Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(386)

Side by Side Diff: src/ppc/regexp-macro-assembler-ppc.cc

Issue 422063005: Contribution of PowerPC port. (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Caught up to bleending edge (8/15) Created 6 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 //
3 // Copyright IBM Corp. 2012, 2013. All rights reserved.
4 //
5 // Use of this source code is governed by a BSD-style license that can be
6 // found in the LICENSE file.
7
8 #include "src/v8.h"
9
10 #if V8_TARGET_ARCH_PPC
11
12 #include "src/code-stubs.h"
13 #include "src/cpu-profiler.h"
14 #include "src/log.h"
15 #include "src/macro-assembler.h"
16 #include "src/regexp-macro-assembler.h"
17 #include "src/regexp-stack.h"
18 #include "src/unicode.h"
19
20 #include "src/ppc/regexp-macro-assembler-ppc.h"
21
22 namespace v8 {
23 namespace internal {
24
25 #ifndef V8_INTERPRETED_REGEXP
26 /*
27 * This assembler uses the following register assignment convention
28 * - r25: Temporarily stores the index of capture start after a matching pass
29 * for a global regexp.
30 * - r26: Pointer to current code object (Code*) including heap object tag.
31 * - r27: Current position in input, as negative offset from end of string.
32 * Please notice that this is the byte offset, not the character offset!
33 * - r28: Currently loaded character. Must be loaded using
34 * LoadCurrentCharacter before using any of the dispatch methods.
35 * - r29: Points to tip of backtrack stack
36 * - r30: End of input (points to byte after last character in input).
37 * - r31: Frame pointer. Used to access arguments, local variables and
38 * RegExp registers.
39 * - r12: IP register, used by assembler. Very volatile.
40 * - r1/sp : Points to tip of C stack.
41 *
42 * The remaining registers are free for computations.
43 * Each call to a public method should retain this convention.
44 *
45 * The stack will have the following structure:
46 * - fp[44] Isolate* isolate (address of the current isolate)
47 * - fp[40] secondary link/return address used by native call.
48 * - fp[36] lr save area (currently unused)
49 * - fp[32] backchain (currently unused)
50 * --- sp when called ---
51 * - fp[28] return address (lr).
52 * - fp[24] old frame pointer (r31).
53 * - fp[0..20] backup of registers r25..r30
54 * --- frame pointer ----
55 * - fp[-4] direct_call (if 1, direct call from JavaScript code,
56 * if 0, call through the runtime system).
57 * - fp[-8] stack_area_base (high end of the memory area to use as
58 * backtracking stack).
59 * - fp[-12] capture array size (may fit multiple sets of matches)
60 * - fp[-16] int* capture_array (int[num_saved_registers_], for output).
61 * - fp[-20] end of input (address of end of string).
62 * - fp[-24] start of input (address of first character in string).
63 * - fp[-28] start index (character index of start).
64 * - fp[-32] void* input_string (location of a handle containing the string).
65 * - fp[-36] success counter (only for global regexps to count matches).
66 * - fp[-40] Offset of location before start of input (effectively character
67 * position -1). Used to initialize capture registers to a
68 * non-position.
69 * - fp[-44] At start (if 1, we are starting at the start of the
70 * string, otherwise 0)
71 * - fp[-48] register 0 (Only positions must be stored in the first
72 * - register 1 num_saved_registers_ registers)
73 * - ...
74 * - register num_registers-1
75 * --- sp ---
76 *
77 * The first num_saved_registers_ registers are initialized to point to
78 * "character -1" in the string (i.e., char_size() bytes before the first
79 * character of the string). The remaining registers start out as garbage.
80 *
81 * The data up to the return address must be placed there by the calling
82 * code and the remaining arguments are passed in registers, e.g. by calling the
83 * code entry as cast to a function with the signature:
84 * int (*match)(String* input_string,
85 * int start_index,
86 * Address start,
87 * Address end,
88 * int* capture_output_array,
89 * byte* stack_area_base,
90 * Address secondary_return_address, // Only used by native call.
91 * bool direct_call = false)
92 * The call is performed by NativeRegExpMacroAssembler::Execute()
93 * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
94 * in ppc/simulator-ppc.h.
95 * When calling as a non-direct call (i.e., from C++ code), the return address
96 * area is overwritten with the LR register by the RegExp code. When doing a
97 * direct call from generated code, the return address is placed there by
98 * the calling code, as in a normal exit frame.
99 */
100
101 #define __ ACCESS_MASM(masm_)
102
103 RegExpMacroAssemblerPPC::RegExpMacroAssemblerPPC(
104 Mode mode,
105 int registers_to_save,
106 Zone* zone)
107 : NativeRegExpMacroAssembler(zone),
108 masm_(new MacroAssembler(zone->isolate(), NULL, kRegExpCodeSize)),
109 mode_(mode),
110 num_registers_(registers_to_save),
111 num_saved_registers_(registers_to_save),
112 entry_label_(),
113 start_label_(),
114 success_label_(),
115 backtrack_label_(),
116 exit_label_(),
117 internal_failure_label_() {
118 DCHECK_EQ(0, registers_to_save % 2);
119
120 // Called from C
121 #if ABI_USES_FUNCTION_DESCRIPTORS
122 __ function_descriptor();
123 #endif
124
125 __ b(&entry_label_); // We'll write the entry code later.
126 // If the code gets too big or corrupted, an internal exception will be
127 // raised, and we will exit right away.
128 __ bind(&internal_failure_label_);
129 __ li(r3, Operand(FAILURE));
130 __ Ret();
131 __ bind(&start_label_); // And then continue from here.
132 }
133
134
135 RegExpMacroAssemblerPPC::~RegExpMacroAssemblerPPC() {
136 delete masm_;
137 // Unuse labels in case we throw away the assembler without calling GetCode.
138 entry_label_.Unuse();
139 start_label_.Unuse();
140 success_label_.Unuse();
141 backtrack_label_.Unuse();
142 exit_label_.Unuse();
143 check_preempt_label_.Unuse();
144 stack_overflow_label_.Unuse();
145 internal_failure_label_.Unuse();
146 }
147
148
149 int RegExpMacroAssemblerPPC::stack_limit_slack() {
150 return RegExpStack::kStackLimitSlack;
151 }
152
153
154 void RegExpMacroAssemblerPPC::AdvanceCurrentPosition(int by) {
155 if (by != 0) {
156 __ addi(current_input_offset(),
157 current_input_offset(), Operand(by * char_size()));
158 }
159 }
160
161
162 void RegExpMacroAssemblerPPC::AdvanceRegister(int reg, int by) {
163 DCHECK(reg >= 0);
164 DCHECK(reg < num_registers_);
165 if (by != 0) {
166 __ LoadP(r3, register_location(reg), r0);
167 __ mov(r0, Operand(by));
168 __ add(r3, r3, r0);
169 __ StoreP(r3, register_location(reg), r0);
170 }
171 }
172
173
174 void RegExpMacroAssemblerPPC::Backtrack() {
175 CheckPreemption();
176 // Pop Code* offset from backtrack stack, add Code* and jump to location.
