Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(79)

Side by Side Diff: src/ppc/full-codegen-ppc.cc

Issue 422063005: Contribution of PowerPC port. (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: re-upload - catch up to 8/19 level Created 6 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
1 // Copyright 2012 the V8 project authors. All rights reserved. 1 // Copyright 2012 the V8 project authors. All rights reserved.
2 //
3 // Copyright IBM Corp. 2012, 2013. All rights reserved.
4 //
2 // Use of this source code is governed by a BSD-style license that can be 5 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 6 // found in the LICENSE file.
4 7
5 #include "src/v8.h" 8 #include "src/v8.h"
6 9
7 #if V8_TARGET_ARCH_ARM 10 #if V8_TARGET_ARCH_PPC
8 11
9 #include "src/code-stubs.h" 12 #include "src/code-stubs.h"
10 #include "src/codegen.h" 13 #include "src/codegen.h"
11 #include "src/compiler.h" 14 #include "src/compiler.h"
12 #include "src/debug.h" 15 #include "src/debug.h"
13 #include "src/full-codegen.h" 16 #include "src/full-codegen.h"
14 #include "src/isolate-inl.h" 17 #include "src/isolate-inl.h"
15 #include "src/parser.h" 18 #include "src/parser.h"
16 #include "src/scopes.h" 19 #include "src/scopes.h"
17 #include "src/stub-cache.h" 20 #include "src/stub-cache.h"
18 21
19 #include "src/arm/code-stubs-arm.h" 22 #include "src/ppc/code-stubs-ppc.h"
20 #include "src/arm/macro-assembler-arm.h" 23 #include "src/ppc/macro-assembler-ppc.h"
21 24
22 namespace v8 { 25 namespace v8 {
23 namespace internal { 26 namespace internal {
24 27
25 #define __ ACCESS_MASM(masm_) 28 #define __ ACCESS_MASM(masm_)
26 29
27
28 // A patch site is a location in the code which it is possible to patch. This 30 // A patch site is a location in the code which it is possible to patch. This
29 // class has a number of methods to emit the code which is patchable and the 31 // class has a number of methods to emit the code which is patchable and the
30 // method EmitPatchInfo to record a marker back to the patchable code. This 32 // method EmitPatchInfo to record a marker back to the patchable code. This
31 // marker is a cmp rx, #yyy instruction, and x * 0x00000fff + yyy (raw 12 bit 33 // marker is a cmpi rx, #yyy instruction, and x * 0x0000ffff + yyy (raw 16 bit
32 // immediate value is used) is the delta from the pc to the first instruction of 34 // immediate value is used) is the delta from the pc to the first instruction of
33 // the patchable code. 35 // the patchable code.
36 // See PatchInlinedSmiCode in ic-ppc.cc for the code that patches it
34 class JumpPatchSite BASE_EMBEDDED { 37 class JumpPatchSite BASE_EMBEDDED {
35 public: 38 public:
36 explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) { 39 explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
37 #ifdef DEBUG 40 #ifdef DEBUG
38 info_emitted_ = false; 41 info_emitted_ = false;
39 #endif 42 #endif
40 } 43 }
41 44
42 ~JumpPatchSite() { 45 ~JumpPatchSite() { DCHECK(patch_site_.is_bound() == info_emitted_); }
43 DCHECK(patch_site_.is_bound() == info_emitted_);
44 }
45 46
46 // When initially emitting this ensure that a jump is always generated to skip 47 // When initially emitting this ensure that a jump is always generated to skip
47 // the inlined smi code. 48 // the inlined smi code.
48 void EmitJumpIfNotSmi(Register reg, Label* target) { 49 void EmitJumpIfNotSmi(Register reg, Label* target) {
49 DCHECK(!patch_site_.is_bound() && !info_emitted_); 50 DCHECK(!patch_site_.is_bound() && !info_emitted_);
50 Assembler::BlockConstPoolScope block_const_pool(masm_); 51 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
51 __ bind(&patch_site_); 52 __ bind(&patch_site_);
52 __ cmp(reg, Operand(reg)); 53 __ cmp(reg, reg, cr0);
53 __ b(eq, target); // Always taken before patched. 54 __ beq(target, cr0); // Always taken before patched.
54 } 55 }
55 56
56 // When initially emitting this ensure that a jump is never generated to skip 57 // When initially emitting this ensure that a jump is never generated to skip
57 // the inlined smi code. 58 // the inlined smi code.
58 void EmitJumpIfSmi(Register reg, Label* target) { 59 void EmitJumpIfSmi(Register reg, Label* target) {
60 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
59 DCHECK(!patch_site_.is_bound() && !info_emitted_); 61 DCHECK(!patch_site_.is_bound() && !info_emitted_);
60 Assembler::BlockConstPoolScope block_const_pool(masm_);
61 __ bind(&patch_site_); 62 __ bind(&patch_site_);
62 __ cmp(reg, Operand(reg)); 63 __ cmp(reg, reg, cr0);
63 __ b(ne, target); // Never taken before patched. 64 __ bne(target, cr0); // Never taken before patched.
64 } 65 }
65 66
66 void EmitPatchInfo() { 67 void EmitPatchInfo() {
67 // Block literal pool emission whilst recording patch site information.
68 Assembler::BlockConstPoolScope block_const_pool(masm_);
69 if (patch_site_.is_bound()) { 68 if (patch_site_.is_bound()) {
70 int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_); 69 int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_);
71 Register reg; 70 Register reg;
72 reg.set_code(delta_to_patch_site / kOff12Mask); 71 // I believe this is using reg as the high bits of of the offset
73 __ cmp_raw_immediate(reg, delta_to_patch_site % kOff12Mask); 72 reg.set_code(delta_to_patch_site / kOff16Mask);
73 __ cmpi(reg, Operand(delta_to_patch_site % kOff16Mask));
74 #ifdef DEBUG 74 #ifdef DEBUG
75 info_emitted_ = true; 75 info_emitted_ = true;
76 #endif 76 #endif
77 } else { 77 } else {
78 __ nop(); // Signals no inlined code. 78 __ nop(); // Signals no inlined code.
79 } 79 }
80 } 80 }
81 81
82 private: 82 private:
83 MacroAssembler* masm_; 83 MacroAssembler* masm_;
84 Label patch_site_; 84 Label patch_site_;
85 #ifdef DEBUG 85 #ifdef DEBUG
86 bool info_emitted_; 86 bool info_emitted_;
87 #endif 87 #endif
88 }; 88 };
89 89
90 90
91 // Generate code for a JS function. On entry to the function the receiver 91 // Generate code for a JS function. On entry to the function the receiver
92 // and arguments have been pushed on the stack left to right. The actual 92 // and arguments have been pushed on the stack left to right. The actual
93 // argument count matches the formal parameter count expected by the 93 // argument count matches the formal parameter count expected by the
94 // function. 94 // function.
95 // 95 //
96 // The live registers are: 96 // The live registers are:
97 // o r1: the JS function object being called (i.e., ourselves) 97 // o r4: the JS function object being called (i.e., ourselves)
98 // o cp: our context 98 // o cp: our context
99 // o pp: our caller's constant pool pointer (if FLAG_enable_ool_constant_pool) 99 // o fp: our caller's frame pointer (aka r31)
100 // o fp: our caller's frame pointer
101 // o sp: stack pointer 100 // o sp: stack pointer
102 // o lr: return address 101 // o lr: return address (bogus.. PPC has no lr reg)
103 // 102 //
104 // The function builds a JS frame. Please see JavaScriptFrameConstants in 103 // The function builds a JS frame. Please see JavaScriptFrameConstants in
105 // frames-arm.h for its layout. 104 // frames-ppc.h for its layout.
106 void FullCodeGenerator::Generate() { 105 void FullCodeGenerator::Generate() {
107 CompilationInfo* info = info_; 106 CompilationInfo* info = info_;
108 handler_table_ = 107 handler_table_ =
109 isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED); 108 isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED);
110 109
111 profiling_counter_ = isolate()->factory()->NewCell( 110 profiling_counter_ = isolate()->factory()->NewCell(
112 Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate())); 111 Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
113 SetFunctionPosition(function()); 112 SetFunctionPosition(function());
114 Comment cmnt(masm_, "[ function compiled by full code generator"); 113 Comment cmnt(masm_, "[ function compiled by full code generator");
115 114
116 ProfileEntryHookStub::MaybeCallEntryHook(masm_); 115 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
117 116
118 #ifdef DEBUG 117 #ifdef DEBUG
119 if (strlen(FLAG_stop_at) > 0 && 118 if (strlen(FLAG_stop_at) > 0 &&
120 info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) { 119 info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
121 __ stop("stop-at"); 120 __ stop("stop-at");
122 } 121 }
123 #endif 122 #endif
124 123
125 // Sloppy mode functions and builtins need to replace the receiver with the 124 // Sloppy mode functions and builtins need to replace the receiver with the
126 // global proxy when called as functions (without an explicit receiver 125 // global proxy when called as functions (without an explicit receiver
127 // object). 126 // object).
128 if (info->strict_mode() == SLOPPY && !info->is_native()) { 127 if (info->strict_mode() == SLOPPY && !info->is_native()) {
129 Label ok; 128 Label ok;
130 int receiver_offset = info->scope()->num_parameters() * kPointerSize; 129 int receiver_offset = info->scope()->num_parameters() * kPointerSize;
131 __ ldr(r2, MemOperand(sp, receiver_offset)); 130 __ LoadP(r5, MemOperand(sp, receiver_offset), r0);
132 __ CompareRoot(r2, Heap::kUndefinedValueRootIndex); 131 __ CompareRoot(r5, Heap::kUndefinedValueRootIndex);
133 __ b(ne, &ok); 132 __ bne(&ok);
134 133
135 __ ldr(r2, GlobalObjectOperand()); 134 __ LoadP(r5, GlobalObjectOperand());
136 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalProxyOffset)); 135 __ LoadP(r5, FieldMemOperand(r5, GlobalObject::kGlobalProxyOffset));
137 136
138 __ str(r2, MemOperand(sp, receiver_offset)); 137 __ StoreP(r5, MemOperand(sp, receiver_offset), r0);
139 138
140 __ bind(&ok); 139 __ bind(&ok);
141 } 140 }
142 141
143 // Open a frame scope to indicate that there is a frame on the stack. The 142 // Open a frame scope to indicate that there is a frame on the stack. The
144 // MANUAL indicates that the scope shouldn't actually generate code to set up 143 // MANUAL indicates that the scope shouldn't actually generate code to set up
145 // the frame (that is done below). 144 // the frame (that is done below).
146 FrameScope frame_scope(masm_, StackFrame::MANUAL); 145 FrameScope frame_scope(masm_, StackFrame::MANUAL);
147 146
148 info->set_prologue_offset(masm_->pc_offset()); 147 info->set_prologue_offset(masm_->pc_offset());
149 __ Prologue(info->IsCodePreAgingActive()); 148 __ Prologue(info->IsCodePreAgingActive());
150 info->AddNoFrameRange(0, masm_->pc_offset()); 149 info->AddNoFrameRange(0, masm_->pc_offset());
151 150
152 { Comment cmnt(masm_, "[ Allocate locals"); 151 {
152 Comment cmnt(masm_, "[ Allocate locals");
153 int locals_count = info->scope()->num_stack_slots(); 153 int locals_count = info->scope()->num_stack_slots();
154 // Generators allocate locals, if any, in context slots. 154 // Generators allocate locals, if any, in context slots.
155 DCHECK(!info->function()->is_generator() || locals_count == 0); 155 DCHECK(!info->function()->is_generator() || locals_count == 0);
156 if (locals_count > 0) { 156 if (locals_count > 0) {
157 if (locals_count >= 128) { 157 if (locals_count >= 128) {
158 Label ok; 158 Label ok;
159 __ sub(r9, sp, Operand(locals_count * kPointerSize)); 159 __ Add(ip, sp, -(locals_count * kPointerSize), r0);
160 __ LoadRoot(r2, Heap::kRealStackLimitRootIndex); 160 __ LoadRoot(r5, Heap::kRealStackLimitRootIndex);
161 __ cmp(r9, Operand(r2)); 161 __ cmpl(ip, r5);
162 __ b(hs, &ok); 162 __ bc_short(ge, &ok);
163 __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION); 163 __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
164 __ bind(&ok); 164 __ bind(&ok);
165 } 165 }
166 __ LoadRoot(r9, Heap::kUndefinedValueRootIndex); 166 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
167 int kMaxPushes = FLAG_optimize_for_size ? 4 : 32; 167 int kMaxPushes = FLAG_optimize_for_size ? 4 : 32;
168 if (locals_count >= kMaxPushes) { 168 if (locals_count >= kMaxPushes) {
169 int loop_iterations = locals_count / kMaxPushes; 169 int loop_iterations = locals_count / kMaxPushes;
170 __ mov(r2, Operand(loop_iterations)); 170 __ mov(r5, Operand(loop_iterations));
171 __ mtctr(r5);
171 Label loop_header; 172 Label loop_header;
172 __ bind(&loop_header); 173 __ bind(&loop_header);
173 // Do pushes. 174 // Do pushes.
174 for (int i = 0; i < kMaxPushes; i++) { 175 for (int i = 0; i < kMaxPushes; i++) {
175 __ push(r9); 176 __ push(ip);
176 } 177 }
177 // Continue loop if not done. 178 // Continue loop if not done.
178 __ sub(r2, r2, Operand(1), SetCC); 179 __ bdnz(&loop_header);
179 __ b(&loop_header, ne);
180 } 180 }
181 int remaining = locals_count % kMaxPushes; 181 int remaining = locals_count % kMaxPushes;
182 // Emit the remaining pushes. 182 // Emit the remaining pushes.
183 for (int i = 0; i < remaining; i++) { 183 for (int i = 0; i < remaining; i++) {
184 __ push(r9); 184 __ push(ip);
185 } 185 }
186 } 186 }
187 } 187 }
188 188
189 bool function_in_register = true; 189 bool function_in_register = true;
190 190
191 // Possibly allocate a local context. 191 // Possibly allocate a local context.
192 int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; 192 int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
193 if (heap_slots > 0) { 193 if (heap_slots > 0) {
194 // Argument to NewContext is the function, which is still in r1. 194 // Argument to NewContext is the function, which is still in r4.
195 Comment cmnt(masm_, "[ Allocate context"); 195 Comment cmnt(masm_, "[ Allocate context");
196 bool need_write_barrier = true; 196 bool need_write_barrier = true;
197 if (FLAG_harmony_scoping && info->scope()->is_global_scope()) { 197 if (FLAG_harmony_scoping && info->scope()->is_global_scope()) {
198 __ push(r1); 198 __ push(r4);
199 __ Push(info->scope()->GetScopeInfo()); 199 __ Push(info->scope()->GetScopeInfo());
200 __ CallRuntime(Runtime::kNewGlobalContext, 2); 200 __ CallRuntime(Runtime::kNewGlobalContext, 2);
201 } else if (heap_slots <= FastNewContextStub::kMaximumSlots) { 201 } else if (heap_slots <= FastNewContextStub::kMaximumSlots) {
202 FastNewContextStub stub(isolate(), heap_slots); 202 FastNewContextStub stub(isolate(), heap_slots);
203 __ CallStub(&stub); 203 __ CallStub(&stub);
204 // Result of FastNewContextStub is always in new space. 204 // Result of FastNewContextStub is always in new space.
205 need_write_barrier = false; 205 need_write_barrier = false;
206 } else { 206 } else {
207 __ push(r1); 207 __ push(r4);
208 __ CallRuntime(Runtime::kNewFunctionContext, 1); 208 __ CallRuntime(Runtime::kNewFunctionContext, 1);
209 } 209 }
210 function_in_register = false; 210 function_in_register = false;
211 // Context is returned in r0. It replaces the context passed to us. 211 // Context is returned in r3. It replaces the context passed to us.
212 // It's saved in the stack and kept live in cp. 212 // It's saved in the stack and kept live in cp.
213 __ mov(cp, r0); 213 __ mr(cp, r3);
214 __ str(r0, MemOperand(fp, StandardFrameConstants::kContextOffset)); 214 __ StoreP(r3, MemOperand(fp, StandardFrameConstants::kContextOffset));
215 // Copy any necessary parameters into the context. 215 // Copy any necessary parameters into the context.
216 int num_parameters = info->scope()->num_parameters(); 216 int num_parameters = info->scope()->num_parameters();
217 for (int i = 0; i < num_parameters; i++) { 217 for (int i = 0; i < num_parameters; i++) {
218 Variable* var = scope()->parameter(i); 218 Variable* var = scope()->parameter(i);
219 if (var->IsContextSlot()) { 219 if (var->IsContextSlot()) {
220 int parameter_offset = StandardFrameConstants::kCallerSPOffset + 220 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
221 (num_parameters - 1 - i) * kPointerSize; 221 (num_parameters - 1 - i) * kPointerSize;
222 // Load parameter from stack. 222 // Load parameter from stack.
223 __ ldr(r0, MemOperand(fp, parameter_offset)); 223 __ LoadP(r3, MemOperand(fp, parameter_offset), r0);
224 // Store it in the context. 224 // Store it in the context.
225 MemOperand target = ContextOperand(cp, var->index()); 225 MemOperand target = ContextOperand(cp, var->index());
226 __ str(r0, target); 226 __ StoreP(r3, target, r0);
227 227
228 // Update the write barrier. 228 // Update the write barrier.
229 if (need_write_barrier) { 229 if (need_write_barrier) {
230 __ RecordWriteContextSlot( 230 __ RecordWriteContextSlot(cp, target.offset(), r3, r6,
231 cp, target.offset(), r0, r3, kLRHasBeenSaved, kDontSaveFPRegs); 231 kLRHasBeenSaved, kDontSaveFPRegs);
232 } else if (FLAG_debug_code) { 232 } else if (FLAG_debug_code) {
233 Label done; 233 Label done;
234 __ JumpIfInNewSpace(cp, r0, &done); 234 __ JumpIfInNewSpace(cp, r3, &done);
235 __ Abort(kExpectedNewSpaceObject); 235 __ Abort(kExpectedNewSpaceObject);
236 __ bind(&done); 236 __ bind(&done);
237 } 237 }
238 } 238 }
239 } 239 }
240 } 240 }
241 241
242 Variable* arguments = scope()->arguments(); 242 Variable* arguments = scope()->arguments();
243 if (arguments != NULL) { 243 if (arguments != NULL) {
244 // Function uses arguments object. 244 // Function uses arguments object.
245 Comment cmnt(masm_, "[ Allocate arguments object"); 245 Comment cmnt(masm_, "[ Allocate arguments object");
246 if (!function_in_register) { 246 if (!function_in_register) {
247 // Load this again, if it's used by the local context below. 247 // Load this again, if it's used by the local context below.
248 __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 248 __ LoadP(r6, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
249 } else { 249 } else {
250 __ mov(r3, r1); 250 __ mr(r6, r4);
251 } 251 }
252 // Receiver is just before the parameters on the caller's stack. 252 // Receiver is just before the parameters on the caller's stack.
253 int num_parameters = info->scope()->num_parameters(); 253 int num_parameters = info->scope()->num_parameters();
254 int offset = num_parameters * kPointerSize; 254 int offset = num_parameters * kPointerSize;
255 __ add(r2, fp, 255 __ addi(r5, fp, Operand(StandardFrameConstants::kCallerSPOffset + offset));
256 Operand(StandardFrameConstants::kCallerSPOffset + offset)); 256 __ LoadSmiLiteral(r4, Smi::FromInt(num_parameters));
257 __ mov(r1, Operand(Smi::FromInt(num_parameters))); 257 __ Push(r6, r5, r4);
258 __ Push(r3, r2, r1);
259 258
260 // Arguments to ArgumentsAccessStub: 259 // Arguments to ArgumentsAccessStub:
261 // function, receiver address, parameter count. 260 // function, receiver address, parameter count.
262 // The stub will rewrite receiever and parameter count if the previous 261 // The stub will rewrite receiever and parameter count if the previous
263 // stack frame was an arguments adapter frame. 262 // stack frame was an arguments adapter frame.
264 ArgumentsAccessStub::Type type; 263 ArgumentsAccessStub::Type type;
265 if (strict_mode() == STRICT) { 264 if (strict_mode() == STRICT) {
266 type = ArgumentsAccessStub::NEW_STRICT; 265 type = ArgumentsAccessStub::NEW_STRICT;
267 } else if (function()->has_duplicate_parameters()) { 266 } else if (function()->has_duplicate_parameters()) {
268 type = ArgumentsAccessStub::NEW_SLOPPY_SLOW; 267 type = ArgumentsAccessStub::NEW_SLOPPY_SLOW;
269 } else { 268 } else {
270 type = ArgumentsAccessStub::NEW_SLOPPY_FAST; 269 type = ArgumentsAccessStub::NEW_SLOPPY_FAST;
271 } 270 }
272 ArgumentsAccessStub stub(isolate(), type); 271 ArgumentsAccessStub stub(isolate(), type);
273 __ CallStub(&stub); 272 __ CallStub(&stub);
274 273
275 SetVar(arguments, r0, r1, r2); 274 SetVar(arguments, r3, r4, r5);
276 } 275 }
277 276
278 if (FLAG_trace) { 277 if (FLAG_trace) {
279 __ CallRuntime(Runtime::kTraceEnter, 0); 278 __ CallRuntime(Runtime::kTraceEnter, 0);
280 } 279 }
281 280
282 // Visit the declarations and body unless there is an illegal 281 // Visit the declarations and body unless there is an illegal
283 // redeclaration. 282 // redeclaration.
284 if (scope()->HasIllegalRedeclaration()) { 283 if (scope()->HasIllegalRedeclaration()) {
285 Comment cmnt(masm_, "[ Declarations"); 284 Comment cmnt(masm_, "[ Declarations");
286 scope()->VisitIllegalRedeclaration(this); 285 scope()->VisitIllegalRedeclaration(this);
287 286
288 } else { 287 } else {
289 PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS); 288 PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS);
290 { Comment cmnt(masm_, "[ Declarations"); 289 {
290 Comment cmnt(masm_, "[ Declarations");
291 // For named function expressions, declare the function name as a 291 // For named function expressions, declare the function name as a
292 // constant. 292 // constant.
293 if (scope()->is_function_scope() && scope()->function() != NULL) { 293 if (scope()->is_function_scope() && scope()->function() != NULL) {
294 VariableDeclaration* function = scope()->function(); 294 VariableDeclaration* function = scope()->function();
295 DCHECK(function->proxy()->var()->mode() == CONST || 295 DCHECK(function->proxy()->var()->mode() == CONST ||
296 function->proxy()->var()->mode() == CONST_LEGACY); 296 function->proxy()->var()->mode() == CONST_LEGACY);
297 DCHECK(function->proxy()->var()->location() != Variable::UNALLOCATED); 297 DCHECK(function->proxy()->var()->location() != Variable::UNALLOCATED);
298 VisitVariableDeclaration(function); 298 VisitVariableDeclaration(function);
299 } 299 }
300 VisitDeclarations(scope()->declarations()); 300 VisitDeclarations(scope()->declarations());
301 } 301 }
302 302
303 { Comment cmnt(masm_, "[ Stack check"); 303 {
304 Comment cmnt(masm_, "[ Stack check");
304 PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS); 305 PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
305 Label ok; 306 Label ok;
306 __ LoadRoot(ip, Heap::kStackLimitRootIndex); 307 __ LoadRoot(ip, Heap::kStackLimitRootIndex);
307 __ cmp(sp, Operand(ip)); 308 __ cmpl(sp, ip);
308 __ b(hs, &ok); 309 __ bc_short(ge, &ok);
309 Handle<Code> stack_check = isolate()->builtins()->StackCheck(); 310 __ Call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
310 PredictableCodeSizeScope predictable(masm_,
311 masm_->CallSize(stack_check, RelocInfo::CODE_TARGET));
312 __ Call(stack_check, RelocInfo::CODE_TARGET);
313 __ bind(&ok); 311 __ bind(&ok);
314 } 312 }
315 313
316 { Comment cmnt(masm_, "[ Body"); 314 {
315 Comment cmnt(masm_, "[ Body");
317 DCHECK(loop_depth() == 0); 316 DCHECK(loop_depth() == 0);
318 VisitStatements(function()->body()); 317 VisitStatements(function()->body());
319 DCHECK(loop_depth() == 0); 318 DCHECK(loop_depth() == 0);
320 } 319 }
321 } 320 }
322 321
323 // Always emit a 'return undefined' in case control fell off the end of 322 // Always emit a 'return undefined' in case control fell off the end of
324 // the body. 323 // the body.
325 { Comment cmnt(masm_, "[ return <undefined>;"); 324 {
326 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); 325 Comment cmnt(masm_, "[ return <undefined>;");
326 __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
327 } 327 }
328 EmitReturnSequence(); 328 EmitReturnSequence();
329
330 // Force emit the constant pool, so it doesn't get emitted in the middle
331 // of the back edge table.
332 masm()->CheckConstPool(true, false);
333 } 329 }
334 330
335 331
336 void FullCodeGenerator::ClearAccumulator() { 332 void FullCodeGenerator::ClearAccumulator() {
337 __ mov(r0, Operand(Smi::FromInt(0))); 333 __ LoadSmiLiteral(r3, Smi::FromInt(0));
338 } 334 }
339 335
340 336
341 void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) { 337 void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
342 __ mov(r2, Operand(profiling_counter_)); 338 __ mov(r5, Operand(profiling_counter_));
343 __ ldr(r3, FieldMemOperand(r2, Cell::kValueOffset)); 339 __ LoadP(r6, FieldMemOperand(r5, Cell::kValueOffset));
344 __ sub(r3, r3, Operand(Smi::FromInt(delta)), SetCC); 340 __ SubSmiLiteral(r6, r6, Smi::FromInt(delta), r0);
345 __ str(r3, FieldMemOperand(r2, Cell::kValueOffset)); 341 __ StoreP(r6, FieldMemOperand(r5, Cell::kValueOffset), r0);
346 } 342 }
347 343
348 344
349 static const int kProfileCounterResetSequenceLength = 5 * Assembler::kInstrSize;
350
351
352 void FullCodeGenerator::EmitProfilingCounterReset() { 345 void FullCodeGenerator::EmitProfilingCounterReset() {
353 Assembler::BlockConstPoolScope block_const_pool(masm_);
354 PredictableCodeSizeScope predictable_code_size_scope(
355 masm_, kProfileCounterResetSequenceLength);
356 Label start;
357 __ bind(&start);
358 int reset_value = FLAG_interrupt_budget; 346 int reset_value = FLAG_interrupt_budget;
359 if (info_->is_debug()) { 347 if (info_->is_debug()) {
360 // Detect debug break requests as soon as possible. 348 // Detect debug break requests as soon as possible.
361 reset_value = FLAG_interrupt_budget >> 4; 349 reset_value = FLAG_interrupt_budget >> 4;
362 } 350 }
363 __ mov(r2, Operand(profiling_counter_)); 351 __ mov(r5, Operand(profiling_counter_));
364 // The mov instruction above can be either 1, 2 or 3 instructions depending 352 __ LoadSmiLiteral(r6, Smi::FromInt(reset_value));
365 // upon whether it is an extended constant pool - insert nop to compensate. 353 __ StoreP(r6, FieldMemOperand(r5, Cell::kValueOffset), r0);
366 DCHECK(masm_->InstructionsGeneratedSince(&start) <= 3);
367 while (masm_->InstructionsGeneratedSince(&start) != 3) {
368 __ nop();
369 }
370 __ mov(r3, Operand(Smi::FromInt(reset_value)));
371 __ str(r3, FieldMemOperand(r2, Cell::kValueOffset));
372 } 354 }
373 355
374 356
375 void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt, 357 void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
376 Label* back_edge_target) { 358 Label* back_edge_target) {
377 Comment cmnt(masm_, "[ Back edge bookkeeping"); 359 Comment cmnt(masm_, "[ Back edge bookkeeping");
378 // Block literal pools whilst emitting back edge code.
379 Assembler::BlockConstPoolScope block_const_pool(masm_);
380 Label ok; 360 Label ok;
381 361
382 DCHECK(back_edge_target->is_bound()); 362 DCHECK(back_edge_target->is_bound());
383 int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target); 363 int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
384 int weight = Min(kMaxBackEdgeWeight, 364 int weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier));
385 Max(1, distance / kCodeSizeMultiplier));
386 EmitProfilingCounterDecrement(weight); 365 EmitProfilingCounterDecrement(weight);
387 __ b(pl, &ok); 366 {
388 __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET); 367 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
368 // BackEdgeTable::PatchAt manipulates this sequence.
369 __ cmpi(r6, Operand::Zero());
370 __ bc_short(ge, &ok);
371 __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
389 372
390 // Record a mapping of this PC offset to the OSR id. This is used to find 373 // Record a mapping of this PC offset to the OSR id. This is used to find
391 // the AST id from the unoptimized code in order to use it as a key into 374 // the AST id from the unoptimized code in order to use it as a key into
392 // the deoptimization input data found in the optimized code. 375 // the deoptimization input data found in the optimized code.
393 RecordBackEdge(stmt->OsrEntryId()); 376 RecordBackEdge(stmt->OsrEntryId());
394 377 }
395 EmitProfilingCounterReset(); 378 EmitProfilingCounterReset();
396 379
397 __ bind(&ok); 380 __ bind(&ok);
398 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); 381 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
399 // Record a mapping of the OSR id to this PC. This is used if the OSR 382 // Record a mapping of the OSR id to this PC. This is used if the OSR
400 // entry becomes the target of a bailout. We don't expect it to be, but 383 // entry becomes the target of a bailout. We don't expect it to be, but
401 // we want it to work if it is. 384 // we want it to work if it is.
402 PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS); 385 PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
403 } 386 }
404 387
405 388
406 void FullCodeGenerator::EmitReturnSequence() { 389 void FullCodeGenerator::EmitReturnSequence() {
407 Comment cmnt(masm_, "[ Return sequence"); 390 Comment cmnt(masm_, "[ Return sequence");
408 if (return_label_.is_bound()) { 391 if (return_label_.is_bound()) {
409 __ b(&return_label_); 392 __ b(&return_label_);
410 } else { 393 } else {
411 __ bind(&return_label_); 394 __ bind(&return_label_);
412 if (FLAG_trace) { 395 if (FLAG_trace) {
413 // Push the return value on the stack as the parameter. 396 // Push the return value on the stack as the parameter.
414 // Runtime::TraceExit returns its parameter in r0. 397 // Runtime::TraceExit returns its parameter in r3
415 __ push(r0); 398 __ push(r3);
416 __ CallRuntime(Runtime::kTraceExit, 1); 399 __ CallRuntime(Runtime::kTraceExit, 1);
417 } 400 }
418 // Pretend that the exit is a backwards jump to the entry. 401 // Pretend that the exit is a backwards jump to the entry.
419 int weight = 1; 402 int weight = 1;
420 if (info_->ShouldSelfOptimize()) { 403 if (info_->ShouldSelfOptimize()) {
421 weight = FLAG_interrupt_budget / FLAG_self_opt_count; 404 weight = FLAG_interrupt_budget / FLAG_self_opt_count;
422 } else { 405 } else {
423 int distance = masm_->pc_offset(); 406 int distance = masm_->pc_offset();
424 weight = Min(kMaxBackEdgeWeight, 407 weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier));
425 Max(1, distance / kCodeSizeMultiplier));
426 } 408 }
427 EmitProfilingCounterDecrement(weight); 409 EmitProfilingCounterDecrement(weight);
428 Label ok; 410 Label ok;
429 __ b(pl, &ok); 411 __ cmpi(r6, Operand::Zero());
430 __ push(r0); 412 __ bge(&ok);
431 __ Call(isolate()->builtins()->InterruptCheck(), 413 __ push(r3);
432 RelocInfo::CODE_TARGET); 414 __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
433 __ pop(r0); 415 __ pop(r3);
434 EmitProfilingCounterReset(); 416 EmitProfilingCounterReset();
435 __ bind(&ok); 417 __ bind(&ok);
436 418
437 #ifdef DEBUG 419 #ifdef DEBUG
438 // Add a label for checking the size of the code used for returning. 420 // Add a label for checking the size of the code used for returning.
439 Label check_exit_codesize; 421 Label check_exit_codesize;
440 __ bind(&check_exit_codesize); 422 __ bind(&check_exit_codesize);
441 #endif 423 #endif
442 // Make sure that the constant pool is not emitted inside of the return 424 // Make sure that the constant pool is not emitted inside of the return
443 // sequence. 425 // sequence.
444 { Assembler::BlockConstPoolScope block_const_pool(masm_); 426 {
427 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
428 #if V8_OOL_CONSTANT_POOL
429 ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
430 #endif
445 int32_t sp_delta = (info_->scope()->num_parameters() + 1) * kPointerSize; 431 int32_t sp_delta = (info_->scope()->num_parameters() + 1) * kPointerSize;
446 CodeGenerator::RecordPositions(masm_, function()->end_position() - 1); 432 CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
447 // TODO(svenpanne) The code below is sometimes 4 words, sometimes 5!
448 PredictableCodeSizeScope predictable(masm_, -1);
449 __ RecordJSReturn(); 433 __ RecordJSReturn();
450 int no_frame_start = __ LeaveFrame(StackFrame::JAVA_SCRIPT); 434 int no_frame_start = __ LeaveFrame(StackFrame::JAVA_SCRIPT);
451 __ add(sp, sp, Operand(sp_delta)); 435 __ Add(sp, sp, sp_delta, r0);
452 __ Jump(lr); 436 __ blr();
453 info_->AddNoFrameRange(no_frame_start, masm_->pc_offset()); 437 info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
438 #if V8_TARGET_ARCH_PPC64 && !V8_OOL_CONSTANT_POOL
439 // With 64bit we need a nop() instructions to ensure we have
440 // enough space to SetDebugBreakAtReturn()
441 masm_->nop();
442 #endif
454 } 443 }
455 444
456 #ifdef DEBUG 445 #ifdef DEBUG
457 // Check that the size of the code used for returning is large enough 446 // Check that the size of the code used for returning is large enough
458 // for the debugger's requirements. 447 // for the debugger's requirements.
459 DCHECK(Assembler::kJSReturnSequenceInstructions <= 448 DCHECK(Assembler::kJSReturnSequenceInstructions <=
460 masm_->InstructionsGeneratedSince(&check_exit_codesize)); 449 masm_->InstructionsGeneratedSince(&check_exit_codesize));
461 #endif 450 #endif
462 } 451 }
463 } 452 }
(...skipping 19 matching lines...) Expand all
483 472
484 void FullCodeGenerator::TestContext::Plug(Variable* var) const { 473 void FullCodeGenerator::TestContext::Plug(Variable* var) const {
485 DCHECK(var->IsStackAllocated() || var->IsContextSlot()); 474 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
486 // For simplicity we always test the accumulator register. 475 // For simplicity we always test the accumulator register.
487 codegen()->GetVar(result_register(), var); 476 codegen()->GetVar(result_register(), var);
488 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); 477 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
489 codegen()->DoTest(this); 478 codegen()->DoTest(this);
490 } 479 }
491 480
492 481
493 void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const { 482 void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {}
494 }
495 483
496 484
497 void FullCodeGenerator::AccumulatorValueContext::Plug( 485 void FullCodeGenerator::AccumulatorValueContext::Plug(
498 Heap::RootListIndex index) const { 486 Heap::RootListIndex index) const {
499 __ LoadRoot(result_register(), index); 487 __ LoadRoot(result_register(), index);
500 } 488 }
501 489
502 490
503 void FullCodeGenerator::StackValueContext::Plug( 491 void FullCodeGenerator::StackValueContext::Plug(
504 Heap::RootListIndex index) const { 492 Heap::RootListIndex index) const {
505 __ LoadRoot(result_register(), index); 493 __ LoadRoot(result_register(), index);
506 __ push(result_register()); 494 __ push(result_register());
507 } 495 }
508 496
509 497
510 void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const { 498 void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
511 codegen()->PrepareForBailoutBeforeSplit(condition(), 499 codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
512 true,
513 true_label_,
514 false_label_); 500 false_label_);
515 if (index == Heap::kUndefinedValueRootIndex || 501 if (index == Heap::kUndefinedValueRootIndex ||
516 index == Heap::kNullValueRootIndex || 502 index == Heap::kNullValueRootIndex ||
517 index == Heap::kFalseValueRootIndex) { 503 index == Heap::kFalseValueRootIndex) {
518 if (false_label_ != fall_through_) __ b(false_label_); 504 if (false_label_ != fall_through_) __ b(false_label_);
519 } else if (index == Heap::kTrueValueRootIndex) { 505 } else if (index == Heap::kTrueValueRootIndex) {
520 if (true_label_ != fall_through_) __ b(true_label_); 506 if (true_label_ != fall_through_) __ b(true_label_);
521 } else { 507 } else {
522 __ LoadRoot(result_register(), index); 508 __ LoadRoot(result_register(), index);
523 codegen()->DoTest(this); 509 codegen()->DoTest(this);
524 } 510 }
525 } 511 }
526 512
527 513
528 void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const { 514 void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {}
529 }
530 515
531 516
532 void FullCodeGenerator::AccumulatorValueContext::Plug( 517 void FullCodeGenerator::AccumulatorValueContext::Plug(
533 Handle<Object> lit) const { 518 Handle<Object> lit) const {
534 __ mov(result_register(), Operand(lit)); 519 __ mov(result_register(), Operand(lit));
535 } 520 }
536 521
537 522
538 void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const { 523 void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
539 // Immediates cannot be pushed directly. 524 // Immediates cannot be pushed directly.
540 __ mov(result_register(), Operand(lit)); 525 __ mov(result_register(), Operand(lit));
541 __ push(result_register()); 526 __ push(result_register());
542 } 527 }
543 528
544 529
545 void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const { 530 void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
546 codegen()->PrepareForBailoutBeforeSplit(condition(), 531 codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
547 true,
548 true_label_,
549 false_label_); 532 false_label_);
550 DCHECK(!lit->IsUndetectableObject()); // There are no undetectable literals. 533 DCHECK(!lit->IsUndetectableObject()); // There are no undetectable literals.
551 if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) { 534 if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
552 if (false_label_ != fall_through_) __ b(false_label_); 535 if (false_label_ != fall_through_) __ b(false_label_);
553 } else if (lit->IsTrue() || lit->IsJSObject()) { 536 } else if (lit->IsTrue() || lit->IsJSObject()) {
554 if (true_label_ != fall_through_) __ b(true_label_); 537 if (true_label_ != fall_through_) __ b(true_label_);
555 } else if (lit->IsString()) { 538 } else if (lit->IsString()) {
556 if (String::cast(*lit)->length() == 0) { 539 if (String::cast(*lit)->length() == 0) {
557 if (false_label_ != fall_through_) __ b(false_label_); 540 if (false_label_ != fall_through_) __ b(false_label_);
558 } else { 541 } else {
(...skipping 14 matching lines...) Expand all
573 556
574 557
575 void FullCodeGenerator::EffectContext::DropAndPlug(int count, 558 void FullCodeGenerator::EffectContext::DropAndPlug(int count,
576 Register reg) const { 559 Register reg) const {
577 DCHECK(count > 0); 560 DCHECK(count > 0);
578 __ Drop(count); 561 __ Drop(count);
579 } 562 }
580 563
581 564
582 void FullCodeGenerator::AccumulatorValueContext::DropAndPlug( 565 void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
583 int count, 566 int count, Register reg) const {
584 Register reg) const {
585 DCHECK(count > 0); 567 DCHECK(count > 0);
586 __ Drop(count); 568 __ Drop(count);
587 __ Move(result_register(), reg); 569 __ Move(result_register(), reg);
588 } 570 }
589 571
590 572
591 void FullCodeGenerator::StackValueContext::DropAndPlug(int count, 573 void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
592 Register reg) const { 574 Register reg) const {
593 DCHECK(count > 0); 575 DCHECK(count > 0);
594 if (count > 1) __ Drop(count - 1); 576 if (count > 1) __ Drop(count - 1);
595 __ str(reg, MemOperand(sp, 0)); 577 __ StoreP(reg, MemOperand(sp, 0));
596 } 578 }
597 579
598 580
599 void FullCodeGenerator::TestContext::DropAndPlug(int count, 581 void FullCodeGenerator::TestContext::DropAndPlug(int count,
600 Register reg) const { 582 Register reg) const {
601 DCHECK(count > 0); 583 DCHECK(count > 0);
602 // For simplicity we always test the accumulator register. 584 // For simplicity we always test the accumulator register.
603 __ Drop(count); 585 __ Drop(count);
604 __ Move(result_register(), reg); 586 __ Move(result_register(), reg);
605 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); 587 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
606 codegen()->DoTest(this); 588 codegen()->DoTest(this);
607 } 589 }
608 590
609 591
610 void FullCodeGenerator::EffectContext::Plug(Label* materialize_true, 592 void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
611 Label* materialize_false) const { 593 Label* materialize_false) const {
612 DCHECK(materialize_true == materialize_false); 594 DCHECK(materialize_true == materialize_false);
613 __ bind(materialize_true); 595 __ bind(materialize_true);
614 } 596 }
615 597
616 598
617 void FullCodeGenerator::AccumulatorValueContext::Plug( 599 void FullCodeGenerator::AccumulatorValueContext::Plug(
618 Label* materialize_true, 600 Label* materialize_true, Label* materialize_false) const {
619 Label* materialize_false) const {
620 Label done; 601 Label done;
621 __ bind(materialize_true); 602 __ bind(materialize_true);
622 __ LoadRoot(result_register(), Heap::kTrueValueRootIndex); 603 __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
623 __ jmp(&done); 604 __ b(&done);
624 __ bind(materialize_false); 605 __ bind(materialize_false);
625 __ LoadRoot(result_register(), Heap::kFalseValueRootIndex); 606 __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
626 __ bind(&done); 607 __ bind(&done);
627 } 608 }
628 609
629 610
630 void FullCodeGenerator::StackValueContext::Plug( 611 void FullCodeGenerator::StackValueContext::Plug(
631 Label* materialize_true, 612 Label* materialize_true, Label* materialize_false) const {
632 Label* materialize_false) const {
633 Label done; 613 Label done;
634 __ bind(materialize_true); 614 __ bind(materialize_true);
635 __ LoadRoot(ip, Heap::kTrueValueRootIndex); 615 __ LoadRoot(ip, Heap::kTrueValueRootIndex);
636 __ jmp(&done); 616 __ b(&done);
637 __ bind(materialize_false); 617 __ bind(materialize_false);
638 __ LoadRoot(ip, Heap::kFalseValueRootIndex); 618 __ LoadRoot(ip, Heap::kFalseValueRootIndex);
639 __ bind(&done); 619 __ bind(&done);
640 __ push(ip); 620 __ push(ip);
641 } 621 }
642 622
643 623
644 void FullCodeGenerator::TestContext::Plug(Label* materialize_true, 624 void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
645 Label* materialize_false) const { 625 Label* materialize_false) const {
646 DCHECK(materialize_true == true_label_); 626 DCHECK(materialize_true == true_label_);
647 DCHECK(materialize_false == false_label_); 627 DCHECK(materialize_false == false_label_);
648 } 628 }
649 629
650 630
651 void FullCodeGenerator::EffectContext::Plug(bool flag) const { 631 void FullCodeGenerator::EffectContext::Plug(bool flag) const {}
652 }
653 632
654 633
655 void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const { 634 void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
656 Heap::RootListIndex value_root_index = 635 Heap::RootListIndex value_root_index =
657 flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; 636 flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
658 __ LoadRoot(result_register(), value_root_index); 637 __ LoadRoot(result_register(), value_root_index);
659 } 638 }
660 639
661 640
662 void FullCodeGenerator::StackValueContext::Plug(bool flag) const { 641 void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
663 Heap::RootListIndex value_root_index = 642 Heap::RootListIndex value_root_index =
664 flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; 643 flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
665 __ LoadRoot(ip, value_root_index); 644 __ LoadRoot(ip, value_root_index);
666 __ push(ip); 645 __ push(ip);
667 } 646 }
668 647
669 648
670 void FullCodeGenerator::TestContext::Plug(bool flag) const { 649 void FullCodeGenerator::TestContext::Plug(bool flag) const {
671 codegen()->PrepareForBailoutBeforeSplit(condition(), 650 codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_,
672 true,
673 true_label_,
674 false_label_); 651 false_label_);
675 if (flag) { 652 if (flag) {
676 if (true_label_ != fall_through_) __ b(true_label_); 653 if (true_label_ != fall_through_) __ b(true_label_);
677 } else { 654 } else {
678 if (false_label_ != fall_through_) __ b(false_label_); 655 if (false_label_ != fall_through_) __ b(false_label_);
679 } 656 }
680 } 657 }
681 658
682 659
683 void FullCodeGenerator::DoTest(Expression* condition, 660 void FullCodeGenerator::DoTest(Expression* condition, Label* if_true,
684 Label* if_true, 661 Label* if_false, Label* fall_through) {
685 Label* if_false,
686 Label* fall_through) {
687 Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate()); 662 Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
688 CallIC(ic, condition->test_id()); 663 CallIC(ic, condition->test_id());
689 __ tst(result_register(), result_register()); 664 __ cmpi(result_register(), Operand::Zero());
690 Split(ne, if_true, if_false, fall_through); 665 Split(ne, if_true, if_false, fall_through);
691 } 666 }
692 667
693 668
694 void FullCodeGenerator::Split(Condition cond, 669 void FullCodeGenerator::Split(Condition cond, Label* if_true, Label* if_false,
695 Label* if_true, 670 Label* fall_through, CRegister cr) {
696 Label* if_false,
697 Label* fall_through) {
698 if (if_false == fall_through) { 671 if (if_false == fall_through) {
699 __ b(cond, if_true); 672 __ b(cond, if_true, cr);
700 } else if (if_true == fall_through) { 673 } else if (if_true == fall_through) {
701 __ b(NegateCondition(cond), if_false); 674 __ b(NegateCondition(cond), if_false, cr);
702 } else { 675 } else {
703 __ b(cond, if_true); 676 __ b(cond, if_true, cr);
704 __ b(if_false); 677 __ b(if_false);
705 } 678 }
706 } 679 }
707 680
708 681
709 MemOperand FullCodeGenerator::StackOperand(Variable* var) { 682 MemOperand FullCodeGenerator::StackOperand(Variable* var) {
710 DCHECK(var->IsStackAllocated()); 683 DCHECK(var->IsStackAllocated());
711 // Offset is negative because higher indexes are at lower addresses. 684 // Offset is negative because higher indexes are at lower addresses.
