Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(362)

Side by Side Diff: src/ppc/full-codegen-ppc.cc

Issue 422063005: Contribution of PowerPC port. (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Caught up to bleending edge (8/15) Created 6 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
1 // Copyright 2012 the V8 project authors. All rights reserved. 1 // Copyright 2012 the V8 project authors. All rights reserved.
2 //
3 // Copyright IBM Corp. 2012, 2013. All rights reserved.
4 //
2 // Use of this source code is governed by a BSD-style license that can be 5 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 6 // found in the LICENSE file.
4 7
5 #include "src/v8.h" 8 #include "src/v8.h"
6 9
7 #if V8_TARGET_ARCH_ARM 10 #if V8_TARGET_ARCH_PPC
8 11
9 #include "src/code-stubs.h" 12 #include "src/code-stubs.h"
10 #include "src/codegen.h" 13 #include "src/codegen.h"
11 #include "src/compiler.h" 14 #include "src/compiler.h"
12 #include "src/debug.h" 15 #include "src/debug.h"
13 #include "src/full-codegen.h" 16 #include "src/full-codegen.h"
14 #include "src/isolate-inl.h" 17 #include "src/isolate-inl.h"
15 #include "src/parser.h" 18 #include "src/parser.h"
16 #include "src/scopes.h" 19 #include "src/scopes.h"
17 #include "src/stub-cache.h" 20 #include "src/stub-cache.h"
18 21
19 #include "src/arm/code-stubs-arm.h" 22 #include "src/ppc/code-stubs-ppc.h"
20 #include "src/arm/macro-assembler-arm.h" 23 #include "src/ppc/macro-assembler-ppc.h"
21 24
22 namespace v8 { 25 namespace v8 {
23 namespace internal { 26 namespace internal {
24 27
25 #define __ ACCESS_MASM(masm_) 28 #define __ ACCESS_MASM(masm_)
26 29
27
28 // A patch site is a location in the code which it is possible to patch. This 30 // A patch site is a location in the code which it is possible to patch. This
29 // class has a number of methods to emit the code which is patchable and the 31 // class has a number of methods to emit the code which is patchable and the
30 // method EmitPatchInfo to record a marker back to the patchable code. This 32 // method EmitPatchInfo to record a marker back to the patchable code. This
31 // marker is a cmp rx, #yyy instruction, and x * 0x00000fff + yyy (raw 12 bit 33 // marker is a cmpi rx, #yyy instruction, and x * 0x0000ffff + yyy (raw 16 bit
32 // immediate value is used) is the delta from the pc to the first instruction of 34 // immediate value is used) is the delta from the pc to the first instruction of
33 // the patchable code. 35 // the patchable code.
36 // See PatchInlinedSmiCode in ic-ppc.cc for the code that patches it
34 class JumpPatchSite BASE_EMBEDDED { 37 class JumpPatchSite BASE_EMBEDDED {
35 public: 38 public:
36 explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) { 39 explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
37 #ifdef DEBUG 40 #ifdef DEBUG
38 info_emitted_ = false; 41 info_emitted_ = false;
39 #endif 42 #endif
40 } 43 }
41 44
42 ~JumpPatchSite() { 45 ~JumpPatchSite() {
43 DCHECK(patch_site_.is_bound() == info_emitted_); 46 DCHECK(patch_site_.is_bound() == info_emitted_);
44 } 47 }
45 48
46 // When initially emitting this ensure that a jump is always generated to skip 49 // When initially emitting this ensure that a jump is always generated to skip
47 // the inlined smi code. 50 // the inlined smi code.
48 void EmitJumpIfNotSmi(Register reg, Label* target) { 51 void EmitJumpIfNotSmi(Register reg, Label* target) {
49 DCHECK(!patch_site_.is_bound() && !info_emitted_); 52 DCHECK(!patch_site_.is_bound() && !info_emitted_);
50 Assembler::BlockConstPoolScope block_const_pool(masm_); 53 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
51 __ bind(&patch_site_); 54 __ bind(&patch_site_);
52 __ cmp(reg, Operand(reg)); 55 __ cmp(reg, reg, cr0);
53 __ b(eq, target); // Always taken before patched. 56 __ beq(target, cr0); // Always taken before patched.
54 } 57 }
55 58
56 // When initially emitting this ensure that a jump is never generated to skip 59 // When initially emitting this ensure that a jump is never generated to skip
57 // the inlined smi code. 60 // the inlined smi code.
58 void EmitJumpIfSmi(Register reg, Label* target) { 61 void EmitJumpIfSmi(Register reg, Label* target) {
62 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
59 DCHECK(!patch_site_.is_bound() && !info_emitted_); 63 DCHECK(!patch_site_.is_bound() && !info_emitted_);
60 Assembler::BlockConstPoolScope block_const_pool(masm_);
61 __ bind(&patch_site_); 64 __ bind(&patch_site_);
62 __ cmp(reg, Operand(reg)); 65 __ cmp(reg, reg, cr0);
63 __ b(ne, target); // Never taken before patched. 66 __ bne(target, cr0); // Never taken before patched.
