegister()); 5162 DCHECK(input->IsRegister());
4986 DCHECK(input->Equals(instr->result())); 5163 DCHECK(input->Equals(instr->result()));
4987 5164
4988 Register input_reg = ToRegister(input); 5165 Register input_reg = ToRegister(input);
4989 5166
4990 if (instr->hydrogen()->value()->representation().IsSmi()) { 5167 if (instr->hydrogen()->value()->representation().IsSmi()) {
4991 __ SmiUntag(input_reg); 5168 __ SmiUntag(input_reg);
4992 } else { 5169 } else {
4993 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr); 5170 DeferredTaggedToI* deferred = new (zone()) DeferredTaggedToI(this, instr);
4994 5171
4995 // Optimistically untag the input. 5172 // Branch to deferred code if the input is a HeapObject.
4996 // If the input is a HeapObject, SmiUntag will set the carry flag. 5173 __ JumpIfNotSmi(input_reg, deferred->entry());
4997 __ SmiUntag(input_reg, SetCC); 5174
4998 // Branch to deferred code if the input was tagged. 5175 __ SmiUntag(input_reg);
4999 // The deferred code will take care of restoring the tag.
5000 __ b(cs, deferred->entry());
5001 __ bind(deferred->exit()); 5176 __ bind(deferred->exit());
5002 } 5177 }
5003 } 5178 }
5004 5179
5005 5180
5006 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { 5181 void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
5007 LOperand* input = instr->value(); 5182 LOperand* input = instr->value();
5008 DCHECK(input->IsRegister()); 5183 DCHECK(input->IsRegister());
5009 LOperand* result = instr->result(); 5184 LOperand* result = instr->result();
5010 DCHECK(result->IsDoubleRegister()); 5185 DCHECK(result->IsDoubleRegister());
5011 5186
5012 Register input_reg = ToRegister(input); 5187 Register input_reg = ToRegister(input);
5013 DwVfpRegister result_reg = ToDoubleRegister(result); 5188 DoubleRegister result_reg = ToDoubleRegister(result);
5014 5189
5015 HValue* value = instr->hydrogen()->value(); 5190 HValue* value = instr->hydrogen()->value();
5016 NumberUntagDMode mode = value->representation().IsSmi() 5191 NumberUntagDMode mode = value->representation().IsSmi()
5017 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED; 5192 ? NUMBER_CANDIDATE_IS_SMI
5193 : NUMBER_CANDIDATE_IS_ANY_TAGGED;
5018 5194
5019 EmitNumberUntagD(input_reg, result_reg, 5195 EmitNumberUntagD(input_reg, result_reg,
5020 instr->hydrogen()->can_convert_undefined_to_nan(), 5196 instr->hydrogen()->can_convert_undefined_to_nan(),
5021 instr->hydrogen()->deoptimize_on_minus_zero(), 5197 instr->hydrogen()->deoptimize_on_minus_zero(),
5022 instr->environment(), 5198 instr->environment(), mode);
5023 mode);
5024 } 5199 }
5025 5200
5026 5201
5027 void LCodeGen::DoDoubleToI(LDoubleToI* instr) { 5202 void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
5028 Register result_reg = ToRegister(instr->result()); 5203 Register result_reg = ToRegister(instr->result());
5029 Register scratch1 = scratch0(); 5204 Register scratch1 = scratch0();
5030 DwVfpRegister double_input = ToDoubleRegister(instr->value()); 5205 DoubleRegister double_input = ToDoubleRegister(instr->value());
5031 LowDwVfpRegister double_scratch = double_scratch0(); 5206 DoubleRegister double_scratch = double_scratch0();
5032 5207
5033 if (instr->truncating()) { 5208 if (instr->truncating()) {
5034 __ TruncateDoubleToI(result_reg, double_input); 5209 __ TruncateDoubleToI(result_reg, double_input);
5035 } else { 5210 } else {
5036 __ TryDoubleToInt32Exact(result_reg, double_input, double_scratch); 5211 __ TryDoubleToInt32Exact(result_reg, double_input, scratch1,
5212 double_scratch);
5037 // Deoptimize if the input wasn't a int32 (inside a double). 5213 // Deoptimize if the input wasn't a int32 (inside a double).
5038 DeoptimizeIf(ne, instr->environment()); 5214 DeoptimizeIf(ne, instr->environment());
5039 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 5215 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5040 Label done; 5216 Label done;
5041 __ cmp(result_reg, Operand::Zero()); 5217 __ cmpi(result_reg, Operand::Zero());
5042 __ b(ne, &done); 5218 __ bne(&done);
5043 __ VmovHigh(scratch1, double_input); 5219 #if V8_TARGET_ARCH_PPC64
5044 __ tst(scratch1, Operand(HeapNumber::kSignMask)); 5220 __ MovDoubleToInt64(scratch1, double_input);
5045 DeoptimizeIf(ne, instr->environment()); 5221 #else
5222 __ MovDoubleHighToInt(scratch1, double_input);
5223 #endif
5224 __ cmpi(scratch1, Operand::Zero());
5225 DeoptimizeIf(lt, instr->environment());
5046 __ bind(&done); 5226 __ bind(&done);
5047 } 5227 }
5048 } 5228 }
5049 } 5229 }
5050 5230
5051 5231
5052 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) { 5232 void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
5053 Register result_reg = ToRegister(instr->result()); 5233 Register result_reg = ToRegister(instr->result());
5054 Register scratch1 = scratch0(); 5234 Register scratch1 = scratch0();
5055 DwVfpRegister double_input = ToDoubleRegister(instr->value()); 5235 DoubleRegister double_input = ToDoubleRegister(instr->value());
5056 LowDwVfpRegister double_scratch = double_scratch0(); 5236 DoubleRegister double_scratch = double_scratch0();
5057 5237
5058 if (instr->truncating()) { 5238 if (instr->truncating()) {
5059 __ TruncateDoubleToI(result_reg, double_input); 5239 __ TruncateDoubleToI(result_reg, double_input);
5060 } else { 5240 } else {
5061 __ TryDoubleToInt32Exact(result_reg, double_input, double_scratch); 5241 __ TryDoubleToInt32Exact(result_reg, double_input, scratch1,
5242 double_scratch);
5062 // Deoptimize if the input wasn't a int32 (inside a double). 5243 // Deoptimize if the input wasn't a int32 (inside a double).
5063 DeoptimizeIf(ne, instr->environment()); 5244 DeoptimizeIf(ne, instr->environment());
5064 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { 5245 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5065 Label done; 5246 Label done;
5066 __ cmp(result_reg, Operand::Zero()); 5247 __ cmpi(result_reg, Operand::Zero());
5067 __ b(ne, &done); 5248 __ bne(&done);
5068 __ VmovHigh(scratch1, double_input); 5249 #if V8_TARGET_ARCH_PPC64
5069 __ tst(scratch1, Operand(HeapNumber::kSignMask)); 5250 __ MovDoubleToInt64(scratch1, double_input);
5070 DeoptimizeIf(ne, instr->environment()); 5251 #else
5252 __ MovDoubleHighToInt(scratch1, double_input);
5253 #endif
5254 __ cmpi(scratch1, Operand::Zero());
5255 DeoptimizeIf(lt, instr->environment());
5071 __ bind(&done); 5256 __ bind(&done);
5072 } 5257 }
5073 } 5258 }
5074 __ SmiTag(result_reg, SetCC); 5259 #if V8_TARGET_ARCH_PPC64
5075 DeoptimizeIf(vs, instr->environment()); 5260 __ SmiTag(result_reg);
5261 #else
5262 __ SmiTagCheckOverflow(result_reg, r0);
5263 DeoptimizeIf(lt, instr->environment(), cr0);
5264 #endif
5076 } 5265 }
5077 5266
5078 5267
5079 void LCodeGen::DoCheckSmi(LCheckSmi* instr) { 5268 void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
5080 LOperand* input = instr->value(); 5269 LOperand* input = instr->value();
5081 __ SmiTst(ToRegister(input)); 5270 __ TestIfSmi(ToRegister(input), r0);
5082 DeoptimizeIf(ne, instr->environment()); 5271 DeoptimizeIf(ne, instr->environment(), cr0);
5083 } 5272 }
5084 5273
5085 5274
5086 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { 5275 void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
5087 if (!instr->hydrogen()->value()->type().IsHeapObject()) { 5276 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
5088 LOperand* input = instr->value(); 5277 LOperand* input = instr->value();
5089 __ SmiTst(ToRegister(input)); 5278 __ TestIfSmi(ToRegister(input), r0);
5090 DeoptimizeIf(eq, instr->environment()); 5279 DeoptimizeIf(eq, instr->environment(), cr0);
5091 } 5280 }
5092 } 5281 }
5093 5282
5094 5283
5095 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { 5284 void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
5096 Register input = ToRegister(instr->value()); 5285 Register input = ToRegister(instr->value());
5097 Register scratch = scratch0(); 5286 Register scratch = scratch0();
5098 5287
5099 __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); 5288 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5100 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 5289 __ lbz(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
5101 5290
5102 if (instr->hydrogen()->is_interval_check()) { 5291 if (instr->hydrogen()->is_interval_check()) {
5103 InstanceType first; 5292 InstanceType first;
5104 InstanceType last; 5293 InstanceType last;
5105 instr->hydrogen()->GetCheckInterval(&first, &last); 5294 instr->hydrogen()->GetCheckInterval(&first, &last);
5106 5295
5107 __ cmp(scratch, Operand(first)); 5296 __ cmpli(scratch, Operand(first));
5108 5297
5109 // If there is only one type in the interval check for equality. 5298 // If there is only one type in the interval check for equality.