177 Pop(r3);
178 __ add(r3, r3, code_pointer());
179 __ mtctr(r3);
180 __ bctr();
181 }
182
183
184 void RegExpMacroAssemblerPPC::Bind(Label* label) {
185 __ bind(label);
186 }
187
188
189 void RegExpMacroAssemblerPPC::CheckCharacter(uint32_t c, Label* on_equal) {
190 __ Cmpli(current_character(), Operand(c), r0);
191 BranchOrBacktrack(eq, on_equal);
192 }
193
194
195 void RegExpMacroAssemblerPPC::CheckCharacterGT(uc16 limit, Label* on_greater) {
196 __ Cmpli(current_character(), Operand(limit), r0);
197 BranchOrBacktrack(gt, on_greater);
198 }
199
200
201 void RegExpMacroAssemblerPPC::CheckAtStart(Label* on_at_start) {
202 Label not_at_start;
203 // Did we start the match at the start of the string at all?
204 __ LoadP(r3, MemOperand(frame_pointer(), kStartIndex));
205 __ cmpi(r3, Operand::Zero());
206 BranchOrBacktrack(ne, &not_at_start);
207
208 // If we did, are we still at the start of the input?
209 __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
210 __ mr(r0, current_input_offset());
211 __ add(r3, end_of_input_address(), r0);
212 __ cmp(r4, r3);
213 BranchOrBacktrack(eq, on_at_start);
214 __ bind(&not_at_start);
215 }
216
217
218 void RegExpMacroAssemblerPPC::CheckNotAtStart(Label* on_not_at_start) {
219 // Did we start the match at the start of the string at all?
220 __ LoadP(r3, MemOperand(frame_pointer(), kStartIndex));
221 __ cmpi(r3, Operand::Zero());
222 BranchOrBacktrack(ne, on_not_at_start);
223 // If we did, are we still at the start of the input?
224 __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
225 __ add(r3, end_of_input_address(), current_input_offset());
226 __ cmp(r3, r4);
227 BranchOrBacktrack(ne, on_not_at_start);
228 }
229
230
231 void RegExpMacroAssemblerPPC::CheckCharacterLT(uc16 limit, Label* on_less) {
232 __ Cmpli(current_character(), Operand(limit), r0);
233 BranchOrBacktrack(lt, on_less);
234 }
235
236
237 void RegExpMacroAssemblerPPC::CheckGreedyLoop(Label* on_equal) {
238 Label backtrack_non_equal;
239 __ LoadP(r3, MemOperand(backtrack_stackpointer(), 0));
240 __ cmp(current_input_offset(), r3);
241 __ bne(&backtrack_non_equal);
242 __ addi(backtrack_stackpointer(),
243 backtrack_stackpointer(), Operand(kPointerSize));
244
245 __ bind(&backtrack_non_equal);
246 BranchOrBacktrack(eq, on_equal);
247 }
248
249
250 void RegExpMacroAssemblerPPC::CheckNotBackReferenceIgnoreCase(
251 int start_reg,
252 Label* on_no_match) {
253 Label fallthrough;
254 __ LoadP(r3, register_location(start_reg), r0); // Index of start of capture
255 __ LoadP(r4, register_location(start_reg + 1), r0); // Index of end
256 __ sub(r4, r4, r3, LeaveOE, SetRC); // Length of capture.
257
258 // If length is zero, either the capture is empty or it is not participating.
259 // In either case succeed immediately.
260 __ beq(&fallthrough, cr0);
261
262 // Check that there are enough characters left in the input.
263 __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
264 // __ cmn(r1, Operand(current_input_offset()));
265 BranchOrBacktrack(gt, on_no_match, cr0);
266
267 if (mode_ == ASCII) {
268 Label success;
269 Label fail;
270 Label loop_check;
271
272 // r3 - offset of start of capture
273 // r4 - length of capture
274 __ add(r3, r3, end_of_input_address());
275 __ add(r5, end_of_input_address(), current_input_offset());
276 __ add(r4, r3, r4);
277
278 // r3 - Address of start of capture.
279 // r4 - Address of end of capture
280 // r5 - Address of current input position.
281
282 Label loop;
283 __ bind(&loop);
284 __ lbz(r6, MemOperand(r3));
285 __ addi(r3, r3, Operand(char_size()));
286 __ lbz(r25, MemOperand(r5));
287 __ addi(r5, r5, Operand(char_size()));
288 __ cmp(r25, r6);
289 __ beq(&loop_check);
290
291 // Mismatch, try case-insensitive match (converting letters to lower-case).
292 __ ori(r6, r6, Operand(0x20)); // Convert capture character to lower-case.
293 __ ori(r25, r25, Operand(0x20)); // Also convert input character.
294 __ cmp(r25, r6);
295 __ bne(&fail);
296 __ subi(r6, r6, Operand('a'));
297 __ cmpli(r6, Operand('z' - 'a')); // Is r6 a lowercase letter?
298 __ ble(&loop_check); // In range 'a'-'z'.
299 // Latin-1: Check for values in range [224,254] but not 247.
300 __ subi(r6, r6, Operand(224 - 'a'));
301 __ cmpli(r6, Operand(254 - 224));
302 __ bgt(&fail); // Weren't Latin-1 letters.
303 __ cmpi(r6, Operand(247 - 224)); // Check for 247.
304 __ beq(&fail);
305
306 __ bind(&loop_check);
307 __ cmp(r3, r4);
308 __ blt(&loop);
309 __ b(&success);
310
311 __ bind(&fail);
312 BranchOrBacktrack(al, on_no_match);
313
314 __ bind(&success);
315 // Compute new value of character position after the matched part.
316 __ sub(current_input_offset(), r5, end_of_input_address());
317 } else {
318 DCHECK(mode_ == UC16);
319 int argument_count = 4;
320 __ PrepareCallCFunction(argument_count, r5);
321
322 // r3 - offset of start of capture
323 // r4 - length of capture
324
325 // Put arguments into arguments registers.
326 // Parameters are
327 // r3: Address byte_offset1 - Address captured substring's start.
328 // r4: Address byte_offset2 - Address of current character position.
329 // r5: size_t byte_length - length of capture in bytes(!)