712 int offset = -var->index() * kPointerSize; 685 int offset = -var->index() * kPointerSize;
713 // Adjust by a (parameter or local) base offset. 686 // Adjust by a (parameter or local) base offset.
(...skipping 14 matching lines...) Expand all
728 return ContextOperand(scratch, var->index()); 701 return ContextOperand(scratch, var->index());
729 } else { 702 } else {
730 return StackOperand(var); 703 return StackOperand(var);
731 } 704 }
732 } 705 }
733 706
734 707
735 void FullCodeGenerator::GetVar(Register dest, Variable* var) { 708 void FullCodeGenerator::GetVar(Register dest, Variable* var) {
736 // Use destination as scratch. 709 // Use destination as scratch.
737 MemOperand location = VarOperand(var, dest); 710 MemOperand location = VarOperand(var, dest);
738 __ ldr(dest, location); 711 __ LoadP(dest, location, r0);
739 } 712 }
740 713
741 714
742 void FullCodeGenerator::SetVar(Variable* var, 715 void FullCodeGenerator::SetVar(Variable* var, Register src, Register scratch0,
743 Register src,
744 Register scratch0,
745 Register scratch1) { 716 Register scratch1) {
746 DCHECK(var->IsContextSlot() || var->IsStackAllocated()); 717 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
747 DCHECK(!scratch0.is(src)); 718 DCHECK(!scratch0.is(src));
748 DCHECK(!scratch0.is(scratch1)); 719 DCHECK(!scratch0.is(scratch1));
749 DCHECK(!scratch1.is(src)); 720 DCHECK(!scratch1.is(src));
750 MemOperand location = VarOperand(var, scratch0); 721 MemOperand location = VarOperand(var, scratch0);
751 __ str(src, location); 722 __ StoreP(src, location, r0);
752 723
753 // Emit the write barrier code if the location is in the heap. 724 // Emit the write barrier code if the location is in the heap.
754 if (var->IsContextSlot()) { 725 if (var->IsContextSlot()) {
755 __ RecordWriteContextSlot(scratch0, 726 __ RecordWriteContextSlot(scratch0, location.offset(), src, scratch1,
756 location.offset(), 727 kLRHasBeenSaved, kDontSaveFPRegs);
757 src,
758 scratch1,
759 kLRHasBeenSaved,
760 kDontSaveFPRegs);
761 } 728 }
762 } 729 }
763 730
764 731
765 void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr, 732 void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
766 bool should_normalize, 733 bool should_normalize,
767 Label* if_true, 734 Label* if_true,
768 Label* if_false) { 735 Label* if_false) {
769 // Only prepare for bailouts before splits if we're in a test 736 // Only prepare for bailouts before splits if we're in a test
770 // context. Otherwise, we let the Visit function deal with the 737 // context. Otherwise, we let the Visit function deal with the
771 // preparation to avoid preparing with the same AST id twice. 738 // preparation to avoid preparing with the same AST id twice.
772 if (!context()->IsTest() || !info_->IsOptimizable()) return; 739 if (!context()->IsTest() || !info_->IsOptimizable()) return;
773 740
774 Label skip; 741 Label skip;
775 if (should_normalize) __ b(&skip); 742 if (should_normalize) __ b(&skip);
776 PrepareForBailout(expr, TOS_REG); 743 PrepareForBailout(expr, TOS_REG);
777 if (should_normalize) { 744 if (should_normalize) {
778 __ LoadRoot(ip, Heap::kTrueValueRootIndex); 745 __ LoadRoot(ip, Heap::kTrueValueRootIndex);
779 __ cmp(r0, ip); 746 __ cmp(r3, ip);
780 Split(eq, if_true, if_false, NULL); 747 Split(eq, if_true, if_false, NULL);
781 __ bind(&skip); 748 __ bind(&skip);
782 } 749 }
783 } 750 }
784 751
785 752
786 void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) { 753 void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
787 // The variable in the declaration always resides in the current function 754 // The variable in the declaration always resides in the current function
788 // context. 755 // context.
789 DCHECK_EQ(0, scope()->ContextChainLength(variable->scope())); 756 DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
790 if (generate_debug_code_) { 757 if (generate_debug_code_) {
791 // Check that we're not inside a with or catch context. 758 // Check that we're not inside a with or catch context.
792 __ ldr(r1, FieldMemOperand(cp, HeapObject::kMapOffset)); 759 __ LoadP(r4, FieldMemOperand(cp, HeapObject::kMapOffset));
793 __ CompareRoot(r1, Heap::kWithContextMapRootIndex); 760 __ CompareRoot(r4, Heap::kWithContextMapRootIndex);
794 __ Check(ne, kDeclarationInWithContext); 761 __ Check(ne, kDeclarationInWithContext);
795 __ CompareRoot(r1, Heap::kCatchContextMapRootIndex); 762 __ CompareRoot(r4, Heap::kCatchContextMapRootIndex);
796 __ Check(ne, kDeclarationInCatchContext); 763 __ Check(ne, kDeclarationInCatchContext);
797 } 764 }
798 } 765 }
799 766
800 767
801 void FullCodeGenerator::VisitVariableDeclaration( 768 void FullCodeGenerator::VisitVariableDeclaration(
802 VariableDeclaration* declaration) { 769 VariableDeclaration* declaration) {
803 // If it was not possible to allocate the variable at compile time, we 770 // If it was not possible to allocate the variable at compile time, we
804 // need to "declare" it at runtime to make sure it actually exists in the 771 // need to "declare" it at runtime to make sure it actually exists in the
805 // local context. 772 // local context.
806 VariableProxy* proxy = declaration->proxy(); 773 VariableProxy* proxy = declaration->proxy();
807 VariableMode mode = declaration->mode(); 774 VariableMode mode = declaration->mode();
808 Variable* variable = proxy->var(); 775 Variable* variable = proxy->var();
809 bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY; 776 bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
810 switch (variable->location()) { 777 switch (variable->location()) {
811 case Variable::UNALLOCATED: 778 case Variable::UNALLOCATED:
812 globals_->Add(variable->name(), zone()); 779 globals_->Add(variable->name(), zone());
813 globals_->Add(variable->binding_needs_init() 780 globals_->Add(variable->binding_needs_init()
814 ? isolate()->factory()->the_hole_value() 781 ? isolate()->factory()->the_hole_value()
815 : isolate()->factory()->undefined_value(), 782 : isolate()->factory()->undefined_value(),
816 zone()); 783 zone());
817 break; 784 break;
818 785
819 case Variable::PARAMETER: 786 case Variable::PARAMETER:
820 case Variable::LOCAL: 787 case Variable::LOCAL:
821 if (hole_init) { 788 if (hole_init) {
822 Comment cmnt(masm_, "[ VariableDeclaration"); 789 Comment cmnt(masm_, "[ VariableDeclaration");
823 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); 790 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
824 __ str(ip, StackOperand(variable)); 791 __ StoreP(ip, StackOperand(variable));
825 } 792 }
826 break; 793 break;
827 794
828 case Variable::CONTEXT: 795 case Variable::CONTEXT:
829 if (hole_init) { 796 if (hole_init) {
830 Comment cmnt(masm_, "[ VariableDeclaration"); 797 Comment cmnt(masm_, "[ VariableDeclaration");
831 EmitDebugCheckDeclarationContext(variable); 798 EmitDebugCheckDeclarationContext(variable);
832 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); 799 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
833 __ str(ip, ContextOperand(cp, variable->index())); 800 __ StoreP(ip, ContextOperand(cp, variable->index()), r0);
834 // No write barrier since the_hole_value is in old space. 801 // No write barrier since the_hole_value is in old space.
835 PrepareForBailoutForId(proxy->id(), NO_REGISTERS); 802 PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
836 } 803 }
837 break; 804 break;
838 805
839 case Variable::LOOKUP: { 806 case Variable::LOOKUP: {
840 Comment cmnt(masm_, "[ VariableDeclaration"); 807 Comment cmnt(masm_, "[ VariableDeclaration");
841 __ mov(r2, Operand(variable->name())); 808 __ mov(r5, Operand(variable->name()));
842 // Declaration nodes are always introduced in one of four modes. 809 // Declaration nodes are always introduced in one of four modes.
843 DCHECK(IsDeclaredVariableMode(mode)); 810 DCHECK(IsDeclaredVariableMode(mode));
844 PropertyAttributes attr = 811 PropertyAttributes attr =
845 IsImmutableVariableMode(mode) ? READ_ONLY : NONE; 812 IsImmutableVariableMode(mode) ? READ_ONLY : NONE;
846 __ mov(r1, Operand(Smi::FromInt(attr))); 813 __ LoadSmiLiteral(r4, Smi::FromInt(attr));
847 // Push initial value, if any. 814 // Push initial value, if any.
848 // Note: For variables we must not push an initial value (such as 815 // Note: For variables we must not push an initial value (such as
849 // 'undefined') because we may have a (legal) redeclaration and we 816 // 'undefined') because we may have a (legal) redeclaration and we
850 // must not destroy the current value. 817 // must not destroy the current value.
851 if (hole_init) { 818 if (hole_init) {
852 __ LoadRoot(r0, Heap::kTheHoleValueRootIndex); 819 __ LoadRoot(r3, Heap::kTheHoleValueRootIndex);
853 __ Push(cp, r2, r1, r0); 820 __ Push(cp, r5, r4, r3);
854 } else { 821 } else {
855 __ mov(r0, Operand(Smi::FromInt(0))); // Indicates no initial value. 822 __ LoadSmiLiteral(r3, Smi::FromInt(0)); // Indicates no initial value.
856 __ Push(cp, r2, r1, r0); 823 __ Push(cp, r5, r4, r3);
857 } 824 }
858 __ CallRuntime(Runtime::kDeclareLookupSlot, 4); 825 __ CallRuntime(Runtime::kDeclareLookupSlot, 4);
859 break; 826 break;
860 } 827 }
861 } 828 }
862 } 829 }
863 830
864 831
865 void FullCodeGenerator::VisitFunctionDeclaration( 832 void FullCodeGenerator::VisitFunctionDeclaration(
866 FunctionDeclaration* declaration) { 833 FunctionDeclaration* declaration) {
867 VariableProxy* proxy = declaration->proxy(); 834 VariableProxy* proxy = declaration->proxy();
868 Variable* variable = proxy->var(); 835 Variable* variable = proxy->var();
869 switch (variable->location()) { 836 switch (variable->location()) {
870 case Variable::UNALLOCATED: { 837 case Variable::UNALLOCATED: {
871 globals_->Add(variable->name(), zone()); 838 globals_->Add(variable->name(), zone());
872 Handle<SharedFunctionInfo> function = 839 Handle<SharedFunctionInfo> function =
873 Compiler::BuildFunctionInfo(declaration->fun(), script(), info_); 840 Compiler::BuildFunctionInfo(declaration->fun(), script(), info_);
874 // Check for stack-overflow exception. 841 // Check for stack-overflow exception.
875 if (function.is_null()) return SetStackOverflow(); 842 if (function.is_null()) return SetStackOverflow();
876 globals_->Add(function, zone()); 843 globals_->Add(function, zone());
877 break; 844 break;
878 } 845 }
879 846
880 case Variable::PARAMETER: 847 case Variable::PARAMETER:
881 case Variable::LOCAL: { 848 case Variable::LOCAL: {
882 Comment cmnt(masm_, "[ FunctionDeclaration"); 849 Comment cmnt(masm_, "[ FunctionDeclaration");
883 VisitForAccumulatorValue(declaration->fun()); 850 VisitForAccumulatorValue(declaration->fun());
884 __ str(result_register(), StackOperand(variable)); 851 __ StoreP(result_register(), StackOperand(variable));
885 break; 852 break;
886 } 853 }
887 854
888 case Variable::CONTEXT: { 855 case Variable::CONTEXT: {
889 Comment cmnt(masm_, "[ FunctionDeclaration"); 856 Comment cmnt(masm_, "[ FunctionDeclaration");
890 EmitDebugCheckDeclarationContext(variable); 857 EmitDebugCheckDeclarationContext(variable);
891 VisitForAccumulatorValue(declaration->fun()); 858 VisitForAccumulatorValue(declaration->fun());
892 __ str(result_register(), ContextOperand(cp, variable->index())); 859 __ StoreP(result_register(), ContextOperand(cp, variable->index()), r0);
893 int offset = Context::SlotOffset(variable->index()); 860 int offset = Context::SlotOffset(variable->index());
894 // We know that we have written a function, which is not a smi. 861 // We know that we have written a function, which is not a smi.
895 __ RecordWriteContextSlot(cp, 862 __ RecordWriteContextSlot(cp, offset, result_register(), r5,
896 offset, 863 kLRHasBeenSaved, kDontSaveFPRegs,
897 result_register(), 864 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
898 r2,
899 kLRHasBeenSaved,
900 kDontSaveFPRegs,
901 EMIT_REMEMBERED_SET,
902 OMIT_SMI_CHECK);
903 PrepareForBailoutForId(proxy->id(), NO_REGISTERS); 865 PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
904 break; 866 break;
905 } 867 }
906 868
907 case Variable::LOOKUP: { 869 case Variable::LOOKUP: {
908 Comment cmnt(masm_, "[ FunctionDeclaration"); 870 Comment cmnt(masm_, "[ FunctionDeclaration");
909 __ mov(r2, Operand(variable->name())); 871 __ mov(r5, Operand(variable->name()));
910 __ mov(r1, Operand(Smi::FromInt(NONE))); 872 __ LoadSmiLiteral(r4, Smi::FromInt(NONE));
911 __ Push(cp, r2, r1); 873 __ Push(cp, r5, r4);
912 // Push initial value for function declaration. 874 // Push initial value for function declaration.
913 VisitForStackValue(declaration->fun()); 875 VisitForStackValue(declaration->fun());
914 __ CallRuntime(Runtime::kDeclareLookupSlot, 4); 876 __ CallRuntime(Runtime::kDeclareLookupSlot, 4);
915 break; 877 break;
916 } 878 }
917 } 879 }
918 } 880 }
919 881
920 882
921 void FullCodeGenerator::VisitModuleDeclaration(ModuleDeclaration* declaration) { 883 void FullCodeGenerator::VisitModuleDeclaration(ModuleDeclaration* declaration) {
922 Variable* variable = declaration->proxy()->var(); 884 Variable* variable = declaration->proxy()->var();
923 DCHECK(variable->location() == Variable::CONTEXT); 885 DCHECK(variable->location() == Variable::CONTEXT);
924 DCHECK(variable->interface()->IsFrozen()); 886 DCHECK(variable->interface()->IsFrozen());
925 887
926 Comment cmnt(masm_, "[ ModuleDeclaration"); 888 Comment cmnt(masm_, "[ ModuleDeclaration");
927 EmitDebugCheckDeclarationContext(variable); 889 EmitDebugCheckDeclarationContext(variable);
928 890
929 // Load instance object. 891 // Load instance object.
930 __ LoadContext(r1, scope_->ContextChainLength(scope_->GlobalScope())); 892 __ LoadContext(r4, scope_->ContextChainLength(scope_->GlobalScope()));
931 __ ldr(r1, ContextOperand(r1, variable->interface()->Index())); 893 __ LoadP(r4, ContextOperand(r4, variable->interface()->Index()));
932 __ ldr(r1, ContextOperand(r1, Context::EXTENSION_INDEX)); 894 __ LoadP(r4, ContextOperand(r4, Context::EXTENSION_INDEX));
933 895
934 // Assign it. 896 // Assign it.
935 __ str(r1, ContextOperand(cp, variable->index())); 897 __ StoreP(r4, ContextOperand(cp, variable->index()), r0);
936 // We know that we have written a module, which is not a smi. 898 // We know that we have written a module, which is not a smi.
937 __ RecordWriteContextSlot(cp, 899 __ RecordWriteContextSlot(cp, Context::SlotOffset(variable->index()), r4, r6,
938 Context::SlotOffset(variable->index()), 900 kLRHasBeenSaved, kDontSaveFPRegs,
939 r1, 901 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
940 r3,
941 kLRHasBeenSaved,
942 kDontSaveFPRegs,
943 EMIT_REMEMBERED_SET,
944 OMIT_SMI_CHECK);
945 PrepareForBailoutForId(declaration->proxy()->id(), NO_REGISTERS); 902 PrepareForBailoutForId(declaration->proxy()->id(), NO_REGISTERS);
946 903
947 // Traverse into body. 904 // Traverse into body.
948 Visit(declaration->module()); 905 Visit(declaration->module());
949 } 906 }
950 907
951 908
952 void FullCodeGenerator::VisitImportDeclaration(ImportDeclaration* declaration) { 909 void FullCodeGenerator::VisitImportDeclaration(ImportDeclaration* declaration) {
953 VariableProxy* proxy = declaration->proxy(); 910 VariableProxy* proxy = declaration->proxy();
954 Variable* variable = proxy->var(); 911 Variable* variable = proxy->var();
(...skipping 18 matching lines...) Expand all
973 930
974 931
975 void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) { 932 void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) {
976 // TODO(rossberg) 933 // TODO(rossberg)
977 } 934 }
978 935
979 936
980 void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { 937 void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
981 // Call the runtime to declare the globals. 938 // Call the runtime to declare the globals.
982 // The context is the first argument. 939 // The context is the first argument.
983 __ mov(r1, Operand(pairs)); 940 __ mov(r4, Operand(pairs));
984 __ mov(r0, Operand(Smi::FromInt(DeclareGlobalsFlags()))); 941 __ LoadSmiLiteral(r3, Smi::FromInt(DeclareGlobalsFlags()));
985 __ Push(cp, r1, r0); 942 __ Push(cp, r4, r3);
986 __ CallRuntime(Runtime::kDeclareGlobals, 3); 943 __ CallRuntime(Runtime::kDeclareGlobals, 3);
987 // Return value is ignored. 944 // Return value is ignored.
988 } 945 }
989 946
990 947
991 void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) { 948 void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
992 // Call the runtime to declare the modules. 949 // Call the runtime to declare the modules.
993 __ Push(descriptions); 950 __ Push(descriptions);
994 __ CallRuntime(Runtime::kDeclareModules, 1); 951 __ CallRuntime(Runtime::kDeclareModules, 1);
995 // Return value is ignored. 952 // Return value is ignored.
(...skipping 25 matching lines...) Expand all
1021 } 978 }
1022 979
1023 Comment cmnt(masm_, "[ Case comparison"); 980 Comment cmnt(masm_, "[ Case comparison");
1024 __ bind(&next_test); 981 __ bind(&next_test);
1025 next_test.Unuse(); 982 next_test.Unuse();
1026 983
1027 // Compile the label expression. 984 // Compile the label expression.
1028 VisitForAccumulatorValue(clause->label()); 985 VisitForAccumulatorValue(clause->label());
1029 986
1030 // Perform the comparison as if via '==='. 987 // Perform the comparison as if via '==='.
1031 __ ldr(r1, MemOperand(sp, 0)); // Switch value. 988 __ LoadP(r4, MemOperand(sp, 0)); // Switch value.
1032 bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT); 989 bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
1033 JumpPatchSite patch_site(masm_); 990 JumpPatchSite patch_site(masm_);
1034 if (inline_smi_code) { 991 if (inline_smi_code) {
1035 Label slow_case; 992 Label slow_case;
1036 __ orr(r2, r1, r0); 993 __ orx(r5, r4, r3);
1037 patch_site.EmitJumpIfNotSmi(r2, &slow_case); 994 patch_site.EmitJumpIfNotSmi(r5, &slow_case);
1038 995
1039 __ cmp(r1, r0); 996 __ cmp(r4, r3);
1040 __ b(ne, &next_test); 997 __ bne(&next_test);
1041 __ Drop(1); // Switch value is no longer needed. 998 __ Drop(1); // Switch value is no longer needed.
1042 __ b(clause->body_target()); 999 __ b(clause->body_target());
1043 __ bind(&slow_case); 1000 __ bind(&slow_case);
1044 } 1001 }
1045 1002
1046 // Record position before stub call for type feedback. 1003 // Record position before stub call for type feedback.
1047 SetSourcePosition(clause->position()); 1004 SetSourcePosition(clause->position());
1048 Handle<Code> ic = CompareIC::GetUninitialized(isolate(), Token::EQ_STRICT); 1005 Handle<Code> ic = CompareIC::GetUninitialized(isolate(), Token::EQ_STRICT);
1049 CallIC(ic, clause->CompareId()); 1006 CallIC(ic, clause->CompareId());
1050 patch_site.EmitPatchInfo(); 1007 patch_site.EmitPatchInfo();
1051 1008
1052 Label skip; 1009 Label skip;
1053 __ b(&skip); 1010 __ b(&skip);
1054 PrepareForBailout(clause, TOS_REG); 1011 PrepareForBailout(clause, TOS_REG);
1055 __ LoadRoot(ip, Heap::kTrueValueRootIndex); 1012 __ LoadRoot(ip, Heap::kTrueValueRootIndex);
1056 __ cmp(r0, ip); 1013 __ cmp(r3, ip);
1057 __ b(ne, &next_test); 1014 __ bne(&next_test);
1058 __ Drop(1); 1015 __ Drop(1);
1059 __ jmp(clause->body_target()); 1016 __ b(clause->body_target());
1060 __ bind(&skip); 1017 __ bind(&skip);
1061 1018
1062 __ cmp(r0, Operand::Zero()); 1019 __ cmpi(r3, Operand::Zero());
1063 __ b(ne, &next_test); 1020 __ bne(&next_test);
1064 __ Drop(1); // Switch value is no longer needed. 1021 __ Drop(1); // Switch value is no longer needed.
1065 __ b(clause->body_target()); 1022 __ b(clause->body_target());
1066 } 1023 }
1067 1024
1068 // Discard the test value and jump to the default if present, otherwise to 1025 // Discard the test value and jump to the default if present, otherwise to
1069 // the end of the statement. 1026 // the end of the statement.
1070 __ bind(&next_test); 1027 __ bind(&next_test);
1071 __ Drop(1); // Switch value is no longer needed. 1028 __ Drop(1); // Switch value is no longer needed.
1072 if (default_clause == NULL) { 1029 if (default_clause == NULL) {
1073 __ b(nested_statement.break_label()); 1030 __ b(nested_statement.break_label());
(...skipping 21 matching lines...) Expand all
1095 SetStatementPosition(stmt); 1052 SetStatementPosition(stmt);
1096 1053
1097 Label loop, exit; 1054 Label loop, exit;
1098 ForIn loop_statement(this, stmt); 1055 ForIn loop_statement(this, stmt);
1099 increment_loop_depth(); 1056 increment_loop_depth();
1100 1057
1101 // Get the object to enumerate over. If the object is null or undefined, skip 1058 // Get the object to enumerate over. If the object is null or undefined, skip
1102 // over the loop. See ECMA-262 version 5, section 12.6.4. 1059 // over the loop. See ECMA-262 version 5, section 12.6.4.
1103 VisitForAccumulatorValue(stmt->enumerable()); 1060 VisitForAccumulatorValue(stmt->enumerable());
1104 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); 1061 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
1105 __ cmp(r0, ip); 1062 __ cmp(r3, ip);
1106 __ b(eq, &exit); 1063 __ beq(&exit);
1107 Register null_value = r5; 1064 Register null_value = r7;
1108 __ LoadRoot(null_value, Heap::kNullValueRootIndex); 1065 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
1109 __ cmp(r0, null_value); 1066 __ cmp(r3, null_value);
1110 __ b(eq, &exit); 1067 __ beq(&exit);
1111 1068
1112 PrepareForBailoutForId(stmt->PrepareId(), TOS_REG); 1069 PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
1113 1070
1114 // Convert the object to a JS object. 1071 // Convert the object to a JS object.
1115 Label convert, done_convert; 1072 Label convert, done_convert;
1116 __ JumpIfSmi(r0, &convert); 1073 __ JumpIfSmi(r3, &convert);
1117 __ CompareObjectType(r0, r1, r1, FIRST_SPEC_OBJECT_TYPE); 1074 __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE);
1118 __ b(ge, &done_convert); 1075 __ bge(&done_convert);
1119 __ bind(&convert); 1076 __ bind(&convert);
1120 __ push(r0); 1077 __ push(r3);
1121 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); 1078 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1122 __ bind(&done_convert); 1079 __ bind(&done_convert);
1123 __ push(r0); 1080 __ push(r3);
1124 1081
1125 // Check for proxies. 1082 // Check for proxies.
1126 Label call_runtime; 1083 Label call_runtime;
1127 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); 1084 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1128 __ CompareObjectType(r0, r1, r1, LAST_JS_PROXY_TYPE); 1085 __ CompareObjectType(r3, r4, r4, LAST_JS_PROXY_TYPE);
1129 __ b(le, &call_runtime); 1086 __ ble(&call_runtime);
1130 1087
1131 // Check cache validity in generated code. This is a fast case for 1088 // Check cache validity in generated code. This is a fast case for
1132 // the JSObject::IsSimpleEnum cache validity checks. If we cannot 1089 // the JSObject::IsSimpleEnum cache validity checks. If we cannot
1133 // guarantee cache validity, call the runtime system to check cache 1090 // guarantee cache validity, call the runtime system to check cache
1134 // validity or get the property names in a fixed array. 1091 // validity or get the property names in a fixed array.
1135 __ CheckEnumCache(null_value, &call_runtime); 1092 __ CheckEnumCache(null_value, &call_runtime);
1136 1093
1137 // The enum cache is valid. Load the map of the object being 1094 // The enum cache is valid. Load the map of the object being
1138 // iterated over and use the cache for the iteration. 1095 // iterated over and use the cache for the iteration.
1139 Label use_cache; 1096 Label use_cache;
1140 __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); 1097 __ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
1141 __ b(&use_cache); 1098 __ b(&use_cache);
1142 1099
1143 // Get the set of properties to enumerate. 1100 // Get the set of properties to enumerate.
1144 __ bind(&call_runtime); 1101 __ bind(&call_runtime);
1145 __ push(r0); // Duplicate the enumerable object on the stack. 1102 __ push(r3); // Duplicate the enumerable object on the stack.
1146 __ CallRuntime(Runtime::kGetPropertyNamesFast, 1); 1103 __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
1147 1104
1148 // If we got a map from the runtime call, we can do a fast 1105 // If we got a map from the runtime call, we can do a fast
1149 // modification check. Otherwise, we got a fixed array, and we have 1106 // modification check. Otherwise, we got a fixed array, and we have
1150 // to do a slow check. 1107 // to do a slow check.
1151 Label fixed_array; 1108 Label fixed_array;
1152 __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); 1109 __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
1153 __ LoadRoot(ip, Heap::kMetaMapRootIndex); 1110 __ LoadRoot(ip, Heap::kMetaMapRootIndex);
1154 __ cmp(r2, ip); 1111 __ cmp(r5, ip);
1155 __ b(ne, &fixed_array); 1112 __ bne(&fixed_array);
1156 1113
1157 // We got a map in register r0. Get the enumeration cache from it. 1114 // We got a map in register r3. Get the enumeration cache from it.
1158 Label no_descriptors; 1115 Label no_descriptors;
1159 __ bind(&use_cache); 1116 __ bind(&use_cache);
1160 1117
1161 __ EnumLength(r1, r0); 1118 __ EnumLength(r4, r3);
1162 __ cmp(r1, Operand(Smi::FromInt(0))); 1119 __ CmpSmiLiteral(r4, Smi::FromInt(0), r0);
1163 __ b(eq, &no_descriptors); 1120 __ beq(&no_descriptors);
1164 1121
1165 __ LoadInstanceDescriptors(r0, r2); 1122 __ LoadInstanceDescriptors(r3, r5);
1166 __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumCacheOffset)); 1123 __ LoadP(r5, FieldMemOperand(r5, DescriptorArray::kEnumCacheOffset));
1167 __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumCacheBridgeCacheOffset)); 1124 __ LoadP(r5,
1125 FieldMemOperand(r5, DescriptorArray::kEnumCacheBridgeCacheOffset));
1168 1126
1169 // Set up the four remaining stack slots. 1127 // Set up the four remaining stack slots.
1170 __ push(r0); // Map. 1128 __ push(r3); // Map.
1171 __ mov(r0, Operand(Smi::FromInt(0))); 1129 __ LoadSmiLiteral(r3, Smi::FromInt(0));
1172 // Push enumeration cache, enumeration cache length (as smi) and zero. 1130 // Push enumeration cache, enumeration cache length (as smi) and zero.
1173 __ Push(r2, r1, r0); 1131 __ Push(r5, r4, r3);
1174 __ jmp(&loop); 1132 __ b(&loop);
1175 1133
1176 __ bind(&no_descriptors); 1134 __ bind(&no_descriptors);
1177 __ Drop(1); 1135 __ Drop(1);
1178 __ jmp(&exit); 1136 __ b(&exit);
1179 1137
1180 // We got a fixed array in register r0. Iterate through that. 1138 // We got a fixed array in register r3. Iterate through that.
1181 Label non_proxy; 1139 Label non_proxy;
1182 __ bind(&fixed_array); 1140 __ bind(&fixed_array);
1183 1141
1184 __ Move(r1, FeedbackVector()); 1142 __ Move(r4, FeedbackVector());
1185 __ mov(r2, Operand(TypeFeedbackInfo::MegamorphicSentinel(isolate()))); 1143 __ mov(r5, Operand(TypeFeedbackInfo::MegamorphicSentinel(isolate())));
1186 __ str(r2, FieldMemOperand(r1, FixedArray::OffsetOfElementAt(slot))); 1144 __ StoreP(r5, FieldMemOperand(r4, FixedArray::OffsetOfElementAt(slot)), r0);
1187 1145
1188 __ mov(r1, Operand(Smi::FromInt(1))); // Smi indicates slow check 1146 __ LoadSmiLiteral(r4, Smi::FromInt(1)); // Smi indicates slow check
1189 __ ldr(r2, MemOperand(sp, 0 * kPointerSize)); // Get enumerated object 1147 __ LoadP(r5, MemOperand(sp, 0 * kPointerSize)); // Get enumerated object
1190 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); 1148 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1191 __ CompareObjectType(r2, r3, r3, LAST_JS_PROXY_TYPE); 1149 __ CompareObjectType(r5, r6, r6, LAST_JS_PROXY_TYPE);
1192 __ b(gt, &non_proxy); 1150 __ bgt(&non_proxy);
1193 __ mov(r1, Operand(Smi::FromInt(0))); // Zero indicates proxy 1151 __ LoadSmiLiteral(r4, Smi::FromInt(0)); // Zero indicates proxy
1194 __ bind(&non_proxy); 1152 __ bind(&non_proxy);
1195 __ Push(r1, r0); // Smi and array 1153 __ Push(r4, r3); // Smi and array
1196 __ ldr(r1, FieldMemOperand(r0, FixedArray::kLengthOffset)); 1154 __ LoadP(r4, FieldMemOperand(r3, FixedArray::kLengthOffset));
1197 __ mov(r0, Operand(Smi::FromInt(0))); 1155 __ LoadSmiLiteral(r3, Smi::FromInt(0));
1198 __ Push(r1, r0); // Fixed array length (as smi) and initial index. 1156 __ Push(r4, r3); // Fixed array length (as smi) and initial index.
1199 1157
1200 // Generate code for doing the condition check. 1158 // Generate code for doing the condition check.
1201 PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS); 1159 PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1202 __ bind(&loop); 1160 __ bind(&loop);
1203 // Load the current count to r0, load the length to r1. 1161 // Load the current count to r3, load the length to r4.
1204 __ Ldrd(r0, r1, MemOperand(sp, 0 * kPointerSize)); 1162 __ LoadP(r3, MemOperand(sp, 0 * kPointerSize));
1205 __ cmp(r0, r1); // Compare to the array length. 1163 __ LoadP(r4, MemOperand(sp, 1 * kPointerSize));
1206 __ b(hs, loop_statement.break_label()); 1164 __ cmpl(r3, r4); // Compare to the array length.
1165 __ bge(loop_statement.break_label());
1207 1166
1208 // Get the current entry of the array into register r3. 1167 // Get the current entry of the array into register r6.
1209 __ ldr(r2, MemOperand(sp, 2 * kPointerSize)); 1168 __ LoadP(r5, MemOperand(sp, 2 * kPointerSize));
1210 __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 1169 __ addi(r5, r5, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
1211 __ ldr(r3, MemOperand::PointerAddressFromSmiKey(r2, r0)); 1170 __ SmiToPtrArrayOffset(r6, r3);
1171 __ LoadPX(r6, MemOperand(r6, r5));
1212 1172
1213 // Get the expected map from the stack or a smi in the 1173 // Get the expected map from the stack or a smi in the
1214 // permanent slow case into register r2. 1174 // permanent slow case into register r5.
1215 __ ldr(r2, MemOperand(sp, 3 * kPointerSize)); 1175 __ LoadP(r5, MemOperand(sp, 3 * kPointerSize));
1216 1176
1217 // Check if the expected map still matches that of the enumerable. 1177 // Check if the expected map still matches that of the enumerable.
1218 // If not, we may have to filter the key. 1178 // If not, we may have to filter the key.
1219 Label update_each; 1179 Label update_each;
1220 __ ldr(r1, MemOperand(sp, 4 * kPointerSize)); 1180 __ LoadP(r4, MemOperand(sp, 4 * kPointerSize));
1221 __ ldr(r4, FieldMemOperand(r1, HeapObject::kMapOffset)); 1181 __ LoadP(r7, FieldMemOperand(r4, HeapObject::kMapOffset));
1222 __ cmp(r4, Operand(r2)); 1182 __ cmp(r7, r5);
1223 __ b(eq, &update_each); 1183 __ beq(&update_each);
1224 1184
1225 // For proxies, no filtering is done. 1185 // For proxies, no filtering is done.
1226 // TODO(rossberg): What if only a prototype is a proxy? Not specified yet. 1186 // TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
1227 __ cmp(r2, Operand(Smi::FromInt(0))); 1187 __ CmpSmiLiteral(r5, Smi::FromInt(0), r0);
1228 __ b(eq, &update_each); 1188 __ beq(&update_each);
1229 1189
1230 // Convert the entry to a string or (smi) 0 if it isn't a property 1190 // Convert the entry to a string or (smi) 0 if it isn't a property
1231 // any more. If the property has been removed while iterating, we 1191 // any more. If the property has been removed while iterating, we
1232 // just skip it. 1192 // just skip it.
1233 __ push(r1); // Enumerable. 1193 __ Push(r4, r6); // Enumerable and current entry.
1234 __ push(r3); // Current entry.
1235 __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION); 1194 __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
1236 __ mov(r3, Operand(r0), SetCC); 1195 __ mr(r6, r3);
1237 __ b(eq, loop_statement.continue_label()); 1196 __ cmpi(r6, Operand::Zero());
1197 __ beq(loop_statement.continue_label());
1238 1198
1239 // Update the 'each' property or variable from the possibly filtered 1199 // Update the 'each' property or variable from the possibly filtered
1240 // entry in register r3. 1200 // entry in register r6.
1241 __ bind(&update_each); 1201 __ bind(&update_each);
1242 __ mov(result_register(), r3); 1202 __ mr(result_register(), r6);
1243 // Perform the assignment as if via '='. 1203 // Perform the assignment as if via '='.
1244 { EffectContext context(this); 1204 {
1205 EffectContext context(this);
1245 EmitAssignment(stmt->each()); 1206 EmitAssignment(stmt->each());
1246 } 1207 }
1247 1208
1248 // Generate code for the body of the loop. 1209 // Generate code for the body of the loop.
1249 Visit(stmt->body()); 1210 Visit(stmt->body());
1250 1211
1251 // Generate code for the going to the next element by incrementing 1212 // Generate code for the going to the next element by incrementing
1252 // the index (smi) stored on top of the stack. 1213 // the index (smi) stored on top of the stack.
1253 __ bind(loop_statement.continue_label()); 1214 __ bind(loop_statement.continue_label());
1254 __ pop(r0); 1215 __ pop(r3);
1255 __ add(r0, r0, Operand(Smi::FromInt(1))); 1216 __ AddSmiLiteral(r3, r3, Smi::FromInt(1), r0);
1256 __ push(r0); 1217 __ push(r3);
1257 1218
1258 EmitBackEdgeBookkeeping(stmt, &loop); 1219 EmitBackEdgeBookkeeping(stmt, &loop);
1259 __ b(&loop); 1220 __ b(&loop);
1260 1221
1261 // Remove the pointers stored on the stack. 1222 // Remove the pointers stored on the stack.
1262 __ bind(loop_statement.break_label()); 1223 __ bind(loop_statement.break_label());
1263 __ Drop(5); 1224 __ Drop(5);
1264 1225
1265 // Exit and decrement the loop depth. 1226 // Exit and decrement the loop depth.
1266 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); 1227 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
(...skipping 13 matching lines...) Expand all
1280 VisitForEffect(stmt->assign_iterator()); 1241 VisitForEffect(stmt->assign_iterator());
1281 1242
1282 // Loop entry. 1243 // Loop entry.
1283 __ bind(loop_statement.continue_label()); 1244 __ bind(loop_statement.continue_label());
1284 1245
1285 // result = iterator.next() 1246 // result = iterator.next()
1286 VisitForEffect(stmt->next_result()); 1247 VisitForEffect(stmt->next_result());
1287 1248
1288 // if (result.done) break; 1249 // if (result.done) break;
1289 Label result_not_done; 1250 Label result_not_done;
1290 VisitForControl(stmt->result_done(), 1251 VisitForControl(stmt->result_done(), loop_statement.break_label(),
1291 loop_statement.break_label(), 1252 &result_not_done, &result_not_done);
1292 &result_not_done,
1293 &result_not_done);
1294 __ bind(&result_not_done); 1253 __ bind(&result_not_done);
1295 1254
1296 // each = result.value 1255 // each = result.value
1297 VisitForEffect(stmt->assign_each()); 1256 VisitForEffect(stmt->assign_each());
1298 1257
1299 // Generate code for the body of the loop. 1258 // Generate code for the body of the loop.
1300 Visit(stmt->body()); 1259 Visit(stmt->body());
1301 1260
1302 // Check stack before looping. 1261 // Check stack before looping.
1303 PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS); 1262 PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
1304 EmitBackEdgeBookkeeping(stmt, loop_statement.continue_label()); 1263 EmitBackEdgeBookkeeping(stmt, loop_statement.continue_label());
1305 __ jmp(loop_statement.continue_label()); 1264 __ b(loop_statement.continue_label());
1306 1265
1307 // Exit and decrement the loop depth. 1266 // Exit and decrement the loop depth.
1308 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); 1267 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1309 __ bind(loop_statement.break_label()); 1268 __ bind(loop_statement.break_label());
1310 decrement_loop_depth(); 1269 decrement_loop_depth();
1311 } 1270 }
1312 1271
1313 1272
1314 void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info, 1273 void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
1315 bool pretenure) { 1274 bool pretenure) {
1316 // Use the fast case closure allocation code that allocates in new 1275 // Use the fast case closure allocation code that allocates in new
1317 // space for nested functions that don't need literals cloning. If 1276 // space for nested functions that don't need literals cloning. If
1318 // we're running with the --always-opt or the --prepare-always-opt 1277 // we're running with the --always-opt or the --prepare-always-opt
1319 // flag, we need to use the runtime function so that the new function 1278 // flag, we need to use the runtime function so that the new function
1320 // we are creating here gets a chance to have its code optimized and 1279 // we are creating here gets a chance to have its code optimized and
1321 // doesn't just get a copy of the existing unoptimized code. 1280 // doesn't just get a copy of the existing unoptimized code.
1322 if (!FLAG_always_opt && 1281 if (!FLAG_always_opt && !FLAG_prepare_always_opt && !pretenure &&
1323 !FLAG_prepare_always_opt && 1282 scope()->is_function_scope() && info->num_literals() == 0) {
1324 !pretenure && 1283 FastNewClosureStub stub(isolate(), info->strict_mode(),
1325 scope()->is_function_scope() &&
1326 info->num_literals() == 0) {
1327 FastNewClosureStub stub(isolate(),
1328 info->strict_mode(),
1329 info->is_generator()); 1284 info->is_generator());
1330 __ mov(r2, Operand(info)); 1285 __ mov(r5, Operand(info));
1331 __ CallStub(&stub); 1286 __ CallStub(&stub);
1332 } else { 1287 } else {
1333 __ mov(r0, Operand(info)); 1288 __ mov(r3, Operand(info));
1334 __ LoadRoot(r1, pretenure ? Heap::kTrueValueRootIndex 1289 __ LoadRoot(
1335 : Heap::kFalseValueRootIndex); 1290 r4, pretenure ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex);
1336 __ Push(cp, r0, r1); 1291 __ Push(cp, r3, r4);
1337 __ CallRuntime(Runtime::kNewClosure, 3); 1292 __ CallRuntime(Runtime::kNewClosure, 3);
1338 } 1293 }
1339 context()->Plug(r0); 1294 context()->Plug(r3);
1340 } 1295 }
1341 1296
1342 1297
1343 void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) { 1298 void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
1344 Comment cmnt(masm_, "[ VariableProxy"); 1299 Comment cmnt(masm_, "[ VariableProxy");
1345 EmitVariableLoad(expr); 1300 EmitVariableLoad(expr);
1346 } 1301 }
1347 1302
1348 1303
1349 void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy, 1304 void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
1350 TypeofState typeof_state, 1305 TypeofState typeof_state,
1351 Label* slow) { 1306 Label* slow) {
1352 Register current = cp; 1307 Register current = cp;
1353 Register next = r1; 1308 Register next = r4;
1354 Register temp = r2; 1309 Register temp = r5;
1355 1310
1356 Scope* s = scope(); 1311 Scope* s = scope();
1357 while (s != NULL) { 1312 while (s != NULL) {
1358 if (s->num_heap_slots() > 0) { 1313 if (s->num_heap_slots() > 0) {
1359 if (s->calls_sloppy_eval()) { 1314 if (s->calls_sloppy_eval()) {
1360 // Check that extension is NULL. 1315 // Check that extension is NULL.