5110 if (first == last) { 5299 if (first == last) {
5111 DeoptimizeIf(ne, instr->environment()); 5300 DeoptimizeIf(ne, instr->environment());
5112 } else { 5301 } else {
5113 DeoptimizeIf(lo, instr->environment()); 5302 DeoptimizeIf(lt, instr->environment());
5114 // Omit check for the last type. 5303 // Omit check for the last type.
5115 if (last != LAST_TYPE) { 5304 if (last != LAST_TYPE) {
5116 __ cmp(scratch, Operand(last)); 5305 __ cmpli(scratch, Operand(last));
5117 DeoptimizeIf(hi, instr->environment()); 5306 DeoptimizeIf(gt, instr->environment());
5118 } 5307 }
5119 } 5308 }
5120 } else { 5309 } else {
5121 uint8_t mask; 5310 uint8_t mask;
5122 uint8_t tag; 5311 uint8_t tag;
5123 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); 5312 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
5124 5313
5125 if (IsPowerOf2(mask)) { 5314 if (IsPowerOf2(mask)) {
5126 DCHECK(tag == 0 || IsPowerOf2(tag)); 5315 DCHECK(tag == 0 || IsPowerOf2(tag));
5127 __ tst(scratch, Operand(mask)); 5316 __ andi(r0, scratch, Operand(mask));
5128 DeoptimizeIf(tag == 0 ? ne : eq, instr->environment()); 5317 DeoptimizeIf(tag == 0 ? ne : eq, instr->environment(), cr0);
5129 } else { 5318 } else {
5130 __ and_(scratch, scratch, Operand(mask)); 5319 __ andi(scratch, scratch, Operand(mask));
5131 __ cmp(scratch, Operand(tag)); 5320 __ cmpi(scratch, Operand(tag));
5132 DeoptimizeIf(ne, instr->environment()); 5321 DeoptimizeIf(ne, instr->environment());
5133 } 5322 }
5134 } 5323 }
5135 } 5324 }
5136 5325
5137 5326
5138 void LCodeGen::DoCheckValue(LCheckValue* instr) { 5327 void LCodeGen::DoCheckValue(LCheckValue* instr) {
5139 Register reg = ToRegister(instr->value()); 5328 Register reg = ToRegister(instr->value());
5140 Handle<HeapObject> object = instr->hydrogen()->object().handle(); 5329 Handle<HeapObject> object = instr->hydrogen()->object().handle();
5141 AllowDeferredHandleDereference smi_check; 5330 AllowDeferredHandleDereference smi_check;
5142 if (isolate()->heap()->InNewSpace(*object)) { 5331 if (isolate()->heap()->InNewSpace(*object)) {
5143 Register reg = ToRegister(instr->value()); 5332 Register reg = ToRegister(instr->value());
5144 Handle<Cell> cell = isolate()->factory()->NewCell(object); 5333 Handle<Cell> cell = isolate()->factory()->NewCell(object);
5145 __ mov(ip, Operand(Handle<Object>(cell))); 5334 __ mov(ip, Operand(Handle<Object>(cell)));
5146 __ ldr(ip, FieldMemOperand(ip, Cell::kValueOffset)); 5335 __ LoadP(ip, FieldMemOperand(ip, Cell::kValueOffset));
5147 __ cmp(reg, ip); 5336 __ cmp(reg, ip);
5148 } else { 5337 } else {
5149 __ cmp(reg, Operand(object)); 5338 __ Cmpi(reg, Operand(object), r0);
5150 } 5339 }
5151 DeoptimizeIf(ne, instr->environment()); 5340 DeoptimizeIf(ne, instr->environment());
5152 } 5341 }
5153 5342
5154 5343
5155 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) { 5344 void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
5156 { 5345 {
5157 PushSafepointRegistersScope scope(this); 5346 PushSafepointRegistersScope scope(this);
5158 __ push(object); 5347 __ push(object);
5159 __ mov(cp, Operand::Zero()); 5348 __ li(cp, Operand::Zero());
5160 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance); 5349 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
5161 RecordSafepointWithRegisters( 5350 RecordSafepointWithRegisters(instr->pointer_map(), 1,
5162 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt); 5351 Safepoint::kNoLazyDeopt);
5163 __ StoreToSafepointRegisterSlot(r0, scratch0()); 5352 __ StoreToSafepointRegisterSlot(r3, scratch0());
5164 } 5353 }
5165 __ tst(scratch0(), Operand(kSmiTagMask)); 5354 __ TestIfSmi(scratch0(), r0);
5166 DeoptimizeIf(eq, instr->environment()); 5355 DeoptimizeIf(eq, instr->environment(), cr0);
5167 } 5356 }
5168 5357
5169 5358
5170 void LCodeGen::DoCheckMaps(LCheckMaps* instr) { 5359 void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
5171 class DeferredCheckMaps V8_FINAL : public LDeferredCode { 5360 class DeferredCheckMaps V8_FINAL : public LDeferredCode {
5172 public: 5361 public:
5173 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object) 5362 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
5174 : LDeferredCode(codegen), instr_(instr), object_(object) { 5363 : LDeferredCode(codegen), instr_(instr), object_(object) {
5175 SetExit(check_maps()); 5364 SetExit(check_maps());
5176 } 5365 }
5177 virtual void Generate() V8_OVERRIDE { 5366 virtual void Generate() V8_OVERRIDE {
5178 codegen()->DoDeferredInstanceMigration(instr_, object_); 5367 codegen()->DoDeferredInstanceMigration(instr_, object_);
5179 } 5368 }
5180 Label* check_maps() { return &check_maps_; } 5369 Label* check_maps() { return &check_maps_; }
5181 virtual LInstruction* instr() V8_OVERRIDE { return instr_; } 5370 virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
5371
5182 private: 5372 private:
5183 LCheckMaps* instr_; 5373 LCheckMaps* instr_;
5184 Label check_maps_; 5374 Label check_maps_;
5185 Register object_; 5375 Register object_;
5186 }; 5376 };
5187 5377
5188 if (instr->hydrogen()->IsStabilityCheck()) { 5378 if (instr->hydrogen()->IsStabilityCheck()) {
5189 const UniqueSet<Map>* maps = instr->hydrogen()->maps(); 5379 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5190 for (int i = 0; i < maps->size(); ++i) { 5380 for (int i = 0; i < maps->size(); ++i) {
5191 AddStabilityDependency(maps->at(i).handle()); 5381 AddStabilityDependency(maps->at(i).handle());
5192 } 5382 }
5193 return; 5383 return;
5194 } 5384 }
5195 5385
5196 Register map_reg = scratch0(); 5386 Register map_reg = scratch0();
5197 5387
5198 LOperand* input = instr->value(); 5388 LOperand* input = instr->value();
5199 DCHECK(input->IsRegister()); 5389 DCHECK(input->IsRegister());
5200 Register reg = ToRegister(input); 5390 Register reg = ToRegister(input);
5201 5391
5202 __ ldr(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset)); 5392 __ LoadP(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset));
5203 5393
5204 DeferredCheckMaps* deferred = NULL; 5394 DeferredCheckMaps* deferred = NULL;
5205 if (instr->hydrogen()->HasMigrationTarget()) { 5395 if (instr->hydrogen()->HasMigrationTarget()) {
5206 deferred = new(zone()) DeferredCheckMaps(this, instr, reg); 5396 deferred = new (zone()) DeferredCheckMaps(this, instr, reg);
5207 __ bind(deferred->check_maps()); 5397 __ bind(deferred->check_maps());
5208 } 5398 }
5209 5399
5210 const UniqueSet<Map>* maps = instr->hydrogen()->maps(); 5400 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5211 Label success; 5401 Label success;
5212 for (int i = 0; i < maps->size() - 1; i++) { 5402 for (int i = 0; i < maps->size() - 1; i++) {
5213 Handle<Map> map = maps->at(i).handle(); 5403 Handle<Map> map = maps->at(i).handle();
5214 __ CompareMap(map_reg, map, &success); 5404 __ CompareMap(map_reg, map, &success);
5215 __ b(eq, &success); 5405 __ beq(&success);
5216 } 5406 }
5217 5407
5218 Handle<Map> map = maps->at(maps->size() - 1).handle(); 5408 Handle<Map> map = maps->at(maps->size() - 1).handle();