64 } 67 }
65 68
66 void EmitPatchInfo() { 69 void EmitPatchInfo() {
67 // Block literal pool emission whilst recording patch site information.
68 Assembler::BlockConstPoolScope block_const_pool(masm_);
69 if (patch_site_.is_bound()) { 70 if (patch_site_.is_bound()) {
70 int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_); 71 int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_);
71 Register reg; 72 Register reg;
72 reg.set_code(delta_to_patch_site / kOff12Mask); 73 // I believe this is using reg as the high bits of of the offset
73 __ cmp_raw_immediate(reg, delta_to_patch_site % kOff12Mask); 74 reg.set_code(delta_to_patch_site / kOff16Mask);
75 __ cmpi(reg, Operand(delta_to_patch_site % kOff16Mask));
74 #ifdef DEBUG 76 #ifdef DEBUG
75 info_emitted_ = true; 77 info_emitted_ = true;
76 #endif 78 #endif
77 } else { 79 } else {
78 __ nop(); // Signals no inlined code. 80 __ nop(); // Signals no inlined code.
79 } 81 }
80 } 82 }
81 83
82 private: 84 private:
83 MacroAssembler* masm_; 85 MacroAssembler* masm_;
84 Label patch_site_; 86 Label patch_site_;
85 #ifdef DEBUG 87 #ifdef DEBUG
86 bool info_emitted_; 88 bool info_emitted_;
87 #endif 89 #endif
88 }; 90 };
89 91
90 92
91 // Generate code for a JS function. On entry to the function the receiver 93 // Generate code for a JS function. On entry to the function the receiver
92 // and arguments have been pushed on the stack left to right. The actual 94 // and arguments have been pushed on the stack left to right. The actual
93 // argument count matches the formal parameter count expected by the 95 // argument count matches the formal parameter count expected by the
94 // function. 96 // function.
95 // 97 //
96 // The live registers are: 98 // The live registers are:
97 // o r1: the JS function object being called (i.e., ourselves) 99 // o r4: the JS function object being called (i.e., ourselves)
98 // o cp: our context 100 // o cp: our context
99 // o pp: our caller's constant pool pointer (if FLAG_enable_ool_constant_pool) 101 // o fp: our caller's frame pointer (aka r31)
100 // o fp: our caller's frame pointer
101 // o sp: stack pointer 102 // o sp: stack pointer
102 // o lr: return address 103 // o lr: return address (bogus.. PPC has no lr reg)
103 // 104 //
104 // The function builds a JS frame. Please see JavaScriptFrameConstants in 105 // The function builds a JS frame. Please see JavaScriptFrameConstants in
105 // frames-arm.h for its layout. 106 // frames-ppc.h for its layout.
106 void FullCodeGenerator::Generate() { 107 void FullCodeGenerator::Generate() {
107 CompilationInfo* info = info_; 108 CompilationInfo* info = info_;
108 handler_table_ = 109 handler_table_ =
109 isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED); 110 isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED);
110 111
111 profiling_counter_ = isolate()->factory()->NewCell( 112 profiling_counter_ = isolate()->factory()->NewCell(
112 Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate())); 113 Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate()));
113 SetFunctionPosition(function()); 114 SetFunctionPosition(function());
114 Comment cmnt(masm_, "[ function compiled by full code generator"); 115 Comment cmnt(masm_, "[ function compiled by full code generator");
115 116
116 ProfileEntryHookStub::MaybeCallEntryHook(masm_); 117 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
117 118
118 #ifdef DEBUG 119 #ifdef DEBUG
119 if (strlen(FLAG_stop_at) > 0 && 120 if (strlen(FLAG_stop_at) > 0 &&
120 info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) { 121 info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
121 __ stop("stop-at"); 122 __ stop("stop-at");
122 } 123 }
123 #endif 124 #endif
124 125
125 // Sloppy mode functions and builtins need to replace the receiver with the 126 // Sloppy mode functions and builtins need to replace the receiver with the
126 // global proxy when called as functions (without an explicit receiver 127 // global proxy when called as functions (without an explicit receiver
127 // object). 128 // object).