1361 __ ldr(temp, ContextOperand(current, Context::EXTENSION_INDEX)); 1316 __ LoadP(temp, ContextOperand(current, Context::EXTENSION_INDEX));
1362 __ tst(temp, temp); 1317 __ cmpi(temp, Operand::Zero());
1363 __ b(ne, slow); 1318 __ bne(slow);
1364 } 1319 }
1365 // Load next context in chain. 1320 // Load next context in chain.
1366 __ ldr(next, ContextOperand(current, Context::PREVIOUS_INDEX)); 1321 __ LoadP(next, ContextOperand(current, Context::PREVIOUS_INDEX));
1367 // Walk the rest of the chain without clobbering cp. 1322 // Walk the rest of the chain without clobbering cp.
1368 current = next; 1323 current = next;
1369 } 1324 }
1370 // If no outer scope calls eval, we do not need to check more 1325 // If no outer scope calls eval, we do not need to check more
1371 // context extensions. 1326 // context extensions.
1372 if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break; 1327 if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
1373 s = s->outer_scope(); 1328 s = s->outer_scope();
1374 } 1329 }
1375 1330
1376 if (s->is_eval_scope()) { 1331 if (s->is_eval_scope()) {
1377 Label loop, fast; 1332 Label loop, fast;
1378 if (!current.is(next)) { 1333 if (!current.is(next)) {
1379 __ Move(next, current); 1334 __ Move(next, current);
1380 } 1335 }
1381 __ bind(&loop); 1336 __ bind(&loop);
1382 // Terminate at native context. 1337 // Terminate at native context.
1383 __ ldr(temp, FieldMemOperand(next, HeapObject::kMapOffset)); 1338 __ LoadP(temp, FieldMemOperand(next, HeapObject::kMapOffset));
1384 __ LoadRoot(ip, Heap::kNativeContextMapRootIndex); 1339 __ LoadRoot(ip, Heap::kNativeContextMapRootIndex);
1385 __ cmp(temp, ip); 1340 __ cmp(temp, ip);
1386 __ b(eq, &fast); 1341 __ beq(&fast);
1387 // Check that extension is NULL. 1342 // Check that extension is NULL.
1388 __ ldr(temp, ContextOperand(next, Context::EXTENSION_INDEX)); 1343 __ LoadP(temp, ContextOperand(next, Context::EXTENSION_INDEX));
1389 __ tst(temp, temp); 1344 __ cmpi(temp, Operand::Zero());
1390 __ b(ne, slow); 1345 __ bne(slow);
1391 // Load next context in chain. 1346 // Load next context in chain.
1392 __ ldr(next, ContextOperand(next, Context::PREVIOUS_INDEX)); 1347 __ LoadP(next, ContextOperand(next, Context::PREVIOUS_INDEX));
1393 __ b(&loop); 1348 __ b(&loop);
1394 __ bind(&fast); 1349 __ bind(&fast);
1395 } 1350 }
1396 1351
1397 __ ldr(LoadIC::ReceiverRegister(), GlobalObjectOperand()); 1352 __ LoadP(LoadIC::ReceiverRegister(), GlobalObjectOperand());
1398 __ mov(LoadIC::NameRegister(), Operand(proxy->var()->name())); 1353 __ mov(LoadIC::NameRegister(), Operand(proxy->var()->name()));
1399 if (FLAG_vector_ics) { 1354 if (FLAG_vector_ics) {
1400 __ mov(LoadIC::SlotRegister(), 1355 __ mov(LoadIC::SlotRegister(),
1401 Operand(Smi::FromInt(proxy->VariableFeedbackSlot()))); 1356 Operand(Smi::FromInt(proxy->VariableFeedbackSlot())));
1402 } 1357 }
1403 1358 ContextualMode mode =
1404 ContextualMode mode = (typeof_state == INSIDE_TYPEOF) 1359 (typeof_state == INSIDE_TYPEOF) ? NOT_CONTEXTUAL : CONTEXTUAL;
1405 ? NOT_CONTEXTUAL
1406 : CONTEXTUAL;
1407 CallLoadIC(mode); 1360 CallLoadIC(mode);
1408 } 1361 }
1409 1362
1410 1363
1411 MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var, 1364 MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
1412 Label* slow) { 1365 Label* slow) {
1413 DCHECK(var->IsContextSlot()); 1366 DCHECK(var->IsContextSlot());
1414 Register context = cp; 1367 Register context = cp;
1415 Register next = r3; 1368 Register next = r6;
1416 Register temp = r4; 1369 Register temp = r7;
1417 1370
1418 for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) { 1371 for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
1419 if (s->num_heap_slots() > 0) { 1372 if (s->num_heap_slots() > 0) {
1420 if (s->calls_sloppy_eval()) { 1373 if (s->calls_sloppy_eval()) {
1421 // Check that extension is NULL. 1374 // Check that extension is NULL.
1422 __ ldr(temp, ContextOperand(context, Context::EXTENSION_INDEX)); 1375 __ LoadP(temp, ContextOperand(context, Context::EXTENSION_INDEX));
1423 __ tst(temp, temp); 1376 __ cmpi(temp, Operand::Zero());
1424 __ b(ne, slow); 1377 __ bne(slow);
1425 } 1378 }
1426 __ ldr(next, ContextOperand(context, Context::PREVIOUS_INDEX)); 1379 __ LoadP(next, ContextOperand(context, Context::PREVIOUS_INDEX));
1427 // Walk the rest of the chain without clobbering cp. 1380 // Walk the rest of the chain without clobbering cp.
1428 context = next; 1381 context = next;
1429 } 1382 }
1430 } 1383 }
1431 // Check that last extension is NULL. 1384 // Check that last extension is NULL.
1432 __ ldr(temp, ContextOperand(context, Context::EXTENSION_INDEX)); 1385 __ LoadP(temp, ContextOperand(context, Context::EXTENSION_INDEX));
1433 __ tst(temp, temp); 1386 __ cmpi(temp, Operand::Zero());
1434 __ b(ne, slow); 1387 __ bne(slow);
1435 1388
1436 // This function is used only for loads, not stores, so it's safe to 1389 // This function is used only for loads, not stores, so it's safe to
1437 // return an cp-based operand (the write barrier cannot be allowed to 1390 // return an cp-based operand (the write barrier cannot be allowed to
1438 // destroy the cp register). 1391 // destroy the cp register).
1439 return ContextOperand(context, var->index()); 1392 return ContextOperand(context, var->index());
1440 } 1393 }
1441 1394
1442 1395
1443 void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy, 1396 void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
1444 TypeofState typeof_state, 1397 TypeofState typeof_state,
1445 Label* slow, 1398 Label* slow, Label* done) {
1446 Label* done) {
1447 // Generate fast-case code for variables that might be shadowed by 1399 // Generate fast-case code for variables that might be shadowed by
1448 // eval-introduced variables. Eval is used a lot without 1400 // eval-introduced variables. Eval is used a lot without
1449 // introducing variables. In those cases, we do not want to 1401 // introducing variables. In those cases, we do not want to
1450 // perform a runtime call for all variables in the scope 1402 // perform a runtime call for all variables in the scope
1451 // containing the eval. 1403 // containing the eval.
1452 Variable* var = proxy->var(); 1404 Variable* var = proxy->var();
1453 if (var->mode() == DYNAMIC_GLOBAL) { 1405 if (var->mode() == DYNAMIC_GLOBAL) {
1454 EmitLoadGlobalCheckExtensions(proxy, typeof_state, slow); 1406 EmitLoadGlobalCheckExtensions(proxy, typeof_state, slow);
1455 __ jmp(done); 1407 __ b(done);
1456 } else if (var->mode() == DYNAMIC_LOCAL) { 1408 } else if (var->mode() == DYNAMIC_LOCAL) {
1457 Variable* local = var->local_if_not_shadowed(); 1409 Variable* local = var->local_if_not_shadowed();
1458 __ ldr(r0, ContextSlotOperandCheckExtensions(local, slow)); 1410 __ LoadP(r3, ContextSlotOperandCheckExtensions(local, slow));
1459 if (local->mode() == LET || local->mode() == CONST || 1411 if (local->mode() == LET || local->mode() == CONST ||
1460 local->mode() == CONST_LEGACY) { 1412 local->mode() == CONST_LEGACY) {
1461 __ CompareRoot(r0, Heap::kTheHoleValueRootIndex); 1413 __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
1414 __ bne(done);
1462 if (local->mode() == CONST_LEGACY) { 1415 if (local->mode() == CONST_LEGACY) {
1463 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq); 1416 __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
1464 } else { // LET || CONST 1417 } else { // LET || CONST
1465 __ b(ne, done); 1418 __ mov(r3, Operand(var->name()));
1466 __ mov(r0, Operand(var->name())); 1419 __ push(r3);
1467 __ push(r0);
1468 __ CallRuntime(Runtime::kThrowReferenceError, 1); 1420 __ CallRuntime(Runtime::kThrowReferenceError, 1);
1469 } 1421 }
1470 } 1422 }
1471 __ jmp(done); 1423 __ b(done);
1472 } 1424 }
1473 } 1425 }
1474 1426
1475 1427
1476 void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) { 1428 void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) {
1477 // Record position before possible IC call. 1429 // Record position before possible IC call.
1478 SetSourcePosition(proxy->position()); 1430 SetSourcePosition(proxy->position());
1479 Variable* var = proxy->var(); 1431 Variable* var = proxy->var();
1480 1432
1481 // Three cases: global variables, lookup variables, and all other types of 1433 // Three cases: global variables, lookup variables, and all other types of
1482 // variables. 1434 // variables.
1483 switch (var->location()) { 1435 switch (var->location()) {
1484 case Variable::UNALLOCATED: { 1436 case Variable::UNALLOCATED: {
1485 Comment cmnt(masm_, "[ Global variable"); 1437 Comment cmnt(masm_, "[ Global variable");
1486 __ ldr(LoadIC::ReceiverRegister(), GlobalObjectOperand()); 1438 // Use inline caching. Variable name is passed in r5 and the global
1439 // object (receiver) in r3.
1440 __ LoadP(LoadIC::ReceiverRegister(), GlobalObjectOperand());
1487 __ mov(LoadIC::NameRegister(), Operand(var->name())); 1441 __ mov(LoadIC::NameRegister(), Operand(var->name()));
1488 if (FLAG_vector_ics) { 1442 if (FLAG_vector_ics) {
1489 __ mov(LoadIC::SlotRegister(), 1443 __ mov(LoadIC::SlotRegister(),
1490 Operand(Smi::FromInt(proxy->VariableFeedbackSlot()))); 1444 Operand(Smi::FromInt(proxy->VariableFeedbackSlot())));
1491 } 1445 }
1492 CallLoadIC(CONTEXTUAL); 1446 CallLoadIC(CONTEXTUAL);
1493 context()->Plug(r0); 1447 context()->Plug(r3);
1494 break; 1448 break;
1495 } 1449 }
1496 1450
1497 case Variable::PARAMETER: 1451 case Variable::PARAMETER:
1498 case Variable::LOCAL: 1452 case Variable::LOCAL:
1499 case Variable::CONTEXT: { 1453 case Variable::CONTEXT: {
1500 Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable" 1454 Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable"
1501 : "[ Stack variable"); 1455 : "[ Stack variable");
1502 if (var->binding_needs_init()) { 1456 if (var->binding_needs_init()) {
1503 // var->scope() may be NULL when the proxy is located in eval code and 1457 // var->scope() may be NULL when the proxy is located in eval code and
(...skipping 20 matching lines...) Expand all
1524 // function() { f(); let x = 1; function f() { x = 2; } } 1478 // function() { f(); let x = 1; function f() { x = 2; } }
1525 // 1479 //
1526 bool skip_init_check; 1480 bool skip_init_check;
1527 if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) { 1481 if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) {
1528 skip_init_check = false; 1482 skip_init_check = false;
1529 } else { 1483 } else {
1530 // Check that we always have valid source position. 1484 // Check that we always have valid source position.
1531 DCHECK(var->initializer_position() != RelocInfo::kNoPosition); 1485 DCHECK(var->initializer_position() != RelocInfo::kNoPosition);
1532 DCHECK(proxy->position() != RelocInfo::kNoPosition); 1486 DCHECK(proxy->position() != RelocInfo::kNoPosition);
1533 skip_init_check = var->mode() != CONST_LEGACY && 1487 skip_init_check = var->mode() != CONST_LEGACY &&
1534 var->initializer_position() < proxy->position(); 1488 var->initializer_position() < proxy->position();
1535 } 1489 }
1536 1490
1537 if (!skip_init_check) { 1491 if (!skip_init_check) {
1492 Label done;
1538 // Let and const need a read barrier. 1493 // Let and const need a read barrier.
1539 GetVar(r0, var); 1494 GetVar(r3, var);
1540 __ CompareRoot(r0, Heap::kTheHoleValueRootIndex); 1495 __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
1496 __ bne(&done);
1541 if (var->mode() == LET || var->mode() == CONST) { 1497 if (var->mode() == LET || var->mode() == CONST) {
1542 // Throw a reference error when using an uninitialized let/const 1498 // Throw a reference error when using an uninitialized let/const
1543 // binding in harmony mode. 1499 // binding in harmony mode.
1544 Label done; 1500 __ mov(r3, Operand(var->name()));
1545 __ b(ne, &done); 1501 __ push(r3);
1546 __ mov(r0, Operand(var->name()));
1547 __ push(r0);
1548 __ CallRuntime(Runtime::kThrowReferenceError, 1); 1502 __ CallRuntime(Runtime::kThrowReferenceError, 1);
1549 __ bind(&done);
1550 } else { 1503 } else {
1551 // Uninitalized const bindings outside of harmony mode are unholed. 1504 // Uninitalized const bindings outside of harmony mode are unholed.
1552 DCHECK(var->mode() == CONST_LEGACY); 1505 DCHECK(var->mode() == CONST_LEGACY);
1553 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq); 1506 __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
1554 } 1507 }
1555 context()->Plug(r0); 1508 __ bind(&done);
1509 context()->Plug(r3);
1556 break; 1510 break;
1557 } 1511 }
1558 } 1512 }
1559 context()->Plug(var); 1513 context()->Plug(var);
1560 break; 1514 break;
1561 } 1515 }
1562 1516
1563 case Variable::LOOKUP: { 1517 case Variable::LOOKUP: {
1564 Comment cmnt(masm_, "[ Lookup variable"); 1518 Comment cmnt(masm_, "[ Lookup variable");
1565 Label done, slow; 1519 Label done, slow;
1566 // Generate code for loading from variables potentially shadowed 1520 // Generate code for loading from variables potentially shadowed
1567 // by eval-introduced variables. 1521 // by eval-introduced variables.
1568 EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done); 1522 EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done);
1569 __ bind(&slow); 1523 __ bind(&slow);
1570 __ mov(r1, Operand(var->name())); 1524 __ mov(r4, Operand(var->name()));
1571 __ Push(cp, r1); // Context and name. 1525 __ Push(cp, r4); // Context and name.
1572 __ CallRuntime(Runtime::kLoadLookupSlot, 2); 1526 __ CallRuntime(Runtime::kLoadLookupSlot, 2);
1573 __ bind(&done); 1527 __ bind(&done);
1574 context()->Plug(r0); 1528 context()->Plug(r3);
1575 } 1529 }
1576 } 1530 }
1577 } 1531 }
1578 1532
1579 1533
1580 void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { 1534 void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
1581 Comment cmnt(masm_, "[ RegExpLiteral"); 1535 Comment cmnt(masm_, "[ RegExpLiteral");
1582 Label materialized; 1536 Label materialized;
1583 // Registers will be used as follows: 1537 // Registers will be used as follows:
1584 // r5 = materialized value (RegExp literal) 1538 // r8 = materialized value (RegExp literal)
1585 // r4 = JS function, literals array 1539 // r7 = JS function, literals array
1586 // r3 = literal index 1540 // r6 = literal index
1587 // r2 = RegExp pattern 1541 // r5 = RegExp pattern
1588 // r1 = RegExp flags 1542 // r4 = RegExp flags
1589 // r0 = RegExp literal clone 1543 // r3 = RegExp literal clone
1590 __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 1544 __ LoadP(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1591 __ ldr(r4, FieldMemOperand(r0, JSFunction::kLiteralsOffset)); 1545 __ LoadP(r7, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
1592 int literal_offset = 1546 int literal_offset =
1593 FixedArray::kHeaderSize + expr->literal_index() * kPointerSize; 1547 FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
1594 __ ldr(r5, FieldMemOperand(r4, literal_offset)); 1548 __ LoadP(r8, FieldMemOperand(r7, literal_offset), r0);
1595 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); 1549 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
1596 __ cmp(r5, ip); 1550 __ cmp(r8, ip);
1597 __ b(ne, &materialized); 1551 __ bne(&materialized);
1598 1552
1599 // Create regexp literal using runtime function. 1553 // Create regexp literal using runtime function.
1600 // Result will be in r0. 1554 // Result will be in r3.
1601 __ mov(r3, Operand(Smi::FromInt(expr->literal_index()))); 1555 __ LoadSmiLiteral(r6, Smi::FromInt(expr->literal_index()));
1602 __ mov(r2, Operand(expr->pattern())); 1556 __ mov(r5, Operand(expr->pattern()));
1603 __ mov(r1, Operand(expr->flags())); 1557 __ mov(r4, Operand(expr->flags()));
1604 __ Push(r4, r3, r2, r1); 1558 __ Push(r7, r6, r5, r4);
1605 __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); 1559 __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
1606 __ mov(r5, r0); 1560 __ mr(r8, r3);
1607 1561
1608 __ bind(&materialized); 1562 __ bind(&materialized);
1609 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; 1563 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
1610 Label allocated, runtime_allocate; 1564 Label allocated, runtime_allocate;
1611 __ Allocate(size, r0, r2, r3, &runtime_allocate, TAG_OBJECT); 1565 __ Allocate(size, r3, r5, r6, &runtime_allocate, TAG_OBJECT);
1612 __ jmp(&allocated); 1566 __ b(&allocated);
1613 1567
1614 __ bind(&runtime_allocate); 1568 __ bind(&runtime_allocate);
1615 __ mov(r0, Operand(Smi::FromInt(size))); 1569 __ LoadSmiLiteral(r3, Smi::FromInt(size));
1616 __ Push(r5, r0); 1570 __ Push(r8, r3);
1617 __ CallRuntime(Runtime::kAllocateInNewSpace, 1); 1571 __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
1618 __ pop(r5); 1572 __ pop(r8);
1619 1573
1620 __ bind(&allocated); 1574 __ bind(&allocated);
1621 // After this, registers are used as follows: 1575 // After this, registers are used as follows:
1622 // r0: Newly allocated regexp. 1576 // r3: Newly allocated regexp.
1623 // r5: Materialized regexp. 1577 // r8: Materialized regexp.
1624 // r2: temp. 1578 // r5: temp.
1625 __ CopyFields(r0, r5, d0, size / kPointerSize); 1579 __ CopyFields(r3, r8, r5.bit(), size / kPointerSize);
1626 context()->Plug(r0); 1580 context()->Plug(r3);
1627 } 1581 }
1628 1582
1629 1583
1630 void FullCodeGenerator::EmitAccessor(Expression* expression) { 1584 void FullCodeGenerator::EmitAccessor(Expression* expression) {
1631 if (expression == NULL) { 1585 if (expression == NULL) {
1632 __ LoadRoot(r1, Heap::kNullValueRootIndex); 1586 __ LoadRoot(r4, Heap::kNullValueRootIndex);
1633 __ push(r1); 1587 __ push(r4);
1634 } else { 1588 } else {
1635 VisitForStackValue(expression); 1589 VisitForStackValue(expression);
1636 } 1590 }
1637 } 1591 }
1638 1592
1639 1593
1640 void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { 1594 void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
1641 Comment cmnt(masm_, "[ ObjectLiteral"); 1595 Comment cmnt(masm_, "[ ObjectLiteral");
1642 1596
1643 expr->BuildConstantProperties(isolate()); 1597 expr->BuildConstantProperties(isolate());
1644 Handle<FixedArray> constant_properties = expr->constant_properties(); 1598 Handle<FixedArray> constant_properties = expr->constant_properties();
1645 __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 1599 __ LoadP(r6, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1646 __ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset)); 1600 __ LoadP(r6, FieldMemOperand(r6, JSFunction::kLiteralsOffset));
1647 __ mov(r2, Operand(Smi::FromInt(expr->literal_index()))); 1601 __ LoadSmiLiteral(r5, Smi::FromInt(expr->literal_index()));
1648 __ mov(r1, Operand(constant_properties)); 1602 __ mov(r4, Operand(constant_properties));
1649 int flags = expr->fast_elements() 1603 int flags = expr->fast_elements() ? ObjectLiteral::kFastElements
1650 ? ObjectLiteral::kFastElements 1604 : ObjectLiteral::kNoFlags;
1651 : ObjectLiteral::kNoFlags; 1605 flags |= expr->has_function() ? ObjectLiteral::kHasFunction
1652 flags |= expr->has_function() 1606 : ObjectLiteral::kNoFlags;
1653 ? ObjectLiteral::kHasFunction 1607 __ LoadSmiLiteral(r3, Smi::FromInt(flags));
1654 : ObjectLiteral::kNoFlags;
1655 __ mov(r0, Operand(Smi::FromInt(flags)));
1656 int properties_count = constant_properties->length() / 2; 1608 int properties_count = constant_properties->length() / 2;
1657 if (expr->may_store_doubles() || expr->depth() > 1 || 1609 if (expr->may_store_doubles() || expr->depth() > 1 ||
1658 masm()->serializer_enabled() || flags != ObjectLiteral::kFastElements || 1610 masm()->serializer_enabled() || flags != ObjectLiteral::kFastElements ||
1659 properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) { 1611 properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
1660 __ Push(r3, r2, r1, r0); 1612 __ Push(r6, r5, r4, r3);
1661 __ CallRuntime(Runtime::kCreateObjectLiteral, 4); 1613 __ CallRuntime(Runtime::kCreateObjectLiteral, 4);
1662 } else { 1614 } else {
1663 FastCloneShallowObjectStub stub(isolate(), properties_count); 1615 FastCloneShallowObjectStub stub(isolate(), properties_count);
1664 __ CallStub(&stub); 1616 __ CallStub(&stub);
1665 } 1617 }
1666 1618
1667 // If result_saved is true the result is on top of the stack. If 1619 // If result_saved is true the result is on top of the stack. If
1668 // result_saved is false the result is in r0. 1620 // result_saved is false the result is in r3.
1669 bool result_saved = false; 1621 bool result_saved = false;
1670 1622
1671 // Mark all computed expressions that are bound to a key that 1623 // Mark all computed expressions that are bound to a key that
1672 // is shadowed by a later occurrence of the same key. For the 1624 // is shadowed by a later occurrence of the same key. For the
1673 // marked expressions, no store code is emitted. 1625 // marked expressions, no store code is emitted.
1674 expr->CalculateEmitStore(zone()); 1626 expr->CalculateEmitStore(zone());
1675 1627
1676 AccessorTable accessor_table(zone()); 1628 AccessorTable accessor_table(zone());
1677 for (int i = 0; i < expr->properties()->length(); i++) { 1629 for (int i = 0; i < expr->properties()->length(); i++) {
1678 ObjectLiteral::Property* property = expr->properties()->at(i); 1630 ObjectLiteral::Property* property = expr->properties()->at(i);
1679 if (property->IsCompileTimeValue()) continue; 1631 if (property->IsCompileTimeValue()) continue;
1680 1632
1681 Literal* key = property->key(); 1633 Literal* key = property->key();
1682 Expression* value = property->value(); 1634 Expression* value = property->value();
1683 if (!result_saved) { 1635 if (!result_saved) {
1684 __ push(r0); // Save result on stack 1636 __ push(r3); // Save result on stack
1685 result_saved = true; 1637 result_saved = true;
1686 } 1638 }
1687 switch (property->kind()) { 1639 switch (property->kind()) {
1688 case ObjectLiteral::Property::CONSTANT: 1640 case ObjectLiteral::Property::CONSTANT:
1689 UNREACHABLE(); 1641 UNREACHABLE();
1690 case ObjectLiteral::Property::MATERIALIZED_LITERAL: 1642 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1691 DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value())); 1643 DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value()));
1692 // Fall through. 1644 // Fall through.
1693 case ObjectLiteral::Property::COMPUTED: 1645 case ObjectLiteral::Property::COMPUTED:
1694 if (key->value()->IsInternalizedString()) { 1646 if (key->value()->IsInternalizedString()) {
1695 if (property->emit_store()) { 1647 if (property->emit_store()) {
1696 VisitForAccumulatorValue(value); 1648 VisitForAccumulatorValue(value);
1697 DCHECK(StoreIC::ValueRegister().is(r0)); 1649 DCHECK(StoreIC::ValueRegister().is(r3));
1698 __ mov(StoreIC::NameRegister(), Operand(key->value())); 1650 __ mov(StoreIC::NameRegister(), Operand(key->value()));
1699 __ ldr(StoreIC::ReceiverRegister(), MemOperand(sp)); 1651 __ LoadP(StoreIC::ReceiverRegister(), MemOperand(sp));
1700 CallStoreIC(key->LiteralFeedbackId()); 1652 CallStoreIC(key->LiteralFeedbackId());
1701 PrepareForBailoutForId(key->id(), NO_REGISTERS); 1653 PrepareForBailoutForId(key->id(), NO_REGISTERS);
1702 } else { 1654 } else {
1703 VisitForEffect(value); 1655 VisitForEffect(value);
1704 } 1656 }
1705 break; 1657 break;
1706 } 1658 }
1707 // Duplicate receiver on stack. 1659 // Duplicate receiver on stack.
1708 __ ldr(r0, MemOperand(sp)); 1660 __ LoadP(r3, MemOperand(sp));
1709 __ push(r0); 1661 __ push(r3);
1710 VisitForStackValue(key); 1662 VisitForStackValue(key);
1711 VisitForStackValue(value); 1663 VisitForStackValue(value);
1712 if (property->emit_store()) { 1664 if (property->emit_store()) {
1713 __ mov(r0, Operand(Smi::FromInt(SLOPPY))); // PropertyAttributes 1665 __ LoadSmiLiteral(r3, Smi::FromInt(SLOPPY)); // PropertyAttributes
1714 __ push(r0); 1666 __ push(r3);
1715 __ CallRuntime(Runtime::kSetProperty, 4); 1667 __ CallRuntime(Runtime::kSetProperty, 4);
1716 } else { 1668 } else {
1717 __ Drop(3); 1669 __ Drop(3);
1718 } 1670 }
1719 break; 1671 break;
1720 case ObjectLiteral::Property::PROTOTYPE: 1672 case ObjectLiteral::Property::PROTOTYPE:
1721 // Duplicate receiver on stack. 1673 // Duplicate receiver on stack.
1722 __ ldr(r0, MemOperand(sp)); 1674 __ LoadP(r3, MemOperand(sp));
1723 __ push(r0); 1675 __ push(r3);
1724 VisitForStackValue(value); 1676 VisitForStackValue(value);
1725 if (property->emit_store()) { 1677 if (property->emit_store()) {
1726 __ CallRuntime(Runtime::kSetPrototype, 2); 1678 __ CallRuntime(Runtime::kSetPrototype, 2);
1727 } else { 1679 } else {
1728 __ Drop(2); 1680 __ Drop(2);
1729 } 1681 }
1730 break; 1682 break;
1731
1732 case ObjectLiteral::Property::GETTER: 1683 case ObjectLiteral::Property::GETTER:
1733 accessor_table.lookup(key)->second->getter = value; 1684 accessor_table.lookup(key)->second->getter = value;
1734 break; 1685 break;
1735 case ObjectLiteral::Property::SETTER: 1686 case ObjectLiteral::Property::SETTER:
1736 accessor_table.lookup(key)->second->setter = value; 1687 accessor_table.lookup(key)->second->setter = value;
1737 break; 1688 break;
1738 } 1689 }
1739 } 1690 }
1740 1691
1741 // Emit code to define accessors, using only a single call to the runtime for 1692 // Emit code to define accessors, using only a single call to the runtime for
1742 // each pair of corresponding getters and setters. 1693 // each pair of corresponding getters and setters.
1743 for (AccessorTable::Iterator it = accessor_table.begin(); 1694 for (AccessorTable::Iterator it = accessor_table.begin();
1744 it != accessor_table.end(); 1695 it != accessor_table.end(); ++it) {
1745 ++it) { 1696 __ LoadP(r3, MemOperand(sp)); // Duplicate receiver.
1746 __ ldr(r0, MemOperand(sp)); // Duplicate receiver. 1697 __ push(r3);
1747 __ push(r0);
1748 VisitForStackValue(it->first); 1698 VisitForStackValue(it->first);
1749 EmitAccessor(it->second->getter); 1699 EmitAccessor(it->second->getter);
1750 EmitAccessor(it->second->setter); 1700 EmitAccessor(it->second->setter);
1751 __ mov(r0, Operand(Smi::FromInt(NONE))); 1701 __ LoadSmiLiteral(r3, Smi::FromInt(NONE));
1752 __ push(r0); 1702 __ push(r3);
1753 __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked, 5); 1703 __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked, 5);
1754 } 1704 }
1755 1705
1756 if (expr->has_function()) { 1706 if (expr->has_function()) {
1757 DCHECK(result_saved); 1707 DCHECK(result_saved);
1758 __ ldr(r0, MemOperand(sp)); 1708 __ LoadP(r3, MemOperand(sp));
1759 __ push(r0); 1709 __ push(r3);
1760 __ CallRuntime(Runtime::kToFastProperties, 1); 1710 __ CallRuntime(Runtime::kToFastProperties, 1);
1761 } 1711 }
1762 1712
1763 if (result_saved) { 1713 if (result_saved) {
1764 context()->PlugTOS(); 1714 context()->PlugTOS();
1765 } else { 1715 } else {
1766 context()->Plug(r0); 1716 context()->Plug(r3);
1767 } 1717 }
1768 } 1718 }
1769 1719
1770 1720
1771 void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { 1721 void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
1772 Comment cmnt(masm_, "[ ArrayLiteral"); 1722 Comment cmnt(masm_, "[ ArrayLiteral");
1773 1723
1774 expr->BuildConstantElements(isolate()); 1724 expr->BuildConstantElements(isolate());
1775 int flags = expr->depth() == 1 1725 int flags = expr->depth() == 1 ? ArrayLiteral::kShallowElements
1776 ? ArrayLiteral::kShallowElements 1726 : ArrayLiteral::kNoFlags;
1777 : ArrayLiteral::kNoFlags;
1778 1727
1779 ZoneList<Expression*>* subexprs = expr->values(); 1728 ZoneList<Expression*>* subexprs = expr->values();
1780 int length = subexprs->length(); 1729 int length = subexprs->length();
1781 Handle<FixedArray> constant_elements = expr->constant_elements(); 1730 Handle<FixedArray> constant_elements = expr->constant_elements();
1782 DCHECK_EQ(2, constant_elements->length()); 1731 DCHECK_EQ(2, constant_elements->length());
1783 ElementsKind constant_elements_kind = 1732 ElementsKind constant_elements_kind =
1784 static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value()); 1733 static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
1785 bool has_fast_elements = IsFastObjectElementsKind(constant_elements_kind); 1734 bool has_fast_elements = IsFastObjectElementsKind(constant_elements_kind);
1786 Handle<FixedArrayBase> constant_elements_values( 1735 Handle<FixedArrayBase> constant_elements_values(
1787 FixedArrayBase::cast(constant_elements->get(1))); 1736 FixedArrayBase::cast(constant_elements->get(1)));
1788 1737
1789 AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE; 1738 AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
1790 if (has_fast_elements && !FLAG_allocation_site_pretenuring) { 1739 if (has_fast_elements && !FLAG_allocation_site_pretenuring) {
1791 // If the only customer of allocation sites is transitioning, then 1740 // If the only customer of allocation sites is transitioning, then
1792 // we can turn it off if we don't have anywhere else to transition to. 1741 // we can turn it off if we don't have anywhere else to transition to.
1793 allocation_site_mode = DONT_TRACK_ALLOCATION_SITE; 1742 allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
1794 } 1743 }
1795 1744
1796 __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 1745 __ LoadP(r6, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1797 __ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset)); 1746 __ LoadP(r6, FieldMemOperand(r6, JSFunction::kLiteralsOffset));
1798 __ mov(r2, Operand(Smi::FromInt(expr->literal_index()))); 1747 __ LoadSmiLiteral(r5, Smi::FromInt(expr->literal_index()));
1799 __ mov(r1, Operand(constant_elements)); 1748 __ mov(r4, Operand(constant_elements));
1800 if (expr->depth() > 1 || length > JSObject::kInitialMaxFastElementArray) { 1749 if (expr->depth() > 1 || length > JSObject::kInitialMaxFastElementArray) {
1801 __ mov(r0, Operand(Smi::FromInt(flags))); 1750 __ LoadSmiLiteral(r3, Smi::FromInt(flags));
1802 __ Push(r3, r2, r1, r0); 1751 __ Push(r6, r5, r4, r3);
1803 __ CallRuntime(Runtime::kCreateArrayLiteral, 4); 1752 __ CallRuntime(Runtime::kCreateArrayLiteral, 4);
1804 } else { 1753 } else {
1805 FastCloneShallowArrayStub stub(isolate(), allocation_site_mode); 1754 FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
1806 __ CallStub(&stub); 1755 __ CallStub(&stub);
1807 } 1756 }
1808 1757
1809 bool result_saved = false; // Is the result saved to the stack? 1758 bool result_saved = false; // Is the result saved to the stack?
1810 1759
1811 // Emit code to evaluate all the non-constant subexpressions and to store 1760 // Emit code to evaluate all the non-constant subexpressions and to store
1812 // them into the newly cloned array. 1761 // them into the newly cloned array.
1813 for (int i = 0; i < length; i++) { 1762 for (int i = 0; i < length; i++) {
1814 Expression* subexpr = subexprs->at(i); 1763 Expression* subexpr = subexprs->at(i);
1815 // If the subexpression is a literal or a simple materialized literal it 1764 // If the subexpression is a literal or a simple materialized literal it
1816 // is already set in the cloned array. 1765 // is already set in the cloned array.
1817 if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue; 1766 if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
1818 1767
1819 if (!result_saved) { 1768 if (!result_saved) {
1820 __ push(r0); 1769 __ push(r3);
1821 __ Push(Smi::FromInt(expr->literal_index())); 1770 __ Push(Smi::FromInt(expr->literal_index()));
1822 result_saved = true; 1771 result_saved = true;
1823 } 1772 }
1824 VisitForAccumulatorValue(subexpr); 1773 VisitForAccumulatorValue(subexpr);
1825 1774
1826 if (IsFastObjectElementsKind(constant_elements_kind)) { 1775 if (IsFastObjectElementsKind(constant_elements_kind)) {
1827 int offset = FixedArray::kHeaderSize + (i * kPointerSize); 1776 int offset = FixedArray::kHeaderSize + (i * kPointerSize);
1828 __ ldr(r6, MemOperand(sp, kPointerSize)); // Copy of array literal. 1777 __ LoadP(r8, MemOperand(sp, kPointerSize)); // Copy of array literal.
1829 __ ldr(r1, FieldMemOperand(r6, JSObject::kElementsOffset)); 1778 __ LoadP(r4, FieldMemOperand(r8, JSObject::kElementsOffset));
1830 __ str(result_register(), FieldMemOperand(r1, offset)); 1779 __ StoreP(result_register(), FieldMemOperand(r4, offset), r0);
1831 // Update the write barrier for the array store. 1780 // Update the write barrier for the array store.
1832 __ RecordWriteField(r1, offset, result_register(), r2, 1781 __ RecordWriteField(r4, offset, result_register(), r5, kLRHasBeenSaved,
1833 kLRHasBeenSaved, kDontSaveFPRegs, 1782 kDontSaveFPRegs, EMIT_REMEMBERED_SET,
1834 EMIT_REMEMBERED_SET, INLINE_SMI_CHECK); 1783 INLINE_SMI_CHECK);
1835 } else { 1784 } else {
1836 __ mov(r3, Operand(Smi::FromInt(i))); 1785 __ LoadSmiLiteral(r6, Smi::FromInt(i));
1837 StoreArrayLiteralElementStub stub(isolate()); 1786 StoreArrayLiteralElementStub stub(isolate());
1838 __ CallStub(&stub); 1787 __ CallStub(&stub);
1839 } 1788 }
1840 1789
1841 PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS); 1790 PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
1842 } 1791 }
1843 1792
1844 if (result_saved) { 1793 if (result_saved) {
1845 __ pop(); // literal index 1794 __ pop(); // literal index
1846 context()->PlugTOS(); 1795 context()->PlugTOS();
1847 } else { 1796 } else {
1848 context()->Plug(r0); 1797 context()->Plug(r3);
1849 } 1798 }
1850 } 1799 }
1851 1800
1852 1801
1853 void FullCodeGenerator::VisitAssignment(Assignment* expr) { 1802 void FullCodeGenerator::VisitAssignment(Assignment* expr) {
1854 DCHECK(expr->target()->IsValidReferenceExpression()); 1803 DCHECK(expr->target()->IsValidReferenceExpression());
1855 1804
1856 Comment cmnt(masm_, "[ Assignment"); 1805 Comment cmnt(masm_, "[ Assignment");
1857 1806
1858 // Left-hand side can only be a property, a global or a (parameter or local) 1807 // Left-hand side can only be a property, a global or a (parameter or local)
1859 // slot. 1808 // slot.
1860 enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; 1809 enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
1861 LhsKind assign_type = VARIABLE; 1810 LhsKind assign_type = VARIABLE;
1862 Property* property = expr->target()->AsProperty(); 1811 Property* property = expr->target()->AsProperty();
1863 if (property != NULL) { 1812 if (property != NULL) {
1864 assign_type = (property->key()->IsPropertyName()) 1813 assign_type =
1865 ? NAMED_PROPERTY 1814 (property->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
1866 : KEYED_PROPERTY;
1867 } 1815 }
1868 1816
1869 // Evaluate LHS expression. 1817 // Evaluate LHS expression.
1870 switch (assign_type) { 1818 switch (assign_type) {
1871 case VARIABLE: 1819 case VARIABLE:
1872 // Nothing to do here. 1820 // Nothing to do here.
1873 break; 1821 break;
1874 case NAMED_PROPERTY: 1822 case NAMED_PROPERTY:
1875 if (expr->is_compound()) { 1823 if (expr->is_compound()) {
1876 // We need the receiver both on the stack and in the register. 1824 // We need the receiver both on the stack and in the register.
1877 VisitForStackValue(property->obj()); 1825 VisitForStackValue(property->obj());
1878 __ ldr(LoadIC::ReceiverRegister(), MemOperand(sp, 0)); 1826 __ LoadP(LoadIC::ReceiverRegister(), MemOperand(sp, 0));
1879 } else { 1827 } else {
1880 VisitForStackValue(property->obj()); 1828 VisitForStackValue(property->obj());
1881 } 1829 }
1882 break; 1830 break;
1883 case KEYED_PROPERTY: 1831 case KEYED_PROPERTY:
1884 if (expr->is_compound()) { 1832 if (expr->is_compound()) {
1885 VisitForStackValue(property->obj()); 1833 VisitForStackValue(property->obj());
1886 VisitForStackValue(property->key()); 1834 VisitForStackValue(property->key());
1887 __ ldr(LoadIC::ReceiverRegister(), MemOperand(sp, 1 * kPointerSize)); 1835 __ LoadP(LoadIC::ReceiverRegister(), MemOperand(sp, 1 * kPointerSize));
1888 __ ldr(LoadIC::NameRegister(), MemOperand(sp, 0)); 1836 __ LoadP(LoadIC::NameRegister(), MemOperand(sp, 0));
1889 } else { 1837 } else {
1890 VisitForStackValue(property->obj()); 1838 VisitForStackValue(property->obj());
1891 VisitForStackValue(property->key()); 1839 VisitForStackValue(property->key());
1892 } 1840 }
1893 break; 1841 break;
1894 } 1842 }
1895 1843
1896 // For compound assignments we need another deoptimization point after the 1844 // For compound assignments we need another deoptimization point after the
1897 // variable/property load. 1845 // variable/property load.
1898 if (expr->is_compound()) { 1846 if (expr->is_compound()) {
1899 { AccumulatorValueContext context(this); 1847 {
1848 AccumulatorValueContext context(this);
1900 switch (assign_type) { 1849 switch (assign_type) {
1901 case VARIABLE: 1850 case VARIABLE:
1902 EmitVariableLoad(expr->target()->AsVariableProxy()); 1851 EmitVariableLoad(expr->target()->AsVariableProxy());
1903 PrepareForBailout(expr->target(), TOS_REG); 1852 PrepareForBailout(expr->target(), TOS_REG);
1904 break; 1853 break;
1905 case NAMED_PROPERTY: 1854 case NAMED_PROPERTY:
1906 EmitNamedPropertyLoad(property); 1855 EmitNamedPropertyLoad(property);
1907 PrepareForBailoutForId(property->LoadId(), TOS_REG); 1856 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1908 break; 1857 break;
1909 case KEYED_PROPERTY: 1858 case KEYED_PROPERTY:
1910 EmitKeyedPropertyLoad(property); 1859 EmitKeyedPropertyLoad(property);
1911 PrepareForBailoutForId(property->LoadId(), TOS_REG); 1860 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1912 break; 1861 break;
1913 } 1862 }
1914 } 1863 }
1915 1864
1916 Token::Value op = expr->binary_op(); 1865 Token::Value op = expr->binary_op();
1917 __ push(r0); // Left operand goes on the stack. 1866 __ push(r3); // Left operand goes on the stack.
1918 VisitForAccumulatorValue(expr->value()); 1867 VisitForAccumulatorValue(expr->value());
1919 1868
1920 OverwriteMode mode = expr->value()->ResultOverwriteAllowed() 1869 OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
1921 ? OVERWRITE_RIGHT 1870 ? OVERWRITE_RIGHT
1922 : NO_OVERWRITE; 1871 : NO_OVERWRITE;
1923 SetSourcePosition(expr->position() + 1); 1872 SetSourcePosition(expr->position() + 1);
1924 AccumulatorValueContext context(this); 1873 AccumulatorValueContext context(this);
1925 if (ShouldInlineSmiCase(op)) { 1874 if (ShouldInlineSmiCase(op)) {
1926 EmitInlineSmiBinaryOp(expr->binary_operation(), 1875 EmitInlineSmiBinaryOp(expr->binary_operation(), op, mode, expr->target(),
1927 op,
1928 mode,
1929 expr->target(),
1930 expr->value()); 1876 expr->value());
1931 } else { 1877 } else {
1932 EmitBinaryOp(expr->binary_operation(), op, mode); 1878 EmitBinaryOp(expr->binary_operation(), op, mode);
1933 } 1879 }
1934 1880
1935 // Deoptimization point in case the binary operation may have side effects. 1881 // Deoptimization point in case the binary operation may have side effects.
1936 PrepareForBailout(expr->binary_operation(), TOS_REG); 1882 PrepareForBailout(expr->binary_operation(), TOS_REG);
1937 } else { 1883 } else {
1938 VisitForAccumulatorValue(expr->value()); 1884 VisitForAccumulatorValue(expr->value());
1939 } 1885 }
1940 1886
1941 // Record source position before possible IC call. 1887 // Record source position before possible IC call.
1942 SetSourcePosition(expr->position()); 1888 SetSourcePosition(expr->position());
1943 1889
1944 // Store the value. 1890 // Store the value.
1945 switch (assign_type) { 1891 switch (assign_type) {
1946 case VARIABLE: 1892 case VARIABLE:
1947 EmitVariableAssignment(expr->target()->AsVariableProxy()->var(), 1893 EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
1948 expr->op()); 1894 expr->op());
1949 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); 1895 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
1950 context()->Plug(r0); 1896 context()->Plug(r3);
1951 break; 1897 break;
1952 case NAMED_PROPERTY: 1898 case NAMED_PROPERTY:
1953 EmitNamedPropertyAssignment(expr); 1899 EmitNamedPropertyAssignment(expr);
1954 break; 1900 break;
1955 case KEYED_PROPERTY: 1901 case KEYED_PROPERTY:
1956 EmitKeyedPropertyAssignment(expr); 1902 EmitKeyedPropertyAssignment(expr);
1957 break; 1903 break;
1958 } 1904 }
1959 } 1905 }
1960 1906
1961 1907
1962 void FullCodeGenerator::VisitYield(Yield* expr) { 1908 void FullCodeGenerator::VisitYield(Yield* expr) {
1963 Comment cmnt(masm_, "[ Yield"); 1909 Comment cmnt(masm_, "[ Yield");
1964 // Evaluate yielded value first; the initial iterator definition depends on 1910 // Evaluate yielded value first; the initial iterator definition depends on
1965 // this. It stays on the stack while we update the iterator. 1911 // this. It stays on the stack while we update the iterator.