330 // r6: Isolate* isolate
331
332 // Address of start of capture.
333 __ add(r3, r3, end_of_input_address());
334 // Length of capture.
335 __ mr(r5, r4);
336 // Save length in callee-save register for use on return.
337 __ mr(r25, r4);
338 // Address of current input position.
339 __ add(r4, current_input_offset(), end_of_input_address());
340 // Isolate.
341 __ mov(r6, Operand(ExternalReference::isolate_address(isolate())));
342
343 {
344 AllowExternalCallThatCantCauseGC scope(masm_);
345 ExternalReference function =
346 ExternalReference::re_case_insensitive_compare_uc16(isolate());
347 __ CallCFunction(function, argument_count);
348 }
349
350 // Check if function returned non-zero for success or zero for failure.
351 __ cmpi(r3, Operand::Zero());
352 BranchOrBacktrack(eq, on_no_match);
353 // On success, increment position by length of capture.
354 __ add(current_input_offset(), current_input_offset(), r25);
355 }
356
357 __ bind(&fallthrough);
358 }
359
360
361 void RegExpMacroAssemblerPPC::CheckNotBackReference(
362 int start_reg,
363 Label* on_no_match) {
364 Label fallthrough;
365 Label success;
366
367 // Find length of back-referenced capture.
368 __ LoadP(r3, register_location(start_reg), r0);
369 __ LoadP(r4, register_location(start_reg + 1), r0);
370 __ sub(r4, r4, r3, LeaveOE, SetRC); // Length to check.
371 // Succeed on empty capture (including no capture).
372 __ beq(&fallthrough, cr0);
373
374 // Check that there are enough characters left in the input.
375 __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
376 BranchOrBacktrack(gt, on_no_match, cr0);
377
378 // Compute pointers to match string and capture string
379 __ add(r3, r3, end_of_input_address());
380 __ add(r5, end_of_input_address(), current_input_offset());
381 __ add(r4, r4, r3);
382
383 Label loop;
384 __ bind(&loop);
385 if (mode_ == ASCII) {
386 __ lbz(r6, MemOperand(r3));
387 __ addi(r3, r3, Operand(char_size()));
388 __ lbz(r25, MemOperand(r5));
389 __ addi(r5, r5, Operand(char_size()));
390 } else {
391 DCHECK(mode_ == UC16);
392 __ lhz(r6, MemOperand(r3));
393 __ addi(r3, r3, Operand(char_size()));
394 __ lhz(r25, MemOperand(r5));
395 __ addi(r5, r5, Operand(char_size()));
396 }
397 __ cmp(r6, r25);
398 BranchOrBacktrack(ne, on_no_match);
399 __ cmp(r3, r4);
400 __ blt(&loop);
401
402 // Move current character position to position after match.
403 __ sub(current_input_offset(), r5, end_of_input_address());
404 __ bind(&fallthrough);
405 }
406
407
408 void RegExpMacroAssemblerPPC::CheckNotCharacter(unsigned c,
409 Label* on_not_equal) {
410 __ Cmpli(current_character(), Operand(c), r0);
411 BranchOrBacktrack(ne, on_not_equal);
412 }
413
414
415 void RegExpMacroAssemblerPPC::CheckCharacterAfterAnd(uint32_t c,
416 uint32_t mask,
417 Label* on_equal) {
418 __ mov(r0, Operand(mask));
419 if (c == 0) {
420 __ and_(r3, current_character(), r0, SetRC);
421 } else {
422 __ and_(r3, current_character(), r0);
423 __ Cmpli(r3, Operand(c), r0, cr0);
424 }
425 BranchOrBacktrack(eq, on_equal, cr0);
426 }
427
428
429 void RegExpMacroAssemblerPPC::CheckNotCharacterAfterAnd(unsigned c,
430 unsigned mask,
431 Label* on_not_equal) {
432 __ mov(r0, Operand(mask));
433 if (c == 0) {
434 __ and_(r3, current_character(), r0, SetRC);
435 } else {
436 __ and_(r3, current_character(), r0);
437 __ Cmpli(r3, Operand(c), r0, cr0);
438 }
439 BranchOrBacktrack(ne, on_not_equal, cr0);
440 }
441
442
443 void RegExpMacroAssemblerPPC::CheckNotCharacterAfterMinusAnd(
444 uc16 c,
445 uc16 minus,
446 uc16 mask,
447 Label* on_not_equal) {
448 DCHECK(minus < String::kMaxUtf16CodeUnit);
449 __ subi(r3, current_character(), Operand(minus));
450 __ mov(r0, Operand(mask));
451 __ and_(r3, r3, r0);
452 __ Cmpli(r3, Operand(c), r0);
453 BranchOrBacktrack(ne, on_not_equal);
454 }
455
456
457 void RegExpMacroAssemblerPPC::CheckCharacterInRange(
458 uc16 from,
459 uc16 to,
460 Label* on_in_range) {
461 __ mov(r0, Operand(from));
462 __ sub(r3, current_character(), r0);
463 __ Cmpli(r3, Operand(to - from), r0);
464 BranchOrBacktrack(le, on_in_range); // Unsigned lower-or-same condition.
465 }
466
467
468 void RegExpMacroAssemblerPPC::CheckCharacterNotInRange(
469 uc16 from,
470 uc16 to,
471 Label* on_not_in_range) {
472 __ mov(r0, Operand(from));
473 __ sub(r3, current_character(), r0);
474 __ Cmpli(r3, Operand(to - from), r0);
475 BranchOrBacktrack(gt, on_not_in_range); // Unsigned higher condition.
476 }
477
478
479 void RegExpMacroAssemblerPPC::CheckBitInTable(
480 Handle<ByteArray> table,
481 Label* on_bit_set) {
482 __ mov(r3, Operand(table));
483 if (mode_ != ASCII || kTableMask != String::kMaxOneByteCharCode) {
484 __ andi(r4, current_character(), Operand(kTableSize - 1));
485 __ addi(r4, r4, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
486 } else {
487 __ addi(r4,
488 current_character(),
489 Operand(ByteArray::kHeaderSize - kHeapObjectTag));
490 }
491 __ lbzx(r3, MemOperand(r3, r4));
492 __ cmpi(r3, Operand::Zero());
493 BranchOrBacktrack(ne, on_bit_set);
494 }
495
496
497 bool RegExpMacroAssemblerPPC::CheckSpecialCharacterClass(uc16 type,
498 Label* on_no_match) {
499 // Range checks (c in min..max) are generally implemented by an unsigned
500 // (c - min) <= (max - min) check
501 switch (type) {
502 case 's':
503 // Match space-characters
504 if (mode_ == ASCII) {
505 // One byte space characters are '\t'..'\r', ' ' and \u00a0.