128 if (info->strict_mode() == SLOPPY && !info->is_native()) { 129 if (info->strict_mode() == SLOPPY && !info->is_native()) {
129 Label ok; 130 Label ok;
130 int receiver_offset = info->scope()->num_parameters() * kPointerSize; 131 int receiver_offset = info->scope()->num_parameters() * kPointerSize;
131 __ ldr(r2, MemOperand(sp, receiver_offset)); 132 __ LoadP(r5, MemOperand(sp, receiver_offset), r0);
132 __ CompareRoot(r2, Heap::kUndefinedValueRootIndex); 133 __ CompareRoot(r5, Heap::kUndefinedValueRootIndex);
133 __ b(ne, &ok); 134 __ bne(&ok);
134 135
135 __ ldr(r2, GlobalObjectOperand()); 136 __ LoadP(r5, GlobalObjectOperand());
136 __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalProxyOffset)); 137 __ LoadP(r5, FieldMemOperand(r5, GlobalObject::kGlobalProxyOffset));
137 138
138 __ str(r2, MemOperand(sp, receiver_offset)); 139 __ StoreP(r5, MemOperand(sp, receiver_offset), r0);
139 140
140 __ bind(&ok); 141 __ bind(&ok);
141 } 142 }
142 143
143 // Open a frame scope to indicate that there is a frame on the stack. The 144 // Open a frame scope to indicate that there is a frame on the stack. The
144 // MANUAL indicates that the scope shouldn't actually generate code to set up 145 // MANUAL indicates that the scope shouldn't actually generate code to set up
145 // the frame (that is done below). 146 // the frame (that is done below).
146 FrameScope frame_scope(masm_, StackFrame::MANUAL); 147 FrameScope frame_scope(masm_, StackFrame::MANUAL);
147 148
148 info->set_prologue_offset(masm_->pc_offset()); 149 info->set_prologue_offset(masm_->pc_offset());
149 __ Prologue(info->IsCodePreAgingActive()); 150 __ Prologue(info->IsCodePreAgingActive());
150 info->AddNoFrameRange(0, masm_->pc_offset()); 151 info->AddNoFrameRange(0, masm_->pc_offset());
151 152
152 { Comment cmnt(masm_, "[ Allocate locals"); 153 { Comment cmnt(masm_, "[ Allocate locals");
153 int locals_count = info->scope()->num_stack_slots(); 154 int locals_count = info->scope()->num_stack_slots();
154 // Generators allocate locals, if any, in context slots. 155 // Generators allocate locals, if any, in context slots.
155 DCHECK(!info->function()->is_generator() || locals_count == 0); 156 DCHECK(!info->function()->is_generator() || locals_count == 0);
156 if (locals_count > 0) { 157 if (locals_count > 0) {
157 if (locals_count >= 128) { 158 if (locals_count >= 128) {
158 Label ok; 159 Label ok;
159 __ sub(r9, sp, Operand(locals_count * kPointerSize)); 160 __ Add(ip, sp, -(locals_count * kPointerSize), r0);
160 __ LoadRoot(r2, Heap::kRealStackLimitRootIndex); 161 __ LoadRoot(r5, Heap::kRealStackLimitRootIndex);
161 __ cmp(r9, Operand(r2)); 162 __ cmpl(ip, r5);
162 __ b(hs, &ok); 163 __ bc_short(ge, &ok);
163 __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION); 164 __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
164 __ bind(&ok); 165 __ bind(&ok);
165 } 166 }
166 __ LoadRoot(r9, Heap::kUndefinedValueRootIndex); 167 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
167 int kMaxPushes = FLAG_optimize_for_size ? 4 : 32; 168 int kMaxPushes = FLAG_optimize_for_size ? 4 : 32;
168 if (locals_count >= kMaxPushes) { 169 if (locals_count >= kMaxPushes) {
169 int loop_iterations = locals_count / kMaxPushes; 170 int loop_iterations = locals_count / kMaxPushes;
170 __ mov(r2, Operand(loop_iterations)); 171 __ mov(r5, Operand(loop_iterations));
172 __ mtctr(r5);
171 Label loop_header; 173 Label loop_header;
172 __ bind(&loop_header); 174 __ bind(&loop_header);
173 // Do pushes. 175 // Do pushes.
174 for (int i = 0; i < kMaxPushes; i++) { 176 for (int i = 0; i < kMaxPushes; i++) {
175 __ push(r9); 177 __ push(ip);
176 } 178 }
177 // Continue loop if not done. 179 // Continue loop if not done.
178 __ sub(r2, r2, Operand(1), SetCC); 180 __ bdnz(&loop_header);
179 __ b(&loop_header, ne);
180 } 181 }
181 int remaining = locals_count % kMaxPushes; 182 int remaining = locals_count % kMaxPushes;
182 // Emit the remaining pushes. 183 // Emit the remaining pushes.
183 for (int i = 0; i < remaining; i++) { 184 for (int i = 0; i < remaining; i++) {
184 __ push(r9); 185 __ push(ip);
185 } 186 }
186 } 187 }
187 } 188 }
188 189
189 bool function_in_register = true; 190 bool function_in_register = true;
190 191
191 // Possibly allocate a local context. 192 // Possibly allocate a local context.
192 int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; 193 int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
193 if (heap_slots > 0) { 194 if (heap_slots > 0) {
194 // Argument to NewContext is the function, which is still in r1. 195 // Argument to NewContext is the function, which is still in r4.