1966 VisitForStackValue(expr->expression()); 1912 VisitForStackValue(expr->expression());
1967 1913
1968 switch (expr->yield_kind()) { 1914 switch (expr->yield_kind()) {
1969 case Yield::SUSPEND: 1915 case Yield::SUSPEND:
1970 // Pop value from top-of-stack slot; box result into result register. 1916 // Pop value from top-of-stack slot; box result into result register.
1971 EmitCreateIteratorResult(false); 1917 EmitCreateIteratorResult(false);
1972 __ push(result_register()); 1918 __ push(result_register());
1973 // Fall through. 1919 // Fall through.
1974 case Yield::INITIAL: { 1920 case Yield::INITIAL: {
1975 Label suspend, continuation, post_runtime, resume; 1921 Label suspend, continuation, post_runtime, resume;
1976 1922
1977 __ jmp(&suspend); 1923 __ b(&suspend);
1978 1924
1979 __ bind(&continuation); 1925 __ bind(&continuation);
1980 __ jmp(&resume); 1926 __ b(&resume);
1981 1927
1982 __ bind(&suspend); 1928 __ bind(&suspend);
1983 VisitForAccumulatorValue(expr->generator_object()); 1929 VisitForAccumulatorValue(expr->generator_object());
1984 DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos())); 1930 DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
1985 __ mov(r1, Operand(Smi::FromInt(continuation.pos()))); 1931 __ LoadSmiLiteral(r4, Smi::FromInt(continuation.pos()));
1986 __ str(r1, FieldMemOperand(r0, JSGeneratorObject::kContinuationOffset)); 1932 __ StoreP(r4, FieldMemOperand(r3, JSGeneratorObject::kContinuationOffset),
1987 __ str(cp, FieldMemOperand(r0, JSGeneratorObject::kContextOffset)); 1933 r0);
1988 __ mov(r1, cp); 1934 __ StoreP(cp, FieldMemOperand(r3, JSGeneratorObject::kContextOffset), r0);
1989 __ RecordWriteField(r0, JSGeneratorObject::kContextOffset, r1, r2, 1935 __ mr(r4, cp);
1936 __ RecordWriteField(r3, JSGeneratorObject::kContextOffset, r4, r5,
1990 kLRHasBeenSaved, kDontSaveFPRegs); 1937 kLRHasBeenSaved, kDontSaveFPRegs);
1991 __ add(r1, fp, Operand(StandardFrameConstants::kExpressionsOffset)); 1938 __ addi(r4, fp, Operand(StandardFrameConstants::kExpressionsOffset));
1992 __ cmp(sp, r1); 1939 __ cmp(sp, r4);
1993 __ b(eq, &post_runtime); 1940 __ beq(&post_runtime);
1994 __ push(r0); // generator object 1941 __ push(r3); // generator object
1995 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1); 1942 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
1996 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 1943 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1997 __ bind(&post_runtime); 1944 __ bind(&post_runtime);
1998 __ pop(result_register()); 1945 __ pop(result_register());
1999 EmitReturnSequence(); 1946 EmitReturnSequence();
2000 1947
2001 __ bind(&resume); 1948 __ bind(&resume);
2002 context()->Plug(result_register()); 1949 context()->Plug(result_register());
2003 break; 1950 break;
2004 } 1951 }
2005 1952
2006 case Yield::FINAL: { 1953 case Yield::FINAL: {
2007 VisitForAccumulatorValue(expr->generator_object()); 1954 VisitForAccumulatorValue(expr->generator_object());
2008 __ mov(r1, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorClosed))); 1955 __ LoadSmiLiteral(r4, Smi::FromInt(JSGeneratorObject::kGeneratorClosed));
2009 __ str(r1, FieldMemOperand(result_register(), 1956 __ StoreP(r4, FieldMemOperand(result_register(),
2010 JSGeneratorObject::kContinuationOffset)); 1957 JSGeneratorObject::kContinuationOffset),
1958 r0);
2011 // Pop value from top-of-stack slot, box result into result register. 1959 // Pop value from top-of-stack slot, box result into result register.
2012 EmitCreateIteratorResult(true); 1960 EmitCreateIteratorResult(true);
2013 EmitUnwindBeforeReturn(); 1961 EmitUnwindBeforeReturn();
2014 EmitReturnSequence(); 1962 EmitReturnSequence();
2015 break; 1963 break;
2016 } 1964 }
2017 1965
2018 case Yield::DELEGATING: { 1966 case Yield::DELEGATING: {
2019 VisitForStackValue(expr->generator_object()); 1967 VisitForStackValue(expr->generator_object());
2020 1968
2021 // Initial stack layout is as follows: 1969 // Initial stack layout is as follows:
2022 // [sp + 1 * kPointerSize] iter 1970 // [sp + 1 * kPointerSize] iter
2023 // [sp + 0 * kPointerSize] g 1971 // [sp + 0 * kPointerSize] g
2024 1972
2025 Label l_catch, l_try, l_suspend, l_continuation, l_resume; 1973 Label l_catch, l_try, l_suspend, l_continuation, l_resume;
2026 Label l_next, l_call, l_loop; 1974 Label l_next, l_call;
2027 Register load_receiver = LoadIC::ReceiverRegister(); 1975 Register load_receiver = LoadIC::ReceiverRegister();
2028 Register load_name = LoadIC::NameRegister(); 1976 Register load_name = LoadIC::NameRegister();
2029 1977
2030 // Initial send value is undefined. 1978 // Initial send value is undefined.
2031 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); 1979 __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
2032 __ b(&l_next); 1980 __ b(&l_next);
2033 1981
2034 // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; } 1982 // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
2035 __ bind(&l_catch); 1983 __ bind(&l_catch);
2036 handler_table()->set(expr->index(), Smi::FromInt(l_catch.pos())); 1984 handler_table()->set(expr->index(), Smi::FromInt(l_catch.pos()));
2037 __ LoadRoot(load_name, Heap::kthrow_stringRootIndex); // "throw" 1985 __ LoadRoot(load_name, Heap::kthrow_stringRootIndex); // "throw"
2038 __ ldr(r3, MemOperand(sp, 1 * kPointerSize)); // iter 1986 __ LoadP(r6, MemOperand(sp, 1 * kPointerSize)); // iter
2039 __ Push(load_name, r3, r0); // "throw", iter, except 1987 __ Push(load_name, r6, r3); // "throw", iter, except
2040 __ jmp(&l_call); 1988 __ b(&l_call);
2041 1989
2042 // try { received = %yield result } 1990 // try { received = %yield result }
2043 // Shuffle the received result above a try handler and yield it without 1991 // Shuffle the received result above a try handler and yield it without
2044 // re-boxing. 1992 // re-boxing.
2045 __ bind(&l_try); 1993 __ bind(&l_try);
2046 __ pop(r0); // result 1994 __ pop(r3); // result
2047 __ PushTryHandler(StackHandler::CATCH, expr->index()); 1995 __ PushTryHandler(StackHandler::CATCH, expr->index());
2048 const int handler_size = StackHandlerConstants::kSize; 1996 const int handler_size = StackHandlerConstants::kSize;
2049 __ push(r0); // result 1997 __ push(r3); // result
2050 __ jmp(&l_suspend); 1998 __ b(&l_suspend);
2051 __ bind(&l_continuation); 1999 __ bind(&l_continuation);
2052 __ jmp(&l_resume); 2000 __ b(&l_resume);
2053 __ bind(&l_suspend); 2001 __ bind(&l_suspend);
2054 const int generator_object_depth = kPointerSize + handler_size; 2002 const int generator_object_depth = kPointerSize + handler_size;
2055 __ ldr(r0, MemOperand(sp, generator_object_depth)); 2003 __ LoadP(r3, MemOperand(sp, generator_object_depth));
2056 __ push(r0); // g 2004 __ push(r3); // g
2057 DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos())); 2005 DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos()));
2058 __ mov(r1, Operand(Smi::FromInt(l_continuation.pos()))); 2006 __ LoadSmiLiteral(r4, Smi::FromInt(l_continuation.pos()));
2059 __ str(r1, FieldMemOperand(r0, JSGeneratorObject::kContinuationOffset)); 2007 __ StoreP(r4, FieldMemOperand(r3, JSGeneratorObject::kContinuationOffset),
2060 __ str(cp, FieldMemOperand(r0, JSGeneratorObject::kContextOffset)); 2008 r0);
2061 __ mov(r1, cp); 2009 __ StoreP(cp, FieldMemOperand(r3, JSGeneratorObject::kContextOffset), r0);
2062 __ RecordWriteField(r0, JSGeneratorObject::kContextOffset, r1, r2, 2010 __ mr(r4, cp);
2011 __ RecordWriteField(r3, JSGeneratorObject::kContextOffset, r4, r5,
2063 kLRHasBeenSaved, kDontSaveFPRegs); 2012 kLRHasBeenSaved, kDontSaveFPRegs);
2064 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1); 2013 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
2065 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 2014 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2066 __ pop(r0); // result 2015 __ pop(r3); // result
2067 EmitReturnSequence(); 2016 EmitReturnSequence();
2068 __ bind(&l_resume); // received in r0 2017 __ bind(&l_resume); // received in r3
2069 __ PopTryHandler(); 2018 __ PopTryHandler();
2070 2019
2071 // receiver = iter; f = 'next'; arg = received; 2020 // receiver = iter; f = 'next'; arg = received;
2072 __ bind(&l_next); 2021 __ bind(&l_next);
2073 2022
2074 __ LoadRoot(load_name, Heap::knext_stringRootIndex); // "next" 2023 __ LoadRoot(load_name, Heap::knext_stringRootIndex); // "next"
2075 __ ldr(r3, MemOperand(sp, 1 * kPointerSize)); // iter 2024 __ LoadP(r6, MemOperand(sp, 1 * kPointerSize)); // iter
2076 __ Push(load_name, r3, r0); // "next", iter, received 2025 __ Push(load_name, r6, r3); // "next", iter, received
2077 2026
2078 // result = receiver[f](arg); 2027 // result = receiver[f](arg);
2079 __ bind(&l_call); 2028 __ bind(&l_call);
2080 __ ldr(load_receiver, MemOperand(sp, kPointerSize)); 2029 __ LoadP(load_receiver, MemOperand(sp, kPointerSize));
2081 __ ldr(load_name, MemOperand(sp, 2 * kPointerSize)); 2030 __ LoadP(load_name, MemOperand(sp, 2 * kPointerSize));
2082 if (FLAG_vector_ics) { 2031 if (FLAG_vector_ics) {
2083 __ mov(LoadIC::SlotRegister(), 2032 __ mov(LoadIC::SlotRegister(),
2084 Operand(Smi::FromInt(expr->KeyedLoadFeedbackSlot()))); 2033 Operand(Smi::FromInt(expr->KeyedLoadFeedbackSlot())));
2085 } 2034 }
2086 Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize(); 2035 Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
2087 CallIC(ic, TypeFeedbackId::None()); 2036 CallIC(ic, TypeFeedbackId::None());
2088 __ mov(r1, r0); 2037 __ mr(r4, r3);
2089 __ str(r1, MemOperand(sp, 2 * kPointerSize)); 2038 __ StoreP(r4, MemOperand(sp, 2 * kPointerSize));
2090 CallFunctionStub stub(isolate(), 1, CALL_AS_METHOD); 2039 CallFunctionStub stub(isolate(), 1, CALL_AS_METHOD);
2091 __ CallStub(&stub); 2040 __ CallStub(&stub);
2092 2041
2093 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 2042 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2094 __ Drop(1); // The function is still on the stack; drop it. 2043 __ Drop(1); // The function is still on the stack; drop it.
2095 2044
2096 // if (!result.done) goto l_try; 2045 // if (!result.done) goto l_try;
2097 __ bind(&l_loop); 2046 __ Move(load_receiver, r3);
2098 __ Move(load_receiver, r0);
2099 2047
2100 __ push(load_receiver); // save result 2048 __ push(load_receiver); // save result
2101 __ LoadRoot(load_name, Heap::kdone_stringRootIndex); // "done" 2049 __ LoadRoot(load_name, Heap::kdone_stringRootIndex); // "done"
2102 if (FLAG_vector_ics) { 2050 if (FLAG_vector_ics) {
2103 __ mov(LoadIC::SlotRegister(), 2051 __ mov(LoadIC::SlotRegister(),
2104 Operand(Smi::FromInt(expr->DoneFeedbackSlot()))); 2052 Operand(Smi::FromInt(expr->DoneFeedbackSlot())));
2105 } 2053 }
2106 CallLoadIC(NOT_CONTEXTUAL); // r0=result.done 2054 CallLoadIC(NOT_CONTEXTUAL); // r0=result.done
2107 Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate()); 2055 Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
2108 CallIC(bool_ic); 2056 CallIC(bool_ic);
2109 __ cmp(r0, Operand(0)); 2057 __ cmpi(r3, Operand::Zero());
2110 __ b(eq, &l_try); 2058 __ beq(&l_try);
2111 2059
2112 // result.value 2060 // result.value
2113 __ pop(load_receiver); // result 2061 __ pop(load_receiver); // result
2114 __ LoadRoot(load_name, Heap::kvalue_stringRootIndex); // "value" 2062 __ LoadRoot(load_name, Heap::kvalue_stringRootIndex); // "value"
2115 if (FLAG_vector_ics) { 2063 if (FLAG_vector_ics) {
2116 __ mov(LoadIC::SlotRegister(), 2064 __ mov(LoadIC::SlotRegister(),
2117 Operand(Smi::FromInt(expr->ValueFeedbackSlot()))); 2065 Operand(Smi::FromInt(expr->ValueFeedbackSlot())));
2118 } 2066 }
2119 CallLoadIC(NOT_CONTEXTUAL); // r0=result.value 2067 CallLoadIC(NOT_CONTEXTUAL); // r3=result.value
2120 context()->DropAndPlug(2, r0); // drop iter and g 2068 context()->DropAndPlug(2, r3); // drop iter and g
2121 break; 2069 break;
2122 } 2070 }
2123 } 2071 }
2124 } 2072 }
2125 2073
2126 2074
2127 void FullCodeGenerator::EmitGeneratorResume(Expression *generator, 2075 void FullCodeGenerator::EmitGeneratorResume(
2128 Expression *value, 2076 Expression* generator, Expression* value,
2129 JSGeneratorObject::ResumeMode resume_mode) { 2077 JSGeneratorObject::ResumeMode resume_mode) {
2130 // The value stays in r0, and is ultimately read by the resumed generator, as 2078 // The value stays in r3, and is ultimately read by the resumed generator, as
2131 // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it 2079 // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it
2132 // is read to throw the value when the resumed generator is already closed. 2080 // is read to throw the value when the resumed generator is already closed.
2133 // r1 will hold the generator object until the activation has been resumed. 2081 // r4 will hold the generator object until the activation has been resumed.
2134 VisitForStackValue(generator); 2082 VisitForStackValue(generator);
2135 VisitForAccumulatorValue(value); 2083 VisitForAccumulatorValue(value);
2136 __ pop(r1); 2084 __ pop(r4);
2137 2085
2138 // Check generator state. 2086 // Check generator state.
2139 Label wrong_state, closed_state, done; 2087 Label wrong_state, closed_state, done;
2140 __ ldr(r3, FieldMemOperand(r1, JSGeneratorObject::kContinuationOffset)); 2088 __ LoadP(r6, FieldMemOperand(r4, JSGeneratorObject::kContinuationOffset));
2141 STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0); 2089 STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0);
2142 STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0); 2090 STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0);
2143 __ cmp(r3, Operand(Smi::FromInt(0))); 2091 __ CmpSmiLiteral(r6, Smi::FromInt(0), r0);
2144 __ b(eq, &closed_state); 2092 __ beq(&closed_state);
2145 __ b(lt, &wrong_state); 2093 __ blt(&wrong_state);
2146 2094
2147 // Load suspended function and context. 2095 // Load suspended function and context.
2148 __ ldr(cp, FieldMemOperand(r1, JSGeneratorObject::kContextOffset)); 2096 __ LoadP(cp, FieldMemOperand(r4, JSGeneratorObject::kContextOffset));
2149 __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset)); 2097 __ LoadP(r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset));
2150 2098
2151 // Load receiver and store as the first argument. 2099 // Load receiver and store as the first argument.
2152 __ ldr(r2, FieldMemOperand(r1, JSGeneratorObject::kReceiverOffset)); 2100 __ LoadP(r5, FieldMemOperand(r4, JSGeneratorObject::kReceiverOffset));
2153 __ push(r2); 2101 __ push(r5);
2154 2102
2155 // Push holes for the rest of the arguments to the generator function. 2103 // Push holes for the rest of the arguments to the generator function.
2156 __ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); 2104 __ LoadP(r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset));
2157 __ ldr(r3, 2105 __ LoadWordArith(
2158 FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset)); 2106 r6, FieldMemOperand(r6, SharedFunctionInfo::kFormalParameterCountOffset));
2159 __ LoadRoot(r2, Heap::kTheHoleValueRootIndex); 2107 __ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
2160 Label push_argument_holes, push_frame; 2108 Label argument_loop, push_frame;
2161 __ bind(&push_argument_holes); 2109 #if V8_TARGET_ARCH_PPC64
2162 __ sub(r3, r3, Operand(Smi::FromInt(1)), SetCC); 2110 __ cmpi(r6, Operand::Zero());
2163 __ b(mi, &push_frame); 2111 __ beq(&push_frame);
2164 __ push(r2); 2112 #else
2165 __ jmp(&push_argument_holes); 2113 __ SmiUntag(r6, SetRC);
2114 __ beq(&push_frame, cr0);
2115 #endif
2116 __ mtctr(r6);
2117 __ bind(&argument_loop);
2118 __ push(r5);
2119 __ bdnz(&argument_loop);
2166 2120
2167 // Enter a new JavaScript frame, and initialize its slots as they were when 2121 // Enter a new JavaScript frame, and initialize its slots as they were when
2168 // the generator was suspended. 2122 // the generator was suspended.
2169 Label resume_frame; 2123 Label resume_frame;
2170 __ bind(&push_frame); 2124 __ bind(&push_frame);
2171 __ bl(&resume_frame); 2125 __ b(&resume_frame, SetLK);
2172 __ jmp(&done); 2126 __ b(&done);
2173 __ bind(&resume_frame); 2127 __ bind(&resume_frame);
2174 // lr = return address. 2128 // lr = return address.
2175 // fp = caller's frame pointer. 2129 // fp = caller's frame pointer.
2176 // pp = caller's constant pool (if FLAG_enable_ool_constant_pool),
2177 // cp = callee's context, 2130 // cp = callee's context,
2178 // r4 = callee's JS function. 2131 // r7 = callee's JS function.
2179 __ PushFixedFrame(r4); 2132 __ PushFixedFrame(r7);
2180 // Adjust FP to point to saved FP. 2133 // Adjust FP to point to saved FP.
2181 __ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); 2134 __ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
2182 2135
2183 // Load the operand stack size. 2136 // Load the operand stack size.
2184 __ ldr(r3, FieldMemOperand(r1, JSGeneratorObject::kOperandStackOffset)); 2137 __ LoadP(r6, FieldMemOperand(r4, JSGeneratorObject::kOperandStackOffset));
2185 __ ldr(r3, FieldMemOperand(r3, FixedArray::kLengthOffset)); 2138 __ LoadP(r6, FieldMemOperand(r6, FixedArray::kLengthOffset));
2186 __ SmiUntag(r3); 2139 __ SmiUntag(r6, SetRC);
2187 2140
2188 // If we are sending a value and there is no operand stack, we can jump back 2141 // If we are sending a value and there is no operand stack, we can jump back
2189 // in directly. 2142 // in directly.
2143 Label call_resume;
2190 if (resume_mode == JSGeneratorObject::NEXT) { 2144 if (resume_mode == JSGeneratorObject::NEXT) {
2191 Label slow_resume; 2145 Label slow_resume;
2192 __ cmp(r3, Operand(0)); 2146 __ bne(&slow_resume, cr0);
2193 __ b(ne, &slow_resume); 2147 __ LoadP(r6, FieldMemOperand(r7, JSFunction::kCodeEntryOffset));
2194 __ ldr(r3, FieldMemOperand(r4, JSFunction::kCodeEntryOffset)); 2148 #if V8_OOL_CONSTANT_POOL
2195 2149 {
2196 { ConstantPoolUnavailableScope constant_pool_unavailable(masm_); 2150 ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
2197 if (FLAG_enable_ool_constant_pool) { 2151 // Load the new code object's constant pool pointer.
2198 // Load the new code object's constant pool pointer. 2152 __ LoadP(kConstantPoolRegister,
2199 __ ldr(pp, 2153 MemOperand(r6, Code::kConstantPoolOffset - Code::kHeaderSize));
2200 MemOperand(r3, Code::kConstantPoolOffset - Code::kHeaderSize)); 2154 #endif
2201 } 2155 __ LoadP(r5, FieldMemOperand(r4, JSGeneratorObject::kContinuationOffset));
2202 2156 __ SmiUntag(r5);
2203 __ ldr(r2, FieldMemOperand(r1, JSGeneratorObject::kContinuationOffset)); 2157 __ add(r6, r6, r5);
2204 __ SmiUntag(r2); 2158 __ LoadSmiLiteral(r5,
2205 __ add(r3, r3, r2); 2159 Smi::FromInt(JSGeneratorObject::kGeneratorExecuting));
2206 __ mov(r2, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorExecuting))); 2160 __ StoreP(r5, FieldMemOperand(r4, JSGeneratorObject::kContinuationOffset),
2207 __ str(r2, FieldMemOperand(r1, JSGeneratorObject::kContinuationOffset)); 2161 r0);
2208 __ Jump(r3); 2162 __ Jump(r6);
2163 __ bind(&slow_resume);
2164 #if V8_OOL_CONSTANT_POOL
2209 } 2165 }
2210 __ bind(&slow_resume); 2166 #endif
2167 } else {
2168 __ beq(&call_resume, cr0);
2211 } 2169 }
2212 2170
2213 // Otherwise, we push holes for the operand stack and call the runtime to fix 2171 // Otherwise, we push holes for the operand stack and call the runtime to fix
2214 // up the stack and the handlers. 2172 // up the stack and the handlers.
2215 Label push_operand_holes, call_resume; 2173 Label operand_loop;
2216 __ bind(&push_operand_holes); 2174 __ mtctr(r6);
2217 __ sub(r3, r3, Operand(1), SetCC); 2175 __ bind(&operand_loop);
2218 __ b(mi, &call_resume); 2176 __ push(r5);
2219 __ push(r2); 2177 __ bdnz(&operand_loop);
2220 __ b(&push_operand_holes); 2178
2221 __ bind(&call_resume); 2179 __ bind(&call_resume);
2222 DCHECK(!result_register().is(r1)); 2180 DCHECK(!result_register().is(r4));
2223 __ Push(r1, result_register()); 2181 __ Push(r4, result_register());
2224 __ Push(Smi::FromInt(resume_mode)); 2182 __ Push(Smi::FromInt(resume_mode));
2225 __ CallRuntime(Runtime::kResumeJSGeneratorObject, 3); 2183 __ CallRuntime(Runtime::kResumeJSGeneratorObject, 3);
2226 // Not reached: the runtime call returns elsewhere. 2184 // Not reached: the runtime call returns elsewhere.
2227 __ stop("not-reached"); 2185 __ stop("not-reached");
2228 2186
2229 // Reach here when generator is closed. 2187 // Reach here when generator is closed.
2230 __ bind(&closed_state); 2188 __ bind(&closed_state);
2231 if (resume_mode == JSGeneratorObject::NEXT) { 2189 if (resume_mode == JSGeneratorObject::NEXT) {
2232 // Return completed iterator result when generator is closed. 2190 // Return completed iterator result when generator is closed.
2233 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); 2191 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
2234 __ push(r2); 2192 __ push(r5);
2235 // Pop value from top-of-stack slot; box result into result register. 2193 // Pop value from top-of-stack slot; box result into result register.
2236 EmitCreateIteratorResult(true); 2194 EmitCreateIteratorResult(true);
2237 } else { 2195 } else {
2238 // Throw the provided value. 2196 // Throw the provided value.
2239 __ push(r0); 2197 __ push(r3);
2240 __ CallRuntime(Runtime::kThrow, 1); 2198 __ CallRuntime(Runtime::kThrow, 1);
2241 } 2199 }
2242 __ jmp(&done); 2200 __ b(&done);
2243 2201
2244 // Throw error if we attempt to operate on a running generator. 2202 // Throw error if we attempt to operate on a running generator.
2245 __ bind(&wrong_state); 2203 __ bind(&wrong_state);
2246 __ push(r1); 2204 __ push(r4);
2247 __ CallRuntime(Runtime::kThrowGeneratorStateError, 1); 2205 __ CallRuntime(Runtime::kThrowGeneratorStateError, 1);
2248 2206
2249 __ bind(&done); 2207 __ bind(&done);
2250 context()->Plug(result_register()); 2208 context()->Plug(result_register());
2251 } 2209 }
2252 2210
2253 2211
2254 void FullCodeGenerator::EmitCreateIteratorResult(bool done) { 2212 void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
2255 Label gc_required; 2213 Label gc_required;
2256 Label allocated; 2214 Label allocated;
2257 2215
2258 Handle<Map> map(isolate()->native_context()->iterator_result_map()); 2216 Handle<Map> map(isolate()->native_context()->iterator_result_map());
2259 2217
2260 __ Allocate(map->instance_size(), r0, r2, r3, &gc_required, TAG_OBJECT); 2218 __ Allocate(map->instance_size(), r3, r5, r6, &gc_required, TAG_OBJECT);
2261 __ jmp(&allocated); 2219 __ b(&allocated);
2262 2220
2263 __ bind(&gc_required); 2221 __ bind(&gc_required);
2264 __ Push(Smi::FromInt(map->instance_size())); 2222 __ Push(Smi::FromInt(map->instance_size()));
2265 __ CallRuntime(Runtime::kAllocateInNewSpace, 1); 2223 __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
2266 __ ldr(context_register(), 2224 __ LoadP(context_register(),
2267 MemOperand(fp, StandardFrameConstants::kContextOffset)); 2225 MemOperand(fp, StandardFrameConstants::kContextOffset));
2268 2226
2269 __ bind(&allocated); 2227 __ bind(&allocated);
2270 __ mov(r1, Operand(map)); 2228 __ mov(r4, Operand(map));
2271 __ pop(r2); 2229 __ pop(r5);
2272 __ mov(r3, Operand(isolate()->factory()->ToBoolean(done))); 2230 __ mov(r6, Operand(isolate()->factory()->ToBoolean(done)));
2273 __ mov(r4, Operand(isolate()->factory()->empty_fixed_array())); 2231 __ mov(r7, Operand(isolate()->factory()->empty_fixed_array()));
2274 DCHECK_EQ(map->instance_size(), 5 * kPointerSize); 2232 DCHECK_EQ(map->instance_size(), 5 * kPointerSize);
2275 __ str(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); 2233 __ StoreP(r4, FieldMemOperand(r3, HeapObject::kMapOffset), r0);
2276 __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset)); 2234 __ StoreP(r7, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
2277 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); 2235 __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
2278 __ str(r2, 2236 __ StoreP(r5,
2279 FieldMemOperand(r0, JSGeneratorObject::kResultValuePropertyOffset)); 2237 FieldMemOperand(r3, JSGeneratorObject::kResultValuePropertyOffset),
2280 __ str(r3, 2238 r0);
2281 FieldMemOperand(r0, JSGeneratorObject::kResultDonePropertyOffset)); 2239 __ StoreP(r6,
2240 FieldMemOperand(r3, JSGeneratorObject::kResultDonePropertyOffset),
2241 r0);
2282 2242
2283 // Only the value field needs a write barrier, as the other values are in the 2243 // Only the value field needs a write barrier, as the other values are in the
2284 // root set. 2244 // root set.
2285 __ RecordWriteField(r0, JSGeneratorObject::kResultValuePropertyOffset, 2245 __ RecordWriteField(r3, JSGeneratorObject::kResultValuePropertyOffset, r5, r6,
2286 r2, r3, kLRHasBeenSaved, kDontSaveFPRegs); 2246 kLRHasBeenSaved, kDontSaveFPRegs);
2287 } 2247 }
2288 2248
2289 2249
2290 void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) { 2250 void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
2291 SetSourcePosition(prop->position()); 2251 SetSourcePosition(prop->position());
2292 Literal* key = prop->key()->AsLiteral(); 2252 Literal* key = prop->key()->AsLiteral();
2293 __ mov(LoadIC::NameRegister(), Operand(key->value())); 2253 __ mov(LoadIC::NameRegister(), Operand(key->value()));
2294 if (FLAG_vector_ics) { 2254 if (FLAG_vector_ics) {
2295 __ mov(LoadIC::SlotRegister(), 2255 __ mov(LoadIC::SlotRegister(),
2296 Operand(Smi::FromInt(prop->PropertyFeedbackSlot()))); 2256 Operand(Smi::FromInt(prop->PropertyFeedbackSlot())));
(...skipping 17 matching lines...) Expand all
2314 } 2274 }
2315 2275
2316 2276
2317 void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr, 2277 void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
2318 Token::Value op, 2278 Token::Value op,
2319 OverwriteMode mode, 2279 OverwriteMode mode,
2320 Expression* left_expr, 2280 Expression* left_expr,
2321 Expression* right_expr) { 2281 Expression* right_expr) {
2322 Label done, smi_case, stub_call; 2282 Label done, smi_case, stub_call;
2323 2283
2324 Register scratch1 = r2; 2284 Register scratch1 = r5;
2325 Register scratch2 = r3; 2285 Register scratch2 = r6;
2326 2286
2327 // Get the arguments. 2287 // Get the arguments.
2328 Register left = r1; 2288 Register left = r4;
2329 Register right = r0; 2289 Register right = r3;
2330 __ pop(left); 2290 __ pop(left);
2331 2291
2332 // Perform combined smi check on both operands. 2292 // Perform combined smi check on both operands.
2333 __ orr(scratch1, left, Operand(right)); 2293 __ orx(scratch1, left, right);
2334 STATIC_ASSERT(kSmiTag == 0); 2294 STATIC_ASSERT(kSmiTag == 0);
2335 JumpPatchSite patch_site(masm_); 2295 JumpPatchSite patch_site(masm_);
2336 patch_site.EmitJumpIfSmi(scratch1, &smi_case); 2296 patch_site.EmitJumpIfSmi(scratch1, &smi_case);
2337 2297
2338 __ bind(&stub_call); 2298 __ bind(&stub_call);
2339 BinaryOpICStub stub(isolate(), op, mode); 2299 BinaryOpICStub stub(isolate(), op, mode);
2340 CallIC(stub.GetCode(), expr->BinaryOperationFeedbackId()); 2300 CallIC(stub.GetCode(), expr->BinaryOperationFeedbackId());
2341 patch_site.EmitPatchInfo(); 2301 patch_site.EmitPatchInfo();
2342 __ jmp(&done); 2302 __ b(&done);
2343 2303
2344 __ bind(&smi_case); 2304 __ bind(&smi_case);
2345 // Smi case. This code works the same way as the smi-smi case in the type 2305 // Smi case. This code works the same way as the smi-smi case in the type
2346 // recording binary operation stub, see 2306 // recording binary operation stub.
2347 switch (op) { 2307 switch (op) {
2348 case Token::SAR: 2308 case Token::SAR:
2349 __ GetLeastBitsFromSmi(scratch1, right, 5); 2309 __ GetLeastBitsFromSmi(scratch1, right, 5);
2350 __ mov(right, Operand(left, ASR, scratch1)); 2310 __ ShiftRightArith(right, left, scratch1);
2351 __ bic(right, right, Operand(kSmiTagMask)); 2311 __ ClearRightImm(right, right, Operand(kSmiTagSize + kSmiShiftSize));
2352 break; 2312 break;
2353 case Token::SHL: { 2313 case Token::SHL: {
2314 __ GetLeastBitsFromSmi(scratch2, right, 5);
2315 #if V8_TARGET_ARCH_PPC64
2316 __ ShiftLeft(right, left, scratch2);
2317 #else
2354 __ SmiUntag(scratch1, left); 2318 __ SmiUntag(scratch1, left);
2355 __ GetLeastBitsFromSmi(scratch2, right, 5); 2319 __ ShiftLeft(scratch1, scratch1, scratch2);
2356 __ mov(scratch1, Operand(scratch1, LSL, scratch2)); 2320 // Check that the *signed* result fits in a smi
2357 __ TrySmiTag(right, scratch1, &stub_call); 2321 __ JumpIfNotSmiCandidate(scratch1, scratch2, &stub_call);
2322 __ SmiTag(right, scratch1);
2323 #endif
2358 break; 2324 break;
2359 } 2325 }
2360 case Token::SHR: { 2326 case Token::SHR: {
2361 __ SmiUntag(scratch1, left); 2327 __ SmiUntag(scratch1, left);
2362 __ GetLeastBitsFromSmi(scratch2, right, 5); 2328 __ GetLeastBitsFromSmi(scratch2, right, 5);
2363 __ mov(scratch1, Operand(scratch1, LSR, scratch2)); 2329 __ srw(scratch1, scratch1, scratch2);
2364 __ tst(scratch1, Operand(0xc0000000)); 2330 // Unsigned shift is not allowed to produce a negative number.
2365 __ b(ne, &stub_call); 2331 __ JumpIfNotUnsignedSmiCandidate(scratch1, r0, &stub_call);
2366 __ SmiTag(right, scratch1); 2332 __ SmiTag(right, scratch1);
2367 break; 2333 break;
2368 } 2334 }
2369 case Token::ADD: 2335 case Token::ADD: {
2370 __ add(scratch1, left, Operand(right), SetCC); 2336 __ AddAndCheckForOverflow(scratch1, left, right, scratch2, r0);
2371 __ b(vs, &stub_call); 2337 __ bne(&stub_call, cr0);
2372 __ mov(right, scratch1); 2338 __ mr(right, scratch1);
2373 break; 2339 break;
2374 case Token::SUB: 2340 }
2375 __ sub(scratch1, left, Operand(right), SetCC); 2341 case Token::SUB: {
2376 __ b(vs, &stub_call); 2342 __ SubAndCheckForOverflow(scratch1, left, right, scratch2, r0);
2377 __ mov(right, scratch1); 2343 __ bne(&stub_call, cr0);
2344 __ mr(right, scratch1);
2378 break; 2345 break;
2346 }
2379 case Token::MUL: { 2347 case Token::MUL: {
2348 Label mul_zero;
2349 #if V8_TARGET_ARCH_PPC64
2350 // Remove tag from both operands.
2380 __ SmiUntag(ip, right); 2351 __ SmiUntag(ip, right);
2381 __ smull(scratch1, scratch2, left, ip); 2352 __ SmiUntag(r0, left);
2382 __ mov(ip, Operand(scratch1, ASR, 31)); 2353 __ Mul(scratch1, r0, ip);
2383 __ cmp(ip, Operand(scratch2)); 2354 // Check for overflowing the smi range - no overflow if higher 33 bits of
2384 __ b(ne, &stub_call); 2355 // the result are identical.
2385 __ cmp(scratch1, Operand::Zero()); 2356 __ TestIfInt32(scratch1, scratch2, ip);
2386 __ mov(right, Operand(scratch1), LeaveCC, ne); 2357 __ bne(&stub_call);
2387 __ b(ne, &done); 2358 #else
2388 __ add(scratch2, right, Operand(left), SetCC); 2359 __ SmiUntag(ip, right);
2389 __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl); 2360 __ mullw(scratch1, left, ip);
2390 __ b(mi, &stub_call); 2361 __ mulhw(scratch2, left, ip);
2362 // Check for overflowing the smi range - no overflow if higher 33 bits of
2363 // the result are identical.
2364 __ TestIfInt32(scratch2, scratch1, ip);
2365 __ bne(&stub_call);
2366 #endif
2367 // Go slow on zero result to handle -0.
2368 __ cmpi(scratch1, Operand::Zero());
2369 __ beq(&mul_zero);
2370 #if V8_TARGET_ARCH_PPC64
2371 __ SmiTag(right, scratch1);
2372 #else
2373 __ mr(right, scratch1);
2374 #endif
2375 __ b(&done);
2376 // We need -0 if we were multiplying a negative number with 0 to get 0.
2377 // We know one of them was zero.
2378 __ bind(&mul_zero);
2379 __ add(scratch2, right, left);
2380 __ cmpi(scratch2, Operand::Zero());
2381 __ blt(&stub_call);
2382 __ LoadSmiLiteral(right, Smi::FromInt(0));
2391 break; 2383 break;
2392 } 2384 }
2393 case Token::BIT_OR: 2385 case Token::BIT_OR:
2394 __ orr(right, left, Operand(right)); 2386 __ orx(right, left, right);
2395 break; 2387 break;
2396 case Token::BIT_AND: 2388 case Token::BIT_AND:
2397 __ and_(right, left, Operand(right)); 2389 __ and_(right, left, right);
2398 break; 2390 break;
2399 case Token::BIT_XOR: 2391 case Token::BIT_XOR:
2400 __ eor(right, left, Operand(right)); 2392 __ xor_(right, left, right);
2401 break; 2393 break;
2402 default: 2394 default:
2403 UNREACHABLE(); 2395 UNREACHABLE();
2404 } 2396 }
2405 2397
2406 __ bind(&done); 2398 __ bind(&done);
2407 context()->Plug(r0); 2399 context()->Plug(r3);
2408 } 2400 }
2409 2401
2410 2402
2411 void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, 2403 void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op,
2412 Token::Value op,
2413 OverwriteMode mode) { 2404 OverwriteMode mode) {
2414 __ pop(r1); 2405 __ pop(r4);
2415 BinaryOpICStub stub(isolate(), op, mode); 2406 BinaryOpICStub stub(isolate(), op, mode);
2416 JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code. 2407 JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code.
2417 CallIC(stub.GetCode(), expr->BinaryOperationFeedbackId()); 2408 CallIC(stub.GetCode(), expr->BinaryOperationFeedbackId());
2418 patch_site.EmitPatchInfo(); 2409 patch_site.EmitPatchInfo();
2419 context()->Plug(r0); 2410 context()->Plug(r3);
2420 } 2411 }
2421 2412
2422 2413
2423 void FullCodeGenerator::EmitAssignment(Expression* expr) { 2414 void FullCodeGenerator::EmitAssignment(Expression* expr) {
2424 DCHECK(expr->IsValidReferenceExpression()); 2415 DCHECK(expr->IsValidReferenceExpression());
2425 2416
2426 // Left-hand side can only be a property, a global or a (parameter or local) 2417 // Left-hand side can only be a property, a global or a (parameter or local)
2427 // slot. 2418 // slot.
2428 enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; 2419 enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
2429 LhsKind assign_type = VARIABLE; 2420 LhsKind assign_type = VARIABLE;
2430 Property* prop = expr->AsProperty(); 2421 Property* prop = expr->AsProperty();
2431 if (prop != NULL) { 2422 if (prop != NULL) {
2432 assign_type = (prop->key()->IsPropertyName()) 2423 assign_type =
2433 ? NAMED_PROPERTY 2424 (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
2434 : KEYED_PROPERTY;
2435 } 2425 }
2436 2426
2437 switch (assign_type) { 2427 switch (assign_type) {
2438 case VARIABLE: { 2428 case VARIABLE: {
2439 Variable* var = expr->AsVariableProxy()->var(); 2429 Variable* var = expr->AsVariableProxy()->var();
2440 EffectContext context(this); 2430 EffectContext context(this);
2441 EmitVariableAssignment(var, Token::ASSIGN); 2431 EmitVariableAssignment(var, Token::ASSIGN);
2442 break; 2432 break;
2443 } 2433 }
2444 case NAMED_PROPERTY: { 2434 case NAMED_PROPERTY: {
2445 __ push(r0); // Preserve value. 2435 __ push(r3); // Preserve value.
2446 VisitForAccumulatorValue(prop->obj()); 2436 VisitForAccumulatorValue(prop->obj());
2447 __ Move(StoreIC::ReceiverRegister(), r0); 2437 __ Move(StoreIC::ReceiverRegister(), r3);
2448 __ pop(StoreIC::ValueRegister()); // Restore value. 2438 __ pop(StoreIC::ValueRegister()); // Restore value.
2449 __ mov(StoreIC::NameRegister(), 2439 __ mov(StoreIC::NameRegister(),
2450 Operand(prop->key()->AsLiteral()->value())); 2440 Operand(prop->key()->AsLiteral()->value()));
2451 CallStoreIC(); 2441 CallStoreIC();
2452 break; 2442 break;
2453 } 2443 }
2454 case KEYED_PROPERTY: { 2444 case KEYED_PROPERTY: {
2455 __ push(r0); // Preserve value. 2445 __ push(r3); // Preserve value.
2456 VisitForStackValue(prop->obj()); 2446 VisitForStackValue(prop->obj());
2457 VisitForAccumulatorValue(prop->key()); 2447 VisitForAccumulatorValue(prop->key());
2458 __ Move(KeyedStoreIC::NameRegister(), r0); 2448 __ Move(KeyedStoreIC::NameRegister(), r3);
2459 __ Pop(KeyedStoreIC::ValueRegister(), KeyedStoreIC::ReceiverRegister()); 2449 __ Pop(KeyedStoreIC::ValueRegister(), KeyedStoreIC::ReceiverRegister());
2460 Handle<Code> ic = strict_mode() == SLOPPY 2450 Handle<Code> ic =
2461 ? isolate()->builtins()->KeyedStoreIC_Initialize() 2451 strict_mode() == SLOPPY
2462 : isolate()->builtins()->KeyedStoreIC_Initialize_Strict(); 2452 ? isolate()->builtins()->KeyedStoreIC_Initialize()
2453 : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
2463 CallIC(ic); 2454 CallIC(ic);
2464 break; 2455 break;
2465 } 2456 }
2466 } 2457 }
2467 context()->Plug(r0); 2458 context()->Plug(r3);
2468 } 2459 }
2469 2460
2470 2461
2471 void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot( 2462 void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
2472 Variable* var, MemOperand location) { 2463 Variable* var, MemOperand location) {
2473 __ str(result_register(), location); 2464 __ StoreP(result_register(), location, r0);
2474 if (var->IsContextSlot()) { 2465 if (var->IsContextSlot()) {
2475 // RecordWrite may destroy all its register arguments. 2466 // RecordWrite may destroy all its register arguments.
2476 __ mov(r3, result_register()); 2467 __ mr(r6, result_register());
2477 int offset = Context::SlotOffset(var->index()); 2468 int offset = Context::SlotOffset(var->index());
2478 __ RecordWriteContextSlot( 2469 __ RecordWriteContextSlot(r4, offset, r6, r5, kLRHasBeenSaved,
2479 r1, offset, r3, r2, kLRHasBeenSaved, kDontSaveFPRegs); 2470 kDontSaveFPRegs);
2480 } 2471 }
2481 } 2472 }
2482 2473
2483 2474
2484 void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op) { 2475 void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op) {
2485 if (var->IsUnallocated()) { 2476 if (var->IsUnallocated()) {
2486 // Global var, const, or let. 2477 // Global var, const, or let.
2487 __ mov(StoreIC::NameRegister(), Operand(var->name())); 2478 __ mov(StoreIC::NameRegister(), Operand(var->name()));
2488 __ ldr(StoreIC::ReceiverRegister(), GlobalObjectOperand()); 2479 __ LoadP(StoreIC::ReceiverRegister(), GlobalObjectOperand());
2489 CallStoreIC(); 2480 CallStoreIC();
2490 2481
2491 } else if (op == Token::INIT_CONST_LEGACY) { 2482 } else if (op == Token::INIT_CONST_LEGACY) {
2492 // Const initializers need a write barrier. 2483 // Const initializers need a write barrier.