506 Label success;
507 __ cmpi(current_character(), Operand(' '));
508 __ beq(&success);
509 // Check range 0x09..0x0d
510 __ subi(r3, current_character(), Operand('\t'));
511 __ cmpli(r3, Operand('\r' - '\t'));
512 __ ble(&success);
513 // \u00a0 (NBSP).
514 __ cmpi(r3, Operand(0x00a0 - '\t'));
515 BranchOrBacktrack(ne, on_no_match);
516 __ bind(&success);
517 return true;
518 }
519 return false;
520 case 'S':
521 // The emitted code for generic character classes is good enough.
522 return false;
523 case 'd':
524 // Match ASCII digits ('0'..'9')
525 __ subi(r3, current_character(), Operand('0'));
526 __ cmpli(r3, Operand('9' - '0'));
527 BranchOrBacktrack(gt, on_no_match);
528 return true;
529 case 'D':
530 // Match non ASCII-digits
531 __ subi(r3, current_character(), Operand('0'));
532 __ cmpli(r3, Operand('9' - '0'));
533 BranchOrBacktrack(le, on_no_match);
534 return true;
535 case '.': {
536 // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
537 __ xori(r3, current_character(), Operand(0x01));
538 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
539 __ subi(r3, r3, Operand(0x0b));
540 __ cmpli(r3, Operand(0x0c - 0x0b));
541 BranchOrBacktrack(le, on_no_match);
542 if (mode_ == UC16) {
543 // Compare original value to 0x2028 and 0x2029, using the already
544 // computed (current_char ^ 0x01 - 0x0b). I.e., check for
545 // 0x201d (0x2028 - 0x0b) or 0x201e.
546 __ subi(r3, r3, Operand(0x2028 - 0x0b));
547 __ cmpli(r3, Operand(1));
548 BranchOrBacktrack(le, on_no_match);
549 }
550 return true;
551 }
552 case 'n': {
553 // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
554 __ xori(r3, current_character(), Operand(0x01));
555 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
556 __ subi(r3, r3, Operand(0x0b));
557 __ cmpli(r3, Operand(0x0c - 0x0b));
558 if (mode_ == ASCII) {
559 BranchOrBacktrack(gt, on_no_match);
560 } else {
561 Label done;
562 __ ble(&done);
563 // Compare original value to 0x2028 and 0x2029, using the already
564 // computed (current_char ^ 0x01 - 0x0b). I.e., check for
565 // 0x201d (0x2028 - 0x0b) or 0x201e.
566 __ subi(r3, r3, Operand(0x2028 - 0x0b));
567 __ cmpli(r3, Operand(1));
568 BranchOrBacktrack(gt, on_no_match);
569 __ bind(&done);
570 }
571 return true;
572 }
573 case 'w': {
574 if (mode_ != ASCII) {
575 // Table is 128 entries, so all ASCII characters can be tested.
576 __ cmpi(current_character(), Operand('z'));
577 BranchOrBacktrack(gt, on_no_match);
578 }
579 ExternalReference map = ExternalReference::re_word_character_map();
580 __ mov(r3, Operand(map));
581 __ lbzx(r3, MemOperand(r3, current_character()));
582 __ cmpli(r3, Operand::Zero());
583 BranchOrBacktrack(eq, on_no_match);
584 return true;
585 }
586 case 'W': {
587 Label done;
588 if (mode_ != ASCII) {
589 // Table is 128 entries, so all ASCII characters can be tested.
590 __ cmpli(current_character(), Operand('z'));
591 __ bgt(&done);
592 }
593 ExternalReference map = ExternalReference::re_word_character_map();
594 __ mov(r3, Operand(map));
595 __ lbzx(r3, MemOperand(r3, current_character()));
596 __ cmpli(r3, Operand::Zero());
597 BranchOrBacktrack(ne, on_no_match);
598 if (mode_ != ASCII) {
599 __ bind(&done);
600 }
601 return true;
602 }
603 case '*':
604 // Match any character.
605 return true;
606 // No custom implementation (yet): s(UC16), S(UC16).
607 default:
608 return false;
609 }
610 }
611
612
613 void RegExpMacroAssemblerPPC::Fail() {
614 __ li(r3, Operand(FAILURE));
615 __ b(&exit_label_);
616 }
617
618
619 Handle<HeapObject> RegExpMacroAssemblerPPC::GetCode(Handle<String> source) {
620 Label return_r3;
621
622 if (masm_->has_exception()) {
623 // If the code gets corrupted due to long regular expressions and lack of
624 // space on trampolines, an internal exception flag is set. If this case
625 // is detected, we will jump into exit sequence right away.
626 __ bind_to(&entry_label_, internal_failure_label_.pos());
627 } else {
628 // Finalize code - write the entry point code now we know how many
629 // registers we need.
630
631 // Entry code:
632 __ bind(&entry_label_);
633
634 // Tell the system that we have a stack frame. Because the type
635 // is MANUAL, no is generated.
636 FrameScope scope(masm_, StackFrame::MANUAL);
637
638 // Ensure register assigments are consistent with callee save mask
639 DCHECK(r25.bit() & kRegExpCalleeSaved);
640 DCHECK(code_pointer().bit() & kRegExpCalleeSaved);
641 DCHECK(current_input_offset().bit() & kRegExpCalleeSaved);
642 DCHECK(current_character().bit() & kRegExpCalleeSaved);
643 DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved);
644 DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved);
645 DCHECK(frame_pointer().bit() & kRegExpCalleeSaved);
646
647 // Actually emit code to start a new stack frame.
648 // Push arguments
649 // Save callee-save registers.
650 // Start new stack frame.
651 // Store link register in existing stack-cell.
652 // Order here should correspond to order of offset constants in header file.
653 RegList registers_to_retain = kRegExpCalleeSaved;
654 RegList argument_registers = r3.bit() | r4.bit() | r5.bit() | r6.bit() |
655 r7.bit() | r8.bit() | r9.bit() | r10.bit();
656 __ mflr(r0);
657 __ push(r0);
658 __ MultiPush(argument_registers | registers_to_retain);
659 // Set frame pointer in space for it if this is not a direct call
660 // from generated code.
661 __ addi(frame_pointer(), sp, Operand(8 * kPointerSize));
662 __ li(r3, Operand::Zero());
663 __ push(r3); // Make room for success counter and initialize it to 0.
664 __ push(r3); // Make room for "position - 1" constant (value is irrelevant)
665 // Check if we have space on the stack for registers.