5219 __ CompareMap(map_reg, map, &success); 5409 __ CompareMap(map_reg, map, &success);
5220 if (instr->hydrogen()->HasMigrationTarget()) { 5410 if (instr->hydrogen()->HasMigrationTarget()) {
5221 __ b(ne, deferred->entry()); 5411 __ bne(deferred->entry());
5222 } else { 5412 } else {
5223 DeoptimizeIf(ne, instr->environment()); 5413 DeoptimizeIf(ne, instr->environment());
5224 } 5414 }
5225 5415
5226 __ bind(&success); 5416 __ bind(&success);
5227 } 5417 }
5228 5418
5229 5419
5230 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { 5420 void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
5231 DwVfpRegister value_reg = ToDoubleRegister(instr->unclamped()); 5421 DoubleRegister value_reg = ToDoubleRegister(instr->unclamped());
5232 Register result_reg = ToRegister(instr->result()); 5422 Register result_reg = ToRegister(instr->result());
5233 __ ClampDoubleToUint8(result_reg, value_reg, double_scratch0()); 5423 __ ClampDoubleToUint8(result_reg, value_reg, double_scratch0());
5234 } 5424 }
5235 5425
5236 5426
5237 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { 5427 void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
5238 Register unclamped_reg = ToRegister(instr->unclamped()); 5428 Register unclamped_reg = ToRegister(instr->unclamped());
5239 Register result_reg = ToRegister(instr->result()); 5429 Register result_reg = ToRegister(instr->result());
5240 __ ClampUint8(result_reg, unclamped_reg); 5430 __ ClampUint8(result_reg, unclamped_reg);
5241 } 5431 }
5242 5432
5243 5433
5244 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { 5434 void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
5245 Register scratch = scratch0(); 5435 Register scratch = scratch0();
5246 Register input_reg = ToRegister(instr->unclamped()); 5436 Register input_reg = ToRegister(instr->unclamped());
5247 Register result_reg = ToRegister(instr->result()); 5437 Register result_reg = ToRegister(instr->result());
5248 DwVfpRegister temp_reg = ToDoubleRegister(instr->temp()); 5438 DoubleRegister temp_reg = ToDoubleRegister(instr->temp());
5249 Label is_smi, done, heap_number; 5439 Label is_smi, done, heap_number;
5250 5440
5251 // Both smi and heap number cases are handled. 5441 // Both smi and heap number cases are handled.
5252 __ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi); 5442 __ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi);
5253 5443
5254 // Check for heap number 5444 // Check for heap number
5255 __ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); 5445 __ LoadP(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
5256 __ cmp(scratch, Operand(factory()->heap_number_map())); 5446 __ Cmpi(scratch, Operand(factory()->heap_number_map()), r0);
5257 __ b(eq, &heap_number); 5447 __ beq(&heap_number);
5258 5448
5259 // Check for undefined. Undefined is converted to zero for clamping 5449 // Check for undefined. Undefined is converted to zero for clamping
5260 // conversions. 5450 // conversions.
5261 __ cmp(input_reg, Operand(factory()->undefined_value())); 5451 __ Cmpi(input_reg, Operand(factory()->undefined_value()), r0);
5262 DeoptimizeIf(ne, instr->environment()); 5452 DeoptimizeIf(ne, instr->environment());
5263 __ mov(result_reg, Operand::Zero()); 5453 __ li(result_reg, Operand::Zero());
5264 __ jmp(&done); 5454 __ b(&done);
5265 5455
5266 // Heap number 5456 // Heap number
5267 __ bind(&heap_number); 5457 __ bind(&heap_number);
5268 __ vldr(temp_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset)); 5458 __ lfd(temp_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset));
5269 __ ClampDoubleToUint8(result_reg, temp_reg, double_scratch0()); 5459 __ ClampDoubleToUint8(result_reg, temp_reg, double_scratch0());
5270 __ jmp(&done); 5460 __ b(&done);
5271 5461
5272 // smi 5462 // smi
5273 __ bind(&is_smi); 5463 __ bind(&is_smi);
5274 __ ClampUint8(result_reg, result_reg); 5464 __ ClampUint8(result_reg, result_reg);
5275 5465
5276 __ bind(&done); 5466 __ bind(&done);
5277 } 5467 }
5278 5468
5279 5469
5280 void LCodeGen::DoDoubleBits(LDoubleBits* instr) { 5470 void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
5281 DwVfpRegister value_reg = ToDoubleRegister(instr->value()); 5471 DoubleRegister value_reg = ToDoubleRegister(instr->value());
5282 Register result_reg = ToRegister(instr->result()); 5472 Register result_reg = ToRegister(instr->result());
5473
5283 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) { 5474 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
5284 __ VmovHigh(result_reg, value_reg); 5475 __ MovDoubleHighToInt(result_reg, value_reg);
5285 } else { 5476 } else {
5286 __ VmovLow(result_reg, value_reg); 5477 __ MovDoubleLowToInt(result_reg, value_reg);
5287 } 5478 }
5288 } 5479 }
5289 5480
5290 5481
5291 void LCodeGen::DoConstructDouble(LConstructDouble* instr) { 5482 void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
5292 Register hi_reg = ToRegister(instr->hi()); 5483 Register hi_reg = ToRegister(instr->hi());
5293 Register lo_reg = ToRegister(instr->lo()); 5484 Register lo_reg = ToRegister(instr->lo());
5294 DwVfpRegister result_reg = ToDoubleRegister(instr->result()); 5485 DoubleRegister result_reg = ToDoubleRegister(instr->result());
5295 __ VmovHigh(result_reg, hi_reg); 5486 #if V8_TARGET_ARCH_PPC64
5296 __ VmovLow(result_reg, lo_reg); 5487 __ MovInt64ComponentsToDouble(result_reg, hi_reg, lo_reg, r0);
5488 #else
5489 __ MovInt64ToDouble(result_reg, hi_reg, lo_reg);
5490 #endif
5297 } 5491 }
5298 5492
5299 5493
5300 void LCodeGen::DoAllocate(LAllocate* instr) { 5494 void LCodeGen::DoAllocate(LAllocate* instr) {
5301 class DeferredAllocate V8_FINAL : public LDeferredCode { 5495 class DeferredAllocate V8_FINAL : public LDeferredCode {
5302 public: 5496 public:
5303 DeferredAllocate(LCodeGen* codegen, LAllocate* instr) 5497 DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
5304 : LDeferredCode(codegen), instr_(instr) { } 5498 : LDeferredCode(codegen), instr_(instr) {}
5305 virtual void Generate() V8_OVERRIDE { 5499 virtual void Generate() V8_OVERRIDE {
5306 codegen()->DoDeferredAllocate(instr_); 5500 codegen()->DoDeferredAllocate(instr_);
5307 } 5501 }
5308 virtual LInstruction* instr() V8_OVERRIDE { return instr_; } 5502 virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
5503
5309 private: 5504 private:
5310 LAllocate* instr_; 5505 LAllocate* instr_;
5311 }; 5506 };
5312 5507
5313 DeferredAllocate* deferred = 5508 DeferredAllocate* deferred = new (zone()) DeferredAllocate(this, instr);
5314 new(zone()) DeferredAllocate(this, instr);
5315 5509
5316 Register result = ToRegister(instr->result()); 5510 Register result = ToRegister(instr->result());
5317 Register scratch = ToRegister(instr->temp1()); 5511 Register scratch = ToRegister(instr->temp1());
5318 Register scratch2 = ToRegister(instr->temp2()); 5512 Register scratch2 = ToRegister(instr->temp2());
5319 5513
5320 // Allocate memory for the object. 5514 // Allocate memory for the object.