2493 DCHECK(!var->IsParameter()); // No const parameters. 2484 DCHECK(!var->IsParameter()); // No const parameters.
2494 if (var->IsLookupSlot()) { 2485 if (var->IsLookupSlot()) {
2495 __ push(r0); 2486 __ push(r3);
2496 __ mov(r0, Operand(var->name())); 2487 __ mov(r3, Operand(var->name()));
2497 __ Push(cp, r0); // Context and name. 2488 __ Push(cp, r3); // Context and name.
2498 __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot, 3); 2489 __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot, 3);
2499 } else { 2490 } else {
2500 DCHECK(var->IsStackAllocated() || var->IsContextSlot()); 2491 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2501 Label skip; 2492 Label skip;
2502 MemOperand location = VarOperand(var, r1); 2493 MemOperand location = VarOperand(var, r4);
2503 __ ldr(r2, location); 2494 __ LoadP(r5, location);
2504 __ CompareRoot(r2, Heap::kTheHoleValueRootIndex); 2495 __ CompareRoot(r5, Heap::kTheHoleValueRootIndex);
2505 __ b(ne, &skip); 2496 __ bne(&skip);
2506 EmitStoreToStackLocalOrContextSlot(var, location); 2497 EmitStoreToStackLocalOrContextSlot(var, location);
2507 __ bind(&skip); 2498 __ bind(&skip);
2508 } 2499 }
2509 2500
2510 } else if (var->mode() == LET && op != Token::INIT_LET) { 2501 } else if (var->mode() == LET && op != Token::INIT_LET) {
2511 // Non-initializing assignment to let variable needs a write barrier. 2502 // Non-initializing assignment to let variable needs a write barrier.
2512 DCHECK(!var->IsLookupSlot()); 2503 DCHECK(!var->IsLookupSlot());
2513 DCHECK(var->IsStackAllocated() || var->IsContextSlot()); 2504 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2514 Label assign; 2505 Label assign;
2515 MemOperand location = VarOperand(var, r1); 2506 MemOperand location = VarOperand(var, r4);
2516 __ ldr(r3, location); 2507 __ LoadP(r6, location);
2517 __ CompareRoot(r3, Heap::kTheHoleValueRootIndex); 2508 __ CompareRoot(r6, Heap::kTheHoleValueRootIndex);
2518 __ b(ne, &assign); 2509 __ bne(&assign);
2519 __ mov(r3, Operand(var->name())); 2510 __ mov(r6, Operand(var->name()));
2520 __ push(r3); 2511 __ push(r6);
2521 __ CallRuntime(Runtime::kThrowReferenceError, 1); 2512 __ CallRuntime(Runtime::kThrowReferenceError, 1);
2522 // Perform the assignment. 2513 // Perform the assignment.
2523 __ bind(&assign); 2514 __ bind(&assign);
2524 EmitStoreToStackLocalOrContextSlot(var, location); 2515 EmitStoreToStackLocalOrContextSlot(var, location);
2525 2516
2526 } else if (!var->is_const_mode() || op == Token::INIT_CONST) { 2517 } else if (!var->is_const_mode() || op == Token::INIT_CONST) {
2527 if (var->IsLookupSlot()) { 2518 if (var->IsLookupSlot()) {
2528 // Assignment to var. 2519 // Assignment to var.
2529 __ push(r0); // Value. 2520 __ push(r3); // Value.
2530 __ mov(r1, Operand(var->name())); 2521 __ mov(r4, Operand(var->name()));
2531 __ mov(r0, Operand(Smi::FromInt(strict_mode()))); 2522 __ mov(r3, Operand(Smi::FromInt(strict_mode())));
2532 __ Push(cp, r1, r0); // Context, name, strict mode. 2523 __ Push(cp, r4, r3); // Context, name, strict mode.
2533 __ CallRuntime(Runtime::kStoreLookupSlot, 4); 2524 __ CallRuntime(Runtime::kStoreLookupSlot, 4);
2534 } else { 2525 } else {
2535 // Assignment to var or initializing assignment to let/const in harmony 2526 // Assignment to var or initializing assignment to let/const in harmony
2536 // mode. 2527 // mode.
2537 DCHECK((var->IsStackAllocated() || var->IsContextSlot())); 2528 DCHECK((var->IsStackAllocated() || var->IsContextSlot()));
2538 MemOperand location = VarOperand(var, r1); 2529 MemOperand location = VarOperand(var, r4);
2539 if (generate_debug_code_ && op == Token::INIT_LET) { 2530 if (generate_debug_code_ && op == Token::INIT_LET) {
2540 // Check for an uninitialized let binding. 2531 // Check for an uninitialized let binding.
2541 __ ldr(r2, location); 2532 __ LoadP(r5, location);
2542 __ CompareRoot(r2, Heap::kTheHoleValueRootIndex); 2533 __ CompareRoot(r5, Heap::kTheHoleValueRootIndex);
2543 __ Check(eq, kLetBindingReInitialization); 2534 __ Check(eq, kLetBindingReInitialization);
2544 } 2535 }
2545 EmitStoreToStackLocalOrContextSlot(var, location); 2536 EmitStoreToStackLocalOrContextSlot(var, location);
2546 } 2537 }
2547 } 2538 }
2548 // Non-initializing assignments to consts are ignored. 2539 // Non-initializing assignments to consts are ignored.
2549 } 2540 }
2550 2541
2551 2542
2552 void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { 2543 void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
2553 // Assignment to a property, using a named store IC. 2544 // Assignment to a property, using a named store IC.
2554 Property* prop = expr->target()->AsProperty(); 2545 Property* prop = expr->target()->AsProperty();
2555 DCHECK(prop != NULL); 2546 DCHECK(prop != NULL);
2556 DCHECK(prop->key()->IsLiteral()); 2547 DCHECK(prop->key()->IsLiteral());
2557 2548
2558 // Record source code position before IC call. 2549 // Record source code position before IC call.
2559 SetSourcePosition(expr->position()); 2550 SetSourcePosition(expr->position());
2560 __ mov(StoreIC::NameRegister(), Operand(prop->key()->AsLiteral()->value())); 2551 __ mov(StoreIC::NameRegister(), Operand(prop->key()->AsLiteral()->value()));
2561 __ pop(StoreIC::ReceiverRegister()); 2552 __ pop(StoreIC::ReceiverRegister());
2562 CallStoreIC(expr->AssignmentFeedbackId()); 2553 CallStoreIC(expr->AssignmentFeedbackId());
2563 2554
2564 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); 2555 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2565 context()->Plug(r0); 2556 context()->Plug(r3);
2566 } 2557 }
2567 2558
2568 2559
2569 void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { 2560 void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
2570 // Assignment to a property, using a keyed store IC. 2561 // Assignment to a property, using a keyed store IC.
2571 2562
2572 // Record source code position before IC call. 2563 // Record source code position before IC call.
2573 SetSourcePosition(expr->position()); 2564 SetSourcePosition(expr->position());
2574 __ Pop(KeyedStoreIC::ReceiverRegister(), KeyedStoreIC::NameRegister()); 2565 __ Pop(KeyedStoreIC::ReceiverRegister(), KeyedStoreIC::NameRegister());
2575 DCHECK(KeyedStoreIC::ValueRegister().is(r0)); 2566 DCHECK(KeyedStoreIC::ValueRegister().is(r3));
2576 2567
2577 Handle<Code> ic = strict_mode() == SLOPPY 2568 Handle<Code> ic =
2578 ? isolate()->builtins()->KeyedStoreIC_Initialize() 2569 strict_mode() == SLOPPY
2579 : isolate()->builtins()->KeyedStoreIC_Initialize_Strict(); 2570 ? isolate()->builtins()->KeyedStoreIC_Initialize()
2571 : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
2580 CallIC(ic, expr->AssignmentFeedbackId()); 2572 CallIC(ic, expr->AssignmentFeedbackId());
2581 2573
2582 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); 2574 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2583 context()->Plug(r0); 2575 context()->Plug(r3);
2584 } 2576 }
2585 2577
2586 2578
2587 void FullCodeGenerator::VisitProperty(Property* expr) { 2579 void FullCodeGenerator::VisitProperty(Property* expr) {
2588 Comment cmnt(masm_, "[ Property"); 2580 Comment cmnt(masm_, "[ Property");
2589 Expression* key = expr->key(); 2581 Expression* key = expr->key();
2590 2582
2591 if (key->IsPropertyName()) { 2583 if (key->IsPropertyName()) {
2592 VisitForAccumulatorValue(expr->obj()); 2584 VisitForAccumulatorValue(expr->obj());
2593 __ Move(LoadIC::ReceiverRegister(), r0); 2585 __ Move(LoadIC::ReceiverRegister(), r3);
2594 EmitNamedPropertyLoad(expr); 2586 EmitNamedPropertyLoad(expr);
2595 PrepareForBailoutForId(expr->LoadId(), TOS_REG); 2587 PrepareForBailoutForId(expr->LoadId(), TOS_REG);
2596 context()->Plug(r0); 2588 context()->Plug(r3);
2597 } else { 2589 } else {
2598 VisitForStackValue(expr->obj()); 2590 VisitForStackValue(expr->obj());
2599 VisitForAccumulatorValue(expr->key()); 2591 VisitForAccumulatorValue(expr->key());
2600 __ Move(LoadIC::NameRegister(), r0); 2592 __ Move(LoadIC::NameRegister(), r3);
2601 __ pop(LoadIC::ReceiverRegister()); 2593 __ pop(LoadIC::ReceiverRegister());
2602 EmitKeyedPropertyLoad(expr); 2594 EmitKeyedPropertyLoad(expr);
2603 context()->Plug(r0); 2595 context()->Plug(r3);
2604 } 2596 }
2605 } 2597 }
2606 2598
2607 2599
2608 void FullCodeGenerator::CallIC(Handle<Code> code, 2600 void FullCodeGenerator::CallIC(Handle<Code> code, TypeFeedbackId ast_id) {
2609 TypeFeedbackId ast_id) {
2610 ic_total_count_++; 2601 ic_total_count_++;
2611 // All calls must have a predictable size in full-codegen code to ensure that 2602 __ Call(code, RelocInfo::CODE_TARGET, ast_id);
2612 // the debugger can patch them correctly.
2613 __ Call(code, RelocInfo::CODE_TARGET, ast_id, al,
2614 NEVER_INLINE_TARGET_ADDRESS);
2615 } 2603 }
2616 2604
2617 2605
2618 // Code common for calls using the IC. 2606 // Code common for calls using the IC.
2619 void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) { 2607 void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
2620 Expression* callee = expr->expression(); 2608 Expression* callee = expr->expression();
2621 2609
2622 CallIC::CallType call_type = callee->IsVariableProxy() 2610 CallIC::CallType call_type =
2623 ? CallIC::FUNCTION 2611 callee->IsVariableProxy() ? CallIC::FUNCTION : CallIC::METHOD;
2624 : CallIC::METHOD;
2625 2612
2626 // Get the target function. 2613 // Get the target function.
2627 if (call_type == CallIC::FUNCTION) { 2614 if (call_type == CallIC::FUNCTION) {
2628 { StackValueContext context(this); 2615 {
2616 StackValueContext context(this);
2629 EmitVariableLoad(callee->AsVariableProxy()); 2617 EmitVariableLoad(callee->AsVariableProxy());
2630 PrepareForBailout(callee, NO_REGISTERS); 2618 PrepareForBailout(callee, NO_REGISTERS);
2631 } 2619 }
2632 // Push undefined as receiver. This is patched in the method prologue if it 2620 // Push undefined as receiver. This is patched in the method prologue if it
2633 // is a sloppy mode method. 2621 // is a sloppy mode method.
2634 __ Push(isolate()->factory()->undefined_value()); 2622 __ Push(isolate()->factory()->undefined_value());
2635 } else { 2623 } else {
2636 // Load the function from the receiver. 2624 // Load the function from the receiver.
2637 DCHECK(callee->IsProperty()); 2625 DCHECK(callee->IsProperty());
2638 __ ldr(LoadIC::ReceiverRegister(), MemOperand(sp, 0)); 2626 __ LoadP(LoadIC::ReceiverRegister(), MemOperand(sp, 0));
2639 EmitNamedPropertyLoad(callee->AsProperty()); 2627 EmitNamedPropertyLoad(callee->AsProperty());
2640 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG); 2628 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2641 // Push the target function under the receiver. 2629 // Push the target function under the receiver.
2642 __ ldr(ip, MemOperand(sp, 0)); 2630 __ LoadP(ip, MemOperand(sp, 0));
2643 __ push(ip); 2631 __ push(ip);
2644 __ str(r0, MemOperand(sp, kPointerSize)); 2632 __ StoreP(r3, MemOperand(sp, kPointerSize));
2645 } 2633 }
2646 2634
2647 EmitCall(expr, call_type); 2635 EmitCall(expr, call_type);
2648 } 2636 }
2649 2637
2650 2638
2651 // Code common for calls using the IC. 2639 // Code common for calls using the IC.
2652 void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr, 2640 void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr, Expression* key) {
2653 Expression* key) {
2654 // Load the key. 2641 // Load the key.
2655 VisitForAccumulatorValue(key); 2642 VisitForAccumulatorValue(key);
2656 2643
2657 Expression* callee = expr->expression(); 2644 Expression* callee = expr->expression();
2658 2645
2659 // Load the function from the receiver. 2646 // Load the function from the receiver.
2660 DCHECK(callee->IsProperty()); 2647 DCHECK(callee->IsProperty());
2661 __ ldr(LoadIC::ReceiverRegister(), MemOperand(sp, 0)); 2648 __ LoadP(LoadIC::ReceiverRegister(), MemOperand(sp, 0));
2662 __ Move(LoadIC::NameRegister(), r0); 2649 __ Move(LoadIC::NameRegister(), r3);
2663 EmitKeyedPropertyLoad(callee->AsProperty()); 2650 EmitKeyedPropertyLoad(callee->AsProperty());
2664 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG); 2651 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2665 2652
2666 // Push the target function under the receiver. 2653 // Push the target function under the receiver.
2667 __ ldr(ip, MemOperand(sp, 0)); 2654 __ LoadP(ip, MemOperand(sp, 0));
2668 __ push(ip); 2655 __ push(ip);
2669 __ str(r0, MemOperand(sp, kPointerSize)); 2656 __ StoreP(r3, MemOperand(sp, kPointerSize));
2670 2657
2671 EmitCall(expr, CallIC::METHOD); 2658 EmitCall(expr, CallIC::METHOD);
2672 } 2659 }
2673 2660
2674 2661
2675 void FullCodeGenerator::EmitCall(Call* expr, CallIC::CallType call_type) { 2662 void FullCodeGenerator::EmitCall(Call* expr, CallIC::CallType call_type) {
2676 // Load the arguments. 2663 // Load the arguments.
2677 ZoneList<Expression*>* args = expr->arguments(); 2664 ZoneList<Expression*>* args = expr->arguments();
2678 int arg_count = args->length(); 2665 int arg_count = args->length();
2679 { PreservePositionScope scope(masm()->positions_recorder()); 2666 {
2667 PreservePositionScope scope(masm()->positions_recorder());
2680 for (int i = 0; i < arg_count; i++) { 2668 for (int i = 0; i < arg_count; i++) {
2681 VisitForStackValue(args->at(i)); 2669 VisitForStackValue(args->at(i));
2682 } 2670 }
2683 } 2671 }
2684 2672
2685 // Record source position of the IC call. 2673 // Record source position of the IC call.
2686 SetSourcePosition(expr->position()); 2674 SetSourcePosition(expr->position());
2687 Handle<Code> ic = CallIC::initialize_stub( 2675 Handle<Code> ic = CallIC::initialize_stub(isolate(), arg_count, call_type);
2688 isolate(), arg_count, call_type); 2676 __ LoadSmiLiteral(r6, Smi::FromInt(expr->CallFeedbackSlot()));
2689 __ mov(r3, Operand(Smi::FromInt(expr->CallFeedbackSlot()))); 2677 __ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
2690 __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize));
2691 // Don't assign a type feedback id to the IC, since type feedback is provided 2678 // Don't assign a type feedback id to the IC, since type feedback is provided
2692 // by the vector above. 2679 // by the vector above.
2693 CallIC(ic); 2680 CallIC(ic);
2694 2681
2695 RecordJSReturnSite(expr); 2682 RecordJSReturnSite(expr);
2696 // Restore context register. 2683 // Restore context register.
2697 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 2684 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2698 context()->DropAndPlug(1, r0); 2685 context()->DropAndPlug(1, r3);
2699 } 2686 }
2700 2687
2701 2688
2702 void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) { 2689 void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
2703 // r4: copy of the first argument or undefined if it doesn't exist. 2690 // r7: copy of the first argument or undefined if it doesn't exist.
2704 if (arg_count > 0) { 2691 if (arg_count > 0) {
2705 __ ldr(r4, MemOperand(sp, arg_count * kPointerSize)); 2692 __ LoadP(r7, MemOperand(sp, arg_count * kPointerSize), r0);
2706 } else { 2693 } else {
2707 __ LoadRoot(r4, Heap::kUndefinedValueRootIndex); 2694 __ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
2708 } 2695 }
2709 2696
2710 // r3: the receiver of the enclosing function. 2697 // r6: the receiver of the enclosing function.
2711 int receiver_offset = 2 + info_->scope()->num_parameters(); 2698 int receiver_offset = 2 + info_->scope()->num_parameters();
2712 __ ldr(r3, MemOperand(fp, receiver_offset * kPointerSize)); 2699 __ LoadP(r6, MemOperand(fp, receiver_offset * kPointerSize), r0);
2713 2700
2714 // r2: strict mode. 2701 // r5: strict mode.
2715 __ mov(r2, Operand(Smi::FromInt(strict_mode()))); 2702 __ LoadSmiLiteral(r5, Smi::FromInt(strict_mode()));
2716 2703
2717 // r1: the start position of the scope the calls resides in. 2704 // r4: the start position of the scope the calls resides in.
2718 __ mov(r1, Operand(Smi::FromInt(scope()->start_position()))); 2705 __ LoadSmiLiteral(r4, Smi::FromInt(scope()->start_position()));
2719 2706
2720 // Do the runtime call. 2707 // Do the runtime call.
2721 __ Push(r4, r3, r2, r1); 2708 __ Push(r7, r6, r5, r4);
2722 __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 5); 2709 __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 5);
2723 } 2710 }
2724 2711
2725 2712
2726 void FullCodeGenerator::VisitCall(Call* expr) { 2713 void FullCodeGenerator::VisitCall(Call* expr) {
2727 #ifdef DEBUG 2714 #ifdef DEBUG
2728 // We want to verify that RecordJSReturnSite gets called on all paths 2715 // We want to verify that RecordJSReturnSite gets called on all paths
2729 // through this function. Avoid early returns. 2716 // through this function. Avoid early returns.
2730 expr->return_is_recorded_ = false; 2717 expr->return_is_recorded_ = false;
2731 #endif 2718 #endif
2732 2719
2733 Comment cmnt(masm_, "[ Call"); 2720 Comment cmnt(masm_, "[ Call");
2734 Expression* callee = expr->expression(); 2721 Expression* callee = expr->expression();
2735 Call::CallType call_type = expr->GetCallType(isolate()); 2722 Call::CallType call_type = expr->GetCallType(isolate());
2736 2723
2737 if (call_type == Call::POSSIBLY_EVAL_CALL) { 2724 if (call_type == Call::POSSIBLY_EVAL_CALL) {
2738 // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval 2725 // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
2739 // to resolve the function we need to call and the receiver of the 2726 // to resolve the function we need to call and the receiver of the
2740 // call. Then we call the resolved function using the given 2727 // call. Then we call the resolved function using the given
2741 // arguments. 2728 // arguments.
2742 ZoneList<Expression*>* args = expr->arguments(); 2729 ZoneList<Expression*>* args = expr->arguments();
2743 int arg_count = args->length(); 2730 int arg_count = args->length();
2744 2731
2745 { PreservePositionScope pos_scope(masm()->positions_recorder()); 2732 {
2733 PreservePositionScope pos_scope(masm()->positions_recorder());
2746 VisitForStackValue(callee); 2734 VisitForStackValue(callee);
2747 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); 2735 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
2748 __ push(r2); // Reserved receiver slot. 2736 __ push(r5); // Reserved receiver slot.
2749 2737
2750 // Push the arguments. 2738 // Push the arguments.
2751 for (int i = 0; i < arg_count; i++) { 2739 for (int i = 0; i < arg_count; i++) {
2752 VisitForStackValue(args->at(i)); 2740 VisitForStackValue(args->at(i));
2753 } 2741 }
2754 2742
2755 // Push a copy of the function (found below the arguments) and 2743 // Push a copy of the function (found below the arguments) and
2756 // resolve eval. 2744 // resolve eval.
2757 __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize)); 2745 __ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
2758 __ push(r1); 2746 __ push(r4);
2759 EmitResolvePossiblyDirectEval(arg_count); 2747 EmitResolvePossiblyDirectEval(arg_count);
2760 2748
2761 // The runtime call returns a pair of values in r0 (function) and 2749 // The runtime call returns a pair of values in r3 (function) and
2762 // r1 (receiver). Touch up the stack with the right values. 2750 // r4 (receiver). Touch up the stack with the right values.
2763 __ str(r0, MemOperand(sp, (arg_count + 1) * kPointerSize)); 2751 __ StoreP(r3, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
2764 __ str(r1, MemOperand(sp, arg_count * kPointerSize)); 2752 __ StoreP(r4, MemOperand(sp, arg_count * kPointerSize), r0);
2765 } 2753 }
2766 2754
2767 // Record source position for debugger. 2755 // Record source position for debugger.
2768 SetSourcePosition(expr->position()); 2756 SetSourcePosition(expr->position());
2769 CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS); 2757 CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
2770 __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize)); 2758 __ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
2771 __ CallStub(&stub); 2759 __ CallStub(&stub);
2772 RecordJSReturnSite(expr); 2760 RecordJSReturnSite(expr);
2773 // Restore context register. 2761 // Restore context register.
2774 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 2762 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2775 context()->DropAndPlug(1, r0); 2763 context()->DropAndPlug(1, r3);
2776 } else if (call_type == Call::GLOBAL_CALL) { 2764 } else if (call_type == Call::GLOBAL_CALL) {
2777 EmitCallWithLoadIC(expr); 2765 EmitCallWithLoadIC(expr);
2778 2766
2779 } else if (call_type == Call::LOOKUP_SLOT_CALL) { 2767 } else if (call_type == Call::LOOKUP_SLOT_CALL) {
2780 // Call to a lookup slot (dynamically introduced variable). 2768 // Call to a lookup slot (dynamically introduced variable).
2781 VariableProxy* proxy = callee->AsVariableProxy(); 2769 VariableProxy* proxy = callee->AsVariableProxy();
2782 Label slow, done; 2770 Label slow, done;
2783 2771
2784 { PreservePositionScope scope(masm()->positions_recorder()); 2772 {
2773 PreservePositionScope scope(masm()->positions_recorder());
2785 // Generate code for loading from variables potentially shadowed 2774 // Generate code for loading from variables potentially shadowed
2786 // by eval-introduced variables. 2775 // by eval-introduced variables.
2787 EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done); 2776 EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done);
2788 } 2777 }
2789 2778
2790 __ bind(&slow); 2779 __ bind(&slow);
2791 // Call the runtime to find the function to call (returned in r0) 2780 // Call the runtime to find the function to call (returned in r3)
2792 // and the object holding it (returned in edx). 2781 // and the object holding it (returned in edx).
2793 DCHECK(!context_register().is(r2)); 2782 DCHECK(!context_register().is(r5));
2794 __ mov(r2, Operand(proxy->name())); 2783 __ mov(r5, Operand(proxy->name()));
2795 __ Push(context_register(), r2); 2784 __ Push(context_register(), r5);
2796 __ CallRuntime(Runtime::kLoadLookupSlot, 2); 2785 __ CallRuntime(Runtime::kLoadLookupSlot, 2);
2797 __ Push(r0, r1); // Function, receiver. 2786 __ Push(r3, r4); // Function, receiver.
2798 2787
2799 // If fast case code has been generated, emit code to push the 2788 // If fast case code has been generated, emit code to push the
2800 // function and receiver and have the slow path jump around this 2789 // function and receiver and have the slow path jump around this
2801 // code. 2790 // code.
2802 if (done.is_linked()) { 2791 if (done.is_linked()) {
2803 Label call; 2792 Label call;
2804 __ b(&call); 2793 __ b(&call);
2805 __ bind(&done); 2794 __ bind(&done);
2806 // Push function. 2795 // Push function.
2807 __ push(r0); 2796 __ push(r3);
2808 // The receiver is implicitly the global receiver. Indicate this 2797 // The receiver is implicitly the global receiver. Indicate this
2809 // by passing the hole to the call function stub. 2798 // by passing the hole to the call function stub.
2810 __ LoadRoot(r1, Heap::kUndefinedValueRootIndex); 2799 __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
2811 __ push(r1); 2800 __ push(r4);
2812 __ bind(&call); 2801 __ bind(&call);
2813 } 2802 }
2814 2803
2815 // The receiver is either the global receiver or an object found 2804 // The receiver is either the global receiver or an object found
2816 // by LoadContextSlot. 2805 // by LoadContextSlot.
2817 EmitCall(expr); 2806 EmitCall(expr);
2818 } else if (call_type == Call::PROPERTY_CALL) { 2807 } else if (call_type == Call::PROPERTY_CALL) {
2819 Property* property = callee->AsProperty(); 2808 Property* property = callee->AsProperty();
2820 { PreservePositionScope scope(masm()->positions_recorder()); 2809 {
2810 PreservePositionScope scope(masm()->positions_recorder());
2821 VisitForStackValue(property->obj()); 2811 VisitForStackValue(property->obj());
2822 } 2812 }
2823 if (property->key()->IsPropertyName()) { 2813 if (property->key()->IsPropertyName()) {
2824 EmitCallWithLoadIC(expr); 2814 EmitCallWithLoadIC(expr);
2825 } else { 2815 } else {
2826 EmitKeyedCallWithLoadIC(expr, property->key()); 2816 EmitKeyedCallWithLoadIC(expr, property->key());
2827 } 2817 }
2828 } else { 2818 } else {
2829 DCHECK(call_type == Call::OTHER_CALL); 2819 DCHECK(call_type == Call::OTHER_CALL);
2830 // Call to an arbitrary expression not handled specially above. 2820 // Call to an arbitrary expression not handled specially above.
2831 { PreservePositionScope scope(masm()->positions_recorder()); 2821 {
2822 PreservePositionScope scope(masm()->positions_recorder());
2832 VisitForStackValue(callee); 2823 VisitForStackValue(callee);
2833 } 2824 }
2834 __ LoadRoot(r1, Heap::kUndefinedValueRootIndex); 2825 __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
2835 __ push(r1); 2826 __ push(r4);
2836 // Emit function call. 2827 // Emit function call.
2837 EmitCall(expr); 2828 EmitCall(expr);
2838 } 2829 }
2839 2830
2840 #ifdef DEBUG 2831 #ifdef DEBUG
2841 // RecordJSReturnSite should have been called. 2832 // RecordJSReturnSite should have been called.
2842 DCHECK(expr->return_is_recorded_); 2833 DCHECK(expr->return_is_recorded_);
2843 #endif 2834 #endif
2844 } 2835 }
2845 2836
(...skipping 13 matching lines...) Expand all
2859 ZoneList<Expression*>* args = expr->arguments(); 2850 ZoneList<Expression*>* args = expr->arguments();
2860 int arg_count = args->length(); 2851 int arg_count = args->length();
2861 for (int i = 0; i < arg_count; i++) { 2852 for (int i = 0; i < arg_count; i++) {
2862 VisitForStackValue(args->at(i)); 2853 VisitForStackValue(args->at(i));
2863 } 2854 }
2864 2855
2865 // Call the construct call builtin that handles allocation and 2856 // Call the construct call builtin that handles allocation and
2866 // constructor invocation. 2857 // constructor invocation.
2867 SetSourcePosition(expr->position()); 2858 SetSourcePosition(expr->position());
2868 2859
2869 // Load function and argument count into r1 and r0. 2860 // Load function and argument count into r4 and r3.
2870 __ mov(r0, Operand(arg_count)); 2861 __ mov(r3, Operand(arg_count));
2871 __ ldr(r1, MemOperand(sp, arg_count * kPointerSize)); 2862 __ LoadP(r4, MemOperand(sp, arg_count * kPointerSize), r0);
2872 2863
2873 // Record call targets in unoptimized code. 2864 // Record call targets in unoptimized code.
2874 if (FLAG_pretenuring_call_new) { 2865 if (FLAG_pretenuring_call_new) {
2875 EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot()); 2866 EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot());
2876 DCHECK(expr->AllocationSiteFeedbackSlot() == 2867 DCHECK(expr->AllocationSiteFeedbackSlot() ==
2877 expr->CallNewFeedbackSlot() + 1); 2868 expr->CallNewFeedbackSlot() + 1);
2878 } 2869 }
2879 2870
2880 __ Move(r2, FeedbackVector()); 2871 __ Move(r5, FeedbackVector());
2881 __ mov(r3, Operand(Smi::FromInt(expr->CallNewFeedbackSlot()))); 2872 __ LoadSmiLiteral(r6, Smi::FromInt(expr->CallNewFeedbackSlot()));
2882 2873
2883 CallConstructStub stub(isolate(), RECORD_CONSTRUCTOR_TARGET); 2874 CallConstructStub stub(isolate(), RECORD_CONSTRUCTOR_TARGET);
2884 __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL); 2875 __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
2885 PrepareForBailoutForId(expr->ReturnId(), TOS_REG); 2876 PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
2886 context()->Plug(r0); 2877 context()->Plug(r3);
2887 } 2878 }
2888 2879
2889 2880
2890 void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) { 2881 void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
2891 ZoneList<Expression*>* args = expr->arguments(); 2882 ZoneList<Expression*>* args = expr->arguments();
2892 DCHECK(args->length() == 1); 2883 DCHECK(args->length() == 1);
2893 2884
2894 VisitForAccumulatorValue(args->at(0)); 2885 VisitForAccumulatorValue(args->at(0));
2895 2886
2896 Label materialize_true, materialize_false; 2887 Label materialize_true, materialize_false;
2897 Label* if_true = NULL; 2888 Label* if_true = NULL;
2898 Label* if_false = NULL; 2889 Label* if_false = NULL;
2899 Label* fall_through = NULL; 2890 Label* fall_through = NULL;
2900 context()->PrepareTest(&materialize_true, &materialize_false, 2891 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2901 &if_true, &if_false, &fall_through); 2892 &if_false, &fall_through);
2902 2893
2903 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 2894 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2904 __ SmiTst(r0); 2895 __ TestIfSmi(r3, r0);
2905 Split(eq, if_true, if_false, fall_through); 2896 Split(eq, if_true, if_false, fall_through, cr0);
2906 2897
2907 context()->Plug(if_true, if_false); 2898 context()->Plug(if_true, if_false);
2908 } 2899 }
2909 2900
2910 2901
2911 void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) { 2902 void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
2912 ZoneList<Expression*>* args = expr->arguments(); 2903 ZoneList<Expression*>* args = expr->arguments();
2913 DCHECK(args->length() == 1); 2904 DCHECK(args->length() == 1);
2914 2905
2915 VisitForAccumulatorValue(args->at(0)); 2906 VisitForAccumulatorValue(args->at(0));
2916 2907
2917 Label materialize_true, materialize_false; 2908 Label materialize_true, materialize_false;
2918 Label* if_true = NULL; 2909 Label* if_true = NULL;
2919 Label* if_false = NULL; 2910 Label* if_false = NULL;
2920 Label* fall_through = NULL; 2911 Label* fall_through = NULL;
2921 context()->PrepareTest(&materialize_true, &materialize_false, 2912 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2922 &if_true, &if_false, &fall_through); 2913 &if_false, &fall_through);
2923 2914
2924 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 2915 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2925 __ NonNegativeSmiTst(r0); 2916 __ TestIfPositiveSmi(r3, r0);
2926 Split(eq, if_true, if_false, fall_through); 2917 Split(eq, if_true, if_false, fall_through, cr0);
2927 2918
2928 context()->Plug(if_true, if_false); 2919 context()->Plug(if_true, if_false);
2929 } 2920 }
2930 2921
2931 2922
2932 void FullCodeGenerator::EmitIsObject(CallRuntime* expr) { 2923 void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
2933 ZoneList<Expression*>* args = expr->arguments(); 2924 ZoneList<Expression*>* args = expr->arguments();
2934 DCHECK(args->length() == 1); 2925 DCHECK(args->length() == 1);
2935 2926
2936 VisitForAccumulatorValue(args->at(0)); 2927 VisitForAccumulatorValue(args->at(0));
2937 2928
2938 Label materialize_true, materialize_false; 2929 Label materialize_true, materialize_false;
2939 Label* if_true = NULL; 2930 Label* if_true = NULL;
2940 Label* if_false = NULL; 2931 Label* if_false = NULL;
2941 Label* fall_through = NULL; 2932 Label* fall_through = NULL;
2942 context()->PrepareTest(&materialize_true, &materialize_false, 2933 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2943 &if_true, &if_false, &fall_through); 2934 &if_false, &fall_through);
2944 2935
2945 __ JumpIfSmi(r0, if_false); 2936 __ JumpIfSmi(r3, if_false);
2946 __ LoadRoot(ip, Heap::kNullValueRootIndex); 2937 __ LoadRoot(ip, Heap::kNullValueRootIndex);
2947 __ cmp(r0, ip); 2938 __ cmp(r3, ip);
2948 __ b(eq, if_true); 2939 __ beq(if_true);
2949 __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); 2940 __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
2950 // Undetectable objects behave like undefined when tested with typeof. 2941 // Undetectable objects behave like undefined when tested with typeof.
2951 __ ldrb(r1, FieldMemOperand(r2, Map::kBitFieldOffset)); 2942 __ lbz(r4, FieldMemOperand(r5, Map::kBitFieldOffset));
2952 __ tst(r1, Operand(1 << Map::kIsUndetectable)); 2943 __ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
2953 __ b(ne, if_false); 2944 __ bne(if_false, cr0);
2954 __ ldrb(r1, FieldMemOperand(r2, Map::kInstanceTypeOffset)); 2945 __ lbz(r4, FieldMemOperand(r5, Map::kInstanceTypeOffset));
2955 __ cmp(r1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); 2946 __ cmpi(r4, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2956 __ b(lt, if_false); 2947 __ blt(if_false);
2957 __ cmp(r1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); 2948 __ cmpi(r4, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
2958 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 2949 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2959 Split(le, if_true, if_false, fall_through); 2950 Split(le, if_true, if_false, fall_through);
2960 2951
2961 context()->Plug(if_true, if_false); 2952 context()->Plug(if_true, if_false);
2962 } 2953 }
2963 2954
2964 2955
2965 void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) { 2956 void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
2966 ZoneList<Expression*>* args = expr->arguments(); 2957 ZoneList<Expression*>* args = expr->arguments();
2967 DCHECK(args->length() == 1); 2958 DCHECK(args->length() == 1);
2968 2959
2969 VisitForAccumulatorValue(args->at(0)); 2960 VisitForAccumulatorValue(args->at(0));
2970 2961
2971 Label materialize_true, materialize_false; 2962 Label materialize_true, materialize_false;
2972 Label* if_true = NULL; 2963 Label* if_true = NULL;
2973 Label* if_false = NULL; 2964 Label* if_false = NULL;
2974 Label* fall_through = NULL; 2965 Label* fall_through = NULL;
2975 context()->PrepareTest(&materialize_true, &materialize_false, 2966 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2976 &if_true, &if_false, &fall_through); 2967 &if_false, &fall_through);
2977 2968
2978 __ JumpIfSmi(r0, if_false); 2969 __ JumpIfSmi(r3, if_false);
2979 __ CompareObjectType(r0, r1, r1, FIRST_SPEC_OBJECT_TYPE); 2970 __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE);
2980 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 2971 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2981 Split(ge, if_true, if_false, fall_through); 2972 Split(ge, if_true, if_false, fall_through);
2982 2973
2983 context()->Plug(if_true, if_false); 2974 context()->Plug(if_true, if_false);
2984 } 2975 }
2985 2976
2986 2977
2987 void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) { 2978 void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
2988 ZoneList<Expression*>* args = expr->arguments(); 2979 ZoneList<Expression*>* args = expr->arguments();
2989 DCHECK(args->length() == 1); 2980 DCHECK(args->length() == 1);
2990 2981
2991 VisitForAccumulatorValue(args->at(0)); 2982 VisitForAccumulatorValue(args->at(0));
2992 2983
2993 Label materialize_true, materialize_false; 2984 Label materialize_true, materialize_false;
2994 Label* if_true = NULL; 2985 Label* if_true = NULL;
2995 Label* if_false = NULL; 2986 Label* if_false = NULL;
2996 Label* fall_through = NULL; 2987 Label* fall_through = NULL;
2997 context()->PrepareTest(&materialize_true, &materialize_false, 2988 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
2998 &if_true, &if_false, &fall_through); 2989 &if_false, &fall_through);
2999 2990
3000 __ JumpIfSmi(r0, if_false); 2991 __ JumpIfSmi(r3, if_false);
3001 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); 2992 __ LoadP(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
3002 __ ldrb(r1, FieldMemOperand(r1, Map::kBitFieldOffset)); 2993 __ lbz(r4, FieldMemOperand(r4, Map::kBitFieldOffset));
3003 __ tst(r1, Operand(1 << Map::kIsUndetectable)); 2994 __ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
3004 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 2995 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3005 Split(ne, if_true, if_false, fall_through); 2996 Split(ne, if_true, if_false, fall_through, cr0);
3006 2997
3007 context()->Plug(if_true, if_false); 2998 context()->Plug(if_true, if_false);
3008 } 2999 }
3009 3000
3010 3001
3011 void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf( 3002 void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
3012 CallRuntime* expr) { 3003 CallRuntime* expr) {
3013 ZoneList<Expression*>* args = expr->arguments(); 3004 ZoneList<Expression*>* args = expr->arguments();
3014 DCHECK(args->length() == 1); 3005 DCHECK(args->length() == 1);
3015 3006
3016 VisitForAccumulatorValue(args->at(0)); 3007 VisitForAccumulatorValue(args->at(0));
3017 3008
3018 Label materialize_true, materialize_false, skip_lookup; 3009 Label materialize_true, materialize_false, skip_lookup;
3019 Label* if_true = NULL; 3010 Label* if_true = NULL;
3020 Label* if_false = NULL; 3011 Label* if_false = NULL;
3021 Label* fall_through = NULL; 3012 Label* fall_through = NULL;
3022 context()->PrepareTest(&materialize_true, &materialize_false, 3013 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3023 &if_true, &if_false, &fall_through); 3014 &if_false, &fall_through);
3024 3015
3025 __ AssertNotSmi(r0); 3016 __ AssertNotSmi(r3);
3026 3017
3027 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); 3018 __ LoadP(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
3028 __ ldrb(ip, FieldMemOperand(r1, Map::kBitField2Offset)); 3019 __ lbz(ip, FieldMemOperand(r4, Map::kBitField2Offset));
3029 __ tst(ip, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); 3020 __ andi(r0, ip, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
3030 __ b(ne, &skip_lookup); 3021 __ bne(&skip_lookup, cr0);
3031 3022
3032 // Check for fast case object. Generate false result for slow case object. 3023 // Check for fast case object. Generate false result for slow case object.
3033 __ ldr(r2, FieldMemOperand(r0, JSObject::kPropertiesOffset)); 3024 __ LoadP(r5, FieldMemOperand(r3, JSObject::kPropertiesOffset));
3034 __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset)); 3025 __ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset));
3035 __ LoadRoot(ip, Heap::kHashTableMapRootIndex); 3026 __ LoadRoot(ip, Heap::kHashTableMapRootIndex);
3036 __ cmp(r2, ip); 3027 __ cmp(r5, ip);
3037 __ b(eq, if_false); 3028 __ beq(if_false);
3038 3029
3039 // Look for valueOf name in the descriptor array, and indicate false if 3030 // Look for valueOf name in the descriptor array, and indicate false if
3040 // found. Since we omit an enumeration index check, if it is added via a 3031 // found. Since we omit an enumeration index check, if it is added via a
3041 // transition that shares its descriptor array, this is a false positive. 3032 // transition that shares its descriptor array, this is a false positive.
3042 Label entry, loop, done; 3033 Label entry, loop, done;
3043 3034
3044 // Skip loop if no descriptors are valid. 3035 // Skip loop if no descriptors are valid.
3045 __ NumberOfOwnDescriptors(r3, r1); 3036 __ NumberOfOwnDescriptors(r6, r4);
3046 __ cmp(r3, Operand::Zero()); 3037 __ cmpi(r6, Operand::Zero());
3047 __ b(eq, &done); 3038 __ beq(&done);
3048 3039
3049 __ LoadInstanceDescriptors(r1, r4); 3040 __ LoadInstanceDescriptors(r4, r7);
3050 // r4: descriptor array. 3041 // r7: descriptor array.
3051 // r3: valid entries in the descriptor array. 3042 // r6: valid entries in the descriptor array.
3052 __ mov(ip, Operand(DescriptorArray::kDescriptorSize)); 3043 __ mov(ip, Operand(DescriptorArray::kDescriptorSize));
3053 __ mul(r3, r3, ip); 3044 __ Mul(r6, r6, ip);
3054 // Calculate location of the first key name. 3045 // Calculate location of the first key name.
3055 __ add(r4, r4, Operand(DescriptorArray::kFirstOffset - kHeapObjectTag)); 3046 __ addi(r7, r7, Operand(DescriptorArray::kFirstOffset - kHeapObjectTag));
3056 // Calculate the end of the descriptor array. 3047 // Calculate the end of the descriptor array.
3057 __ mov(r2, r4); 3048 __ mr(r5, r7);
3058 __ add(r2, r2, Operand(r3, LSL, kPointerSizeLog2)); 3049 __ ShiftLeftImm(ip, r6, Operand(kPointerSizeLog2));
3050 __ add(r5, r5, ip);
3059 3051
3060 // Loop through all the keys in the descriptor array. If one of these is the 3052 // Loop through all the keys in the descriptor array. If one of these is the
3061 // string "valueOf" the result is false. 3053 // string "valueOf" the result is false.
3062 // The use of ip to store the valueOf string assumes that it is not otherwise 3054 // The use of ip to store the valueOf string assumes that it is not otherwise
3063 // used in the loop below. 3055 // used in the loop below.
3064 __ mov(ip, Operand(isolate()->factory()->value_of_string())); 3056 __ mov(ip, Operand(isolate()->factory()->value_of_string()));
3065 __ jmp(&entry); 3057 __ b(&entry);
3066 __ bind(&loop); 3058 __ bind(&loop);
3067 __ ldr(r3, MemOperand(r4, 0)); 3059 __ LoadP(r6, MemOperand(r7, 0));
3068 __ cmp(r3, ip); 3060 __ cmp(r6, ip);
3069 __ b(eq, if_false); 3061 __ beq(if_false);
3070 __ add(r4, r4, Operand(DescriptorArray::kDescriptorSize * kPointerSize)); 3062 __ addi(r7, r7, Operand(DescriptorArray::kDescriptorSize * kPointerSize));
3071 __ bind(&entry); 3063 __ bind(&entry);
3072 __ cmp(r4, Operand(r2)); 3064 __ cmp(r7, r5);
3073 __ b(ne, &loop); 3065 __ bne(&loop);
3074 3066
3075 __ bind(&done); 3067 __ bind(&done);
3076 3068
3077 // Set the bit in the map to indicate that there is no local valueOf field. 3069 // Set the bit in the map to indicate that there is no local valueOf field.
3078 __ ldrb(r2, FieldMemOperand(r1, Map::kBitField2Offset)); 3070 __ lbz(r5, FieldMemOperand(r4, Map::kBitField2Offset));
3079 __ orr(r2, r2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); 3071 __ ori(r5, r5, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
3080 __ strb(r2, FieldMemOperand(r1, Map::kBitField2Offset)); 3072 __ stb(r5, FieldMemOperand(r4, Map::kBitField2Offset));
3081 3073
3082 __ bind(&skip_lookup); 3074 __ bind(&skip_lookup);
3083 3075
3084 // If a valueOf property is not found on the object check that its 3076 // If a valueOf property is not found on the object check that its
3085 // prototype is the un-modified String prototype. If not result is false. 3077 // prototype is the un-modified String prototype. If not result is false.