666 Label stack_limit_hit;
667 Label stack_ok;
668
669 ExternalReference stack_limit =
670 ExternalReference::address_of_stack_limit(isolate());
671 __ mov(r3, Operand(stack_limit));
672 __ LoadP(r3, MemOperand(r3));
673 __ sub(r3, sp, r3, LeaveOE, SetRC);
674 // Handle it if the stack pointer is already below the stack limit.
675 __ ble(&stack_limit_hit, cr0);
676 // Check if there is room for the variable number of registers above
677 // the stack limit.
678 __ Cmpli(r3, Operand(num_registers_ * kPointerSize), r0);
679 __ bge(&stack_ok);
680 // Exit with OutOfMemory exception. There is not enough space on the stack
681 // for our working registers.
682 __ li(r3, Operand(EXCEPTION));
683 __ b(&return_r3);
684
685 __ bind(&stack_limit_hit);
686 CallCheckStackGuardState(r3);
687 __ cmpi(r3, Operand::Zero());
688 // If returned value is non-zero, we exit with the returned value as result.
689 __ bne(&return_r3);
690
691 __ bind(&stack_ok);
692
693 // Allocate space on stack for registers.
694 __ Add(sp, sp, -num_registers_ * kPointerSize, r0);
695 // Load string end.
696 __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
697 // Load input start.
698 __ LoadP(r3, MemOperand(frame_pointer(), kInputStart));
699 // Find negative length (offset of start relative to end).
700 __ sub(current_input_offset(), r3, end_of_input_address());
701 // Set r3 to address of char before start of the input string
702 // (effectively string position -1).
703 __ LoadP(r4, MemOperand(frame_pointer(), kStartIndex));
704 __ subi(r3, current_input_offset(), Operand(char_size()));
705 if (mode_ == UC16) {
706 __ ShiftLeftImm(r0, r4, Operand(1));
707 __ sub(r3, r3, r0);
708 } else {
709 __ sub(r3, r3, r4);
710 }
711 // Store this value in a local variable, for use when clearing
712 // position registers.
713 __ StoreP(r3, MemOperand(frame_pointer(), kInputStartMinusOne));
714
715 // Initialize code pointer register
716 __ mov(code_pointer(), Operand(masm_->CodeObject()));
717
718 Label load_char_start_regexp, start_regexp;
719 // Load newline if index is at start, previous character otherwise.
720 __ cmpi(r4, Operand::Zero());
721 __ bne(&load_char_start_regexp);
722 __ li(current_character(), Operand('\n'));
723 __ b(&start_regexp);
724
725 // Global regexp restarts matching here.
726 __ bind(&load_char_start_regexp);
727 // Load previous char as initial value of current character register.
728 LoadCurrentCharacterUnchecked(-1, 1);
729 __ bind(&start_regexp);
730
731 // Initialize on-stack registers.
732 if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
733 // Fill saved registers with initial value = start offset - 1
734 if (num_saved_registers_ > 8) {
735 // One slot beyond address of register 0.
736 __ addi(r4, frame_pointer(), Operand(kRegisterZero + kPointerSize));
737 __ li(r5, Operand(num_saved_registers_));
738 __ mtctr(r5);
739 Label init_loop;
740 __ bind(&init_loop);
741 __ StorePU(r3, MemOperand(r4, -kPointerSize));
742 __ bdnz(&init_loop);
743 } else {
744 for (int i = 0; i < num_saved_registers_; i++) {
745 __ StoreP(r3, register_location(i), r0);
746 }
747 }
748 }
749
750 // Initialize backtrack stack pointer.
751 __ LoadP(backtrack_stackpointer(),
752 MemOperand(frame_pointer(), kStackHighEnd));
753
754 __ b(&start_label_);
755
756 // Exit code:
757 if (success_label_.is_linked()) {
758 // Save captures when successful.
759 __ bind(&success_label_);
760 if (num_saved_registers_ > 0) {
761 // copy captures to output
762 __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
763 __ LoadP(r3, MemOperand(frame_pointer(), kRegisterOutput));
764 __ LoadP(r5, MemOperand(frame_pointer(), kStartIndex));
765 __ sub(r4, end_of_input_address(), r4);
766 // r4 is length of input in bytes.
767 if (mode_ == UC16) {
768 __ ShiftRightImm(r4, r4, Operand(1));
769 }
770 // r4 is length of input in characters.
771 __ add(r4, r4, r5);
772 // r4 is length of string in characters.
773
774 DCHECK_EQ(0, num_saved_registers_ % 2);
775 // Always an even number of capture registers. This allows us to
776 // unroll the loop once to add an operation between a load of a register
777 // and the following use of that register.
778 for (int i = 0; i < num_saved_registers_; i += 2) {
779 __ LoadP(r5, register_location(i), r0);
780 __ LoadP(r6, register_location(i + 1), r0);
781 if (i == 0 && global_with_zero_length_check()) {
782 // Keep capture start in r25 for the zero-length check later.
783 __ mr(r25, r5);
784 }
785 if (mode_ == UC16) {
786 __ ShiftRightArithImm(r5, r5, 1);
787 __ add(r5, r4, r5);
788 __ ShiftRightArithImm(r6, r6, 1);
789 __ add(r6, r4, r6);
790 } else {
791 __ add(r5, r4, r5);
792 __ add(r6, r4, r6);
793 }
794 __ stw(r5, MemOperand(r3));
795 __ addi(r3, r3, Operand(kIntSize));
796 __ stw(r6, MemOperand(r3));
797 __ addi(r3, r3, Operand(kIntSize));
798 }
799 }
800
801 if (global()) {
802 // Restart matching if the regular expression is flagged as global.
803 __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
804 __ LoadP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
805 __ LoadP(r5, MemOperand(frame_pointer(), kRegisterOutput));
806 // Increment success counter.
807 __ addi(r3, r3, Operand(1));
808 __ StoreP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
809 // Capture results have been stored, so the number of remaining global
810 // output registers is reduced by the number of stored captures.
811 __ subi(r4, r4, Operand(num_saved_registers_));
812 // Check whether we have enough room for another set of capture results.
813 __ cmpi(r4, Operand(num_saved_registers_));
814 __ blt(&return_r3);
815
816 __ StoreP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
817 // Advance the location for output.
818 __ addi(r5, r5, Operand(num_saved_registers_ * kIntSize));
819 __ StoreP(r5, MemOperand(frame_pointer(), kRegisterOutput));
820
821 // Prepare r3 to initialize registers with its value in the next run.
822 __ LoadP(r3, MemOperand(frame_pointer(), kInputStartMinusOne));
823
824 if (global_with_zero_length_check()) {
825 // Special case for zero-length matches.