5321 AllocationFlags flags = TAG_OBJECT; 5515 AllocationFlags flags = TAG_OBJECT;
5322 if (instr->hydrogen()->MustAllocateDoubleAligned()) { 5516 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5323 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); 5517 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5324 } 5518 }
5325 if (instr->hydrogen()->IsOldPointerSpaceAllocation()) { 5519 if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
5326 DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation()); 5520 DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation());
5327 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); 5521 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5328 flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE); 5522 flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE);
5329 } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) { 5523 } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
5330 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); 5524 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5331 flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE); 5525 flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE);
5332 } 5526 }
5333 5527
5334 if (instr->size()->IsConstantOperand()) { 5528 if (instr->size()->IsConstantOperand()) {
5335 int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); 5529 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5336 if (size <= Page::kMaxRegularHeapObjectSize) { 5530 if (size <= Page::kMaxRegularHeapObjectSize) {
5337 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags); 5531 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
5338 } else { 5532 } else {
5339 __ jmp(deferred->entry()); 5533 __ b(deferred->entry());
5340 } 5534 }
5341 } else { 5535 } else {
5342 Register size = ToRegister(instr->size()); 5536 Register size = ToRegister(instr->size());
5343 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags); 5537 __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags);
5344 } 5538 }
5345 5539
5346 __ bind(deferred->exit()); 5540 __ bind(deferred->exit());
5347 5541
5348 if (instr->hydrogen()->MustPrefillWithFiller()) { 5542 if (instr->hydrogen()->MustPrefillWithFiller()) {
5349 STATIC_ASSERT(kHeapObjectTag == 1); 5543 STATIC_ASSERT(kHeapObjectTag == 1);
5350 if (instr->size()->IsConstantOperand()) { 5544 if (instr->size()->IsConstantOperand()) {
5351 int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); 5545 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5352 __ mov(scratch, Operand(size - kHeapObjectTag)); 5546 __ LoadIntLiteral(scratch, size - kHeapObjectTag);
5353 } else { 5547 } else {
5354 __ sub(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag)); 5548 __ subi(scratch, ToRegister(instr->size()), Operand(kHeapObjectTag));
5355 } 5549 }
5356 __ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map())); 5550 __ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
5357 Label loop; 5551 Label loop;
5358 __ bind(&loop); 5552 __ bind(&loop);
5359 __ sub(scratch, scratch, Operand(kPointerSize), SetCC); 5553 __ subi(scratch, scratch, Operand(kPointerSize));
5360 __ str(scratch2, MemOperand(result, scratch)); 5554 __ StorePX(scratch2, MemOperand(result, scratch));
5361 __ b(ge, &loop); 5555 __ cmpi(scratch, Operand::Zero());
5556 __ bge(&loop);
5362 } 5557 }
5363 } 5558 }
5364 5559
5365 5560
5366 void LCodeGen::DoDeferredAllocate(LAllocate* instr) { 5561 void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
5367 Register result = ToRegister(instr->result()); 5562 Register result = ToRegister(instr->result());
5368 5563
5369 // TODO(3095996): Get rid of this. For now, we need to make the 5564 // TODO(3095996): Get rid of this. For now, we need to make the
5370 // result register contain a valid pointer because it is already 5565 // result register contain a valid pointer because it is already
5371 // contained in the register pointer map. 5566 // contained in the register pointer map.
5372 __ mov(result, Operand(Smi::FromInt(0))); 5567 __ LoadSmiLiteral(result, Smi::FromInt(0));
5373 5568
5374 PushSafepointRegistersScope scope(this); 5569 PushSafepointRegistersScope scope(this);
5375 if (instr->size()->IsRegister()) { 5570 if (instr->size()->IsRegister()) {
5376 Register size = ToRegister(instr->size()); 5571 Register size = ToRegister(instr->size());
5377 DCHECK(!size.is(result)); 5572 DCHECK(!size.is(result));
5378 __ SmiTag(size); 5573 __ SmiTag(size);
5379 __ push(size); 5574 __ push(size);
5380 } else { 5575 } else {
5381 int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); 5576 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5577 #if !V8_TARGET_ARCH_PPC64
5382 if (size >= 0 && size <= Smi::kMaxValue) { 5578 if (size >= 0 && size <= Smi::kMaxValue) {
5579 #endif
5383 __ Push(Smi::FromInt(size)); 5580 __ Push(Smi::FromInt(size));
5581 #if !V8_TARGET_ARCH_PPC64
5384 } else { 5582 } else {
5385 // We should never get here at runtime => abort 5583 // We should never get here at runtime => abort
5386 __ stop("invalid allocation size"); 5584 __ stop("invalid allocation size");
5387 return; 5585 return;
5388 } 5586 }
5587 #endif
5389 } 5588 }
5390 5589
5391 int flags = AllocateDoubleAlignFlag::encode( 5590 int flags = AllocateDoubleAlignFlag::encode(
5392 instr->hydrogen()->MustAllocateDoubleAligned()); 5591 instr->hydrogen()->MustAllocateDoubleAligned());
5393 if (instr->hydrogen()->IsOldPointerSpaceAllocation()) { 5592 if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
5394 DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation()); 5593 DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation());
5395 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); 5594 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5396 flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE); 5595 flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE);
5397 } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) { 5596 } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
5398 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); 5597 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5399 flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE); 5598 flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE);
5400 } else { 5599 } else {
5401 flags = AllocateTargetSpace::update(flags, NEW_SPACE); 5600 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
5402 } 5601 }
5403 __ Push(Smi::FromInt(flags)); 5602 __ Push(Smi::FromInt(flags));
5404 5603
5405 CallRuntimeFromDeferred( 5604 CallRuntimeFromDeferred(Runtime::kAllocateInTargetSpace, 2, instr,
5406 Runtime::kAllocateInTargetSpace, 2, instr, instr->context()); 5605 instr->context());
5407 __ StoreToSafepointRegisterSlot(r0, result); 5606 __ StoreToSafepointRegisterSlot(r3, result);
5408 } 5607 }
5409 5608
5410 5609
5411 void LCodeGen::DoToFastProperties(LToFastProperties* instr) { 5610 void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
5412 DCHECK(ToRegister(instr->value()).is(r0)); 5611 DCHECK(ToRegister(instr->value()).is(r3));
5413 __ push(r0); 5612 __ push(r3);
5414 CallRuntime(Runtime::kToFastProperties, 1, instr); 5613 CallRuntime(Runtime::kToFastProperties, 1, instr);
5415 } 5614 }
5416 5615
5417 5616
5418 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) { 5617 void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
5419 DCHECK(ToRegister(instr->context()).is(cp)); 5618 DCHECK(ToRegister(instr->context()).is(cp));
5420 Label materialized; 5619 Label materialized;
5421 // Registers will be used as follows: 5620 // Registers will be used as follows:
5422 // r6 = literals array. 5621 // r10 = literals array.