3086 __ ldr(r2, FieldMemOperand(r1, Map::kPrototypeOffset)); 3078 __ LoadP(r5, FieldMemOperand(r4, Map::kPrototypeOffset));
3087 __ JumpIfSmi(r2, if_false); 3079 __ JumpIfSmi(r5, if_false);
3088 __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset)); 3080 __ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset));
3089 __ ldr(r3, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX)); 3081 __ LoadP(r6, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
3090 __ ldr(r3, FieldMemOperand(r3, GlobalObject::kNativeContextOffset)); 3082 __ LoadP(r6, FieldMemOperand(r6, GlobalObject::kNativeContextOffset));
3091 __ ldr(r3, ContextOperand(r3, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX)); 3083 __ LoadP(r6,
3092 __ cmp(r2, r3); 3084 ContextOperand(r6, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
3085 __ cmp(r5, r6);
3093 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 3086 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3094 Split(eq, if_true, if_false, fall_through); 3087 Split(eq, if_true, if_false, fall_through);
3095 3088
3096 context()->Plug(if_true, if_false); 3089 context()->Plug(if_true, if_false);
3097 } 3090 }
3098 3091
3099 3092
3100 void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) { 3093 void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
3101 ZoneList<Expression*>* args = expr->arguments(); 3094 ZoneList<Expression*>* args = expr->arguments();
3102 DCHECK(args->length() == 1); 3095 DCHECK(args->length() == 1);
3103 3096
3104 VisitForAccumulatorValue(args->at(0)); 3097 VisitForAccumulatorValue(args->at(0));
3105 3098
3106 Label materialize_true, materialize_false; 3099 Label materialize_true, materialize_false;
3107 Label* if_true = NULL; 3100 Label* if_true = NULL;
3108 Label* if_false = NULL; 3101 Label* if_false = NULL;
3109 Label* fall_through = NULL; 3102 Label* fall_through = NULL;
3110 context()->PrepareTest(&materialize_true, &materialize_false, 3103 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3111 &if_true, &if_false, &fall_through); 3104 &if_false, &fall_through);
3112 3105
3113 __ JumpIfSmi(r0, if_false); 3106 __ JumpIfSmi(r3, if_false);
3114 __ CompareObjectType(r0, r1, r2, JS_FUNCTION_TYPE); 3107 __ CompareObjectType(r3, r4, r5, JS_FUNCTION_TYPE);
3115 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 3108 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3116 Split(eq, if_true, if_false, fall_through); 3109 Split(eq, if_true, if_false, fall_through);
3117 3110
3118 context()->Plug(if_true, if_false); 3111 context()->Plug(if_true, if_false);
3119 } 3112 }
3120 3113
3121 3114
3122 void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) { 3115 void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
3123 ZoneList<Expression*>* args = expr->arguments(); 3116 ZoneList<Expression*>* args = expr->arguments();
3124 DCHECK(args->length() == 1); 3117 DCHECK(args->length() == 1);
3125 3118
3126 VisitForAccumulatorValue(args->at(0)); 3119 VisitForAccumulatorValue(args->at(0));
3127 3120
3128 Label materialize_true, materialize_false; 3121 Label materialize_true, materialize_false;
3129 Label* if_true = NULL; 3122 Label* if_true = NULL;
3130 Label* if_false = NULL; 3123 Label* if_false = NULL;
3131 Label* fall_through = NULL; 3124 Label* fall_through = NULL;
3132 context()->PrepareTest(&materialize_true, &materialize_false, 3125 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3133 &if_true, &if_false, &fall_through); 3126 &if_false, &fall_through);
3134 3127
3135 __ CheckMap(r0, r1, Heap::kHeapNumberMapRootIndex, if_false, DO_SMI_CHECK); 3128 __ CheckMap(r3, r4, Heap::kHeapNumberMapRootIndex, if_false, DO_SMI_CHECK);
3136 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); 3129 #if V8_TARGET_ARCH_PPC64
3137 __ ldr(r1, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); 3130 __ LoadP(r4, FieldMemOperand(r3, HeapNumber::kValueOffset));
3138 __ cmp(r2, Operand(0x80000000)); 3131 __ li(r5, Operand(1));
3139 __ cmp(r1, Operand(0x00000000), eq); 3132 __ rotrdi(r5, r5, 1); // r5 = 0x80000000_00000000
3133 __ cmp(r4, r5);
3134 #else
3135 __ lwz(r5, FieldMemOperand(r3, HeapNumber::kExponentOffset));
3136 __ lwz(r4, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
3137 Label skip;
3138 __ lis(r0, Operand(SIGN_EXT_IMM16(0x8000)));
3139 __ cmp(r5, r0);
3140 __ bne(&skip);
3141 __ cmpi(r4, Operand::Zero());
3142 __ bind(&skip);
3143 #endif
3140 3144
3141 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 3145 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3142 Split(eq, if_true, if_false, fall_through); 3146 Split(eq, if_true, if_false, fall_through);
3143 3147
3144 context()->Plug(if_true, if_false); 3148 context()->Plug(if_true, if_false);
3145 } 3149 }
3146 3150
3147 3151
3148 void FullCodeGenerator::EmitIsArray(CallRuntime* expr) { 3152 void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
3149 ZoneList<Expression*>* args = expr->arguments(); 3153 ZoneList<Expression*>* args = expr->arguments();
3150 DCHECK(args->length() == 1); 3154 DCHECK(args->length() == 1);
3151 3155
3152 VisitForAccumulatorValue(args->at(0)); 3156 VisitForAccumulatorValue(args->at(0));
3153 3157
3154 Label materialize_true, materialize_false; 3158 Label materialize_true, materialize_false;
3155 Label* if_true = NULL; 3159 Label* if_true = NULL;
3156 Label* if_false = NULL; 3160 Label* if_false = NULL;
3157 Label* fall_through = NULL; 3161 Label* fall_through = NULL;
3158 context()->PrepareTest(&materialize_true, &materialize_false, 3162 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3159 &if_true, &if_false, &fall_through); 3163 &if_false, &fall_through);
3160 3164
3161 __ JumpIfSmi(r0, if_false); 3165 __ JumpIfSmi(r3, if_false);
3162 __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE); 3166 __ CompareObjectType(r3, r4, r4, JS_ARRAY_TYPE);
3163 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 3167 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3164 Split(eq, if_true, if_false, fall_through); 3168 Split(eq, if_true, if_false, fall_through);
3165 3169
3166 context()->Plug(if_true, if_false); 3170 context()->Plug(if_true, if_false);
3167 } 3171 }
3168 3172
3169 3173
3170 void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) { 3174 void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
3171 ZoneList<Expression*>* args = expr->arguments(); 3175 ZoneList<Expression*>* args = expr->arguments();
3172 DCHECK(args->length() == 1); 3176 DCHECK(args->length() == 1);
3173 3177
3174 VisitForAccumulatorValue(args->at(0)); 3178 VisitForAccumulatorValue(args->at(0));
3175 3179
3176 Label materialize_true, materialize_false; 3180 Label materialize_true, materialize_false;
3177 Label* if_true = NULL; 3181 Label* if_true = NULL;
3178 Label* if_false = NULL; 3182 Label* if_false = NULL;
3179 Label* fall_through = NULL; 3183 Label* fall_through = NULL;
3180 context()->PrepareTest(&materialize_true, &materialize_false, 3184 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3181 &if_true, &if_false, &fall_through); 3185 &if_false, &fall_through);
3182 3186
3183 __ JumpIfSmi(r0, if_false); 3187 __ JumpIfSmi(r3, if_false);
3184 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE); 3188 __ CompareObjectType(r3, r4, r4, JS_REGEXP_TYPE);
3185 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 3189 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3186 Split(eq, if_true, if_false, fall_through); 3190 Split(eq, if_true, if_false, fall_through);
3187 3191
3188 context()->Plug(if_true, if_false); 3192 context()->Plug(if_true, if_false);
3189 } 3193 }
3190 3194
3191 3195
3192
3193 void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) { 3196 void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
3194 DCHECK(expr->arguments()->length() == 0); 3197 DCHECK(expr->arguments()->length() == 0);
3195 3198
3196 Label materialize_true, materialize_false; 3199 Label materialize_true, materialize_false;
3197 Label* if_true = NULL; 3200 Label* if_true = NULL;
3198 Label* if_false = NULL; 3201 Label* if_false = NULL;
3199 Label* fall_through = NULL; 3202 Label* fall_through = NULL;
3200 context()->PrepareTest(&materialize_true, &materialize_false, 3203 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3201 &if_true, &if_false, &fall_through); 3204 &if_false, &fall_through);
3202 3205
3203 // Get the frame pointer for the calling frame. 3206 // Get the frame pointer for the calling frame.
3204 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 3207 __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3205 3208
3206 // Skip the arguments adaptor frame if it exists. 3209 // Skip the arguments adaptor frame if it exists.
3207 __ ldr(r1, MemOperand(r2, StandardFrameConstants::kContextOffset)); 3210 Label check_frame_marker;
3208 __ cmp(r1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); 3211 __ LoadP(r4, MemOperand(r5, StandardFrameConstants::kContextOffset));
3209 __ ldr(r2, MemOperand(r2, StandardFrameConstants::kCallerFPOffset), eq); 3212 __ CmpSmiLiteral(r4, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
3213 __ bne(&check_frame_marker);
3214 __ LoadP(r5, MemOperand(r5, StandardFrameConstants::kCallerFPOffset));
3210 3215
3211 // Check the marker in the calling frame. 3216 // Check the marker in the calling frame.
3212 __ ldr(r1, MemOperand(r2, StandardFrameConstants::kMarkerOffset)); 3217 __ bind(&check_frame_marker);
3213 __ cmp(r1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); 3218 __ LoadP(r4, MemOperand(r5, StandardFrameConstants::kMarkerOffset));
3219 STATIC_ASSERT(StackFrame::CONSTRUCT < 0x4000);
3220 __ CmpSmiLiteral(r4, Smi::FromInt(StackFrame::CONSTRUCT), r0);
3214 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 3221 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3215 Split(eq, if_true, if_false, fall_through); 3222 Split(eq, if_true, if_false, fall_through);
3216 3223
3217 context()->Plug(if_true, if_false); 3224 context()->Plug(if_true, if_false);
3218 } 3225 }
3219 3226
3220 3227
3221 void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) { 3228 void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
3222 ZoneList<Expression*>* args = expr->arguments(); 3229 ZoneList<Expression*>* args = expr->arguments();
3223 DCHECK(args->length() == 2); 3230 DCHECK(args->length() == 2);
3224 3231
3225 // Load the two objects into registers and perform the comparison. 3232 // Load the two objects into registers and perform the comparison.
3226 VisitForStackValue(args->at(0)); 3233 VisitForStackValue(args->at(0));
3227 VisitForAccumulatorValue(args->at(1)); 3234 VisitForAccumulatorValue(args->at(1));
3228 3235
3229 Label materialize_true, materialize_false; 3236 Label materialize_true, materialize_false;
3230 Label* if_true = NULL; 3237 Label* if_true = NULL;
3231 Label* if_false = NULL; 3238 Label* if_false = NULL;
3232 Label* fall_through = NULL; 3239 Label* fall_through = NULL;
3233 context()->PrepareTest(&materialize_true, &materialize_false, 3240 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3234 &if_true, &if_false, &fall_through); 3241 &if_false, &fall_through);
3235 3242
3236 __ pop(r1); 3243 __ pop(r4);
3237 __ cmp(r0, r1); 3244 __ cmp(r3, r4);
3238 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 3245 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3239 Split(eq, if_true, if_false, fall_through); 3246 Split(eq, if_true, if_false, fall_through);
3240 3247
3241 context()->Plug(if_true, if_false); 3248 context()->Plug(if_true, if_false);
3242 } 3249 }
3243 3250
3244 3251
3245 void FullCodeGenerator::EmitArguments(CallRuntime* expr) { 3252 void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
3246 ZoneList<Expression*>* args = expr->arguments(); 3253 ZoneList<Expression*>* args = expr->arguments();
3247 DCHECK(args->length() == 1); 3254 DCHECK(args->length() == 1);
3248 3255
3249 // ArgumentsAccessStub expects the key in edx and the formal 3256 // ArgumentsAccessStub expects the key in edx and the formal
3250 // parameter count in r0. 3257 // parameter count in r3.
3251 VisitForAccumulatorValue(args->at(0)); 3258 VisitForAccumulatorValue(args->at(0));
3252 __ mov(r1, r0); 3259 __ mr(r4, r3);
3253 __ mov(r0, Operand(Smi::FromInt(info_->scope()->num_parameters()))); 3260 __ LoadSmiLiteral(r3, Smi::FromInt(info_->scope()->num_parameters()));
3254 ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT); 3261 ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT);
3255 __ CallStub(&stub); 3262 __ CallStub(&stub);
3256 context()->Plug(r0); 3263 context()->Plug(r3);
3257 } 3264 }
3258 3265
3259 3266
3260 void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) { 3267 void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
3261 DCHECK(expr->arguments()->length() == 0); 3268 DCHECK(expr->arguments()->length() == 0);
3262 3269 Label exit;
3263 // Get the number of formal parameters. 3270 // Get the number of formal parameters.
3264 __ mov(r0, Operand(Smi::FromInt(info_->scope()->num_parameters()))); 3271 __ LoadSmiLiteral(r3, Smi::FromInt(info_->scope()->num_parameters()));
3265 3272
3266 // Check if the calling frame is an arguments adaptor frame. 3273 // Check if the calling frame is an arguments adaptor frame.
3267 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 3274 __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3268 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); 3275 __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset));
3269 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); 3276 __ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
3277 __ bne(&exit);
3270 3278
3271 // Arguments adaptor case: Read the arguments length from the 3279 // Arguments adaptor case: Read the arguments length from the
3272 // adaptor frame. 3280 // adaptor frame.
3273 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset), eq); 3281 __ LoadP(r3, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset));
3274 3282
3275 context()->Plug(r0); 3283 __ bind(&exit);
3284 context()->Plug(r3);
3276 } 3285 }
3277 3286
3278 3287
3279 void FullCodeGenerator::EmitClassOf(CallRuntime* expr) { 3288 void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
3280 ZoneList<Expression*>* args = expr->arguments(); 3289 ZoneList<Expression*>* args = expr->arguments();
3281 DCHECK(args->length() == 1); 3290 DCHECK(args->length() == 1);
3282 Label done, null, function, non_function_constructor; 3291 Label done, null, function, non_function_constructor;
3283 3292
3284 VisitForAccumulatorValue(args->at(0)); 3293 VisitForAccumulatorValue(args->at(0));
3285 3294
3286 // If the object is a smi, we return null. 3295 // If the object is a smi, we return null.
3287 __ JumpIfSmi(r0, &null); 3296 __ JumpIfSmi(r3, &null);
3288 3297
3289 // Check that the object is a JS object but take special care of JS 3298 // Check that the object is a JS object but take special care of JS
3290 // functions to make sure they have 'Function' as their class. 3299 // functions to make sure they have 'Function' as their class.
3291 // Assume that there are only two callable types, and one of them is at 3300 // Assume that there are only two callable types, and one of them is at
3292 // either end of the type range for JS object types. Saves extra comparisons. 3301 // either end of the type range for JS object types. Saves extra comparisons.
3293 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); 3302 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
3294 __ CompareObjectType(r0, r0, r1, FIRST_SPEC_OBJECT_TYPE); 3303 __ CompareObjectType(r3, r3, r4, FIRST_SPEC_OBJECT_TYPE);
3295 // Map is now in r0. 3304 // Map is now in r3.
3296 __ b(lt, &null); 3305 __ blt(&null);
3297 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == 3306 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
3298 FIRST_SPEC_OBJECT_TYPE + 1); 3307 FIRST_SPEC_OBJECT_TYPE + 1);
3299 __ b(eq, &function); 3308 __ beq(&function);
3300 3309
3301 __ cmp(r1, Operand(LAST_SPEC_OBJECT_TYPE)); 3310 __ cmpi(r4, Operand(LAST_SPEC_OBJECT_TYPE));
3302 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == 3311 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_SPEC_OBJECT_TYPE - 1);
3303 LAST_SPEC_OBJECT_TYPE - 1); 3312 __ beq(&function);
3304 __ b(eq, &function);
3305 // Assume that there is no larger type. 3313 // Assume that there is no larger type.
3306 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1); 3314 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
3307 3315
3308 // Check if the constructor in the map is a JS function. 3316 // Check if the constructor in the map is a JS function.
3309 __ ldr(r0, FieldMemOperand(r0, Map::kConstructorOffset)); 3317 __ LoadP(r3, FieldMemOperand(r3, Map::kConstructorOffset));
3310 __ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE); 3318 __ CompareObjectType(r3, r4, r4, JS_FUNCTION_TYPE);
3311 __ b(ne, &non_function_constructor); 3319 __ bne(&non_function_constructor);
3312 3320
3313 // r0 now contains the constructor function. Grab the 3321 // r3 now contains the constructor function. Grab the
3314 // instance class name from there. 3322 // instance class name from there.
3315 __ ldr(r0, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset)); 3323 __ LoadP(r3, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
3316 __ ldr(r0, FieldMemOperand(r0, SharedFunctionInfo::kInstanceClassNameOffset)); 3324 __ LoadP(r3,
3325 FieldMemOperand(r3, SharedFunctionInfo::kInstanceClassNameOffset));
3317 __ b(&done); 3326 __ b(&done);
3318 3327
3319 // Functions have class 'Function'. 3328 // Functions have class 'Function'.
3320 __ bind(&function); 3329 __ bind(&function);
3321 __ LoadRoot(r0, Heap::kFunction_stringRootIndex); 3330 __ LoadRoot(r3, Heap::kFunction_stringRootIndex);
3322 __ jmp(&done); 3331 __ b(&done);
3323 3332
3324 // Objects with a non-function constructor have class 'Object'. 3333 // Objects with a non-function constructor have class 'Object'.
3325 __ bind(&non_function_constructor); 3334 __ bind(&non_function_constructor);
3326 __ LoadRoot(r0, Heap::kObject_stringRootIndex); 3335 __ LoadRoot(r3, Heap::kObject_stringRootIndex);
3327 __ jmp(&done); 3336 __ b(&done);
3328 3337
3329 // Non-JS objects have class null. 3338 // Non-JS objects have class null.
3330 __ bind(&null); 3339 __ bind(&null);
3331 __ LoadRoot(r0, Heap::kNullValueRootIndex); 3340 __ LoadRoot(r3, Heap::kNullValueRootIndex);
3332 3341
3333 // All done. 3342 // All done.
3334 __ bind(&done); 3343 __ bind(&done);
3335 3344
3336 context()->Plug(r0); 3345 context()->Plug(r3);
3337 } 3346 }
3338 3347
3339 3348
3340 void FullCodeGenerator::EmitSubString(CallRuntime* expr) { 3349 void FullCodeGenerator::EmitSubString(CallRuntime* expr) {
3341 // Load the arguments on the stack and call the stub. 3350 // Load the arguments on the stack and call the stub.
3342 SubStringStub stub(isolate()); 3351 SubStringStub stub(isolate());
3343 ZoneList<Expression*>* args = expr->arguments(); 3352 ZoneList<Expression*>* args = expr->arguments();
3344 DCHECK(args->length() == 3); 3353 DCHECK(args->length() == 3);
3345 VisitForStackValue(args->at(0)); 3354 VisitForStackValue(args->at(0));
3346 VisitForStackValue(args->at(1)); 3355 VisitForStackValue(args->at(1));
3347 VisitForStackValue(args->at(2)); 3356 VisitForStackValue(args->at(2));
3348 __ CallStub(&stub); 3357 __ CallStub(&stub);
3349 context()->Plug(r0); 3358 context()->Plug(r3);
3350 } 3359 }
3351 3360
3352 3361
3353 void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) { 3362 void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) {
3354 // Load the arguments on the stack and call the stub. 3363 // Load the arguments on the stack and call the stub.
3355 RegExpExecStub stub(isolate()); 3364 RegExpExecStub stub(isolate());
3356 ZoneList<Expression*>* args = expr->arguments(); 3365 ZoneList<Expression*>* args = expr->arguments();
3357 DCHECK(args->length() == 4); 3366 DCHECK(args->length() == 4);
3358 VisitForStackValue(args->at(0)); 3367 VisitForStackValue(args->at(0));
3359 VisitForStackValue(args->at(1)); 3368 VisitForStackValue(args->at(1));
3360 VisitForStackValue(args->at(2)); 3369 VisitForStackValue(args->at(2));
3361 VisitForStackValue(args->at(3)); 3370 VisitForStackValue(args->at(3));
3362 __ CallStub(&stub); 3371 __ CallStub(&stub);
3363 context()->Plug(r0); 3372 context()->Plug(r3);
3364 } 3373 }
3365 3374
3366 3375
3367 void FullCodeGenerator::EmitValueOf(CallRuntime* expr) { 3376 void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
3368 ZoneList<Expression*>* args = expr->arguments(); 3377 ZoneList<Expression*>* args = expr->arguments();
3369 DCHECK(args->length() == 1); 3378 DCHECK(args->length() == 1);
3370 VisitForAccumulatorValue(args->at(0)); // Load the object. 3379 VisitForAccumulatorValue(args->at(0)); // Load the object.
3371 3380
3372 Label done; 3381 Label done;
3373 // If the object is a smi return the object. 3382 // If the object is a smi return the object.
3374 __ JumpIfSmi(r0, &done); 3383 __ JumpIfSmi(r3, &done);
3375 // If the object is not a value type, return the object. 3384 // If the object is not a value type, return the object.
3376 __ CompareObjectType(r0, r1, r1, JS_VALUE_TYPE); 3385 __ CompareObjectType(r3, r4, r4, JS_VALUE_TYPE);
3377 __ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset), eq); 3386 __ bne(&done);
3387 __ LoadP(r3, FieldMemOperand(r3, JSValue::kValueOffset));
3378 3388
3379 __ bind(&done); 3389 __ bind(&done);
3380 context()->Plug(r0); 3390 context()->Plug(r3);
3381 } 3391 }
3382 3392
3383 3393
3384 void FullCodeGenerator::EmitDateField(CallRuntime* expr) { 3394 void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
3385 ZoneList<Expression*>* args = expr->arguments(); 3395 ZoneList<Expression*>* args = expr->arguments();
3386 DCHECK(args->length() == 2); 3396 DCHECK(args->length() == 2);
3387 DCHECK_NE(NULL, args->at(1)->AsLiteral()); 3397 DCHECK_NE(NULL, args->at(1)->AsLiteral());
3388 Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value())); 3398 Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value()));
3389 3399
3390 VisitForAccumulatorValue(args->at(0)); // Load the object. 3400 VisitForAccumulatorValue(args->at(0)); // Load the object.
3391 3401
3392 Label runtime, done, not_date_object; 3402 Label runtime, done, not_date_object;
3393 Register object = r0; 3403 Register object = r3;
3394 Register result = r0; 3404 Register result = r3;
3395 Register scratch0 = r9; 3405 Register scratch0 = r11;
3396 Register scratch1 = r1; 3406 Register scratch1 = r4;
3397 3407
3398 __ JumpIfSmi(object, &not_date_object); 3408 __ JumpIfSmi(object, &not_date_object);
3399 __ CompareObjectType(object, scratch1, scratch1, JS_DATE_TYPE); 3409 __ CompareObjectType(object, scratch1, scratch1, JS_DATE_TYPE);
3400 __ b(ne, &not_date_object); 3410 __ bne(&not_date_object);
3401 3411
3402 if (index->value() == 0) { 3412 if (index->value() == 0) {
3403 __ ldr(result, FieldMemOperand(object, JSDate::kValueOffset)); 3413 __ LoadP(result, FieldMemOperand(object, JSDate::kValueOffset));
3404 __ jmp(&done); 3414 __ b(&done);
3405 } else { 3415 } else {
3406 if (index->value() < JSDate::kFirstUncachedField) { 3416 if (index->value() < JSDate::kFirstUncachedField) {
3407 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); 3417 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
3408 __ mov(scratch1, Operand(stamp)); 3418 __ mov(scratch1, Operand(stamp));
3409 __ ldr(scratch1, MemOperand(scratch1)); 3419 __ LoadP(scratch1, MemOperand(scratch1));
3410 __ ldr(scratch0, FieldMemOperand(object, JSDate::kCacheStampOffset)); 3420 __ LoadP(scratch0, FieldMemOperand(object, JSDate::kCacheStampOffset));
3411 __ cmp(scratch1, scratch0); 3421 __ cmp(scratch1, scratch0);
3412 __ b(ne, &runtime); 3422 __ bne(&runtime);
3413 __ ldr(result, FieldMemOperand(object, JSDate::kValueOffset + 3423 __ LoadP(result,
3414 kPointerSize * index->value())); 3424 FieldMemOperand(object, JSDate::kValueOffset +
3415 __ jmp(&done); 3425 kPointerSize * index->value()),
3426 scratch0);
3427 __ b(&done);
3416 } 3428 }
3417 __ bind(&runtime); 3429 __ bind(&runtime);
3418 __ PrepareCallCFunction(2, scratch1); 3430 __ PrepareCallCFunction(2, scratch1);
3419 __ mov(r1, Operand(index)); 3431 __ LoadSmiLiteral(r4, index);
3420 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); 3432 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
3421 __ jmp(&done); 3433 __ b(&done);
3422 } 3434 }
3423 3435
3424 __ bind(&not_date_object); 3436 __ bind(&not_date_object);
3425 __ CallRuntime(Runtime::kThrowNotDateError, 0); 3437 __ CallRuntime(Runtime::kThrowNotDateError, 0);
3426 __ bind(&done); 3438 __ bind(&done);
3427 context()->Plug(r0); 3439 context()->Plug(r3);
3428 } 3440 }
3429 3441
3430 3442
3431 void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) { 3443 void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
3432 ZoneList<Expression*>* args = expr->arguments(); 3444 ZoneList<Expression*>* args = expr->arguments();
3433 DCHECK_EQ(3, args->length()); 3445 DCHECK_EQ(3, args->length());
3434 3446
3435 Register string = r0; 3447 Register string = r3;
3436 Register index = r1; 3448 Register index = r4;
3437 Register value = r2; 3449 Register value = r5;
3438 3450
3439 VisitForStackValue(args->at(1)); // index 3451 VisitForStackValue(args->at(1)); // index
3440 VisitForStackValue(args->at(2)); // value 3452 VisitForStackValue(args->at(2)); // value
3441 VisitForAccumulatorValue(args->at(0)); // string 3453 VisitForAccumulatorValue(args->at(0)); // string
3442 __ Pop(index, value); 3454 __ Pop(index, value);
3443 3455
3444 if (FLAG_debug_code) { 3456 if (FLAG_debug_code) {
3445 __ SmiTst(value); 3457 __ TestIfSmi(value, r0);
3446 __ Check(eq, kNonSmiValue); 3458 __ Check(eq, kNonSmiValue, cr0);
3447 __ SmiTst(index); 3459 __ TestIfSmi(index, r0);
3448 __ Check(eq, kNonSmiIndex); 3460 __ Check(eq, kNonSmiIndex, cr0);
3449 __ SmiUntag(index, index); 3461 __ SmiUntag(index, index);
3450 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; 3462 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
3451 __ EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type); 3463 __ EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type);
3452 __ SmiTag(index, index); 3464 __ SmiTag(index, index);
3453 } 3465 }
3454 3466
3455 __ SmiUntag(value, value); 3467 __ SmiUntag(value);
3456 __ add(ip, 3468 __ addi(ip, string, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3457 string, 3469 __ SmiToByteArrayOffset(r0, index);
3458 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); 3470 __ stbx(value, MemOperand(ip, r0));
3459 __ strb(value, MemOperand(ip, index, LSR, kSmiTagSize));
3460 context()->Plug(string); 3471 context()->Plug(string);
3461 } 3472 }
3462 3473
3463 3474
3464 void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) { 3475 void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
3465 ZoneList<Expression*>* args = expr->arguments(); 3476 ZoneList<Expression*>* args = expr->arguments();
3466 DCHECK_EQ(3, args->length()); 3477 DCHECK_EQ(3, args->length());
3467 3478
3468 Register string = r0; 3479 Register string = r3;
3469 Register index = r1; 3480 Register index = r4;
3470 Register value = r2; 3481 Register value = r5;
3471 3482
3472 VisitForStackValue(args->at(1)); // index 3483 VisitForStackValue(args->at(1)); // index
3473 VisitForStackValue(args->at(2)); // value 3484 VisitForStackValue(args->at(2)); // value
3474 VisitForAccumulatorValue(args->at(0)); // string 3485 VisitForAccumulatorValue(args->at(0)); // string
3475 __ Pop(index, value); 3486 __ Pop(index, value);
3476 3487
3477 if (FLAG_debug_code) { 3488 if (FLAG_debug_code) {
3478 __ SmiTst(value); 3489 __ TestIfSmi(value, r0);
3479 __ Check(eq, kNonSmiValue); 3490 __ Check(eq, kNonSmiValue, cr0);
3480 __ SmiTst(index); 3491 __ TestIfSmi(index, r0);
3481 __ Check(eq, kNonSmiIndex); 3492 __ Check(eq, kNonSmiIndex, cr0);
3482 __ SmiUntag(index, index); 3493 __ SmiUntag(index, index);
3483 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; 3494 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
3484 __ EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type); 3495 __ EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type);
3485 __ SmiTag(index, index); 3496 __ SmiTag(index, index);
3486 } 3497 }
3487 3498
3488 __ SmiUntag(value, value); 3499 __ SmiUntag(value);
3489 __ add(ip, 3500 __ addi(ip, string, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3490 string, 3501 __ SmiToShortArrayOffset(r0, index);
3491 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 3502 __ sthx(value, MemOperand(ip, r0));
3492 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
3493 __ strh(value, MemOperand(ip, index));
3494 context()->Plug(string); 3503 context()->Plug(string);
3495 } 3504 }
3496 3505
3497 3506
3498
3499 void FullCodeGenerator::EmitMathPow(CallRuntime* expr) { 3507 void FullCodeGenerator::EmitMathPow(CallRuntime* expr) {
3500 // Load the arguments on the stack and call the runtime function. 3508 // Load the arguments on the stack and call the runtime function.
3501 ZoneList<Expression*>* args = expr->arguments(); 3509 ZoneList<Expression*>* args = expr->arguments();
3502 DCHECK(args->length() == 2); 3510 DCHECK(args->length() == 2);
3503 VisitForStackValue(args->at(0)); 3511 VisitForStackValue(args->at(0));
3504 VisitForStackValue(args->at(1)); 3512 VisitForStackValue(args->at(1));
3505 MathPowStub stub(isolate(), MathPowStub::ON_STACK); 3513 MathPowStub stub(isolate(), MathPowStub::ON_STACK);
3506 __ CallStub(&stub); 3514 __ CallStub(&stub);
3507 context()->Plug(r0); 3515 context()->Plug(r3);
3508 } 3516 }
3509 3517
3510 3518
3511 void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) { 3519 void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
3512 ZoneList<Expression*>* args = expr->arguments(); 3520 ZoneList<Expression*>* args = expr->arguments();
3513 DCHECK(args->length() == 2); 3521 DCHECK(args->length() == 2);
3514 VisitForStackValue(args->at(0)); // Load the object. 3522 VisitForStackValue(args->at(0)); // Load the object.
3515 VisitForAccumulatorValue(args->at(1)); // Load the value. 3523 VisitForAccumulatorValue(args->at(1)); // Load the value.
3516 __ pop(r1); // r0 = value. r1 = object. 3524 __ pop(r4); // r3 = value. r4 = object.
3517 3525
3518 Label done; 3526 Label done;
3519 // If the object is a smi, return the value. 3527 // If the object is a smi, return the value.
3520 __ JumpIfSmi(r1, &done); 3528 __ JumpIfSmi(r4, &done);
3521 3529
3522 // If the object is not a value type, return the value. 3530 // If the object is not a value type, return the value.
3523 __ CompareObjectType(r1, r2, r2, JS_VALUE_TYPE); 3531 __ CompareObjectType(r4, r5, r5, JS_VALUE_TYPE);
3524 __ b(ne, &done); 3532 __ bne(&done);
3525 3533
3526 // Store the value. 3534 // Store the value.
3527 __ str(r0, FieldMemOperand(r1, JSValue::kValueOffset)); 3535 __ StoreP(r3, FieldMemOperand(r4, JSValue::kValueOffset), r0);
3528 // Update the write barrier. Save the value as it will be 3536 // Update the write barrier. Save the value as it will be
3529 // overwritten by the write barrier code and is needed afterward. 3537 // overwritten by the write barrier code and is needed afterward.
3530 __ mov(r2, r0); 3538 __ mr(r5, r3);
3531 __ RecordWriteField( 3539 __ RecordWriteField(r4, JSValue::kValueOffset, r5, r6, kLRHasBeenSaved,
3532 r1, JSValue::kValueOffset, r2, r3, kLRHasBeenSaved, kDontSaveFPRegs); 3540 kDontSaveFPRegs);
3533 3541
3534 __ bind(&done); 3542 __ bind(&done);
3535 context()->Plug(r0); 3543 context()->Plug(r3);
3536 } 3544 }
3537 3545
3538 3546
3539 void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) { 3547 void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
3540 ZoneList<Expression*>* args = expr->arguments(); 3548 ZoneList<Expression*>* args = expr->arguments();
3541 DCHECK_EQ(args->length(), 1); 3549 DCHECK_EQ(args->length(), 1);
3542 // Load the argument into r0 and call the stub. 3550 // Load the argument into r3 and call the stub.
3543 VisitForAccumulatorValue(args->at(0)); 3551 VisitForAccumulatorValue(args->at(0));
3544 3552
3545 NumberToStringStub stub(isolate()); 3553 NumberToStringStub stub(isolate());
3546 __ CallStub(&stub); 3554 __ CallStub(&stub);
3547 context()->Plug(r0); 3555 context()->Plug(r3);
3548 } 3556 }
3549 3557
3550 3558
3551 void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) { 3559 void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
3552 ZoneList<Expression*>* args = expr->arguments(); 3560 ZoneList<Expression*>* args = expr->arguments();
3553 DCHECK(args->length() == 1); 3561 DCHECK(args->length() == 1);
3554 VisitForAccumulatorValue(args->at(0)); 3562 VisitForAccumulatorValue(args->at(0));
3555 3563
3556 Label done; 3564 Label done;
3557 StringCharFromCodeGenerator generator(r0, r1); 3565 StringCharFromCodeGenerator generator(r3, r4);
3558 generator.GenerateFast(masm_); 3566 generator.GenerateFast(masm_);
3559 __ jmp(&done); 3567 __ b(&done);
3560 3568
3561 NopRuntimeCallHelper call_helper; 3569 NopRuntimeCallHelper call_helper;
3562 generator.GenerateSlow(masm_, call_helper); 3570 generator.GenerateSlow(masm_, call_helper);
3563 3571
3564 __ bind(&done); 3572 __ bind(&done);
3565 context()->Plug(r1); 3573 context()->Plug(r4);
3566 } 3574 }
3567 3575
3568 3576
3569 void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) { 3577 void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
3570 ZoneList<Expression*>* args = expr->arguments(); 3578 ZoneList<Expression*>* args = expr->arguments();
3571 DCHECK(args->length() == 2); 3579 DCHECK(args->length() == 2);
3572 VisitForStackValue(args->at(0)); 3580 VisitForStackValue(args->at(0));
3573 VisitForAccumulatorValue(args->at(1)); 3581 VisitForAccumulatorValue(args->at(1));
3574 3582
3575 Register object = r1; 3583 Register object = r4;
3576 Register index = r0; 3584 Register index = r3;
3577 Register result = r3; 3585 Register result = r6;
3578 3586
3579 __ pop(object); 3587 __ pop(object);
3580 3588
3581 Label need_conversion; 3589 Label need_conversion;
3582 Label index_out_of_range; 3590 Label index_out_of_range;
3583 Label done; 3591 Label done;
3584 StringCharCodeAtGenerator generator(object, 3592 StringCharCodeAtGenerator generator(object, index, result, &need_conversion,
3585 index, 3593 &need_conversion, &index_out_of_range,
3586 result,
3587 &need_conversion,
3588 &need_conversion,
3589 &index_out_of_range,
3590 STRING_INDEX_IS_NUMBER); 3594 STRING_INDEX_IS_NUMBER);
3591 generator.GenerateFast(masm_); 3595 generator.GenerateFast(masm_);
3592 __ jmp(&done); 3596 __ b(&done);
3593 3597
3594 __ bind(&index_out_of_range); 3598 __ bind(&index_out_of_range);
3595 // When the index is out of range, the spec requires us to return 3599 // When the index is out of range, the spec requires us to return
3596 // NaN. 3600 // NaN.
3597 __ LoadRoot(result, Heap::kNanValueRootIndex); 3601 __ LoadRoot(result, Heap::kNanValueRootIndex);
3598 __ jmp(&done); 3602 __ b(&done);
3599 3603
3600 __ bind(&need_conversion); 3604 __ bind(&need_conversion);
3601 // Load the undefined value into the result register, which will 3605 // Load the undefined value into the result register, which will
3602 // trigger conversion. 3606 // trigger conversion.
3603 __ LoadRoot(result, Heap::kUndefinedValueRootIndex); 3607 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3604 __ jmp(&done); 3608 __ b(&done);
3605 3609
3606 NopRuntimeCallHelper call_helper; 3610 NopRuntimeCallHelper call_helper;
3607 generator.GenerateSlow(masm_, call_helper); 3611 generator.GenerateSlow(masm_, call_helper);
3608 3612
3609 __ bind(&done); 3613 __ bind(&done);
3610 context()->Plug(result); 3614 context()->Plug(result);
3611 } 3615 }
3612 3616
3613 3617
3614 void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) { 3618 void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
3615 ZoneList<Expression*>* args = expr->arguments(); 3619 ZoneList<Expression*>* args = expr->arguments();
3616 DCHECK(args->length() == 2); 3620 DCHECK(args->length() == 2);
3617 VisitForStackValue(args->at(0)); 3621 VisitForStackValue(args->at(0));
3618 VisitForAccumulatorValue(args->at(1)); 3622 VisitForAccumulatorValue(args->at(1));
3619 3623
3620 Register object = r1; 3624 Register object = r4;
3621 Register index = r0; 3625 Register index = r3;
3622 Register scratch = r3; 3626 Register scratch = r6;
3623 Register result = r0; 3627 Register result = r3;
3624 3628
3625 __ pop(object); 3629 __ pop(object);
3626 3630
3627 Label need_conversion; 3631 Label need_conversion;
3628 Label index_out_of_range; 3632 Label index_out_of_range;
3629 Label done; 3633 Label done;
3630 StringCharAtGenerator generator(object, 3634 StringCharAtGenerator generator(object, index, scratch, result,
3631 index, 3635 &need_conversion, &need_conversion,
3632 scratch, 3636 &index_out_of_range, STRING_INDEX_IS_NUMBER);
3633 result,
3634 &need_conversion,
3635 &need_conversion,
3636 &index_out_of_range,
3637 STRING_INDEX_IS_NUMBER);
3638 generator.GenerateFast(masm_); 3637 generator.GenerateFast(masm_);
3639 __ jmp(&done); 3638 __ b(&done);
3640 3639
3641 __ bind(&index_out_of_range); 3640 __ bind(&index_out_of_range);
3642 // When the index is out of range, the spec requires us to return 3641 // When the index is out of range, the spec requires us to return
3643 // the empty string. 3642 // the empty string.
3644 __ LoadRoot(result, Heap::kempty_stringRootIndex); 3643 __ LoadRoot(result, Heap::kempty_stringRootIndex);
3645 __ jmp(&done); 3644 __ b(&done);
3646 3645
3647 __ bind(&need_conversion); 3646 __ bind(&need_conversion);
3648 // Move smi zero into the result register, which will trigger 3647 // Move smi zero into the result register, which will trigger
3649 // conversion. 3648 // conversion.
3650 __ mov(result, Operand(Smi::FromInt(0))); 3649 __ LoadSmiLiteral(result, Smi::FromInt(0));
3651 __ jmp(&done); 3650 __ b(&done);
3652 3651
3653 NopRuntimeCallHelper call_helper; 3652 NopRuntimeCallHelper call_helper;
3654 generator.GenerateSlow(masm_, call_helper); 3653 generator.GenerateSlow(masm_, call_helper);
3655 3654
3656 __ bind(&done); 3655 __ bind(&done);
3657 context()->Plug(result); 3656 context()->Plug(result);
3658 } 3657 }
3659 3658
3660 3659
3661 void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) { 3660 void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
3662 ZoneList<Expression*>* args = expr->arguments(); 3661 ZoneList<Expression*>* args = expr->arguments();
3663 DCHECK_EQ(2, args->length()); 3662 DCHECK_EQ(2, args->length());
3664 VisitForStackValue(args->at(0)); 3663 VisitForStackValue(args->at(0));
3665 VisitForAccumulatorValue(args->at(1)); 3664 VisitForAccumulatorValue(args->at(1));
3666 3665
3667 __ pop(r1); 3666 __ pop(r4);
3668 StringAddStub stub(isolate(), STRING_ADD_CHECK_BOTH, NOT_TENURED); 3667 StringAddStub stub(isolate(), STRING_ADD_CHECK_BOTH, NOT_TENURED);
3669 __ CallStub(&stub); 3668 __ CallStub(&stub);
3670 context()->Plug(r0); 3669 context()->Plug(r3);
3671 } 3670 }
3672 3671
3673 3672
3674 void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) { 3673 void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) {
3675 ZoneList<Expression*>* args = expr->arguments(); 3674 ZoneList<Expression*>* args = expr->arguments();
3676 DCHECK_EQ(2, args->length()); 3675 DCHECK_EQ(2, args->length());
3677 VisitForStackValue(args->at(0)); 3676 VisitForStackValue(args->at(0));
3678 VisitForStackValue(args->at(1)); 3677 VisitForStackValue(args->at(1));
3679 3678
3680 StringCompareStub stub(isolate()); 3679 StringCompareStub stub(isolate());
3681 __ CallStub(&stub); 3680 __ CallStub(&stub);
3682 context()->Plug(r0); 3681 context()->Plug(r3);
3683 } 3682 }
3684 3683
3685 3684
3686 void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) { 3685 void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
3687 ZoneList<Expression*>* args = expr->arguments(); 3686 ZoneList<Expression*>* args = expr->arguments();
3688 DCHECK(args->length() >= 2); 3687 DCHECK(args->length() >= 2);
3689 3688
3690 int arg_count = args->length() - 2; // 2 ~ receiver and function. 3689 int arg_count = args->length() - 2; // 2 ~ receiver and function.
3691 for (int i = 0; i < arg_count + 1; i++) { 3690 for (int i = 0; i < arg_count + 1; i++) {
3692 VisitForStackValue(args->at(i)); 3691 VisitForStackValue(args->at(i));
3693 } 3692 }
3694 VisitForAccumulatorValue(args->last()); // Function. 3693 VisitForAccumulatorValue(args->last()); // Function.
3695 3694
3696 Label runtime, done; 3695 Label runtime, done;
3697 // Check for non-function argument (including proxy). 3696 // Check for non-function argument (including proxy).
3698 __ JumpIfSmi(r0, &runtime); 3697 __ JumpIfSmi(r3, &runtime);
3699 __ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE); 3698 __ CompareObjectType(r3, r4, r4, JS_FUNCTION_TYPE);
3700 __ b(ne, &runtime); 3699 __ bne(&runtime);
3701 3700
3702 // InvokeFunction requires the function in r1. Move it in there. 3701 // InvokeFunction requires the function in r4. Move it in there.