826 // r25: capture start index
827 __ cmp(current_input_offset(), r25);
828 // Not a zero-length match, restart.
829 __ bne(&load_char_start_regexp);
830 // Offset from the end is zero if we already reached the end.
831 __ cmpi(current_input_offset(), Operand::Zero());
832 __ beq(&exit_label_);
833 // Advance current position after a zero-length match.
834 __ addi(current_input_offset(),
835 current_input_offset(),
836 Operand((mode_ == UC16) ? 2 : 1));
837 }
838
839 __ b(&load_char_start_regexp);
840 } else {
841 __ li(r3, Operand(SUCCESS));
842 }
843 }
844
845 // Exit and return r3
846 __ bind(&exit_label_);
847 if (global()) {
848 __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
849 }
850
851 __ bind(&return_r3);
852 // Skip sp past regexp registers and local variables..
853 __ mr(sp, frame_pointer());
854 // Restore registers r25..r31 and return (restoring lr to pc).
855 __ MultiPop(registers_to_retain);
856 __ pop(r0);
857 __ mtctr(r0);
858 __ bctr();
859
860 // Backtrack code (branch target for conditional backtracks).
861 if (backtrack_label_.is_linked()) {
862 __ bind(&backtrack_label_);
863 Backtrack();
864 }
865
866 Label exit_with_exception;
867
868 // Preempt-code
869 if (check_preempt_label_.is_linked()) {
870 SafeCallTarget(&check_preempt_label_);
871
872 CallCheckStackGuardState(r3);
873 __ cmpi(r3, Operand::Zero());
874 // If returning non-zero, we should end execution with the given
875 // result as return value.
876 __ bne(&return_r3);
877
878 // String might have moved: Reload end of string from frame.
879 __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
880 SafeReturn();
881 }
882
883 // Backtrack stack overflow code.
884 if (stack_overflow_label_.is_linked()) {
885 SafeCallTarget(&stack_overflow_label_);
886 // Reached if the backtrack-stack limit has been hit.
887 Label grow_failed;
888
889 // Call GrowStack(backtrack_stackpointer(), &stack_base)
890 static const int num_arguments = 3;
891 __ PrepareCallCFunction(num_arguments, r3);
892 __ mr(r3, backtrack_stackpointer());
893 __ addi(r4, frame_pointer(), Operand(kStackHighEnd));
894 __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
895 ExternalReference grow_stack =
896 ExternalReference::re_grow_stack(isolate());
897 __ CallCFunction(grow_stack, num_arguments);
898 // If return NULL, we have failed to grow the stack, and
899 // must exit with a stack-overflow exception.
900 __ cmpi(r3, Operand::Zero());
901 __ beq(&exit_with_exception);
902 // Otherwise use return value as new stack pointer.
903 __ mr(backtrack_stackpointer(), r3);
904 // Restore saved registers and continue.
905 SafeReturn();
906 }
907
908 if (exit_with_exception.is_linked()) {
909 // If any of the code above needed to exit with an exception.
910 __ bind(&exit_with_exception);
911 // Exit with Result EXCEPTION(-1) to signal thrown exception.
912 __ li(r3, Operand(EXCEPTION));
913 __ b(&return_r3);
914 }
915 }
916
917 CodeDesc code_desc;
918 masm_->GetCode(&code_desc);
919 Handle<Code> code = isolate()->factory()->NewCode(
920 code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
921 PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
922 return Handle<HeapObject>::cast(code);
923 }
924
925
926 void RegExpMacroAssemblerPPC::GoTo(Label* to) {
927 BranchOrBacktrack(al, to);
928 }
929
930
931 void RegExpMacroAssemblerPPC::IfRegisterGE(int reg,
932 int comparand,
933 Label* if_ge) {
934 __ LoadP(r3, register_location(reg), r0);
935 __ Cmpi(r3, Operand(comparand), r0);
936 BranchOrBacktrack(ge, if_ge);
937 }
938
939
940 void RegExpMacroAssemblerPPC::IfRegisterLT(int reg,
941 int comparand,
942 Label* if_lt) {
943 __ LoadP(r3, register_location(reg), r0);
944 __ Cmpi(r3, Operand(comparand), r0);
945 BranchOrBacktrack(lt, if_lt);
946 }
947
948
949 void RegExpMacroAssemblerPPC::IfRegisterEqPos(int reg,
950 Label* if_eq) {
951 __ LoadP(r3, register_location(reg), r0);
952 __ cmp(r3, current_input_offset());
953 BranchOrBacktrack(eq, if_eq);
954 }
955
956
957 RegExpMacroAssembler::IrregexpImplementation
958 RegExpMacroAssemblerPPC::Implementation() {
959 return kPPCImplementation;
960 }
961
962
963 void RegExpMacroAssemblerPPC::LoadCurrentCharacter(int cp_offset,
964 Label* on_end_of_input,
965 bool check_bounds,
966 int characters) {
967 DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
968 DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works)
969 if (check_bounds) {
970 CheckPosition(cp_offset + characters - 1, on_end_of_input);
971 }
972 LoadCurrentCharacterUnchecked(cp_offset, characters);
973 }
974
975
976 void RegExpMacroAssemblerPPC::PopCurrentPosition() {
977 Pop(current_input_offset());
978 }
979
980
981 void RegExpMacroAssemblerPPC::PopRegister(int register_index) {
982 Pop(r3);
983 __ StoreP(r3, register_location(register_index), r0);
984 }
985
986
987 void RegExpMacroAssemblerPPC::PushBacktrack(Label* label) {
988 __ mov_label_offset(r3, label);
989 Push(r3);
990 CheckStackLimit();
991 }
992
993
994 void RegExpMacroAssemblerPPC::PushCurrentPosition() {
995 Push(current_input_offset());
996 }
997
998
999 void RegExpMacroAssemblerPPC::PushRegister(int register_index,
1000 StackCheckFlag check_stack_limit) {
1001 __ LoadP(r3, register_location(register_index), r0);
1002 Push(r3);
1003 if (check_stack_limit) CheckStackLimit();
1004 }
1005
1006
1007 void RegExpMacroAssemblerPPC::ReadCurrentPositionFromRegister(int reg) {
1008 __ LoadP(current_input_offset(), register_location(reg), r0);
1009 }
1010
1011
1012 void RegExpMacroAssemblerPPC::ReadStackPointerFromRegister(int reg) {
1013 __ LoadP(backtrack_stackpointer(), register_location(reg), r0);
1014 __ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd));
1015 __ add(backtrack_stackpointer(), backtrack_stackpointer(), r3);
1016 }
1017
1018
1019 void RegExpMacroAssemblerPPC::SetCurrentPositionFromEnd(int by) {
1020 Label after_position;
1021 __ Cmpi(current_input_offset(), Operand(-by * char_size()), r0);
1022 __ bge(&after_position);
1023 __ mov(current_input_offset(), Operand(-by * char_size()));
1024 // On RegExp code entry (where this operation is used), the character before
1025 // the current position is expected to be already loaded.