5423 // r1 = regexp literal. 5622 // r4 = regexp literal.
5424 // r0 = regexp literal clone. 5623 // r3 = regexp literal clone.
5425 // r2-5 are used as temporaries. 5624 // r5 and r7-r9 are used as temporaries.
5426 int literal_offset = 5625 int literal_offset =
5427 FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index()); 5626 FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
5428 __ Move(r6, instr->hydrogen()->literals()); 5627 __ Move(r10, instr->hydrogen()->literals());
5429 __ ldr(r1, FieldMemOperand(r6, literal_offset)); 5628 __ LoadP(r4, FieldMemOperand(r10, literal_offset));
5430 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); 5629 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
5431 __ cmp(r1, ip); 5630 __ cmp(r4, ip);
5432 __ b(ne, &materialized); 5631 __ bne(&materialized);
5433 5632
5434 // Create regexp literal using runtime function 5633 // Create regexp literal using runtime function
5435 // Result will be in r0. 5634 // Result will be in r3.
5436 __ mov(r5, Operand(Smi::FromInt(instr->hydrogen()->literal_index()))); 5635 __ LoadSmiLiteral(r9, Smi::FromInt(instr->hydrogen()->literal_index()));
5437 __ mov(r4, Operand(instr->hydrogen()->pattern())); 5636 __ mov(r8, Operand(instr->hydrogen()->pattern()));
5438 __ mov(r3, Operand(instr->hydrogen()->flags())); 5637 __ mov(r7, Operand(instr->hydrogen()->flags()));
5439 __ Push(r6, r5, r4, r3); 5638 __ Push(r10, r9, r8, r7);
5440 CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr); 5639 CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
5441 __ mov(r1, r0); 5640 __ mr(r4, r3);
5442 5641
5443 __ bind(&materialized); 5642 __ bind(&materialized);
5444 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; 5643 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
5445 Label allocated, runtime_allocate; 5644 Label allocated, runtime_allocate;
5446 5645
5447 __ Allocate(size, r0, r2, r3, &runtime_allocate, TAG_OBJECT); 5646 __ Allocate(size, r3, r5, r6, &runtime_allocate, TAG_OBJECT);
5448 __ jmp(&allocated); 5647 __ b(&allocated);
5449 5648
5450 __ bind(&runtime_allocate); 5649 __ bind(&runtime_allocate);
5451 __ mov(r0, Operand(Smi::FromInt(size))); 5650 __ LoadSmiLiteral(r3, Smi::FromInt(size));
5452 __ Push(r1, r0); 5651 __ Push(r4, r3);
5453 CallRuntime(Runtime::kAllocateInNewSpace, 1, instr); 5652 CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
5454 __ pop(r1); 5653 __ pop(r4);
5455 5654
5456 __ bind(&allocated); 5655 __ bind(&allocated);
5457 // Copy the content into the newly allocated memory. 5656 // Copy the content into the newly allocated memory.
5458 __ CopyFields(r0, r1, double_scratch0(), size / kPointerSize); 5657 __ CopyFields(r3, r4, r5.bit(), size / kPointerSize);
5459 } 5658 }
5460 5659
5461 5660
5462 void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) { 5661 void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
5463 DCHECK(ToRegister(instr->context()).is(cp)); 5662 DCHECK(ToRegister(instr->context()).is(cp));
5464 // Use the fast case closure allocation code that allocates in new 5663 // Use the fast case closure allocation code that allocates in new
5465 // space for nested functions that don't need literals cloning. 5664 // space for nested functions that don't need literals cloning.
5466 bool pretenure = instr->hydrogen()->pretenure(); 5665 bool pretenure = instr->hydrogen()->pretenure();
5467 if (!pretenure && instr->hydrogen()->has_no_literals()) { 5666 if (!pretenure && instr->hydrogen()->has_no_literals()) {
5468 FastNewClosureStub stub(isolate(), 5667 FastNewClosureStub stub(isolate(), instr->hydrogen()->strict_mode(),
5469 instr->hydrogen()->strict_mode(),
5470 instr->hydrogen()->is_generator()); 5668 instr->hydrogen()->is_generator());
5471 __ mov(r2, Operand(instr->hydrogen()->shared_info())); 5669 __ mov(r5, Operand(instr->hydrogen()->shared_info()));
5472 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); 5670 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5473 } else { 5671 } else {
5474 __ mov(r2, Operand(instr->hydrogen()->shared_info())); 5672 __ mov(r5, Operand(instr->hydrogen()->shared_info()));
5475 __ mov(r1, Operand(pretenure ? factory()->true_value() 5673 __ mov(r4, Operand(pretenure ? factory()->true_value()
5476 : factory()->false_value())); 5674 : factory()->false_value()));
5477 __ Push(cp, r2, r1); 5675 __ Push(cp, r5, r4);
5478 CallRuntime(Runtime::kNewClosure, 3, instr); 5676 CallRuntime(Runtime::kNewClosure, 3, instr);
5479 } 5677 }
5480 } 5678 }
5481 5679
5482 5680
5483 void LCodeGen::DoTypeof(LTypeof* instr) { 5681 void LCodeGen::DoTypeof(LTypeof* instr) {
5484 Register input = ToRegister(instr->value()); 5682 Register input = ToRegister(instr->value());
5485 __ push(input); 5683 __ push(input);
5486 CallRuntime(Runtime::kTypeof, 1, instr); 5684 CallRuntime(Runtime::kTypeof, 1, instr);
5487 } 5685 }
5488 5686
5489 5687
5490 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { 5688 void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5491 Register input = ToRegister(instr->value()); 5689 Register input = ToRegister(instr->value());
5492 5690
5493 Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_), 5691 Condition final_branch_condition =
5494 instr->FalseLabel(chunk_), 5692 EmitTypeofIs(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), input,
5495 input, 5693 instr->type_literal());
5496 instr->type_literal());
5497 if (final_branch_condition != kNoCondition) { 5694 if (final_branch_condition != kNoCondition) {
5498 EmitBranch(instr, final_branch_condition); 5695 EmitBranch(instr, final_branch_condition);
5499 } 5696 }
5500 } 5697 }
5501 5698
5502 5699
5503 Condition LCodeGen::EmitTypeofIs(Label* true_label, 5700 Condition LCodeGen::EmitTypeofIs(Label* true_label, Label* false_label,
5504 Label* false_label, 5701 Register input, Handle<String> type_name) {
5505 Register input,
5506 Handle<String> type_name) {
5507 Condition final_branch_condition = kNoCondition; 5702 Condition final_branch_condition = kNoCondition;
5508 Register scratch = scratch0(); 5703 Register scratch = scratch0();
5509 Factory* factory = isolate()->factory(); 5704 Factory* factory = isolate()->factory();
5510 if (String::Equals(type_name, factory->number_string())) { 5705 if (String::Equals(type_name, factory->number_string())) {
5511 __ JumpIfSmi(input, true_label); 5706 __ JumpIfSmi(input, true_label);
5512 __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); 5707 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5513 __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex); 5708 __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
5514 final_branch_condition = eq; 5709 final_branch_condition = eq;
5515 5710
5516 } else if (String::Equals(type_name, factory->string_string())) { 5711 } else if (String::Equals(type_name, factory->string_string())) {
5517 __ JumpIfSmi(input, false_label); 5712 __ JumpIfSmi(input, false_label);
5518 __ CompareObjectType(input, scratch, no_reg, FIRST_NONSTRING_TYPE); 5713 __ CompareObjectType(input, scratch, no_reg, FIRST_NONSTRING_TYPE);
5519 __ b(ge, false_label); 5714 __ bge(false_label);
5520 __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); 5715 __ lbz(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5521 __ tst(scratch, Operand(1 << Map::kIsUndetectable)); 5716 __ ExtractBit(r0, scratch, Map::kIsUndetectable);
5717 __ cmpi(r0, Operand::Zero());
5522 final_branch_condition = eq; 5718 final_branch_condition = eq;
5523 5719
5524 } else if (String::Equals(type_name, factory->symbol_string())) { 5720 } else if (String::Equals(type_name, factory->symbol_string())) {
5525 __ JumpIfSmi(input, false_label); 5721 __ JumpIfSmi(input, false_label);
5526 __ CompareObjectType(input, scratch, no_reg, SYMBOL_TYPE); 5722 __ CompareObjectType(input, scratch, no_reg, SYMBOL_TYPE);
5527 final_branch_condition = eq; 5723 final_branch_condition = eq;
5528 5724
5529 } else if (String::Equals(type_name, factory->boolean_string())) { 5725 } else if (String::Equals(type_name, factory->boolean_string())) {
5530 __ CompareRoot(input, Heap::kTrueValueRootIndex); 5726 __ CompareRoot(input, Heap::kTrueValueRootIndex);
5531 __ b(eq, true_label); 5727 __ beq(true_label);
5532 __ CompareRoot(input, Heap::kFalseValueRootIndex); 5728 __ CompareRoot(input, Heap::kFalseValueRootIndex);
5533 final_branch_condition = eq; 5729 final_branch_condition = eq;
5534 5730
5535 } else if (String::Equals(type_name, factory->undefined_string())) { 5731 } else if (String::Equals(type_name, factory->undefined_string())) {
5536 __ CompareRoot(input, Heap::kUndefinedValueRootIndex); 5732 __ CompareRoot(input, Heap::kUndefinedValueRootIndex);
5537 __ b(eq, true_label); 5733 __ beq(true_label);
5538 __ JumpIfSmi(input, false_label); 5734 __ JumpIfSmi(input, false_label);
5539 // Check for undetectable objects => true. 5735 // Check for undetectable objects => true.