3703 __ mov(r1, result_register()); 3702 __ mr(r4, result_register());
3704 ParameterCount count(arg_count); 3703 ParameterCount count(arg_count);
3705 __ InvokeFunction(r1, count, CALL_FUNCTION, NullCallWrapper()); 3704 __ InvokeFunction(r4, count, CALL_FUNCTION, NullCallWrapper());
3706 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 3705 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3707 __ jmp(&done); 3706 __ b(&done);
3708 3707
3709 __ bind(&runtime); 3708 __ bind(&runtime);
3710 __ push(r0); 3709 __ push(r3);
3711 __ CallRuntime(Runtime::kCall, args->length()); 3710 __ CallRuntime(Runtime::kCall, args->length());
3712 __ bind(&done); 3711 __ bind(&done);
3713 3712
3714 context()->Plug(r0); 3713 context()->Plug(r3);
3715 } 3714 }
3716 3715
3717 3716
3718 void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) { 3717 void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
3719 RegExpConstructResultStub stub(isolate()); 3718 RegExpConstructResultStub stub(isolate());
3720 ZoneList<Expression*>* args = expr->arguments(); 3719 ZoneList<Expression*>* args = expr->arguments();
3721 DCHECK(args->length() == 3); 3720 DCHECK(args->length() == 3);
3722 VisitForStackValue(args->at(0)); 3721 VisitForStackValue(args->at(0));
3723 VisitForStackValue(args->at(1)); 3722 VisitForStackValue(args->at(1));
3724 VisitForAccumulatorValue(args->at(2)); 3723 VisitForAccumulatorValue(args->at(2));
3725 __ pop(r1); 3724 __ Pop(r5, r4);
3726 __ pop(r2);
3727 __ CallStub(&stub); 3725 __ CallStub(&stub);
3728 context()->Plug(r0); 3726 context()->Plug(r3);
3729 } 3727 }
3730 3728
3731 3729
3732 void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) { 3730 void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
3733 ZoneList<Expression*>* args = expr->arguments(); 3731 ZoneList<Expression*>* args = expr->arguments();
3734 DCHECK_EQ(2, args->length()); 3732 DCHECK_EQ(2, args->length());
3735 DCHECK_NE(NULL, args->at(0)->AsLiteral()); 3733 DCHECK_NE(NULL, args->at(0)->AsLiteral());
3736 int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value(); 3734 int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value();
3737 3735
3738 Handle<FixedArray> jsfunction_result_caches( 3736 Handle<FixedArray> jsfunction_result_caches(
3739 isolate()->native_context()->jsfunction_result_caches()); 3737 isolate()->native_context()->jsfunction_result_caches());
3740 if (jsfunction_result_caches->length() <= cache_id) { 3738 if (jsfunction_result_caches->length() <= cache_id) {
3741 __ Abort(kAttemptToUseUndefinedCache); 3739 __ Abort(kAttemptToUseUndefinedCache);
3742 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); 3740 __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
3743 context()->Plug(r0); 3741 context()->Plug(r3);
3744 return; 3742 return;
3745 } 3743 }
3746 3744
3747 VisitForAccumulatorValue(args->at(1)); 3745 VisitForAccumulatorValue(args->at(1));
3748 3746
3749 Register key = r0; 3747 Register key = r3;
3750 Register cache = r1; 3748 Register cache = r4;
3751 __ ldr(cache, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX)); 3749 __ LoadP(cache, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
3752 __ ldr(cache, FieldMemOperand(cache, GlobalObject::kNativeContextOffset)); 3750 __ LoadP(cache, FieldMemOperand(cache, GlobalObject::kNativeContextOffset));
3753 __ ldr(cache, ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX)); 3751 __ LoadP(cache,
3754 __ ldr(cache, 3752 ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
3755 FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id))); 3753 __ LoadP(cache,
3756 3754 FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id)), r0);
3757 3755
3758 Label done, not_found; 3756 Label done, not_found;
3759 __ ldr(r2, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset)); 3757 __ LoadP(r5, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset));
3760 // r2 now holds finger offset as a smi. 3758 // r5 now holds finger offset as a smi.
3761 __ add(r3, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 3759 __ addi(r6, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3762 // r3 now points to the start of fixed array elements. 3760 // r6 now points to the start of fixed array elements.
3763 __ ldr(r2, MemOperand::PointerAddressFromSmiKey(r3, r2, PreIndex)); 3761 __ SmiToPtrArrayOffset(r5, r5);
3764 // Note side effect of PreIndex: r3 now points to the key of the pair. 3762 __ LoadPUX(r5, MemOperand(r6, r5));
3765 __ cmp(key, r2); 3763 // r6 now points to the key of the pair.
3766 __ b(ne, &not_found); 3764 __ cmp(key, r5);
3765 __ bne(&not_found);
3767 3766
3768 __ ldr(r0, MemOperand(r3, kPointerSize)); 3767 __ LoadP(r3, MemOperand(r6, kPointerSize));
3769 __ b(&done); 3768 __ b(&done);
3770 3769
3771 __ bind(&not_found); 3770 __ bind(&not_found);
3772 // Call runtime to perform the lookup. 3771 // Call runtime to perform the lookup.
3773 __ Push(cache, key); 3772 __ Push(cache, key);
3774 __ CallRuntime(Runtime::kGetFromCache, 2); 3773 __ CallRuntime(Runtime::kGetFromCache, 2);
3775 3774
3776 __ bind(&done); 3775 __ bind(&done);
3777 context()->Plug(r0); 3776 context()->Plug(r3);
3778 } 3777 }
3779 3778
3780 3779
3781 void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) { 3780 void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
3782 ZoneList<Expression*>* args = expr->arguments(); 3781 ZoneList<Expression*>* args = expr->arguments();
3783 VisitForAccumulatorValue(args->at(0)); 3782 VisitForAccumulatorValue(args->at(0));
3784 3783
3785 Label materialize_true, materialize_false; 3784 Label materialize_true, materialize_false;
3786 Label* if_true = NULL; 3785 Label* if_true = NULL;
3787 Label* if_false = NULL; 3786 Label* if_false = NULL;
3788 Label* fall_through = NULL; 3787 Label* fall_through = NULL;
3789 context()->PrepareTest(&materialize_true, &materialize_false, 3788 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
3790 &if_true, &if_false, &fall_through); 3789 &if_false, &fall_through);
3791 3790
3792 __ ldr(r0, FieldMemOperand(r0, String::kHashFieldOffset)); 3791 __ lwz(r3, FieldMemOperand(r3, String::kHashFieldOffset));
3793 __ tst(r0, Operand(String::kContainsCachedArrayIndexMask)); 3792 // PPC - assume ip is free
3793 __ mov(ip, Operand(String::kContainsCachedArrayIndexMask));
3794 __ and_(r0, r3, ip);
3795 __ cmpi(r0, Operand::Zero());
3794 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 3796 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3795 Split(eq, if_true, if_false, fall_through); 3797 Split(eq, if_true, if_false, fall_through);
3796 3798
3797 context()->Plug(if_true, if_false); 3799 context()->Plug(if_true, if_false);
3798 } 3800 }
3799 3801
3800 3802
3801 void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) { 3803 void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
3802 ZoneList<Expression*>* args = expr->arguments(); 3804 ZoneList<Expression*>* args = expr->arguments();
3803 DCHECK(args->length() == 1); 3805 DCHECK(args->length() == 1);
3804 VisitForAccumulatorValue(args->at(0)); 3806 VisitForAccumulatorValue(args->at(0));
3805 3807
3806 __ AssertString(r0); 3808 __ AssertString(r3);
3807 3809
3808 __ ldr(r0, FieldMemOperand(r0, String::kHashFieldOffset)); 3810 __ lwz(r3, FieldMemOperand(r3, String::kHashFieldOffset));
3809 __ IndexFromHash(r0, r0); 3811 __ IndexFromHash(r3, r3);
3810 3812
3811 context()->Plug(r0); 3813 context()->Plug(r3);
3812 } 3814 }
3813 3815
3814 3816
3815 void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) { 3817 void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
3816 Label bailout, done, one_char_separator, long_separator, non_trivial_array, 3818 Label bailout, done, one_char_separator, long_separator, non_trivial_array,
3817 not_size_one_array, loop, empty_separator_loop, one_char_separator_loop, 3819 not_size_one_array, loop, empty_separator_loop, one_char_separator_loop,
3818 one_char_separator_loop_entry, long_separator_loop; 3820 one_char_separator_loop_entry, long_separator_loop;
3819 ZoneList<Expression*>* args = expr->arguments(); 3821 ZoneList<Expression*>* args = expr->arguments();
3820 DCHECK(args->length() == 2); 3822 DCHECK(args->length() == 2);
3821 VisitForStackValue(args->at(1)); 3823 VisitForStackValue(args->at(1));
3822 VisitForAccumulatorValue(args->at(0)); 3824 VisitForAccumulatorValue(args->at(0));
3823 3825
3824 // All aliases of the same register have disjoint lifetimes. 3826 // All aliases of the same register have disjoint lifetimes.
3825 Register array = r0; 3827 Register array = r3;
3826 Register elements = no_reg; // Will be r0. 3828 Register elements = no_reg; // Will be r3.
3827 Register result = no_reg; // Will be r0. 3829 Register result = no_reg; // Will be r3.
3828 Register separator = r1; 3830 Register separator = r4;
3829 Register array_length = r2; 3831 Register array_length = r5;
3830 Register result_pos = no_reg; // Will be r2 3832 Register result_pos = no_reg; // Will be r5
3831 Register string_length = r3; 3833 Register string_length = r6;
3832 Register string = r4; 3834 Register string = r7;
3833 Register element = r5; 3835 Register element = r8;
3834 Register elements_end = r6; 3836 Register elements_end = r9;
3835 Register scratch = r9; 3837 Register scratch1 = r10;
3838 Register scratch2 = r11;
3836 3839
3837 // Separator operand is on the stack. 3840 // Separator operand is on the stack.
3838 __ pop(separator); 3841 __ pop(separator);
3839 3842
3840 // Check that the array is a JSArray. 3843 // Check that the array is a JSArray.
3841 __ JumpIfSmi(array, &bailout); 3844 __ JumpIfSmi(array, &bailout);
3842 __ CompareObjectType(array, scratch, array_length, JS_ARRAY_TYPE); 3845 __ CompareObjectType(array, scratch1, scratch2, JS_ARRAY_TYPE);
3843 __ b(ne, &bailout); 3846 __ bne(&bailout);
3844 3847
3845 // Check that the array has fast elements. 3848 // Check that the array has fast elements.
3846 __ CheckFastElements(scratch, array_length, &bailout); 3849 __ CheckFastElements(scratch1, scratch2, &bailout);
3847 3850
3848 // If the array has length zero, return the empty string. 3851 // If the array has length zero, return the empty string.
3849 __ ldr(array_length, FieldMemOperand(array, JSArray::kLengthOffset)); 3852 __ LoadP(array_length, FieldMemOperand(array, JSArray::kLengthOffset));
3850 __ SmiUntag(array_length, SetCC); 3853 __ SmiUntag(array_length);
3851 __ b(ne, &non_trivial_array); 3854 __ cmpi(array_length, Operand::Zero());
3852 __ LoadRoot(r0, Heap::kempty_stringRootIndex); 3855 __ bne(&non_trivial_array);
3856 __ LoadRoot(r3, Heap::kempty_stringRootIndex);
3853 __ b(&done); 3857 __ b(&done);
3854 3858
3855 __ bind(&non_trivial_array); 3859 __ bind(&non_trivial_array);
3856 3860
3857 // Get the FixedArray containing array's elements. 3861 // Get the FixedArray containing array's elements.
3858 elements = array; 3862 elements = array;
3859 __ ldr(elements, FieldMemOperand(array, JSArray::kElementsOffset)); 3863 __ LoadP(elements, FieldMemOperand(array, JSArray::kElementsOffset));
3860 array = no_reg; // End of array's live range. 3864 array = no_reg; // End of array's live range.
3861 3865
3862 // Check that all array elements are sequential ASCII strings, and 3866 // Check that all array elements are sequential ASCII strings, and
3863 // accumulate the sum of their lengths, as a smi-encoded value. 3867 // accumulate the sum of their lengths, as a smi-encoded value.
3864 __ mov(string_length, Operand::Zero()); 3868 __ li(string_length, Operand::Zero());
3865 __ add(element, 3869 __ addi(element, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3866 elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 3870 __ ShiftLeftImm(elements_end, array_length, Operand(kPointerSizeLog2));
3867 __ add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2)); 3871 __ add(elements_end, element, elements_end);
3868 // Loop condition: while (element < elements_end). 3872 // Loop condition: while (element < elements_end).
3869 // Live values in registers: 3873 // Live values in registers:
3870 // elements: Fixed array of strings. 3874 // elements: Fixed array of strings.
3871 // array_length: Length of the fixed array of strings (not smi) 3875 // array_length: Length of the fixed array of strings (not smi)
3872 // separator: Separator string 3876 // separator: Separator string
3873 // string_length: Accumulated sum of string lengths (smi). 3877 // string_length: Accumulated sum of string lengths (smi).
3874 // element: Current array element. 3878 // element: Current array element.
3875 // elements_end: Array end. 3879 // elements_end: Array end.
3876 if (generate_debug_code_) { 3880 if (generate_debug_code_) {
3877 __ cmp(array_length, Operand::Zero()); 3881 __ cmpi(array_length, Operand::Zero());
3878 __ Assert(gt, kNoEmptyArraysHereInEmitFastAsciiArrayJoin); 3882 __ Assert(gt, kNoEmptyArraysHereInEmitFastAsciiArrayJoin);
3879 } 3883 }
3880 __ bind(&loop); 3884 __ bind(&loop);
3881 __ ldr(string, MemOperand(element, kPointerSize, PostIndex)); 3885 __ LoadP(string, MemOperand(element));
3886 __ addi(element, element, Operand(kPointerSize));
3882 __ JumpIfSmi(string, &bailout); 3887 __ JumpIfSmi(string, &bailout);
3883 __ ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset)); 3888 __ LoadP(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
3884 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 3889 __ lbz(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
3885 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &bailout); 3890 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
3886 __ ldr(scratch, FieldMemOperand(string, SeqOneByteString::kLengthOffset)); 3891 __ LoadP(scratch1, FieldMemOperand(string, SeqOneByteString::kLengthOffset));
3887 __ add(string_length, string_length, Operand(scratch), SetCC); 3892
3888 __ b(vs, &bailout); 3893 __ AddAndCheckForOverflow(string_length, string_length, scratch1, scratch2,
3894 r0);
3895 __ BranchOnOverflow(&bailout);
3896
3889 __ cmp(element, elements_end); 3897 __ cmp(element, elements_end);
3890 __ b(lt, &loop); 3898 __ blt(&loop);
3891 3899
3892 // If array_length is 1, return elements[0], a string. 3900 // If array_length is 1, return elements[0], a string.
3893 __ cmp(array_length, Operand(1)); 3901 __ cmpi(array_length, Operand(1));
3894 __ b(ne, &not_size_one_array); 3902 __ bne(&not_size_one_array);
3895 __ ldr(r0, FieldMemOperand(elements, FixedArray::kHeaderSize)); 3903 __ LoadP(r3, FieldMemOperand(elements, FixedArray::kHeaderSize));
3896 __ b(&done); 3904 __ b(&done);
3897 3905
3898 __ bind(&not_size_one_array); 3906 __ bind(&not_size_one_array);
3899 3907
3900 // Live values in registers: 3908 // Live values in registers:
3901 // separator: Separator string 3909 // separator: Separator string
3902 // array_length: Length of the array. 3910 // array_length: Length of the array.
3903 // string_length: Sum of string lengths (smi). 3911 // string_length: Sum of string lengths (smi).
3904 // elements: FixedArray of strings. 3912 // elements: FixedArray of strings.
3905 3913
3906 // Check that the separator is a flat ASCII string. 3914 // Check that the separator is a flat ASCII string.
3907 __ JumpIfSmi(separator, &bailout); 3915 __ JumpIfSmi(separator, &bailout);
3908 __ ldr(scratch, FieldMemOperand(separator, HeapObject::kMapOffset)); 3916 __ LoadP(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
3909 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 3917 __ lbz(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
3910 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &bailout); 3918 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
3911 3919
3912 // Add (separator length times array_length) - separator length to the 3920 // Add (separator length times array_length) - separator length to the
3913 // string_length to get the length of the result string. array_length is not 3921 // string_length to get the length of the result string.
3914 // smi but the other values are, so the result is a smi 3922 __ LoadP(scratch1,
3915 __ ldr(scratch, FieldMemOperand(separator, SeqOneByteString::kLengthOffset)); 3923 FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
3916 __ sub(string_length, string_length, Operand(scratch)); 3924 __ sub(string_length, string_length, scratch1);
3917 __ smull(scratch, ip, array_length, scratch); 3925 #if V8_TARGET_ARCH_PPC64
3926 __ SmiUntag(scratch1, scratch1);
3927 __ Mul(scratch2, array_length, scratch1);
3918 // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are 3928 // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
3919 // zero. 3929 // zero.
3920 __ cmp(ip, Operand::Zero()); 3930 __ ShiftRightImm(ip, scratch2, Operand(31), SetRC);
3921 __ b(ne, &bailout); 3931 __ bne(&bailout, cr0);
3922 __ tst(scratch, Operand(0x80000000)); 3932 __ SmiTag(scratch2, scratch2);
3923 __ b(ne, &bailout); 3933 #else
3924 __ add(string_length, string_length, Operand(scratch), SetCC); 3934 // array_length is not smi but the other values are, so the result is a smi
3925 __ b(vs, &bailout); 3935 __ mullw(scratch2, array_length, scratch1);
3936 __ mulhw(ip, array_length, scratch1);
3937 // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
3938 // zero.
3939 __ cmpi(ip, Operand::Zero());
3940 __ bne(&bailout);
3941 __ cmpwi(scratch2, Operand::Zero());
3942 __ blt(&bailout);
3943 #endif
3944
3945 __ AddAndCheckForOverflow(string_length, string_length, scratch2, scratch1,
3946 r0);
3947 __ BranchOnOverflow(&bailout);
3926 __ SmiUntag(string_length); 3948 __ SmiUntag(string_length);
3927 3949
3928 // Get first element in the array to free up the elements register to be used 3950 // Get first element in the array to free up the elements register to be used
3929 // for the result. 3951 // for the result.
3930 __ add(element, 3952 __ addi(element, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3931 elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3932 result = elements; // End of live range for elements. 3953 result = elements; // End of live range for elements.
3933 elements = no_reg; 3954 elements = no_reg;
3934 // Live values in registers: 3955 // Live values in registers:
3935 // element: First array element 3956 // element: First array element
3936 // separator: Separator string 3957 // separator: Separator string
3937 // string_length: Length of result string (not smi) 3958 // string_length: Length of result string (not smi)
3938 // array_length: Length of the array. 3959 // array_length: Length of the array.
3939 __ AllocateAsciiString(result, 3960 __ AllocateAsciiString(result, string_length, scratch1, scratch2,
3940 string_length, 3961 elements_end, &bailout);
3941 scratch,
3942 string, // used as scratch
3943 elements_end, // used as scratch
3944 &bailout);
3945 // Prepare for looping. Set up elements_end to end of the array. Set 3962 // Prepare for looping. Set up elements_end to end of the array. Set
3946 // result_pos to the position of the result where to write the first 3963 // result_pos to the position of the result where to write the first
3947 // character. 3964 // character.
3948 __ add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2)); 3965 __ ShiftLeftImm(elements_end, array_length, Operand(kPointerSizeLog2));
3966 __ add(elements_end, element, elements_end);
3949 result_pos = array_length; // End of live range for array_length. 3967 result_pos = array_length; // End of live range for array_length.
3950 array_length = no_reg; 3968 array_length = no_reg;
3951 __ add(result_pos, 3969 __ addi(result_pos, result,
3952 result, 3970 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3953 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3954 3971
3955 // Check the length of the separator. 3972 // Check the length of the separator.
3956 __ ldr(scratch, FieldMemOperand(separator, SeqOneByteString::kLengthOffset)); 3973 __ LoadP(scratch1,
3957 __ cmp(scratch, Operand(Smi::FromInt(1))); 3974 FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
3958 __ b(eq, &one_char_separator); 3975 __ CmpSmiLiteral(scratch1, Smi::FromInt(1), r0);
3959 __ b(gt, &long_separator); 3976 __ beq(&one_char_separator);
3977 __ bgt(&long_separator);
3960 3978
3961 // Empty separator case 3979 // Empty separator case
3962 __ bind(&empty_separator_loop); 3980 __ bind(&empty_separator_loop);
3963 // Live values in registers: 3981 // Live values in registers:
3964 // result_pos: the position to which we are currently copying characters. 3982 // result_pos: the position to which we are currently copying characters.
3965 // element: Current array element. 3983 // element: Current array element.
3966 // elements_end: Array end. 3984 // elements_end: Array end.
3967 3985
3968 // Copy next array element to the result. 3986 // Copy next array element to the result.
3969 __ ldr(string, MemOperand(element, kPointerSize, PostIndex)); 3987 __ LoadP(string, MemOperand(element));
3970 __ ldr(string_length, FieldMemOperand(string, String::kLengthOffset)); 3988 __ addi(element, element, Operand(kPointerSize));
3989 __ LoadP(string_length, FieldMemOperand(string, String::kLengthOffset));
3971 __ SmiUntag(string_length); 3990 __ SmiUntag(string_length);
3972 __ add(string, 3991 __ addi(string, string,
3973 string, 3992 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3974 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); 3993 __ CopyBytes(string, result_pos, string_length, scratch1);
3975 __ CopyBytes(string, result_pos, string_length, scratch);
3976 __ cmp(element, elements_end); 3994 __ cmp(element, elements_end);
3977 __ b(lt, &empty_separator_loop); // End while (element < elements_end). 3995 __ blt(&empty_separator_loop); // End while (element < elements_end).
3978 DCHECK(result.is(r0)); 3996 DCHECK(result.is(r3));
3979 __ b(&done); 3997 __ b(&done);
3980 3998
3981 // One-character separator case 3999 // One-character separator case
3982 __ bind(&one_char_separator); 4000 __ bind(&one_char_separator);
3983 // Replace separator with its ASCII character value. 4001 // Replace separator with its ASCII character value.
3984 __ ldrb(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize)); 4002 __ lbz(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize));
3985 // Jump into the loop after the code that copies the separator, so the first 4003 // Jump into the loop after the code that copies the separator, so the first
3986 // element is not preceded by a separator 4004 // element is not preceded by a separator
3987 __ jmp(&one_char_separator_loop_entry); 4005 __ b(&one_char_separator_loop_entry);
3988 4006
3989 __ bind(&one_char_separator_loop); 4007 __ bind(&one_char_separator_loop);
3990 // Live values in registers: 4008 // Live values in registers:
3991 // result_pos: the position to which we are currently copying characters. 4009 // result_pos: the position to which we are currently copying characters.
3992 // element: Current array element. 4010 // element: Current array element.
3993 // elements_end: Array end. 4011 // elements_end: Array end.
3994 // separator: Single separator ASCII char (in lower byte). 4012 // separator: Single separator ASCII char (in lower byte).
3995 4013
3996 // Copy the separator character to the result. 4014 // Copy the separator character to the result.
3997 __ strb(separator, MemOperand(result_pos, 1, PostIndex)); 4015 __ stb(separator, MemOperand(result_pos));
4016 __ addi(result_pos, result_pos, Operand(1));
3998 4017
3999 // Copy next array element to the result. 4018 // Copy next array element to the result.
4000 __ bind(&one_char_separator_loop_entry); 4019 __ bind(&one_char_separator_loop_entry);
4001 __ ldr(string, MemOperand(element, kPointerSize, PostIndex)); 4020 __ LoadP(string, MemOperand(element));
4002 __ ldr(string_length, FieldMemOperand(string, String::kLengthOffset)); 4021 __ addi(element, element, Operand(kPointerSize));
4022 __ LoadP(string_length, FieldMemOperand(string, String::kLengthOffset));
4003 __ SmiUntag(string_length); 4023 __ SmiUntag(string_length);
4004 __ add(string, 4024 __ addi(string, string,
4005 string, 4025 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4006 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); 4026 __ CopyBytes(string, result_pos, string_length, scratch1);
4007 __ CopyBytes(string, result_pos, string_length, scratch); 4027 __ cmpl(element, elements_end);
4008 __ cmp(element, elements_end); 4028 __ blt(&one_char_separator_loop); // End while (element < elements_end).
4009 __ b(lt, &one_char_separator_loop); // End while (element < elements_end). 4029 DCHECK(result.is(r3));
4010 DCHECK(result.is(r0));
4011 __ b(&done); 4030 __ b(&done);
4012 4031
4013 // Long separator case (separator is more than one character). Entry is at the 4032 // Long separator case (separator is more than one character). Entry is at the
4014 // label long_separator below. 4033 // label long_separator below.
4015 __ bind(&long_separator_loop); 4034 __ bind(&long_separator_loop);
4016 // Live values in registers: 4035 // Live values in registers:
4017 // result_pos: the position to which we are currently copying characters. 4036 // result_pos: the position to which we are currently copying characters.
4018 // element: Current array element. 4037 // element: Current array element.
4019 // elements_end: Array end. 4038 // elements_end: Array end.
4020 // separator: Separator string. 4039 // separator: Separator string.
4021 4040
4022 // Copy the separator to the result. 4041 // Copy the separator to the result.
4023 __ ldr(string_length, FieldMemOperand(separator, String::kLengthOffset)); 4042 __ LoadP(string_length, FieldMemOperand(separator, String::kLengthOffset));
4024 __ SmiUntag(string_length); 4043 __ SmiUntag(string_length);
4025 __ add(string, 4044 __ addi(string, separator,
4026 separator, 4045 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4027 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); 4046 __ CopyBytes(string, result_pos, string_length, scratch1);
4028 __ CopyBytes(string, result_pos, string_length, scratch);
4029 4047
4030 __ bind(&long_separator); 4048 __ bind(&long_separator);
4031 __ ldr(string, MemOperand(element, kPointerSize, PostIndex)); 4049 __ LoadP(string, MemOperand(element));
4032 __ ldr(string_length, FieldMemOperand(string, String::kLengthOffset)); 4050 __ addi(element, element, Operand(kPointerSize));
4051 __ LoadP(string_length, FieldMemOperand(string, String::kLengthOffset));
4033 __ SmiUntag(string_length); 4052 __ SmiUntag(string_length);
4034 __ add(string, 4053 __ addi(string, string,
4035 string, 4054 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4036 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); 4055 __ CopyBytes(string, result_pos, string_length, scratch1);
4037 __ CopyBytes(string, result_pos, string_length, scratch); 4056 __ cmpl(element, elements_end);
4038 __ cmp(element, elements_end); 4057 __ blt(&long_separator_loop); // End while (element < elements_end).
4039 __ b(lt, &long_separator_loop); // End while (element < elements_end). 4058 DCHECK(result.is(r3));
4040 DCHECK(result.is(r0));
4041 __ b(&done); 4059 __ b(&done);
4042 4060
4043 __ bind(&bailout); 4061 __ bind(&bailout);
4044 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); 4062 __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
4045 __ bind(&done); 4063 __ bind(&done);
4046 context()->Plug(r0); 4064 context()->Plug(r3);
4047 } 4065 }
4048 4066
4049 4067
4050 void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) { 4068 void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
4051 DCHECK(expr->arguments()->length() == 0); 4069 DCHECK(expr->arguments()->length() == 0);
4052 ExternalReference debug_is_active = 4070 ExternalReference debug_is_active =
4053 ExternalReference::debug_is_active_address(isolate()); 4071 ExternalReference::debug_is_active_address(isolate());
4054 __ mov(ip, Operand(debug_is_active)); 4072 __ mov(ip, Operand(debug_is_active));
4055 __ ldrb(r0, MemOperand(ip)); 4073 __ lbz(r3, MemOperand(ip));
4056 __ SmiTag(r0); 4074 __ SmiTag(r3);
4057 context()->Plug(r0); 4075 context()->Plug(r3);
4058 } 4076 }
4059 4077
4060 4078
4061 void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) { 4079 void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
4062 if (expr->function() != NULL && 4080 if (expr->function() != NULL &&
4063 expr->function()->intrinsic_type == Runtime::INLINE) { 4081 expr->function()->intrinsic_type == Runtime::INLINE) {
4064 Comment cmnt(masm_, "[ InlineRuntimeCall"); 4082 Comment cmnt(masm_, "[ InlineRuntimeCall");
4065 EmitInlineRuntimeCall(expr); 4083 EmitInlineRuntimeCall(expr);
4066 return; 4084 return;
4067 } 4085 }
4068 4086
4069 Comment cmnt(masm_, "[ CallRuntime"); 4087 Comment cmnt(masm_, "[ CallRuntime");
4070 ZoneList<Expression*>* args = expr->arguments(); 4088 ZoneList<Expression*>* args = expr->arguments();
4071 int arg_count = args->length(); 4089 int arg_count = args->length();
4072 4090
4073 if (expr->is_jsruntime()) { 4091 if (expr->is_jsruntime()) {
4074 // Push the builtins object as the receiver. 4092 // Push the builtins object as the receiver.
4075 Register receiver = LoadIC::ReceiverRegister(); 4093 Register receiver = LoadIC::ReceiverRegister();
4076 __ ldr(receiver, GlobalObjectOperand()); 4094 __ LoadP(receiver, GlobalObjectOperand());
4077 __ ldr(receiver, FieldMemOperand(receiver, GlobalObject::kBuiltinsOffset)); 4095 __ LoadP(receiver,
4096 FieldMemOperand(receiver, GlobalObject::kBuiltinsOffset));
4078 __ push(receiver); 4097 __ push(receiver);
4079 4098
4080 // Load the function from the receiver. 4099 // Load the function from the receiver.
4081 __ mov(LoadIC::NameRegister(), Operand(expr->name())); 4100 __ mov(LoadIC::NameRegister(), Operand(expr->name()));
4082 if (FLAG_vector_ics) { 4101 if (FLAG_vector_ics) {
4083 __ mov(LoadIC::SlotRegister(), 4102 __ mov(LoadIC::SlotRegister(),
4084 Operand(Smi::FromInt(expr->CallRuntimeFeedbackSlot()))); 4103 Operand(Smi::FromInt(expr->CallRuntimeFeedbackSlot())));
4085 CallLoadIC(NOT_CONTEXTUAL); 4104 CallLoadIC(NOT_CONTEXTUAL);
4086 } else { 4105 } else {
4087 CallLoadIC(NOT_CONTEXTUAL, expr->CallRuntimeFeedbackId()); 4106 CallLoadIC(NOT_CONTEXTUAL, expr->CallRuntimeFeedbackId());
4088 } 4107 }
4089 4108
4090 // Push the target function under the receiver. 4109 // Push the target function under the receiver.
4091 __ ldr(ip, MemOperand(sp, 0)); 4110 __ LoadP(ip, MemOperand(sp, 0));
4092 __ push(ip); 4111 __ push(ip);
4093 __ str(r0, MemOperand(sp, kPointerSize)); 4112 __ StoreP(r3, MemOperand(sp, kPointerSize));
4094 4113
4095 // Push the arguments ("left-to-right"). 4114 // Push the arguments ("left-to-right").
4096 int arg_count = args->length(); 4115 int arg_count = args->length();
4097 for (int i = 0; i < arg_count; i++) { 4116 for (int i = 0; i < arg_count; i++) {
4098 VisitForStackValue(args->at(i)); 4117 VisitForStackValue(args->at(i));
4099 } 4118 }
4100 4119
4101 // Record source position of the IC call. 4120 // Record source position of the IC call.
4102 SetSourcePosition(expr->position()); 4121 SetSourcePosition(expr->position());
4103 CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS); 4122 CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
4104 __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize)); 4123 __ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
4105 __ CallStub(&stub); 4124 __ CallStub(&stub);
4106 4125
4107 // Restore context register. 4126 // Restore context register.
4108 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 4127 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4109 4128
4110 context()->DropAndPlug(1, r0); 4129 context()->DropAndPlug(1, r3);
4111 } else { 4130 } else {
4112 // Push the arguments ("left-to-right"). 4131 // Push the arguments ("left-to-right").
4113 for (int i = 0; i < arg_count; i++) { 4132 for (int i = 0; i < arg_count; i++) {
4114 VisitForStackValue(args->at(i)); 4133 VisitForStackValue(args->at(i));
4115 } 4134 }
4116 4135
4117 // Call the C runtime function. 4136 // Call the C runtime function.
4118 __ CallRuntime(expr->function(), arg_count); 4137 __ CallRuntime(expr->function(), arg_count);
4119 context()->Plug(r0); 4138 context()->Plug(r3);
4120 } 4139 }
4121 } 4140 }
4122 4141
4123 4142
4124 void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { 4143 void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
4125 switch (expr->op()) { 4144 switch (expr->op()) {
4126 case Token::DELETE: { 4145 case Token::DELETE: {
4127 Comment cmnt(masm_, "[ UnaryOperation (DELETE)"); 4146 Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
4128 Property* property = expr->expression()->AsProperty(); 4147 Property* property = expr->expression()->AsProperty();
4129 VariableProxy* proxy = expr->expression()->AsVariableProxy(); 4148 VariableProxy* proxy = expr->expression()->AsVariableProxy();
4130 4149
4131 if (property != NULL) { 4150 if (property != NULL) {
4132 VisitForStackValue(property->obj()); 4151 VisitForStackValue(property->obj());
4133 VisitForStackValue(property->key()); 4152 VisitForStackValue(property->key());
4134 __ mov(r1, Operand(Smi::FromInt(strict_mode()))); 4153 __ LoadSmiLiteral(r4, Smi::FromInt(strict_mode()));
4135 __ push(r1); 4154 __ push(r4);
4136 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION); 4155 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
4137 context()->Plug(r0); 4156 context()->Plug(r3);
4138 } else if (proxy != NULL) { 4157 } else if (proxy != NULL) {
4139 Variable* var = proxy->var(); 4158 Variable* var = proxy->var();
4140 // Delete of an unqualified identifier is disallowed in strict mode 4159 // Delete of an unqualified identifier is disallowed in strict mode
4141 // but "delete this" is allowed. 4160 // but "delete this" is allowed.
4142 DCHECK(strict_mode() == SLOPPY || var->is_this()); 4161 DCHECK(strict_mode() == SLOPPY || var->is_this());
4143 if (var->IsUnallocated()) { 4162 if (var->IsUnallocated()) {
4144 __ ldr(r2, GlobalObjectOperand()); 4163 __ LoadP(r5, GlobalObjectOperand());
4145 __ mov(r1, Operand(var->name())); 4164 __ mov(r4, Operand(var->name()));
4146 __ mov(r0, Operand(Smi::FromInt(SLOPPY))); 4165 __ LoadSmiLiteral(r3, Smi::FromInt(SLOPPY));
4147 __ Push(r2, r1, r0); 4166 __ Push(r5, r4, r3);
4148 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION); 4167 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
4149 context()->Plug(r0); 4168 context()->Plug(r3);
4150 } else if (var->IsStackAllocated() || var->IsContextSlot()) { 4169 } else if (var->IsStackAllocated() || var->IsContextSlot()) {
4151 // Result of deleting non-global, non-dynamic variables is false. 4170 // Result of deleting non-global, non-dynamic variables is false.
4152 // The subexpression does not have side effects. 4171 // The subexpression does not have side effects.
4153 context()->Plug(var->is_this()); 4172 context()->Plug(var->is_this());
4154 } else { 4173 } else {
4155 // Non-global variable. Call the runtime to try to delete from the 4174 // Non-global variable. Call the runtime to try to delete from the
4156 // context where the variable was introduced. 4175 // context where the variable was introduced.
4157 DCHECK(!context_register().is(r2)); 4176 DCHECK(!context_register().is(r5));
4158 __ mov(r2, Operand(var->name())); 4177 __ mov(r5, Operand(var->name()));
4159 __ Push(context_register(), r2); 4178 __ Push(context_register(), r5);
4160 __ CallRuntime(Runtime::kDeleteLookupSlot, 2); 4179 __ CallRuntime(Runtime::kDeleteLookupSlot, 2);
4161 context()->Plug(r0); 4180 context()->Plug(r3);
4162 } 4181 }
4163 } else { 4182 } else {
4164 // Result of deleting non-property, non-variable reference is true. 4183 // Result of deleting non-property, non-variable reference is true.
4165 // The subexpression may have side effects. 4184 // The subexpression may have side effects.
4166 VisitForEffect(expr->expression()); 4185 VisitForEffect(expr->expression());
4167 context()->Plug(true); 4186 context()->Plug(true);
4168 } 4187 }
4169 break; 4188 break;
4170 } 4189 }
4171 4190
4172 case Token::VOID: { 4191 case Token::VOID: {
4173 Comment cmnt(masm_, "[ UnaryOperation (VOID)"); 4192 Comment cmnt(masm_, "[ UnaryOperation (VOID)");
4174 VisitForEffect(expr->expression()); 4193 VisitForEffect(expr->expression());
4175 context()->Plug(Heap::kUndefinedValueRootIndex); 4194 context()->Plug(Heap::kUndefinedValueRootIndex);
4176 break; 4195 break;
4177 } 4196 }
4178 4197
4179 case Token::NOT: { 4198 case Token::NOT: {
4180 Comment cmnt(masm_, "[ UnaryOperation (NOT)"); 4199 Comment cmnt(masm_, "[ UnaryOperation (NOT)");
4181 if (context()->IsEffect()) { 4200 if (context()->IsEffect()) {
4182 // Unary NOT has no side effects so it's only necessary to visit the 4201 // Unary NOT has no side effects so it's only necessary to visit the
4183 // subexpression. Match the optimizing compiler by not branching. 4202 // subexpression. Match the optimizing compiler by not branching.
4184 VisitForEffect(expr->expression()); 4203 VisitForEffect(expr->expression());
4185 } else if (context()->IsTest()) { 4204 } else if (context()->IsTest()) {
4186 const TestContext* test = TestContext::cast(context()); 4205 const TestContext* test = TestContext::cast(context());
4187 // The labels are swapped for the recursive call. 4206 // The labels are swapped for the recursive call.
4188 VisitForControl(expr->expression(), 4207 VisitForControl(expr->expression(), test->false_label(),
4189 test->false_label(), 4208 test->true_label(), test->fall_through());
4190 test->true_label(),
4191 test->fall_through());
4192 context()->Plug(test->true_label(), test->false_label()); 4209 context()->Plug(test->true_label(), test->false_label());
4193 } else { 4210 } else {
4194 // We handle value contexts explicitly rather than simply visiting 4211 // We handle value contexts explicitly rather than simply visiting
4195 // for control and plugging the control flow into the context, 4212 // for control and plugging the control flow into the context,
4196 // because we need to prepare a pair of extra administrative AST ids 4213 // because we need to prepare a pair of extra administrative AST ids
4197 // for the optimizing compiler. 4214 // for the optimizing compiler.
4198 DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue()); 4215 DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
4199 Label materialize_true, materialize_false, done; 4216 Label materialize_true, materialize_false, done;
4200 VisitForControl(expr->expression(), 4217 VisitForControl(expr->expression(), &materialize_false,
4201 &materialize_false, 4218 &materialize_true, &materialize_true);
4202 &materialize_true,
4203 &materialize_true);
4204 __ bind(&materialize_true); 4219 __ bind(&materialize_true);
4205 PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS); 4220 PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
4206 __ LoadRoot(r0, Heap::kTrueValueRootIndex); 4221 __ LoadRoot(r3, Heap::kTrueValueRootIndex);
4207 if (context()->IsStackValue()) __ push(r0); 4222 if (context()->IsStackValue()) __ push(r3);
4208 __ jmp(&done); 4223 __ b(&done);
4209 __ bind(&materialize_false); 4224 __ bind(&materialize_false);
4210 PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS); 4225 PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
4211 __ LoadRoot(r0, Heap::kFalseValueRootIndex); 4226 __ LoadRoot(r3, Heap::kFalseValueRootIndex);
4212 if (context()->IsStackValue()) __ push(r0); 4227 if (context()->IsStackValue()) __ push(r3);
4213 __ bind(&done); 4228 __ bind(&done);
4214 } 4229 }
4215 break; 4230 break;
4216 } 4231 }
4217 4232
4218 case Token::TYPEOF: { 4233 case Token::TYPEOF: {
4219 Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); 4234 Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
4220 { StackValueContext context(this); 4235 {
4236 StackValueContext context(this);
4221 VisitForTypeofValue(expr->expression()); 4237 VisitForTypeofValue(expr->expression());
4222 } 4238 }
4223 __ CallRuntime(Runtime::kTypeof, 1); 4239 __ CallRuntime(Runtime::kTypeof, 1);
4224 context()->Plug(r0); 4240 context()->Plug(r3);
4225 break; 4241 break;
4226 } 4242 }
4227 4243
4228 default: 4244 default:
4229 UNREACHABLE(); 4245 UNREACHABLE();
4230 } 4246 }
4231 } 4247 }
4232 4248
4233 4249
4234 void FullCodeGenerator::VisitCountOperation(CountOperation* expr) { 4250 void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
(...skipping 15 matching lines...) Expand all
4250 } 4266 }
4251 4267
4252 // Evaluate expression and get value. 4268 // Evaluate expression and get value.
4253 if (assign_type == VARIABLE) { 4269 if (assign_type == VARIABLE) {
4254 DCHECK(expr->expression()->AsVariableProxy()->var() != NULL); 4270 DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
4255 AccumulatorValueContext context(this); 4271 AccumulatorValueContext context(this);
4256 EmitVariableLoad(expr->expression()->AsVariableProxy()); 4272 EmitVariableLoad(expr->expression()->AsVariableProxy());
4257 } else { 4273 } else {
4258 // Reserve space for result of postfix operation. 4274 // Reserve space for result of postfix operation.
4259 if (expr->is_postfix() && !context()->IsEffect()) { 4275 if (expr->is_postfix() && !context()->IsEffect()) {
4260 __ mov(ip, Operand(Smi::FromInt(0))); 4276 __ LoadSmiLiteral(ip, Smi::FromInt(0));
4261 __ push(ip); 4277 __ push(ip);
4262 } 4278 }
4263 if (assign_type == NAMED_PROPERTY) { 4279 if (assign_type == NAMED_PROPERTY) {
4264 // Put the object both on the stack and in the register. 4280 // Put the object both on the stack and in the register.
4265 VisitForStackValue(prop->obj()); 4281 VisitForStackValue(prop->obj());
4266 __ ldr(LoadIC::ReceiverRegister(), MemOperand(sp, 0)); 4282 __ LoadP(LoadIC::ReceiverRegister(), MemOperand(sp, 0));
4267 EmitNamedPropertyLoad(prop); 4283 EmitNamedPropertyLoad(prop);
4268 } else { 4284 } else {
4269 VisitForStackValue(prop->obj()); 4285 VisitForStackValue(prop->obj());
4270 VisitForStackValue(prop->key()); 4286 VisitForStackValue(prop->key());
4271 __ ldr(LoadIC::ReceiverRegister(), MemOperand(sp, 1 * kPointerSize)); 4287 __ LoadP(LoadIC::ReceiverRegister(), MemOperand(sp, 1 * kPointerSize));
4272 __ ldr(LoadIC::NameRegister(), MemOperand(sp, 0)); 4288 __ LoadP(LoadIC::NameRegister(), MemOperand(sp, 0));
4273 EmitKeyedPropertyLoad(prop); 4289 EmitKeyedPropertyLoad(prop);
4274 } 4290 }
4275 } 4291 }
4276 4292
4277 // We need a second deoptimization point after loading the value 4293 // We need a second deoptimization point after loading the value
4278 // in case evaluating the property load my have a side effect. 4294 // in case evaluating the property load my have a side effect.
4279 if (assign_type == VARIABLE) { 4295 if (assign_type == VARIABLE) {
4280 PrepareForBailout(expr->expression(), TOS_REG); 4296 PrepareForBailout(expr->expression(), TOS_REG);
4281 } else { 4297 } else {
4282 PrepareForBailoutForId(prop->LoadId(), TOS_REG); 4298 PrepareForBailoutForId(prop->LoadId(), TOS_REG);
4283 } 4299 }
4284 4300
4285 // Inline smi case if we are in a loop. 4301 // Inline smi case if we are in a loop.
4286 Label stub_call, done; 4302 Label stub_call, done;
4287 JumpPatchSite patch_site(masm_); 4303 JumpPatchSite patch_site(masm_);
4288 4304
4289 int count_value = expr->op() == Token::INC ? 1 : -1; 4305 int count_value = expr->op() == Token::INC ? 1 : -1;
4290 if (ShouldInlineSmiCase(expr->op())) { 4306 if (ShouldInlineSmiCase(expr->op())) {
4291 Label slow; 4307 Label slow;
4292 patch_site.EmitJumpIfNotSmi(r0, &slow); 4308 patch_site.EmitJumpIfNotSmi(r3, &slow);
4293 4309
4294 // Save result for postfix expressions. 4310 // Save result for postfix expressions.