195 Comment cmnt(masm_, "[ Allocate context"); 196 Comment cmnt(masm_, "[ Allocate context");
196 bool need_write_barrier = true; 197 bool need_write_barrier = true;
197 if (FLAG_harmony_scoping && info->scope()->is_global_scope()) { 198 if (FLAG_harmony_scoping && info->scope()->is_global_scope()) {
198 __ push(r1); 199 __ push(r4);
199 __ Push(info->scope()->GetScopeInfo()); 200 __ Push(info->scope()->GetScopeInfo());
200 __ CallRuntime(Runtime::kNewGlobalContext, 2); 201 __ CallRuntime(Runtime::kNewGlobalContext, 2);
201 } else if (heap_slots <= FastNewContextStub::kMaximumSlots) { 202 } else if (heap_slots <= FastNewContextStub::kMaximumSlots) {
202 FastNewContextStub stub(isolate(), heap_slots); 203 FastNewContextStub stub(isolate(), heap_slots);
203 __ CallStub(&stub); 204 __ CallStub(&stub);
204 // Result of FastNewContextStub is always in new space. 205 // Result of FastNewContextStub is always in new space.
205 need_write_barrier = false; 206 need_write_barrier = false;
206 } else { 207 } else {
207 __ push(r1); 208 __ push(r4);
208 __ CallRuntime(Runtime::kNewFunctionContext, 1); 209 __ CallRuntime(Runtime::kNewFunctionContext, 1);
209 } 210 }
210 function_in_register = false; 211 function_in_register = false;
211 // Context is returned in r0. It replaces the context passed to us. 212 // Context is returned in r3. It replaces the context passed to us.
212 // It's saved in the stack and kept live in cp. 213 // It's saved in the stack and kept live in cp.
213 __ mov(cp, r0); 214 __ mr(cp, r3);
214 __ str(r0, MemOperand(fp, StandardFrameConstants::kContextOffset)); 215 __ StoreP(r3, MemOperand(fp, StandardFrameConstants::kContextOffset));
215 // Copy any necessary parameters into the context. 216 // Copy any necessary parameters into the context.
216 int num_parameters = info->scope()->num_parameters(); 217 int num_parameters = info->scope()->num_parameters();
217 for (int i = 0; i < num_parameters; i++) { 218 for (int i = 0; i < num_parameters; i++) {
218 Variable* var = scope()->parameter(i); 219 Variable* var = scope()->parameter(i);
219 if (var->IsContextSlot()) { 220 if (var->IsContextSlot()) {
220 int parameter_offset = StandardFrameConstants::kCallerSPOffset + 221 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
221 (num_parameters - 1 - i) * kPointerSize; 222 (num_parameters - 1 - i) * kPointerSize;
222 // Load parameter from stack. 223 // Load parameter from stack.
223 __ ldr(r0, MemOperand(fp, parameter_offset)); 224 __ LoadP(r3, MemOperand(fp, parameter_offset), r0);
224 // Store it in the context. 225 // Store it in the context.
225 MemOperand target = ContextOperand(cp, var->index()); 226 MemOperand target = ContextOperand(cp, var->index());
226 __ str(r0, target); 227 __ StoreP(r3, target, r0);
227 228
228 // Update the write barrier. 229 // Update the write barrier.
229 if (need_write_barrier) { 230 if (need_write_barrier) {
230 __ RecordWriteContextSlot( 231 __ RecordWriteContextSlot(
231 cp, target.offset(), r0, r3, kLRHasBeenSaved, kDontSaveFPRegs); 232 cp, target.offset(), r3, r6, kLRHasBeenSaved, kDontSaveFPRegs);
232 } else if (FLAG_debug_code) { 233 } else if (FLAG_debug_code) {
233 Label done; 234 Label done;
234 __ JumpIfInNewSpace(cp, r0, &done); 235 __ JumpIfInNewSpace(cp, r3, &done);
235 __ Abort(kExpectedNewSpaceObject); 236 __ Abort(kExpectedNewSpaceObject);
236 __ bind(&done); 237 __ bind(&done);
237 } 238 }
238 } 239 }
239 } 240 }
240 } 241 }
241 242
242 Variable* arguments = scope()->arguments(); 243 Variable* arguments = scope()->arguments();
243 if (arguments != NULL) { 244 if (arguments != NULL) {
244 // Function uses arguments object. 245 // Function uses arguments object.
245 Comment cmnt(masm_, "[ Allocate arguments object"); 246 Comment cmnt(masm_, "[ Allocate arguments object");
246 if (!function_in_register) { 247 if (!function_in_register) {
247 // Load this again, if it's used by the local context below. 248 // Load this again, if it's used by the local context below.
248 __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 249 __ LoadP(r6, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
249 } else { 250 } else {
250 __ mov(r3, r1); 251 __ mr(r6, r4);
251 } 252 }
252 // Receiver is just before the parameters on the caller's stack. 253 // Receiver is just before the parameters on the caller's stack.