5540 __ ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); 5736 __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
5541 __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); 5737 __ lbz(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5542 __ tst(scratch, Operand(1 << Map::kIsUndetectable)); 5738 __ ExtractBit(r0, scratch, Map::kIsUndetectable);
5739 __ cmpi(r0, Operand::Zero());
5543 final_branch_condition = ne; 5740 final_branch_condition = ne;
5544 5741
5545 } else if (String::Equals(type_name, factory->function_string())) { 5742 } else if (String::Equals(type_name, factory->function_string())) {
5546 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); 5743 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
5547 Register type_reg = scratch; 5744 Register type_reg = scratch;
5548 __ JumpIfSmi(input, false_label); 5745 __ JumpIfSmi(input, false_label);
5549 __ CompareObjectType(input, scratch, type_reg, JS_FUNCTION_TYPE); 5746 __ CompareObjectType(input, scratch, type_reg, JS_FUNCTION_TYPE);
5550 __ b(eq, true_label); 5747 __ beq(true_label);
5551 __ cmp(type_reg, Operand(JS_FUNCTION_PROXY_TYPE)); 5748 __ cmpi(type_reg, Operand(JS_FUNCTION_PROXY_TYPE));
5552 final_branch_condition = eq; 5749 final_branch_condition = eq;
5553 5750
5554 } else if (String::Equals(type_name, factory->object_string())) { 5751 } else if (String::Equals(type_name, factory->object_string())) {
5555 Register map = scratch; 5752 Register map = scratch;
5556 __ JumpIfSmi(input, false_label); 5753 __ JumpIfSmi(input, false_label);
5557 __ CompareRoot(input, Heap::kNullValueRootIndex); 5754 __ CompareRoot(input, Heap::kNullValueRootIndex);
5558 __ b(eq, true_label); 5755 __ beq(true_label);
5559 __ CheckObjectTypeRange(input, 5756 __ CheckObjectTypeRange(input, map, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE,
5560 map, 5757 LAST_NONCALLABLE_SPEC_OBJECT_TYPE, false_label);
5561 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE,
5562 LAST_NONCALLABLE_SPEC_OBJECT_TYPE,
5563 false_label);
5564 // Check for undetectable objects => false. 5758 // Check for undetectable objects => false.
5565 __ ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); 5759 __ lbz(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
5566 __ tst(scratch, Operand(1 << Map::kIsUndetectable)); 5760 __ ExtractBit(r0, scratch, Map::kIsUndetectable);
5761 __ cmpi(r0, Operand::Zero());
5567 final_branch_condition = eq; 5762 final_branch_condition = eq;
5568 5763
5569 } else { 5764 } else {
5570 __ b(false_label); 5765 __ b(false_label);
5571 } 5766 }
5572 5767
5573 return final_branch_condition; 5768 return final_branch_condition;
5574 } 5769 }
5575 5770
5576 5771
5577 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) { 5772 void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
5578 Register temp1 = ToRegister(instr->temp()); 5773 Register temp1 = ToRegister(instr->temp());
5579 5774
5580 EmitIsConstructCall(temp1, scratch0()); 5775 EmitIsConstructCall(temp1, scratch0());
5581 EmitBranch(instr, eq); 5776 EmitBranch(instr, eq);
5582 } 5777 }
5583 5778
5584 5779
5585 void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) { 5780 void LCodeGen::EmitIsConstructCall(Register temp1, Register temp2) {
5586 DCHECK(!temp1.is(temp2)); 5781 DCHECK(!temp1.is(temp2));
5587 // Get the frame pointer for the calling frame. 5782 // Get the frame pointer for the calling frame.
5588 __ ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 5783 __ LoadP(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
5589 5784
5590 // Skip the arguments adaptor frame if it exists. 5785 // Skip the arguments adaptor frame if it exists.
5591 __ ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset)); 5786 Label check_frame_marker;
5592 __ cmp(temp2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); 5787 __ LoadP(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
5593 __ ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset), eq); 5788 __ CmpSmiLiteral(temp2, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
5789 __ bne(&check_frame_marker);
5790 __ LoadP(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
5594 5791
5595 // Check the marker in the calling frame. 5792 // Check the marker in the calling frame.
5596 __ ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset)); 5793 __ bind(&check_frame_marker);
5597 __ cmp(temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); 5794 __ LoadP(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
5795 __ CmpSmiLiteral(temp1, Smi::FromInt(StackFrame::CONSTRUCT), r0);
5598 } 5796 }
5599 5797
5600 5798
5601 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) { 5799 void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5602 if (!info()->IsStub()) { 5800 if (!info()->IsStub()) {
5603 // Ensure that we have enough space after the previous lazy-bailout 5801 // Ensure that we have enough space after the previous lazy-bailout
5604 // instruction for patching the code here. 5802 // instruction for patching the code here.
5605 int current_pc = masm()->pc_offset(); 5803 int current_pc = masm()->pc_offset();
5606 if (current_pc < last_lazy_deopt_pc_ + space_needed) { 5804 if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5607 // Block literal pool emission for duration of padding.