4295 if (expr->is_postfix()) { 4311 if (expr->is_postfix()) {
4296 if (!context()->IsEffect()) { 4312 if (!context()->IsEffect()) {
4297 // Save the result on the stack. If we have a named or keyed property 4313 // Save the result on the stack. If we have a named or keyed property
4298 // we store the result under the receiver that is currently on top 4314 // we store the result under the receiver that is currently on top
4299 // of the stack. 4315 // of the stack.
4300 switch (assign_type) { 4316 switch (assign_type) {
4301 case VARIABLE: 4317 case VARIABLE:
4302 __ push(r0); 4318 __ push(r3);
4303 break; 4319 break;
4304 case NAMED_PROPERTY: 4320 case NAMED_PROPERTY:
4305 __ str(r0, MemOperand(sp, kPointerSize)); 4321 __ StoreP(r3, MemOperand(sp, kPointerSize));
4306 break; 4322 break;
4307 case KEYED_PROPERTY: 4323 case KEYED_PROPERTY:
4308 __ str(r0, MemOperand(sp, 2 * kPointerSize)); 4324 __ StoreP(r3, MemOperand(sp, 2 * kPointerSize));
4309 break; 4325 break;
4310 } 4326 }
4311 } 4327 }
4312 } 4328 }
4313 4329
4314 __ add(r0, r0, Operand(Smi::FromInt(count_value)), SetCC); 4330 Register scratch1 = r4;
4315 __ b(vc, &done); 4331 Register scratch2 = r5;
4332 __ LoadSmiLiteral(scratch1, Smi::FromInt(count_value));
4333 __ AddAndCheckForOverflow(r3, r3, scratch1, scratch2, r0);
4334 __ BranchOnNoOverflow(&done);
4316 // Call stub. Undo operation first. 4335 // Call stub. Undo operation first.
4317 __ sub(r0, r0, Operand(Smi::FromInt(count_value))); 4336 __ sub(r3, r3, scratch1);
4318 __ jmp(&stub_call); 4337 __ b(&stub_call);
4319 __ bind(&slow); 4338 __ bind(&slow);
4320 } 4339 }
4321 ToNumberStub convert_stub(isolate()); 4340 ToNumberStub convert_stub(isolate());
4322 __ CallStub(&convert_stub); 4341 __ CallStub(&convert_stub);
4323 4342
4324 // Save result for postfix expressions. 4343 // Save result for postfix expressions.
4325 if (expr->is_postfix()) { 4344 if (expr->is_postfix()) {
4326 if (!context()->IsEffect()) { 4345 if (!context()->IsEffect()) {
4327 // Save the result on the stack. If we have a named or keyed property 4346 // Save the result on the stack. If we have a named or keyed property
4328 // we store the result under the receiver that is currently on top 4347 // we store the result under the receiver that is currently on top
4329 // of the stack. 4348 // of the stack.
4330 switch (assign_type) { 4349 switch (assign_type) {
4331 case VARIABLE: 4350 case VARIABLE:
4332 __ push(r0); 4351 __ push(r3);
4333 break; 4352 break;
4334 case NAMED_PROPERTY: 4353 case NAMED_PROPERTY:
4335 __ str(r0, MemOperand(sp, kPointerSize)); 4354 __ StoreP(r3, MemOperand(sp, kPointerSize));
4336 break; 4355 break;
4337 case KEYED_PROPERTY: 4356 case KEYED_PROPERTY:
4338 __ str(r0, MemOperand(sp, 2 * kPointerSize)); 4357 __ StoreP(r3, MemOperand(sp, 2 * kPointerSize));
4339 break; 4358 break;
4340 } 4359 }
4341 } 4360 }
4342 } 4361 }
4343 4362
4344
4345 __ bind(&stub_call); 4363 __ bind(&stub_call);
4346 __ mov(r1, r0); 4364 __ mr(r4, r3);
4347 __ mov(r0, Operand(Smi::FromInt(count_value))); 4365 __ LoadSmiLiteral(r3, Smi::FromInt(count_value));
4348 4366
4349 // Record position before stub call. 4367 // Record position before stub call.
4350 SetSourcePosition(expr->position()); 4368 SetSourcePosition(expr->position());
4351 4369
4352 BinaryOpICStub stub(isolate(), Token::ADD, NO_OVERWRITE); 4370 BinaryOpICStub stub(isolate(), Token::ADD, NO_OVERWRITE);
4353 CallIC(stub.GetCode(), expr->CountBinOpFeedbackId()); 4371 CallIC(stub.GetCode(), expr->CountBinOpFeedbackId());
4354 patch_site.EmitPatchInfo(); 4372 patch_site.EmitPatchInfo();
4355 __ bind(&done); 4373 __ bind(&done);
4356 4374
4357 // Store the value returned in r0. 4375 // Store the value returned in r3.
4358 switch (assign_type) { 4376 switch (assign_type) {
4359 case VARIABLE: 4377 case VARIABLE:
4360 if (expr->is_postfix()) { 4378 if (expr->is_postfix()) {
4361 { EffectContext context(this); 4379 {
4380 EffectContext context(this);
4362 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), 4381 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4363 Token::ASSIGN); 4382 Token::ASSIGN);
4364 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); 4383 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4365 context.Plug(r0); 4384 context.Plug(r3);
4366 } 4385 }
4367 // For all contexts except EffectConstant We have the result on 4386 // For all contexts except EffectConstant We have the result on
4368 // top of the stack. 4387 // top of the stack.
4369 if (!context()->IsEffect()) { 4388 if (!context()->IsEffect()) {
4370 context()->PlugTOS(); 4389 context()->PlugTOS();
4371 } 4390 }
4372 } else { 4391 } else {
4373 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), 4392 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4374 Token::ASSIGN); 4393 Token::ASSIGN);
4375 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); 4394 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4376 context()->Plug(r0); 4395 context()->Plug(r3);
4377 } 4396 }
4378 break; 4397 break;
4379 case NAMED_PROPERTY: { 4398 case NAMED_PROPERTY: {
4380 __ mov(StoreIC::NameRegister(), 4399 __ mov(StoreIC::NameRegister(),
4381 Operand(prop->key()->AsLiteral()->value())); 4400 Operand(prop->key()->AsLiteral()->value()));
4382 __ pop(StoreIC::ReceiverRegister()); 4401 __ pop(StoreIC::ReceiverRegister());
4383 CallStoreIC(expr->CountStoreFeedbackId()); 4402 CallStoreIC(expr->CountStoreFeedbackId());
4384 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); 4403 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4385 if (expr->is_postfix()) { 4404 if (expr->is_postfix()) {
4386 if (!context()->IsEffect()) { 4405 if (!context()->IsEffect()) {
4387 context()->PlugTOS(); 4406 context()->PlugTOS();
4388 } 4407 }
4389 } else { 4408 } else {
4390 context()->Plug(r0); 4409 context()->Plug(r3);
4391 } 4410 }
4392 break; 4411 break;
4393 } 4412 }
4394 case KEYED_PROPERTY: { 4413 case KEYED_PROPERTY: {
4395 __ Pop(KeyedStoreIC::ReceiverRegister(), KeyedStoreIC::NameRegister()); 4414 __ Pop(KeyedStoreIC::ReceiverRegister(), KeyedStoreIC::NameRegister());
4396 Handle<Code> ic = strict_mode() == SLOPPY 4415 Handle<Code> ic =
4397 ? isolate()->builtins()->KeyedStoreIC_Initialize() 4416 strict_mode() == SLOPPY
4398 : isolate()->builtins()->KeyedStoreIC_Initialize_Strict(); 4417 ? isolate()->builtins()->KeyedStoreIC_Initialize()
4418 : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
4399 CallIC(ic, expr->CountStoreFeedbackId()); 4419 CallIC(ic, expr->CountStoreFeedbackId());
4400 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); 4420 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4401 if (expr->is_postfix()) { 4421 if (expr->is_postfix()) {
4402 if (!context()->IsEffect()) { 4422 if (!context()->IsEffect()) {
4403 context()->PlugTOS(); 4423 context()->PlugTOS();
4404 } 4424 }
4405 } else { 4425 } else {
4406 context()->Plug(r0); 4426 context()->Plug(r3);
4407 } 4427 }
4408 break; 4428 break;
4409 } 4429 }
4410 } 4430 }
4411 } 4431 }
4412 4432
4413 4433
4414 void FullCodeGenerator::VisitForTypeofValue(Expression* expr) { 4434 void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
4415 DCHECK(!context()->IsEffect()); 4435 DCHECK(!context()->IsEffect());
4416 DCHECK(!context()->IsTest()); 4436 DCHECK(!context()->IsTest());
4417 VariableProxy* proxy = expr->AsVariableProxy(); 4437 VariableProxy* proxy = expr->AsVariableProxy();
4418 if (proxy != NULL && proxy->var()->IsUnallocated()) { 4438 if (proxy != NULL && proxy->var()->IsUnallocated()) {
4419 Comment cmnt(masm_, "[ Global variable"); 4439 Comment cmnt(masm_, "[ Global variable");
4420 __ ldr(LoadIC::ReceiverRegister(), GlobalObjectOperand()); 4440 __ LoadP(LoadIC::ReceiverRegister(), GlobalObjectOperand());
4421 __ mov(LoadIC::NameRegister(), Operand(proxy->name())); 4441 __ mov(LoadIC::NameRegister(), Operand(proxy->name()));
4422 if (FLAG_vector_ics) { 4442 if (FLAG_vector_ics) {
4423 __ mov(LoadIC::SlotRegister(), 4443 __ mov(LoadIC::SlotRegister(),
4424 Operand(Smi::FromInt(proxy->VariableFeedbackSlot()))); 4444 Operand(Smi::FromInt(proxy->VariableFeedbackSlot())));
4425 } 4445 }
4426 // Use a regular load, not a contextual load, to avoid a reference 4446 // Use a regular load, not a contextual load, to avoid a reference
4427 // error. 4447 // error.
4428 CallLoadIC(NOT_CONTEXTUAL); 4448 CallLoadIC(NOT_CONTEXTUAL);
4429 PrepareForBailout(expr, TOS_REG); 4449 PrepareForBailout(expr, TOS_REG);
4430 context()->Plug(r0); 4450 context()->Plug(r3);
4431 } else if (proxy != NULL && proxy->var()->IsLookupSlot()) { 4451 } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
4432 Comment cmnt(masm_, "[ Lookup slot"); 4452 Comment cmnt(masm_, "[ Lookup slot");
4433 Label done, slow; 4453 Label done, slow;
4434 4454
4435 // Generate code for loading from variables potentially shadowed 4455 // Generate code for loading from variables potentially shadowed
4436 // by eval-introduced variables. 4456 // by eval-introduced variables.
4437 EmitDynamicLookupFastCase(proxy, INSIDE_TYPEOF, &slow, &done); 4457 EmitDynamicLookupFastCase(proxy, INSIDE_TYPEOF, &slow, &done);
4438 4458
4439 __ bind(&slow); 4459 __ bind(&slow);
4440 __ mov(r0, Operand(proxy->name())); 4460 __ mov(r3, Operand(proxy->name()));
4441 __ Push(cp, r0); 4461 __ Push(cp, r3);
4442 __ CallRuntime(Runtime::kLoadLookupSlotNoReferenceError, 2); 4462 __ CallRuntime(Runtime::kLoadLookupSlotNoReferenceError, 2);
4443 PrepareForBailout(expr, TOS_REG); 4463 PrepareForBailout(expr, TOS_REG);
4444 __ bind(&done); 4464 __ bind(&done);
4445 4465
4446 context()->Plug(r0); 4466 context()->Plug(r3);
4447 } else { 4467 } else {
4448 // This expression cannot throw a reference error at the top level. 4468 // This expression cannot throw a reference error at the top level.
4449 VisitInDuplicateContext(expr); 4469 VisitInDuplicateContext(expr);
4450 } 4470 }
4451 } 4471 }
4452 4472
4453 4473
4454 void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr, 4474 void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
4455 Expression* sub_expr, 4475 Expression* sub_expr,
4456 Handle<String> check) { 4476 Handle<String> check) {
4457 Label materialize_true, materialize_false; 4477 Label materialize_true, materialize_false;
4458 Label* if_true = NULL; 4478 Label* if_true = NULL;
4459 Label* if_false = NULL; 4479 Label* if_false = NULL;
4460 Label* fall_through = NULL; 4480 Label* fall_through = NULL;
4461 context()->PrepareTest(&materialize_true, &materialize_false, 4481 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
4462 &if_true, &if_false, &fall_through); 4482 &if_false, &fall_through);
4463 4483
4464 { AccumulatorValueContext context(this); 4484 {
4485 AccumulatorValueContext context(this);
4465 VisitForTypeofValue(sub_expr); 4486 VisitForTypeofValue(sub_expr);
4466 } 4487 }
4467 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 4488 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4468 4489
4469 Factory* factory = isolate()->factory(); 4490 Factory* factory = isolate()->factory();
4470 if (String::Equals(check, factory->number_string())) { 4491 if (String::Equals(check, factory->number_string())) {
4471 __ JumpIfSmi(r0, if_true); 4492 __ JumpIfSmi(r3, if_true);
4472 __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); 4493 __ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
4473 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); 4494 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
4474 __ cmp(r0, ip); 4495 __ cmp(r3, ip);
4475 Split(eq, if_true, if_false, fall_through); 4496 Split(eq, if_true, if_false, fall_through);
4476 } else if (String::Equals(check, factory->string_string())) { 4497 } else if (String::Equals(check, factory->string_string())) {
4477 __ JumpIfSmi(r0, if_false); 4498 __ JumpIfSmi(r3, if_false);
4478 // Check for undetectable objects => false. 4499 // Check for undetectable objects => false.
4479 __ CompareObjectType(r0, r0, r1, FIRST_NONSTRING_TYPE); 4500 __ CompareObjectType(r3, r3, r4, FIRST_NONSTRING_TYPE);
4480 __ b(ge, if_false); 4501 __ bge(if_false);
4481 __ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset)); 4502 __ lbz(r4, FieldMemOperand(r3, Map::kBitFieldOffset));
4482 __ tst(r1, Operand(1 << Map::kIsUndetectable)); 4503 STATIC_ASSERT((1 << Map::kIsUndetectable) < 0x8000);
4483 Split(eq, if_true, if_false, fall_through); 4504 __ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
4505 Split(eq, if_true, if_false, fall_through, cr0);
4484 } else if (String::Equals(check, factory->symbol_string())) { 4506 } else if (String::Equals(check, factory->symbol_string())) {
4485 __ JumpIfSmi(r0, if_false); 4507 __ JumpIfSmi(r3, if_false);
4486 __ CompareObjectType(r0, r0, r1, SYMBOL_TYPE); 4508 __ CompareObjectType(r3, r3, r4, SYMBOL_TYPE);
4487 Split(eq, if_true, if_false, fall_through); 4509 Split(eq, if_true, if_false, fall_through);
4488 } else if (String::Equals(check, factory->boolean_string())) { 4510 } else if (String::Equals(check, factory->boolean_string())) {
4489 __ CompareRoot(r0, Heap::kTrueValueRootIndex); 4511 __ CompareRoot(r3, Heap::kTrueValueRootIndex);
4490 __ b(eq, if_true); 4512 __ beq(if_true);
4491 __ CompareRoot(r0, Heap::kFalseValueRootIndex); 4513 __ CompareRoot(r3, Heap::kFalseValueRootIndex);
4492 Split(eq, if_true, if_false, fall_through); 4514 Split(eq, if_true, if_false, fall_through);
4493 } else if (String::Equals(check, factory->undefined_string())) { 4515 } else if (String::Equals(check, factory->undefined_string())) {
4494 __ CompareRoot(r0, Heap::kUndefinedValueRootIndex); 4516 __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
4495 __ b(eq, if_true); 4517 __ beq(if_true);
4496 __ JumpIfSmi(r0, if_false); 4518 __ JumpIfSmi(r3, if_false);
4497 // Check for undetectable objects => true. 4519 // Check for undetectable objects => true.
4498 __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); 4520 __ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
4499 __ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset)); 4521 __ lbz(r4, FieldMemOperand(r3, Map::kBitFieldOffset));
4500 __ tst(r1, Operand(1 << Map::kIsUndetectable)); 4522 __ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
4501 Split(ne, if_true, if_false, fall_through); 4523 Split(ne, if_true, if_false, fall_through, cr0);
4502 4524
4503 } else if (String::Equals(check, factory->function_string())) { 4525 } else if (String::Equals(check, factory->function_string())) {
4504 __ JumpIfSmi(r0, if_false); 4526 __ JumpIfSmi(r3, if_false);
4505 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); 4527 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
4506 __ CompareObjectType(r0, r0, r1, JS_FUNCTION_TYPE); 4528 __ CompareObjectType(r3, r3, r4, JS_FUNCTION_TYPE);
4507 __ b(eq, if_true); 4529 __ beq(if_true);
4508 __ cmp(r1, Operand(JS_FUNCTION_PROXY_TYPE)); 4530 __ cmpi(r4, Operand(JS_FUNCTION_PROXY_TYPE));
4509 Split(eq, if_true, if_false, fall_through); 4531 Split(eq, if_true, if_false, fall_through);
4510 } else if (String::Equals(check, factory->object_string())) { 4532 } else if (String::Equals(check, factory->object_string())) {
4511 __ JumpIfSmi(r0, if_false); 4533 __ JumpIfSmi(r3, if_false);
4512 __ CompareRoot(r0, Heap::kNullValueRootIndex); 4534 __ CompareRoot(r3, Heap::kNullValueRootIndex);
4513 __ b(eq, if_true); 4535 __ beq(if_true);
4514 // Check for JS objects => true. 4536 // Check for JS objects => true.
4515 __ CompareObjectType(r0, r0, r1, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE); 4537 __ CompareObjectType(r3, r3, r4, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
4516 __ b(lt, if_false); 4538 __ blt(if_false);
4517 __ CompareInstanceType(r0, r1, LAST_NONCALLABLE_SPEC_OBJECT_TYPE); 4539 __ CompareInstanceType(r3, r4, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
4518 __ b(gt, if_false); 4540 __ bgt(if_false);
4519 // Check for undetectable objects => false. 4541 // Check for undetectable objects => false.
4520 __ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset)); 4542 __ lbz(r4, FieldMemOperand(r3, Map::kBitFieldOffset));
4521 __ tst(r1, Operand(1 << Map::kIsUndetectable)); 4543 __ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
4522 Split(eq, if_true, if_false, fall_through); 4544 Split(eq, if_true, if_false, fall_through, cr0);
4523 } else { 4545 } else {
4524 if (if_false != fall_through) __ jmp(if_false); 4546 if (if_false != fall_through) __ b(if_false);
4525 } 4547 }
4526 context()->Plug(if_true, if_false); 4548 context()->Plug(if_true, if_false);
4527 } 4549 }
4528 4550
4529 4551
4530 void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) { 4552 void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
4531 Comment cmnt(masm_, "[ CompareOperation"); 4553 Comment cmnt(masm_, "[ CompareOperation");
4532 SetSourcePosition(expr->position()); 4554 SetSourcePosition(expr->position());
4533 4555
4534 // First we try a fast inlined version of the compare when one of 4556 // First we try a fast inlined version of the compare when one of
4535 // the operands is a literal. 4557 // the operands is a literal.
4536 if (TryLiteralCompare(expr)) return; 4558 if (TryLiteralCompare(expr)) return;
4537 4559
4538 // Always perform the comparison for its control flow. Pack the result 4560 // Always perform the comparison for its control flow. Pack the result
4539 // into the expression's context after the comparison is performed. 4561 // into the expression's context after the comparison is performed.
4540 Label materialize_true, materialize_false; 4562 Label materialize_true, materialize_false;
4541 Label* if_true = NULL; 4563 Label* if_true = NULL;
4542 Label* if_false = NULL; 4564 Label* if_false = NULL;
4543 Label* fall_through = NULL; 4565 Label* fall_through = NULL;
4544 context()->PrepareTest(&materialize_true, &materialize_false, 4566 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
4545 &if_true, &if_false, &fall_through); 4567 &if_false, &fall_through);
4546 4568
4547 Token::Value op = expr->op(); 4569 Token::Value op = expr->op();
4548 VisitForStackValue(expr->left()); 4570 VisitForStackValue(expr->left());
4549 switch (op) { 4571 switch (op) {
4550 case Token::IN: 4572 case Token::IN:
4551 VisitForStackValue(expr->right()); 4573 VisitForStackValue(expr->right());
4552 __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION); 4574 __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
4553 PrepareForBailoutBeforeSplit(expr, false, NULL, NULL); 4575 PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
4554 __ LoadRoot(ip, Heap::kTrueValueRootIndex); 4576 __ LoadRoot(ip, Heap::kTrueValueRootIndex);
4555 __ cmp(r0, ip); 4577 __ cmp(r3, ip);
4556 Split(eq, if_true, if_false, fall_through); 4578 Split(eq, if_true, if_false, fall_through);
4557 break; 4579 break;
4558 4580
4559 case Token::INSTANCEOF: { 4581 case Token::INSTANCEOF: {
4560 VisitForStackValue(expr->right()); 4582 VisitForStackValue(expr->right());
4561 InstanceofStub stub(isolate(), InstanceofStub::kNoFlags); 4583 InstanceofStub stub(isolate(), InstanceofStub::kNoFlags);
4562 __ CallStub(&stub); 4584 __ CallStub(&stub);
4563 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 4585 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4564 // The stub returns 0 for true. 4586 // The stub returns 0 for true.
4565 __ tst(r0, r0); 4587 __ cmpi(r3, Operand::Zero());
4566 Split(eq, if_true, if_false, fall_through); 4588 Split(eq, if_true, if_false, fall_through);
4567 break; 4589 break;
4568 } 4590 }
4569 4591
4570 default: { 4592 default: {
4571 VisitForAccumulatorValue(expr->right()); 4593 VisitForAccumulatorValue(expr->right());
4572 Condition cond = CompareIC::ComputeCondition(op); 4594 Condition cond = CompareIC::ComputeCondition(op);
4573 __ pop(r1); 4595 __ pop(r4);
4574 4596
4575 bool inline_smi_code = ShouldInlineSmiCase(op); 4597 bool inline_smi_code = ShouldInlineSmiCase(op);
4576 JumpPatchSite patch_site(masm_); 4598 JumpPatchSite patch_site(masm_);
4577 if (inline_smi_code) { 4599 if (inline_smi_code) {
4578 Label slow_case; 4600 Label slow_case;
4579 __ orr(r2, r0, Operand(r1)); 4601 __ orx(r5, r3, r4);
4580 patch_site.EmitJumpIfNotSmi(r2, &slow_case); 4602 patch_site.EmitJumpIfNotSmi(r5, &slow_case);
4581 __ cmp(r1, r0); 4603 __ cmp(r4, r3);
4582 Split(cond, if_true, if_false, NULL); 4604 Split(cond, if_true, if_false, NULL);
4583 __ bind(&slow_case); 4605 __ bind(&slow_case);
4584 } 4606 }
4585 4607
4586 // Record position and call the compare IC. 4608 // Record position and call the compare IC.
4587 SetSourcePosition(expr->position()); 4609 SetSourcePosition(expr->position());
4588 Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op); 4610 Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
4589 CallIC(ic, expr->CompareOperationFeedbackId()); 4611 CallIC(ic, expr->CompareOperationFeedbackId());
4590 patch_site.EmitPatchInfo(); 4612 patch_site.EmitPatchInfo();
4591 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 4613 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4592 __ cmp(r0, Operand::Zero()); 4614 __ cmpi(r3, Operand::Zero());
4593 Split(cond, if_true, if_false, fall_through); 4615 Split(cond, if_true, if_false, fall_through);
4594 } 4616 }
4595 } 4617 }
4596 4618
4597 // Convert the result of the comparison into one expected for this 4619 // Convert the result of the comparison into one expected for this
4598 // expression's context. 4620 // expression's context.
4599 context()->Plug(if_true, if_false); 4621 context()->Plug(if_true, if_false);
4600 } 4622 }
4601 4623
4602 4624
4603 void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr, 4625 void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
4604 Expression* sub_expr, 4626 Expression* sub_expr,
4605 NilValue nil) { 4627 NilValue nil) {
4606 Label materialize_true, materialize_false; 4628 Label materialize_true, materialize_false;
4607 Label* if_true = NULL; 4629 Label* if_true = NULL;
4608 Label* if_false = NULL; 4630 Label* if_false = NULL;
4609 Label* fall_through = NULL; 4631 Label* fall_through = NULL;
4610 context()->PrepareTest(&materialize_true, &materialize_false, 4632 context()->PrepareTest(&materialize_true, &materialize_false, &if_true,
4611 &if_true, &if_false, &fall_through); 4633 &if_false, &fall_through);
4612 4634
4613 VisitForAccumulatorValue(sub_expr); 4635 VisitForAccumulatorValue(sub_expr);
4614 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 4636 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4615 if (expr->op() == Token::EQ_STRICT) { 4637 if (expr->op() == Token::EQ_STRICT) {
4616 Heap::RootListIndex nil_value = nil == kNullValue ? 4638 Heap::RootListIndex nil_value = nil == kNullValue
4617 Heap::kNullValueRootIndex : 4639 ? Heap::kNullValueRootIndex
4618 Heap::kUndefinedValueRootIndex; 4640 : Heap::kUndefinedValueRootIndex;
4619 __ LoadRoot(r1, nil_value); 4641 __ LoadRoot(r4, nil_value);
4620 __ cmp(r0, r1); 4642 __ cmp(r3, r4);
4621 Split(eq, if_true, if_false, fall_through); 4643 Split(eq, if_true, if_false, fall_through);
4622 } else { 4644 } else {
4623 Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil); 4645 Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
4624 CallIC(ic, expr->CompareOperationFeedbackId()); 4646 CallIC(ic, expr->CompareOperationFeedbackId());
4625 __ cmp(r0, Operand(0)); 4647 __ cmpi(r3, Operand::Zero());
4626 Split(ne, if_true, if_false, fall_through); 4648 Split(ne, if_true, if_false, fall_through);
4627 } 4649 }
4628 context()->Plug(if_true, if_false); 4650 context()->Plug(if_true, if_false);
4629 } 4651 }
4630 4652
4631 4653
4632 void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) { 4654 void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
4633 __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 4655 __ LoadP(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4634 context()->Plug(r0); 4656 context()->Plug(r3);
4635 } 4657 }
4636 4658
4637 4659
4638 Register FullCodeGenerator::result_register() { 4660 Register FullCodeGenerator::result_register() { return r3; }
4639 return r0;
4640 }
4641 4661
4642 4662
4643 Register FullCodeGenerator::context_register() { 4663 Register FullCodeGenerator::context_register() { return cp; }
4644 return cp;
4645 }
4646 4664
4647 4665
4648 void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) { 4666 void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
4649 DCHECK_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset); 4667 DCHECK_EQ(static_cast<int>(POINTER_SIZE_ALIGN(frame_offset)), frame_offset);
4650 __ str(value, MemOperand(fp, frame_offset)); 4668 __ StoreP(value, MemOperand(fp, frame_offset), r0);
4651 } 4669 }
4652 4670
4653 4671
4654 void FullCodeGenerator::LoadContextField(Register dst, int context_index) { 4672 void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
4655 __ ldr(dst, ContextOperand(cp, context_index)); 4673 __ LoadP(dst, ContextOperand(cp, context_index), r0);
4656 } 4674 }
4657 4675
4658 4676
4659 void FullCodeGenerator::PushFunctionArgumentForContextAllocation() { 4677 void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
4660 Scope* declaration_scope = scope()->DeclarationScope(); 4678 Scope* declaration_scope = scope()->DeclarationScope();
4661 if (declaration_scope->is_global_scope() || 4679 if (declaration_scope->is_global_scope() ||
4662 declaration_scope->is_module_scope()) { 4680 declaration_scope->is_module_scope()) {
4663 // Contexts nested in the native context have a canonical empty function 4681 // Contexts nested in the native context have a canonical empty function
4664 // as their closure, not the anonymous closure containing the global 4682 // as their closure, not the anonymous closure containing the global
4665 // code. Pass a smi sentinel and let the runtime look up the empty 4683 // code. Pass a smi sentinel and let the runtime look up the empty
4666 // function. 4684 // function.
4667 __ mov(ip, Operand(Smi::FromInt(0))); 4685 __ LoadSmiLiteral(ip, Smi::FromInt(0));
4668 } else if (declaration_scope->is_eval_scope()) { 4686 } else if (declaration_scope->is_eval_scope()) {
4669 // Contexts created by a call to eval have the same closure as the 4687 // Contexts created by a call to eval have the same closure as the
4670 // context calling eval, not the anonymous closure containing the eval 4688 // context calling eval, not the anonymous closure containing the eval
4671 // code. Fetch it from the context. 4689 // code. Fetch it from the context.
4672 __ ldr(ip, ContextOperand(cp, Context::CLOSURE_INDEX)); 4690 __ LoadP(ip, ContextOperand(cp, Context::CLOSURE_INDEX));
4673 } else { 4691 } else {
4674 DCHECK(declaration_scope->is_function_scope()); 4692 DCHECK(declaration_scope->is_function_scope());
4675 __ ldr(ip, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 4693 __ LoadP(ip, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4676 } 4694 }
4677 __ push(ip); 4695 __ push(ip);
4678 } 4696 }
4679 4697
4680 4698
4681 // ---------------------------------------------------------------------------- 4699 // ----------------------------------------------------------------------------
4682 // Non-local control flow support. 4700 // Non-local control flow support.
4683 4701
4684 void FullCodeGenerator::EnterFinallyBlock() { 4702 void FullCodeGenerator::EnterFinallyBlock() {
4685 DCHECK(!result_register().is(r1)); 4703 DCHECK(!result_register().is(r4));
4686 // Store result register while executing finally block. 4704 // Store result register while executing finally block.
4687 __ push(result_register()); 4705 __ push(result_register());
4688 // Cook return address in link register to stack (smi encoded Code* delta) 4706 // Cook return address in link register to stack (smi encoded Code* delta)
4689 __ sub(r1, lr, Operand(masm_->CodeObject())); 4707 __ mflr(r4);
4690 __ SmiTag(r1); 4708 __ mov(ip, Operand(masm_->CodeObject()));
4709 __ sub(r4, r4, ip);
4710 __ SmiTag(r4);
4691 4711
4692 // Store result register while executing finally block. 4712 // Store result register while executing finally block.
4693 __ push(r1); 4713 __ push(r4);
4694 4714
4695 // Store pending message while executing finally block. 4715 // Store pending message while executing finally block.
4696 ExternalReference pending_message_obj = 4716 ExternalReference pending_message_obj =
4697 ExternalReference::address_of_pending_message_obj(isolate()); 4717 ExternalReference::address_of_pending_message_obj(isolate());
4698 __ mov(ip, Operand(pending_message_obj)); 4718 __ mov(ip, Operand(pending_message_obj));
4699 __ ldr(r1, MemOperand(ip)); 4719 __ LoadP(r4, MemOperand(ip));
4700 __ push(r1); 4720 __ push(r4);
4701 4721
4702 ExternalReference has_pending_message = 4722 ExternalReference has_pending_message =
4703 ExternalReference::address_of_has_pending_message(isolate()); 4723 ExternalReference::address_of_has_pending_message(isolate());
4704 __ mov(ip, Operand(has_pending_message)); 4724 __ mov(ip, Operand(has_pending_message));
4705 STATIC_ASSERT(sizeof(bool) == 1); // NOLINT(runtime/sizeof) 4725 __ lbz(r4, MemOperand(ip));
4706 __ ldrb(r1, MemOperand(ip)); 4726 __ SmiTag(r4);
4707 __ SmiTag(r1); 4727 __ push(r4);
4708 __ push(r1);
4709 4728
4710 ExternalReference pending_message_script = 4729 ExternalReference pending_message_script =
4711 ExternalReference::address_of_pending_message_script(isolate()); 4730 ExternalReference::address_of_pending_message_script(isolate());
4712 __ mov(ip, Operand(pending_message_script)); 4731 __ mov(ip, Operand(pending_message_script));
4713 __ ldr(r1, MemOperand(ip)); 4732 __ LoadP(r4, MemOperand(ip));
4714 __ push(r1); 4733 __ push(r4);
4715 } 4734 }
4716 4735
4717 4736
4718 void FullCodeGenerator::ExitFinallyBlock() { 4737 void FullCodeGenerator::ExitFinallyBlock() {
4719 DCHECK(!result_register().is(r1)); 4738 DCHECK(!result_register().is(r4));
4720 // Restore pending message from stack. 4739 // Restore pending message from stack.
4721 __ pop(r1); 4740 __ pop(r4);
4722 ExternalReference pending_message_script = 4741 ExternalReference pending_message_script =
4723 ExternalReference::address_of_pending_message_script(isolate()); 4742 ExternalReference::address_of_pending_message_script(isolate());
4724 __ mov(ip, Operand(pending_message_script)); 4743 __ mov(ip, Operand(pending_message_script));
4725 __ str(r1, MemOperand(ip)); 4744 __ StoreP(r4, MemOperand(ip));
4726 4745
4727 __ pop(r1); 4746 __ pop(r4);
4728 __ SmiUntag(r1); 4747 __ SmiUntag(r4);
4729 ExternalReference has_pending_message = 4748 ExternalReference has_pending_message =
4730 ExternalReference::address_of_has_pending_message(isolate()); 4749 ExternalReference::address_of_has_pending_message(isolate());
4731 __ mov(ip, Operand(has_pending_message)); 4750 __ mov(ip, Operand(has_pending_message));
4732 STATIC_ASSERT(sizeof(bool) == 1); // NOLINT(runtime/sizeof) 4751 __ stb(r4, MemOperand(ip));
4733 __ strb(r1, MemOperand(ip));
4734 4752
4735 __ pop(r1); 4753 __ pop(r4);
4736 ExternalReference pending_message_obj = 4754 ExternalReference pending_message_obj =
4737 ExternalReference::address_of_pending_message_obj(isolate()); 4755 ExternalReference::address_of_pending_message_obj(isolate());
4738 __ mov(ip, Operand(pending_message_obj)); 4756 __ mov(ip, Operand(pending_message_obj));
4739 __ str(r1, MemOperand(ip)); 4757 __ StoreP(r4, MemOperand(ip));
4740 4758
4741 // Restore result register from stack. 4759 // Restore result register from stack.
4742 __ pop(r1); 4760 __ pop(r4);
4743 4761
4744 // Uncook return address and return. 4762 // Uncook return address and return.
4745 __ pop(result_register()); 4763 __ pop(result_register());
4746 __ SmiUntag(r1); 4764 __ SmiUntag(r4);
4747 __ add(pc, r1, Operand(masm_->CodeObject())); 4765 __ mov(ip, Operand(masm_->CodeObject()));
4766 __ add(ip, ip, r4);
4767 __ mtctr(ip);
4768 __ bctr();
4748 } 4769 }
4749 4770
4750 4771
4751 #undef __ 4772 #undef __
4752 4773
4753 #define __ ACCESS_MASM(masm()) 4774 #define __ ACCESS_MASM(masm())
4754 4775
4755 FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit( 4776 FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit(
4756 int* stack_depth, 4777 int* stack_depth, int* context_length) {
4757 int* context_length) {
4758 // The macros used here must preserve the result register. 4778 // The macros used here must preserve the result register.
4759 4779
4760 // Because the handler block contains the context of the finally 4780 // Because the handler block contains the context of the finally
4761 // code, we can restore it directly from there for the finally code 4781 // code, we can restore it directly from there for the finally code
4762 // rather than iteratively unwinding contexts via their previous 4782 // rather than iteratively unwinding contexts via their previous
4763 // links. 4783 // links.
4764 __ Drop(*stack_depth); // Down to the handler block. 4784 __ Drop(*stack_depth); // Down to the handler block.
4765 if (*context_length > 0) { 4785 if (*context_length > 0) {
4766 // Restore the context to its dedicated register and the stack. 4786 // Restore the context to its dedicated register and the stack.
4767 __ ldr(cp, MemOperand(sp, StackHandlerConstants::kContextOffset)); 4787 __ LoadP(cp, MemOperand(sp, StackHandlerConstants::kContextOffset));
4768 __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 4788 __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4769 } 4789 }
4770 __ PopTryHandler(); 4790 __ PopTryHandler();
4771 __ bl(finally_entry_); 4791 __ b(finally_entry_, SetLK);
4772 4792
4773 *stack_depth = 0; 4793 *stack_depth = 0;
4774 *context_length = 0; 4794 *context_length = 0;
4775 return previous_; 4795 return previous_;
4776 } 4796 }
4777 4797
4778
4779 #undef __ 4798 #undef __
4780 4799
4781 4800
4782 static Address GetInterruptImmediateLoadAddress(Address pc) { 4801 void BackEdgeTable::PatchAt(Code* unoptimized_code, Address pc,
4783 Address load_address = pc - 2 * Assembler::kInstrSize;
4784 if (!FLAG_enable_ool_constant_pool) {
4785 DCHECK(Assembler::IsLdrPcImmediateOffset(Memory::int32_at(load_address)));
4786 } else if (Assembler::IsLdrPpRegOffset(Memory::int32_at(load_address))) {
4787 // This is an extended constant pool lookup.
4788 load_address -= 2 * Assembler::kInstrSize;
4789 DCHECK(Assembler::IsMovW(Memory::int32_at(load_address)));
4790 DCHECK(Assembler::IsMovT(
4791 Memory::int32_at(load_address + Assembler::kInstrSize)));
4792 } else if (Assembler::IsMovT(Memory::int32_at(load_address))) {
4793 // This is a movw_movt immediate load.
4794 load_address -= Assembler::kInstrSize;
4795 DCHECK(Assembler::IsMovW(Memory::int32_at(load_address)));
4796 } else {
4797 // This is a small constant pool lookup.
4798 DCHECK(Assembler::IsLdrPpImmediateOffset(Memory::int32_at(load_address)));
4799 }
4800 return load_address;
4801 }
4802
4803
4804 void BackEdgeTable::PatchAt(Code* unoptimized_code,
4805 Address pc,
4806 BackEdgeState target_state, 4802 BackEdgeState target_state,
4807 Code* replacement_code) { 4803 Code* replacement_code) {
4808 Address pc_immediate_load_address = GetInterruptImmediateLoadAddress(pc); 4804 Address mov_address = Assembler::target_address_from_return_address(pc);
4809 Address branch_address = pc_immediate_load_address - Assembler::kInstrSize; 4805 Address cmp_address = mov_address - 2 * Assembler::kInstrSize;
4810 CodePatcher patcher(branch_address, 1); 4806 CodePatcher patcher(cmp_address, 1);
4807
4811 switch (target_state) { 4808 switch (target_state) {
4812 case INTERRUPT: 4809 case INTERRUPT: {
4813 {
4814 // <decrement profiling counter> 4810 // <decrement profiling counter>
4815 // bpl ok 4811 // cmpi r6, 0
4816 // ; load interrupt stub address into ip - either of: 4812 // bge <ok> ;; not changed
4817 // ; <small cp load> | <extended cp load> | <immediate load> 4813 // mov r12, <interrupt stub address>
4818 // ldr ip, [pc/pp, #imm] | movw ip, #imm | movw ip, #imm 4814 // mtlr r12
4819 // | movt ip, #imm> | movw ip, #imm 4815 // blrl
4820 // | ldr ip, [pp, ip]
4821 // blx ip
4822 // <reset profiling counter> 4816 // <reset profiling counter>
4823 // ok-label 4817 // ok-label
4824 4818 patcher.masm()->cmpi(r6, Operand::Zero());
4825 // Calculate branch offset to the ok-label - this is the difference
4826 // between the branch address and |pc| (which points at <blx ip>) plus
4827 // kProfileCounterResetSequence instructions
4828 int branch_offset = pc - Instruction::kPCReadOffset - branch_address +
4829 kProfileCounterResetSequenceLength;
4830 patcher.masm()->b(branch_offset, pl);
4831 break; 4819 break;
4832 } 4820 }
4833 case ON_STACK_REPLACEMENT: 4821 case ON_STACK_REPLACEMENT:
4834 case OSR_AFTER_STACK_CHECK: 4822 case OSR_AFTER_STACK_CHECK:
4835 // <decrement profiling counter> 4823 // <decrement profiling counter>
4836 // mov r0, r0 (NOP) 4824 // crset
4837 // ; load on-stack replacement address into ip - either of: 4825 // bge <ok> ;; not changed
4838 // ; <small cp load> | <extended cp load> | <immediate load> 4826 // mov r12, <on-stack replacement address>
4839 // ldr ip, [pc/pp, #imm] | movw ip, #imm | movw ip, #imm 4827 // mtlr r12
4840 // | movt ip, #imm> | movw ip, #imm 4828 // blrl
4841 // | ldr ip, [pp, ip]
4842 // blx ip
4843 // <reset profiling counter> 4829 // <reset profiling counter>
4844 // ok-label 4830 // ok-label ----- pc_after points here
4845 patcher.masm()->nop(); 4831
4832 // Set the LT bit such that bge is a NOP
4833 patcher.masm()->crset(Assembler::encode_crbit(cr7, CR_LT));
4846 break; 4834 break;
4847 } 4835 }
4848 4836
4849 // Replace the call address. 4837 // Replace the stack check address in the mov sequence with the
4850 Assembler::set_target_address_at(pc_immediate_load_address, unoptimized_code, 4838 // entry address of the replacement code.
4851 replacement_code->entry()); 4839 Assembler::set_target_address_at(mov_address, unoptimized_code,
4840 replacement_code->entry());
4852 4841
4853 unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( 4842 unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
4854 unoptimized_code, pc_immediate_load_address, replacement_code); 4843 unoptimized_code, mov_address, replacement_code);
4855 } 4844 }
4856 4845
4857 4846
4858 BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState( 4847 BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
4859 Isolate* isolate, 4848 Isolate* isolate, Code* unoptimized_code, Address pc) {
4860 Code* unoptimized_code, 4849 Address mov_address = Assembler::target_address_from_return_address(pc);
4861 Address pc) { 4850 Address cmp_address = mov_address - 2 * Assembler::kInstrSize;
4862 DCHECK(Assembler::IsBlxIp(Memory::int32_at(pc - Assembler::kInstrSize))); 4851 Address interrupt_address =
4852 Assembler::target_address_at(mov_address, unoptimized_code);
4863 4853
4864 Address pc_immediate_load_address = GetInterruptImmediateLoadAddress(pc); 4854 if (Assembler::IsCmpImmediate(Assembler::instr_at(cmp_address))) {
4865 Address branch_address = pc_immediate_load_address - Assembler::kInstrSize; 4855 DCHECK(interrupt_address == isolate->builtins()->InterruptCheck()->entry());
4866 Address interrupt_address = Assembler::target_address_at(
4867 pc_immediate_load_address, unoptimized_code);
4868
4869 if (Assembler::IsBranch(Assembler::instr_at(branch_address))) {
4870 DCHECK(interrupt_address ==
4871 isolate->builtins()->InterruptCheck()->entry());
4872 return INTERRUPT; 4856 return INTERRUPT;
4873 } 4857 }
4874 4858
4875 DCHECK(Assembler::IsNop(Assembler::instr_at(branch_address))); 4859 DCHECK(Assembler::IsCrSet(Assembler::instr_at(cmp_address)));
4876 4860
4877 if (interrupt_address == 4861 if (interrupt_address == isolate->builtins()->OnStackReplacement()->entry()) {
4878 isolate->builtins()->OnStackReplacement()->entry()) {
4879 return ON_STACK_REPLACEMENT; 4862 return ON_STACK_REPLACEMENT;
4880 } 4863 }
4881 4864
4882 DCHECK(interrupt_address == 4865 DCHECK(interrupt_address ==
4883 isolate->builtins()->OsrAfterStackCheck()->entry()); 4866 isolate->builtins()->OsrAfterStackCheck()->entry());
4884 return OSR_AFTER_STACK_CHECK; 4867 return OSR_AFTER_STACK_CHECK;
4885 } 4868 }
4869 }
4870 } // namespace v8::internal
4886 4871
4887 4872 #endif // V8_TARGET_ARCH_PPC
4888 } } // namespace v8::internal
4889
4890 #endif // V8_TARGET_ARCH_ARM
OLDNEW
« src/hydrogen-bch.cc ('K') | « src/ppc/frames-ppc.cc ('k') | src/ppc/ic-ppc.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698