253 int num_parameters = info->scope()->num_parameters(); 254 int num_parameters = info->scope()->num_parameters();
254 int offset = num_parameters * kPointerSize; 255 int offset = num_parameters * kPointerSize;
255 __ add(r2, fp, 256 __ addi(r5, fp,
256 Operand(StandardFrameConstants::kCallerSPOffset + offset)); 257 Operand(StandardFrameConstants::kCallerSPOffset + offset));
257 __ mov(r1, Operand(Smi::FromInt(num_parameters))); 258 __ LoadSmiLiteral(r4, Smi::FromInt(num_parameters));
258 __ Push(r3, r2, r1); 259 __ Push(r6, r5, r4);
259 260
260 // Arguments to ArgumentsAccessStub: 261 // Arguments to ArgumentsAccessStub:
261 // function, receiver address, parameter count. 262 // function, receiver address, parameter count.
262 // The stub will rewrite receiever and parameter count if the previous 263 // The stub will rewrite receiever and parameter count if the previous
263 // stack frame was an arguments adapter frame. 264 // stack frame was an arguments adapter frame.
264 ArgumentsAccessStub::Type type; 265 ArgumentsAccessStub::Type type;
265 if (strict_mode() == STRICT) { 266 if (strict_mode() == STRICT) {
266 type = ArgumentsAccessStub::NEW_STRICT; 267 type = ArgumentsAccessStub::NEW_STRICT;
267 } else if (function()->has_duplicate_parameters()) { 268 } else if (function()->has_duplicate_parameters()) {
268 type = ArgumentsAccessStub::NEW_SLOPPY_SLOW; 269 type = ArgumentsAccessStub::NEW_SLOPPY_SLOW;
269 } else { 270 } else {
270 type = ArgumentsAccessStub::NEW_SLOPPY_FAST; 271 type = ArgumentsAccessStub::NEW_SLOPPY_FAST;
271 } 272 }
272 ArgumentsAccessStub stub(isolate(), type); 273 ArgumentsAccessStub stub(isolate(), type);
273 __ CallStub(&stub); 274 __ CallStub(&stub);
274 275
275 SetVar(arguments, r0, r1, r2); 276 SetVar(arguments, r3, r4, r5);
276 } 277 }
277 278
278 if (FLAG_trace) { 279 if (FLAG_trace) {
279 __ CallRuntime(Runtime::kTraceEnter, 0); 280 __ CallRuntime(Runtime::kTraceEnter, 0);
280 } 281 }
281 282
282 // Visit the declarations and body unless there is an illegal 283 // Visit the declarations and body unless there is an illegal
283 // redeclaration. 284 // redeclaration.
284 if (scope()->HasIllegalRedeclaration()) { 285 if (scope()->HasIllegalRedeclaration()) {
285 Comment cmnt(masm_, "[ Declarations"); 286 Comment cmnt(masm_, "[ Declarations");
(...skipping 11 matching lines...) Expand all
297 DCHECK(function->proxy()->var()->location() != Variable::UNALLOCATED); 298 DCHECK(function->proxy()->var()->location() != Variable::UNALLOCATED);
298 VisitVariableDeclaration(function); 299 VisitVariableDeclaration(function);
299 } 300 }
300 VisitDeclarations(scope()->declarations()); 301 VisitDeclarations(scope()->declarations());
301 } 302 }
302 303
303 { Comment cmnt(masm_, "[ Stack check"); 304 { Comment cmnt(masm_, "[ Stack check");
304 PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS); 305 PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS);
305 Label ok; 306 Label ok;
306 __ LoadRoot(ip, Heap::kStackLimitRootIndex); 307 __ LoadRoot(ip, Heap::kStackLimitRootIndex);
307 __ cmp(sp, Operand(ip)); 308 __ cmpl(sp, ip);
308 __ b(hs, &ok); 309 __ bc_short(ge, &ok);
309 Handle<Code> stack_check = isolate()->builtins()->StackCheck(); 310 __ Call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET);
310 PredictableCodeSizeScope predictable(masm_,
311 masm_->CallSize(stack_check, RelocInfo::CODE_TARGET));
312 __ Call(stack_check, RelocInfo::CODE_TARGET);
313 __ bind(&ok); 311 __ bind(&ok);
314 } 312 }
315 313
316 { Comment cmnt(masm_, "[ Body"); 314 { Comment cmnt(masm_, "[ Body");
317 DCHECK(loop_depth() == 0); 315 DCHECK(loop_depth() == 0);
318 VisitStatements(function()->body()); 316 VisitStatements(function()->body());
319 DCHECK(loop_depth() == 0); 317 DCHECK(loop_depth() == 0);
320 } 318 }
321 } 319 }
322 320
323 // Always emit a 'return undefined' in case control fell off the end of 321 // Always emit a 'return undefined' in case control fell off the end of
324 // the body. 322 // the body.