5608 Assembler::BlockConstPoolScope block_const_pool(masm());
5609 int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; 5805 int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5610 DCHECK_EQ(0, padding_size % Assembler::kInstrSize); 5806 DCHECK_EQ(0, padding_size % Assembler::kInstrSize);
5611 while (padding_size > 0) { 5807 while (padding_size > 0) {
5612 __ nop(); 5808 __ nop();
5613 padding_size -= Assembler::kInstrSize; 5809 padding_size -= Assembler::kInstrSize;
5614 } 5810 }
5615 } 5811 }
5616 } 5812 }
5617 last_lazy_deopt_pc_ = masm()->pc_offset(); 5813 last_lazy_deopt_pc_ = masm()->pc_offset();
5618 } 5814 }
(...skipping 42 matching lines...) Expand 10 before | Expand all | Expand 10 after
5661 DCHECK(instr->HasEnvironment()); 5857 DCHECK(instr->HasEnvironment());
5662 LEnvironment* env = instr->environment(); 5858 LEnvironment* env = instr->environment();
5663 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); 5859 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5664 } 5860 }
5665 5861
5666 5862
5667 void LCodeGen::DoStackCheck(LStackCheck* instr) { 5863 void LCodeGen::DoStackCheck(LStackCheck* instr) {
5668 class DeferredStackCheck V8_FINAL : public LDeferredCode { 5864 class DeferredStackCheck V8_FINAL : public LDeferredCode {
5669 public: 5865 public:
5670 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) 5866 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5671 : LDeferredCode(codegen), instr_(instr) { } 5867 : LDeferredCode(codegen), instr_(instr) {}
5672 virtual void Generate() V8_OVERRIDE { 5868 virtual void Generate() V8_OVERRIDE {
5673 codegen()->DoDeferredStackCheck(instr_); 5869 codegen()->DoDeferredStackCheck(instr_);
5674 } 5870 }
5675 virtual LInstruction* instr() V8_OVERRIDE { return instr_; } 5871 virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
5872
5676 private: 5873 private:
5677 LStackCheck* instr_; 5874 LStackCheck* instr_;
5678 }; 5875 };
5679 5876
5680 DCHECK(instr->HasEnvironment()); 5877 DCHECK(instr->HasEnvironment());
5681 LEnvironment* env = instr->environment(); 5878 LEnvironment* env = instr->environment();
5682 // There is no LLazyBailout instruction for stack-checks. We have to 5879 // There is no LLazyBailout instruction for stack-checks. We have to
5683 // prepare for lazy deoptimization explicitly here. 5880 // prepare for lazy deoptimization explicitly here.
5684 if (instr->hydrogen()->is_function_entry()) { 5881 if (instr->hydrogen()->is_function_entry()) {
5685 // Perform stack overflow check. 5882 // Perform stack overflow check.
5686 Label done; 5883 Label done;
5687 __ LoadRoot(ip, Heap::kStackLimitRootIndex); 5884 __ LoadRoot(ip, Heap::kStackLimitRootIndex);
5688 __ cmp(sp, Operand(ip)); 5885 __ cmpl(sp, ip);
5689 __ b(hs, &done); 5886 __ bge(&done);
5690 Handle<Code> stack_check = isolate()->builtins()->StackCheck();
5691 PredictableCodeSizeScope predictable(masm(),
5692 CallCodeSize(stack_check, RelocInfo::CODE_TARGET));
5693 DCHECK(instr->context()->IsRegister()); 5887 DCHECK(instr->context()->IsRegister());
5694 DCHECK(ToRegister(instr->context()).is(cp)); 5888 DCHECK(ToRegister(instr->context()).is(cp));
5695 CallCode(stack_check, RelocInfo::CODE_TARGET, instr); 5889 CallCode(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET,
5890 instr);
5696 __ bind(&done); 5891 __ bind(&done);
5697 } else { 5892 } else {
5698 DCHECK(instr->hydrogen()->is_backwards_branch()); 5893 DCHECK(instr->hydrogen()->is_backwards_branch());
5699 // Perform stack overflow check if this goto needs it before jumping. 5894 // Perform stack overflow check if this goto needs it before jumping.
5700 DeferredStackCheck* deferred_stack_check = 5895 DeferredStackCheck* deferred_stack_check =
5701 new(zone()) DeferredStackCheck(this, instr); 5896 new (zone()) DeferredStackCheck(this, instr);
5702 __ LoadRoot(ip, Heap::kStackLimitRootIndex); 5897 __ LoadRoot(ip, Heap::kStackLimitRootIndex);
5703 __ cmp(sp, Operand(ip)); 5898 __ cmpl(sp, ip);
5704 __ b(lo, deferred_stack_check->entry()); 5899 __ blt(deferred_stack_check->entry());
5705 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); 5900 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5706 __ bind(instr->done_label()); 5901 __ bind(instr->done_label());
5707 deferred_stack_check->SetExit(instr->done_label()); 5902 deferred_stack_check->SetExit(instr->done_label());
5708 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); 5903 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5709 // Don't record a deoptimization index for the safepoint here. 5904 // Don't record a deoptimization index for the safepoint here.
5710 // This will be done explicitly when emitting call and the safepoint in 5905 // This will be done explicitly when emitting call and the safepoint in
5711 // the deferred code. 5906 // the deferred code.
5712 } 5907 }
5713 } 5908 }
5714 5909
5715 5910
5716 void LCodeGen::DoOsrEntry(LOsrEntry* instr) { 5911 void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5717 // This is a pseudo-instruction that ensures that the environment here is 5912 // This is a pseudo-instruction that ensures that the environment here is
5718 // properly registered for deoptimization and records the assembler's PC 5913 // properly registered for deoptimization and records the assembler's PC
5719 // offset. 5914 // offset.
5720 LEnvironment* environment = instr->environment(); 5915 LEnvironment* environment = instr->environment();
5721 5916
5722 // If the environment were already registered, we would have no way of 5917 // If the environment were already registered, we would have no way of
5723 // backpatching it with the spill slot operands. 5918 // backpatching it with the spill slot operands.
5724 DCHECK(!environment->HasBeenRegistered()); 5919 DCHECK(!environment->HasBeenRegistered());
5725 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); 5920 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5726 5921
5727 GenerateOsrPrologue(); 5922 GenerateOsrPrologue();
5728 } 5923 }
5729 5924
5730 5925
5731 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { 5926 void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5732 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); 5927 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
5733 __ cmp(r0, ip); 5928 __ cmp(r3, ip);
5734 DeoptimizeIf(eq, instr->environment()); 5929 DeoptimizeIf(eq, instr->environment());
5735 5930
5736 Register null_value = r5; 5931 Register null_value = r8;
5737 __ LoadRoot(null_value, Heap::kNullValueRootIndex); 5932 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
5738 __ cmp(r0, null_value); 5933 __ cmp(r3, null_value);
5739 DeoptimizeIf(eq, instr->environment()); 5934 DeoptimizeIf(eq, instr->environment());
5740 5935
5741 __ SmiTst(r0); 5936 __ TestIfSmi(r3, r0);
5742 DeoptimizeIf(eq, instr->environment()); 5937 DeoptimizeIf(eq, instr->environment(), cr0);
5743 5938
5744 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); 5939 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
5745 __ CompareObjectType(r0, r1, r1, LAST_JS_PROXY_TYPE); 5940 __ CompareObjectType(r3, r4, r4, LAST_JS_PROXY_TYPE);
5746 DeoptimizeIf(le, instr->environment()); 5941 DeoptimizeIf(le, instr->environment());
5747 5942
5748 Label use_cache, call_runtime; 5943 Label use_cache, call_runtime;
5749 __ CheckEnumCache(null_value, &call_runtime); 5944 __ CheckEnumCache(null_value, &call_runtime);
5750 5945
5751 __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); 5946 __ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
5752 __ b(&use_cache); 5947 __ b(&use_cache);
5753 5948
5754 // Get the set of properties to enumerate. 5949 // Get the set of properties to enumerate.