1026 // We have advanced the position, so it's safe to read backwards.
1027 LoadCurrentCharacterUnchecked(-1, 1);
1028 __ bind(&after_position);
1029 }
1030
1031
1032 void RegExpMacroAssemblerPPC::SetRegister(int register_index, int to) {
1033 DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
1034 __ mov(r3, Operand(to));
1035 __ StoreP(r3, register_location(register_index), r0);
1036 }
1037
1038
1039 bool RegExpMacroAssemblerPPC::Succeed() {
1040 __ b(&success_label_);
1041 return global();
1042 }
1043
1044
1045 void RegExpMacroAssemblerPPC::WriteCurrentPositionToRegister(int reg,
1046 int cp_offset) {
1047 if (cp_offset == 0) {
1048 __ StoreP(current_input_offset(), register_location(reg), r0);
1049 } else {
1050 __ mov(r0, Operand(cp_offset * char_size()));
1051 __ add(r3, current_input_offset(), r0);
1052 __ StoreP(r3, register_location(reg), r0);
1053 }
1054 }
1055
1056
1057 void RegExpMacroAssemblerPPC::ClearRegisters(int reg_from, int reg_to) {
1058 DCHECK(reg_from <= reg_to);
1059 __ LoadP(r3, MemOperand(frame_pointer(), kInputStartMinusOne));
1060 for (int reg = reg_from; reg <= reg_to; reg++) {
1061 __ StoreP(r3, register_location(reg), r0);
1062 }
1063 }
1064
1065
1066 void RegExpMacroAssemblerPPC::WriteStackPointerToRegister(int reg) {
1067 __ LoadP(r4, MemOperand(frame_pointer(), kStackHighEnd));
1068 __ sub(r3, backtrack_stackpointer(), r4);
1069 __ StoreP(r3, register_location(reg), r0);
1070 }
1071
1072
1073 // Private methods:
1074
1075 void RegExpMacroAssemblerPPC::CallCheckStackGuardState(Register scratch) {
1076 int frame_alignment = masm_->ActivationFrameAlignment();
1077 int stack_space = kNumRequiredStackFrameSlots;
1078 int stack_passed_arguments = 1; // space for return address pointer
1079
1080 // The following stack manipulation logic is similar to
1081 // PrepareCallCFunction. However, we need an extra slot on the
1082 // stack to house the return address parameter.
1083 if (frame_alignment > kPointerSize) {
1084 // Make stack end at alignment and make room for stack arguments
1085 // -- preserving original value of sp.
1086 __ mr(scratch, sp);
1087 __ addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize));
1088 DCHECK(IsPowerOf2(frame_alignment));
1089 __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
1090 __ StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
1091 } else {
1092 // Make room for stack arguments
1093 stack_space += stack_passed_arguments;
1094 }
1095
1096 // Allocate frame with required slots to make ABI work.
1097 __ li(r0, Operand::Zero());
1098 __ StorePU(r0, MemOperand(sp, -stack_space * kPointerSize));
1099
1100 // RegExp code frame pointer.
1101 __ mr(r5, frame_pointer());
1102 // Code* of self.
1103 __ mov(r4, Operand(masm_->CodeObject()));
1104 // r3 will point to the return address, placed by DirectCEntry.
1105 __ addi(r3, sp, Operand(kStackFrameExtraParamSlot * kPointerSize));
1106
1107 ExternalReference stack_guard_check =
1108 ExternalReference::re_check_stack_guard_state(isolate());
1109 __ mov(ip, Operand(stack_guard_check));
1110 DirectCEntryStub stub(isolate());
1111 stub.GenerateCall(masm_, ip);
1112
1113 // Restore the stack pointer
1114 stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments;
1115 if (frame_alignment > kPointerSize) {
1116 __ LoadP(sp, MemOperand(sp, stack_space * kPointerSize));
1117 } else {
1118 __ addi(sp, sp, Operand(stack_space * kPointerSize));
1119 }
1120
1121 __ mov(code_pointer(), Operand(masm_->CodeObject()));
1122 }
1123
1124
1125 // Helper function for reading a value out of a stack frame.
1126 template <typename T>
1127 static T& frame_entry(Address re_frame, int frame_offset) {
1128 return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1129 }
1130
1131
1132 int RegExpMacroAssemblerPPC::CheckStackGuardState(Address* return_address,
1133 Code* re_code,
1134 Address re_frame) {
1135 Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
1136 StackLimitCheck check(isolate);
1137 if (check.JsHasOverflowed()) {
1138 isolate->StackOverflow();
1139 return EXCEPTION;
1140 }
1141
1142 // If not real stack overflow the stack guard was used to interrupt
1143 // execution for another purpose.
1144
1145 // If this is a direct call from JavaScript retry the RegExp forcing the call
1146 // through the runtime system. Currently the direct call cannot handle a GC.
1147 if (frame_entry<int>(re_frame, kDirectCall) == 1) {
1148 return RETRY;
1149 }
1150
1151 // Prepare for possible GC.
1152 HandleScope handles(isolate);
1153 Handle<Code> code_handle(re_code);
1154
1155 Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
1156
1157 // Current string.
1158 bool is_ascii = subject->IsOneByteRepresentationUnderneath();
1159
1160 DCHECK(re_code->instruction_start() <= *return_address);
1161 DCHECK(*return_address <=
1162 re_code->instruction_start() + re_code->instruction_size());
1163
1164 Object* result = isolate->stack_guard()->HandleInterrupts();
1165
1166 if (*code_handle != re_code) { // Return address no longer valid
1167 intptr_t delta = code_handle->address() - re_code->address();
1168 // Overwrite the return address on the stack.
1169 *return_address += delta;
1170 }
1171
1172 if (result->IsException()) {
1173 return EXCEPTION;
1174 }
1175
1176 Handle<String> subject_tmp = subject;
1177 int slice_offset = 0;
1178
1179 // Extract the underlying string and the slice offset.
1180 if (StringShape(*subject_tmp).IsCons()) {
1181 subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
1182 } else if (StringShape(*subject_tmp).IsSliced()) {
1183 SlicedString* slice = SlicedString::cast(*subject_tmp);
1184 subject_tmp = Handle<String>(slice->parent());
1185 slice_offset = slice->offset();
1186 }
1187
1188 // String might have changed.