325 { Comment cmnt(masm_, "[ return <undefined>;"); 323 { Comment cmnt(masm_, "[ return <undefined>;");
326 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); 324 __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
327 } 325 }
328 EmitReturnSequence(); 326 EmitReturnSequence();
329
330 // Force emit the constant pool, so it doesn't get emitted in the middle
331 // of the back edge table.
332 masm()->CheckConstPool(true, false);
333 } 327 }
334 328
335 329
336 void FullCodeGenerator::ClearAccumulator() { 330 void FullCodeGenerator::ClearAccumulator() {
337 __ mov(r0, Operand(Smi::FromInt(0))); 331 __ LoadSmiLiteral(r3, Smi::FromInt(0));
338 } 332 }
339 333
340 334
341 void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) { 335 void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
342 __ mov(r2, Operand(profiling_counter_)); 336 __ mov(r5, Operand(profiling_counter_));
343 __ ldr(r3, FieldMemOperand(r2, Cell::kValueOffset)); 337 __ LoadP(r6, FieldMemOperand(r5, Cell::kValueOffset));
344 __ sub(r3, r3, Operand(Smi::FromInt(delta)), SetCC); 338 __ SubSmiLiteral(r6, r6, Smi::FromInt(delta), r0);
345 __ str(r3, FieldMemOperand(r2, Cell::kValueOffset)); 339 __ StoreP(r6, FieldMemOperand(r5, Cell::kValueOffset), r0);
346 } 340 }
347 341
348 342
349 static const int kProfileCounterResetSequenceLength = 5 * Assembler::kInstrSize;
350
351
352 void FullCodeGenerator::EmitProfilingCounterReset() { 343 void FullCodeGenerator::EmitProfilingCounterReset() {
353 Assembler::BlockConstPoolScope block_const_pool(masm_);
354 PredictableCodeSizeScope predictable_code_size_scope(
355 masm_, kProfileCounterResetSequenceLength);
356 Label start;
357 __ bind(&start);
358 int reset_value = FLAG_interrupt_budget; 344 int reset_value = FLAG_interrupt_budget;
359 if (info_->is_debug()) { 345 if (info_->is_debug()) {
360 // Detect debug break requests as soon as possible. 346 // Detect debug break requests as soon as possible.
361 reset_value = FLAG_interrupt_budget >> 4; 347 reset_value = FLAG_interrupt_budget >> 4;
362 } 348 }
363 __ mov(r2, Operand(profiling_counter_)); 349 __ mov(r5, Operand(profiling_counter_));
364 // The mov instruction above can be either 1, 2 or 3 instructions depending 350 __ LoadSmiLiteral(r6, Smi::FromInt(reset_value));
365 // upon whether it is an extended constant pool - insert nop to compensate. 351 __ StoreP(r6, FieldMemOperand(r5, Cell::kValueOffset), r0);
366 DCHECK(masm_->InstructionsGeneratedSince(&start) <= 3);
367 while (masm_->InstructionsGeneratedSince(&start) != 3) {
368 __ nop();
369 }
370 __ mov(r3, Operand(Smi::FromInt(reset_value)));
371 __ str(r3, FieldMemOperand(r2, Cell::kValueOffset));
372 } 352 }
373 353
374 354
375 void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt, 355 void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt,
376 Label* back_edge_target) { 356 Label* back_edge_target) {
377 Comment cmnt(masm_, "[ Back edge bookkeeping"); 357 Comment cmnt(masm_, "[ Back edge bookkeeping");
378 // Block literal pools whilst emitting back edge code.
379 Assembler::BlockConstPoolScope block_const_pool(masm_);
380 Label ok; 358 Label ok;
381 359
382 DCHECK(back_edge_target->is_bound()); 360 DCHECK(back_edge_target->is_bound());
383 int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target); 361 int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
384 int weight = Min(kMaxBackEdgeWeight, 362 int weight = Min(kMaxBackEdgeWeight,
385 Max(1, distance / kCodeSizeMultiplier)); 363 Max(1, distance / kCodeSizeMultiplier));
386 EmitProfilingCounterDecrement(weight); 364 EmitProfilingCounterDecrement(weight);
387 __ b(pl, &ok); 365 { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
388 __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET); 366 // BackEdgeTable::PatchAt manipulates this sequence.
367 __ cmpi(r6, Operand::Zero());
368 __ bc_short(ge, &ok);
369 __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET);
389 370
390 // Record a mapping of this PC offset to the OSR id. This is used to find 371 // Record a mapping of this PC offset to the OSR id. This is used to find
391 // the AST id from the unoptimized code in order to use it as a key into 372 // the AST id from the unoptimized code in order to use it as a key into
392 // the deoptimization input data found in the optimized code. 373 // the deoptimization input data found in the optimized code.