5755 __ bind(&call_runtime); 5950 __ bind(&call_runtime);
5756 __ push(r0); 5951 __ push(r3);
5757 CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr); 5952 CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
5758 5953
5759 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); 5954 __ LoadP(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
5760 __ LoadRoot(ip, Heap::kMetaMapRootIndex); 5955 __ LoadRoot(ip, Heap::kMetaMapRootIndex);
5761 __ cmp(r1, ip); 5956 __ cmp(r4, ip);
5762 DeoptimizeIf(ne, instr->environment()); 5957 DeoptimizeIf(ne, instr->environment());
5763 __ bind(&use_cache); 5958 __ bind(&use_cache);
5764 } 5959 }
5765 5960
5766 5961
5767 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { 5962 void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5768 Register map = ToRegister(instr->map()); 5963 Register map = ToRegister(instr->map());
5769 Register result = ToRegister(instr->result()); 5964 Register result = ToRegister(instr->result());
5770 Label load_cache, done; 5965 Label load_cache, done;
5771 __ EnumLength(result, map); 5966 __ EnumLength(result, map);
5772 __ cmp(result, Operand(Smi::FromInt(0))); 5967 __ CmpSmiLiteral(result, Smi::FromInt(0), r0);
5773 __ b(ne, &load_cache); 5968 __ bne(&load_cache);
5774 __ mov(result, Operand(isolate()->factory()->empty_fixed_array())); 5969 __ mov(result, Operand(isolate()->factory()->empty_fixed_array()));
5775 __ jmp(&done); 5970 __ b(&done);
5776 5971
5777 __ bind(&load_cache); 5972 __ bind(&load_cache);
5778 __ LoadInstanceDescriptors(map, result); 5973 __ LoadInstanceDescriptors(map, result);
5779 __ ldr(result, 5974 __ LoadP(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
5780 FieldMemOperand(result, DescriptorArray::kEnumCacheOffset)); 5975 __ LoadP(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
5781 __ ldr(result, 5976 __ cmpi(result, Operand::Zero());
5782 FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
5783 __ cmp(result, Operand::Zero());
5784 DeoptimizeIf(eq, instr->environment()); 5977 DeoptimizeIf(eq, instr->environment());
5785 5978
5786 __ bind(&done); 5979 __ bind(&done);
5787 } 5980 }
5788 5981
5789 5982
5790 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { 5983 void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5791 Register object = ToRegister(instr->value()); 5984 Register object = ToRegister(instr->value());
5792 Register map = ToRegister(instr->map()); 5985 Register map = ToRegister(instr->map());
5793 __ ldr(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset)); 5986 __ LoadP(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset));
5794 __ cmp(map, scratch0()); 5987 __ cmp(map, scratch0());
5795 DeoptimizeIf(ne, instr->environment()); 5988 DeoptimizeIf(ne, instr->environment());
5796 } 5989 }
5797 5990
5798 5991
5799 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr, 5992 void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5800 Register result, 5993 Register result, Register object,
5801 Register object,
5802 Register index) { 5994 Register index) {
5803 PushSafepointRegistersScope scope(this); 5995 PushSafepointRegistersScope scope(this);
5804 __ Push(object); 5996 __ Push(object, index);
5805 __ Push(index); 5997 __ li(cp, Operand::Zero());
5806 __ mov(cp, Operand::Zero());
5807 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble); 5998 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5808 RecordSafepointWithRegisters( 5999 RecordSafepointWithRegisters(instr->pointer_map(), 2,
5809 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt); 6000 Safepoint::kNoLazyDeopt);
5810 __ StoreToSafepointRegisterSlot(r0, result); 6001 __ StoreToSafepointRegisterSlot(r3, result);
5811 } 6002 }
5812 6003
5813 6004
5814 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { 6005 void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5815 class DeferredLoadMutableDouble V8_FINAL : public LDeferredCode { 6006 class DeferredLoadMutableDouble V8_FINAL : public LDeferredCode {
5816 public: 6007 public:
5817 DeferredLoadMutableDouble(LCodeGen* codegen, 6008 DeferredLoadMutableDouble(LCodeGen* codegen, LLoadFieldByIndex* instr,
5818 LLoadFieldByIndex* instr, 6009 Register result, Register object, Register index)
5819 Register result,
5820 Register object,
5821 Register index)
5822 : LDeferredCode(codegen), 6010 : LDeferredCode(codegen),
5823 instr_(instr), 6011 instr_(instr),
5824 result_(result), 6012 result_(result),
5825 object_(object), 6013 object_(object),
5826 index_(index) { 6014 index_(index) {}
5827 }
5828 virtual void Generate() V8_OVERRIDE { 6015 virtual void Generate() V8_OVERRIDE {
5829 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_); 6016 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
5830 } 6017 }
5831 virtual LInstruction* instr() V8_OVERRIDE { return instr_; } 6018 virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
6019
5832 private: 6020 private:
5833 LLoadFieldByIndex* instr_; 6021 LLoadFieldByIndex* instr_;
5834 Register result_; 6022 Register result_;
5835 Register object_; 6023 Register object_;
5836 Register index_; 6024 Register index_;
5837 }; 6025 };
5838 6026
5839 Register object = ToRegister(instr->object()); 6027 Register object = ToRegister(instr->object());
5840 Register index = ToRegister(instr->index()); 6028 Register index = ToRegister(instr->index());
5841 Register result = ToRegister(instr->result()); 6029 Register result = ToRegister(instr->result());
5842 Register scratch = scratch0(); 6030 Register scratch = scratch0();
5843 6031
5844 DeferredLoadMutableDouble* deferred; 6032 DeferredLoadMutableDouble* deferred;
5845 deferred = new(zone()) DeferredLoadMutableDouble( 6033 deferred = new (zone())
5846 this, instr, result, object, index); 6034 DeferredLoadMutableDouble(this, instr, result, object, index);
5847 6035
5848 Label out_of_object, done; 6036 Label out_of_object, done;
5849 6037
5850 __ tst(index, Operand(Smi::FromInt(1))); 6038 __ TestBitMask(index, reinterpret_cast<uintptr_t>(Smi::FromInt(1)), r0);
5851 __ b(ne, deferred->entry()); 6039 __ bne(deferred->entry(), cr0);
5852 __ mov(index, Operand(index, ASR, 1)); 6040 __ ShiftRightArithImm(index, index, 1);
5853 6041
5854 __ cmp(index, Operand::Zero()); 6042 __ cmpi(index, Operand::Zero());
5855 __ b(lt, &out_of_object); 6043 __ blt(&out_of_object);
5856 6044
5857 __ add(scratch, object, Operand::PointerOffsetFromSmiKey(index)); 6045 __ SmiToPtrArrayOffset(r0, index);
5858 __ ldr(result, FieldMemOperand(scratch, JSObject::kHeaderSize)); 6046 __ add(scratch, object, r0);
6047 __ LoadP(result, FieldMemOperand(scratch, JSObject::kHeaderSize));
5859 6048
5860 __ b(&done); 6049 __ b(&done);
5861 6050
5862 __ bind(&out_of_object); 6051 __ bind(&out_of_object);
5863 __ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); 6052 __ LoadP(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
5864 // Index is equal to negated out of object property index plus 1. 6053 // Index is equal to negated out of object property index plus 1.
5865 STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); 6054 __ SmiToPtrArrayOffset(r0, index);
5866 __ sub(scratch, result, Operand::PointerOffsetFromSmiKey(index)); 6055 __ sub(scratch, result, r0);
5867 __ ldr(result, FieldMemOperand(scratch, 6056 __ LoadP(result,
5868 FixedArray::kHeaderSize - kPointerSize)); 6057 FieldMemOperand(scratch, FixedArray::kHeaderSize - kPointerSize));
5869 __ bind(deferred->exit()); 6058 __ bind(deferred->exit());
5870 __ bind(&done); 6059 __ bind(&done);
5871 } 6060 }
5872 6061
5873 6062
5874 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) { 6063 void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
5875 Register context = ToRegister(instr->context()); 6064 Register context = ToRegister(instr->context());
5876 __ str(context, MemOperand(fp, StandardFrameConstants::kContextOffset)); 6065 __ StoreP(context, MemOperand(fp, StandardFrameConstants::kContextOffset));
5877 } 6066 }
5878 6067
5879 6068
5880 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) { 6069 void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
5881 Handle<ScopeInfo> scope_info = instr->scope_info(); 6070 Handle<ScopeInfo> scope_info = instr->scope_info();
5882 __ Push(scope_info); 6071 __ Push(scope_info);
5883 __ push(ToRegister(instr->function())); 6072 __ push(ToRegister(instr->function()));
5884 CallRuntime(Runtime::kPushBlockContext, 2, instr); 6073 CallRuntime(Runtime::kPushBlockContext, 2, instr);
5885 RecordSafepoint(Safepoint::kNoLazyDeopt); 6074 RecordSafepoint(Safepoint::kNoLazyDeopt);
5886 } 6075 }
5887 6076
5888 6077
5889 #undef __ 6078 #undef __
5890 6079 }
5891 } } // namespace v8::internal 6080 } // namespace v8::internal
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698