1189 if (subject_tmp->IsOneByteRepresentation() != is_ascii) {
1190 // If we changed between an ASCII and an UC16 string, the specialized
1191 // code cannot be used, and we need to restart regexp matching from
1192 // scratch (including, potentially, compiling a new version of the code).
1193 return RETRY;
1194 }
1195
1196 // Otherwise, the content of the string might have moved. It must still
1197 // be a sequential or external string with the same content.
1198 // Update the start and end pointers in the stack frame to the current
1199 // location (whether it has actually moved or not).
1200 DCHECK(StringShape(*subject_tmp).IsSequential() ||
1201 StringShape(*subject_tmp).IsExternal());
1202
1203 // The original start address of the characters to match.
1204 const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
1205
1206 // Find the current start address of the same character at the current string
1207 // position.
1208 int start_index = frame_entry<intptr_t>(re_frame, kStartIndex);
1209 const byte* new_address = StringCharacterPosition(*subject_tmp,
1210 start_index + slice_offset);
1211
1212 if (start_address != new_address) {
1213 // If there is a difference, update the object pointer and start and end
1214 // addresses in the RegExp stack frame to match the new value.
1215 const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
1216 int byte_length = static_cast<int>(end_address - start_address);
1217 frame_entry<const String*>(re_frame, kInputString) = *subject;
1218 frame_entry<const byte*>(re_frame, kInputStart) = new_address;
1219 frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
1220 } else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
1221 // Subject string might have been a ConsString that underwent
1222 // short-circuiting during GC. That will not change start_address but
1223 // will change pointer inside the subject handle.
1224 frame_entry<const String*>(re_frame, kInputString) = *subject;
1225 }
1226
1227 return 0;
1228 }
1229
1230
1231 MemOperand RegExpMacroAssemblerPPC::register_location(int register_index) {
1232 DCHECK(register_index < (1<<30));
1233 if (num_registers_ <= register_index) {
1234 num_registers_ = register_index + 1;
1235 }
1236 return MemOperand(frame_pointer(),
1237 kRegisterZero - register_index * kPointerSize);
1238 }
1239
1240
1241 void RegExpMacroAssemblerPPC::CheckPosition(int cp_offset,
1242 Label* on_outside_input) {
1243 __ Cmpi(current_input_offset(), Operand(-cp_offset * char_size()), r0);
1244 BranchOrBacktrack(ge, on_outside_input);
1245 }
1246
1247
1248 void RegExpMacroAssemblerPPC::BranchOrBacktrack(Condition condition,
1249 Label* to,
1250 CRegister cr) {
1251 if (condition == al) { // Unconditional.
1252 if (to == NULL) {
1253 Backtrack();
1254 return;
1255 }
1256 __ b(to);
1257 return;
1258 }
1259 if (to == NULL) {
1260 __ b(condition, &backtrack_label_, cr);
1261 return;
1262 }
1263 __ b(condition, to, cr);
1264 }
1265
1266
1267 void RegExpMacroAssemblerPPC::SafeCall(Label* to, Condition cond,
1268 CRegister cr) {
1269 __ b(cond, to, cr, SetLK);
1270 }
1271
1272
1273 void RegExpMacroAssemblerPPC::SafeReturn() {
1274 __ pop(r0);
1275 __ mov(ip, Operand(masm_->CodeObject()));
1276 __ add(r0, r0, ip);
1277 __ mtlr(r0);
1278 __ blr();
1279 }
1280
1281
1282 void RegExpMacroAssemblerPPC::SafeCallTarget(Label* name) {
1283 __ bind(name);
1284 __ mflr(r0);
1285 __ mov(ip, Operand(masm_->CodeObject()));
1286 __ sub(r0, r0, ip);
1287 __ push(r0);
1288 }
1289
1290
1291 void RegExpMacroAssemblerPPC::Push(Register source) {
1292 DCHECK(!source.is(backtrack_stackpointer()));
1293 __ StorePU(source, MemOperand(backtrack_stackpointer(), -kPointerSize));
1294 }
1295
1296
1297 void RegExpMacroAssemblerPPC::Pop(Register target) {
1298 DCHECK(!target.is(backtrack_stackpointer()));
1299 __ LoadP(target, MemOperand(backtrack_stackpointer()));
1300 __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
1301 Operand(kPointerSize));
1302 }
1303
1304
1305 void RegExpMacroAssemblerPPC::CheckPreemption() {
1306 // Check for preemption.
1307 ExternalReference stack_limit =
1308 ExternalReference::address_of_stack_limit(isolate());
1309 __ mov(r3, Operand(stack_limit));
1310 __ LoadP(r3, MemOperand(r3));
1311 __ cmpl(sp, r3);
1312 SafeCall(&check_preempt_label_, le);
1313 }
1314
1315
1316 void RegExpMacroAssemblerPPC::CheckStackLimit() {
1317 ExternalReference stack_limit =
1318 ExternalReference::address_of_regexp_stack_limit(isolate());
1319 __ mov(r3, Operand(stack_limit));
1320 __ LoadP(r3, MemOperand(r3));
1321 __ cmpl(backtrack_stackpointer(), r3);
1322 SafeCall(&stack_overflow_label_, le);
1323 }
1324
1325
1326 bool RegExpMacroAssemblerPPC::CanReadUnaligned() {
1327 return CpuFeatures::IsSupported(UNALIGNED_ACCESSES) && !slow_safe();
1328 }
1329
1330
1331 void RegExpMacroAssemblerPPC::LoadCurrentCharacterUnchecked(int cp_offset,
1332 int characters) {
1333 Register offset = current_input_offset();
1334 if (cp_offset != 0) {
1335 // r25 is not being used to store the capture start index at this point.
1336 __ addi(r25, current_input_offset(), Operand(cp_offset * char_size()));
1337 offset = r25;
1338 }
1339 // The lwz, stw, lhz, sth instructions can do unaligned accesses, if the CPU
1340 // and the operating system running on the target allow it.
1341 // We assume we don't want to do unaligned loads on PPC, so this function
1342 // must only be used to load a single character at a time.
1343
1344 DCHECK(characters == 1);
1345 __ add(current_character(), end_of_input_address(), offset);
1346 if (mode_ == ASCII) {
1347 __ lbz(current_character(), MemOperand(current_character()));
1348 } else {
1349 DCHECK(mode_ == UC16);
1350 __ lhz(current_character(), MemOperand(current_character()));
1351 }
1352 }
1353
1354
1355 #undef __
1356
1357 #endif // V8_INTERPRETED_REGEXP
1358
1359 }} // namespace v8::internal
1360
1361 #endif // V8_TARGET_ARCH_PPC
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698