393 RecordBackEdge(stmt->OsrEntryId()); 374 RecordBackEdge(stmt->OsrEntryId());
394 375 }
395 EmitProfilingCounterReset(); 376 EmitProfilingCounterReset();
396 377
397 __ bind(&ok); 378 __ bind(&ok);
398 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); 379 PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
399 // Record a mapping of the OSR id to this PC. This is used if the OSR 380 // Record a mapping of the OSR id to this PC. This is used if the OSR
400 // entry becomes the target of a bailout. We don't expect it to be, but 381 // entry becomes the target of a bailout. We don't expect it to be, but
401 // we want it to work if it is. 382 // we want it to work if it is.
402 PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS); 383 PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
403 } 384 }
404 385
405 386
406 void FullCodeGenerator::EmitReturnSequence() { 387 void FullCodeGenerator::EmitReturnSequence() {
407 Comment cmnt(masm_, "[ Return sequence"); 388 Comment cmnt(masm_, "[ Return sequence");
408 if (return_label_.is_bound()) { 389 if (return_label_.is_bound()) {
409 __ b(&return_label_); 390 __ b(&return_label_);
410 } else { 391 } else {
411 __ bind(&return_label_); 392 __ bind(&return_label_);
412 if (FLAG_trace) { 393 if (FLAG_trace) {
413 // Push the return value on the stack as the parameter. 394 // Push the return value on the stack as the parameter.
414 // Runtime::TraceExit returns its parameter in r0. 395 // Runtime::TraceExit returns its parameter in r3
415 __ push(r0); 396 __ push(r3);
416 __ CallRuntime(Runtime::kTraceExit, 1); 397 __ CallRuntime(Runtime::kTraceExit, 1);
417 } 398 }
418 // Pretend that the exit is a backwards jump to the entry. 399 // Pretend that the exit is a backwards jump to the entry.
419 int weight = 1; 400 int weight = 1;
420 if (info_->ShouldSelfOptimize()) { 401 if (info_->ShouldSelfOptimize()) {
421 weight = FLAG_interrupt_budget / FLAG_self_opt_count; 402 weight = FLAG_interrupt_budget / FLAG_self_opt_count;
422 } else { 403 } else {
423 int distance = masm_->pc_offset(); 404 int distance = masm_->pc_offset();
424 weight = Min(kMaxBackEdgeWeight, 405 weight = Min(kMaxBackEdgeWeight,
425 Max(1, distance / kCodeSizeMultiplier)); 406 Max(1, distance / kCodeSizeMultiplier));
426 } 407 }
427 EmitProfilingCounterDecrement(weight); 408 EmitProfilingCounterDecrement(weight);
428 Label ok; 409 Label ok;
429 __ b(pl, &ok); 410 __ cmpi(r6, Operand::Zero());
430 __ push(r0); 411 __ bge(&ok);
412 __ push(r3);
431 __ Call(isolate()->builtins()->InterruptCheck(), 413 __ Call(isolate()->builtins()->InterruptCheck(),
432 RelocInfo::CODE_TARGET); 414 RelocInfo::CODE_TARGET);
433 __ pop(r0); 415 __ pop(r3);
434 EmitProfilingCounterReset(); 416 EmitProfilingCounterReset();
435 __ bind(&ok); 417 __ bind(&ok);
436 418
437 #ifdef DEBUG 419 #ifdef DEBUG
438 // Add a label for checking the size of the code used for returning. 420 // Add a label for checking the size of the code used for returning.
439 Label check_exit_codesize; 421 Label check_exit_codesize;
440 __ bind(&check_exit_codesize); 422 __ bind(&check_exit_codesize);
441 #endif 423 #endif
442 // Make sure that the constant pool is not emitted inside of the return 424 // Make sure that the constant pool is not emitted inside of the return
443 // sequence. 425 // sequence.
444 { Assembler::BlockConstPoolScope block_const_pool(masm_); 426 { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
427 #if V8_OOL_CONSTANT_POOL
428 ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
429 #endif
445 int32_t sp_delta = (info_->scope()->num_parameters() + 1) * kPointerSize; 430 int32_t sp_delta = (info_->scope()->num_parameters() + 1) * kPointerSize;
446 CodeGenerator::RecordPositions(masm_, function()->end_position() - 1); 431 CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
447 // TODO(svenpanne) The code below is sometimes 4 words, sometimes 5!
448 PredictableCodeSizeScope predictable(masm_, -1);
449 __ RecordJSReturn(); 432 __ RecordJSReturn();
450 int no_frame_start = __ LeaveFrame(StackFrame::JAVA_SCRIPT); 433 int no_frame_start = __ LeaveFrame(StackFrame::JAVA_SCRIPT);
451 __ add(sp, sp, Operand(sp_delta)); 434 __ Add(sp, sp, sp_delta, r0);
452 __ Jump(lr); 435 __ blr();
453 info_->AddNoFrameRange(no_frame_start, masm_->pc_offset()); 436 info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
437 #if V8_TARGET_ARCH_PPC64 && !V8_OOL_CONSTANT_POOL
438 // With 64bit we need a nop() instructions to ensure we have
439 // enough space to SetDebugBreakAtReturn()
440 masm_->nop();
441 #endif
454 } 442 }
455 443
456 #ifdef DEBUG 444 #ifdef DEBUG
457 // Check that the size of the code used for returning is large enough 445 // Check that the size of the code used for returning is large enough
458 // for the debugger's requirements. 446 // for the debugger's requirements.
459 DCHECK(Assembler::kJSReturnSequenceInstructions <= 447 DCHECK(Assembler::kJSReturnSequenceInstructions <=
460 masm_->InstructionsGeneratedSince(&check_exit_codesize)); 448 masm_->InstructionsGeneratedSince(&check_exit_codesize));
461 #endif 449 #endif
462 } 450 }
463 } 451 }
(...skipping 121 matching lines...) Expand 10 before | Expand all | Expand 10 after
585 DCHECK(count > 0); 573 DCHECK(count > 0);
586 __ Drop(count); 574 __ Drop(count);
587 __ Move(result_register(), reg); 575 __ Move(result_register(), reg);
588 } 576 }
589 577
590 578
591 void FullCodeGenerator::StackValueContext::DropAndPlug(int count, 579 void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
592 Register reg) const { 580 Register reg) const {
593 DCHECK(count > 0); 581 DCHECK(count > 0);
594 if (count > 1) __ Drop(count - 1); 582 if (count > 1) __ Drop(count - 1);
595 __ str(reg, MemOperand(sp, 0)); 583 __ StoreP(reg, MemOperand(sp, 0));
596 } 584 }
597 585
598 586
599 void FullCodeGenerator::TestContext::DropAndPlug(int count, 587 void FullCodeGenerator::TestContext::DropAndPlug(int count,
600 Register reg) const { 588 Register reg) const {
601 DCHECK(count > 0); 589 DCHECK(count > 0);
602 // For simplicity we always test the accumulator register. 590 // For simplicity we always test the accumulator register.
603 __ Drop(count); 591 __ Drop(count);
604 __ Move(result_register(), reg); 592 __ Move(result_register(), reg);
605 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); 593 codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
606 codegen()->DoTest(this); 594 codegen()->DoTest(this);
607 } 595 }
608 596
609 597
610 void FullCodeGenerator::EffectContext::Plug(Label* materialize_true, 598 void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
611 Label* materialize_false) const { 599 Label* materialize_false) const {
612 DCHECK(materialize_true == materialize_false); 600 DCHECK(materialize_true == materialize_false);
613 __ bind(materialize_true); 601 __ bind(materialize_true);
614 } 602 }
615 603
616 604
617 void FullCodeGenerator::AccumulatorValueContext::Plug( 605 void FullCodeGenerator::AccumulatorValueContext::Plug(
618 Label* materialize_true, 606 Label* materialize_true,
619 Label* materialize_false) const { 607 Label* materialize_false) const {
620 Label done; 608 Label done;
621 __ bind(materialize_true); 609 __ bind(materialize_true);
622 __ LoadRoot(result_register(), Heap::kTrueValueRootIndex); 610 __ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
623 __ jmp(&done); 611 __ b(&done);
624 __ bind(materialize_false); 612 __ bind(materialize_false);
625 __ LoadRoot(result_register(), Heap::kFalseValueRootIndex); 613 __ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
626 __ bind(&done); 614 __ bind(&done);
627 } 615 }
628 616
629 617
630 void FullCodeGenerator::StackValueContext::Plug( 618 void FullCodeGenerator::StackValueContext::Plug(
631 Label* materialize_true, 619 Label* materialize_true,
632 Label* materialize_false) const { 620 Label* materialize_false) const {
633 Label done; 621 Label done;
634 __ bind(materialize_true); 622 __ bind(materialize_true);
635 __ LoadRoot(ip, Heap::kTrueValueRootIndex); 623 __ LoadRoot(ip, Heap::kTrueValueRootIndex);
636 __ jmp(&done); 624 __ b(&done);
637 __ bind(materialize_false); 625 __ bind(materialize_false);
638 __ LoadRoot(ip, Heap::kFalseValueRootIndex); 626 __ LoadRoot(ip, Heap::kFalseValueRootIndex);
639 __ bind(&done); 627 __ bind(&done);
640 __ push(ip); 628 __ push(ip);
641 } 629 }
642 630
643 631
644 void FullCodeGenerator::TestContext::Plug(Label* materialize_true, 632 void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
645 Label* materialize_false) const { 633 Label* materialize_false) const {
646 DCHECK(materialize_true == true_label_); 634 DCHECK(materialize_true == true_label_);
(...skipping 32 matching lines...) Expand 10 before | Expand all | Expand 10 after
679 } 667 }
680 } 668 }
681 669
682 670
683 void FullCodeGenerator::DoTest(Expression* condition, 671 void FullCodeGenerator::DoTest(Expression* condition,
684 Label* if_true, 672 Label* if_true,
685 Label* if_false, 673 Label* if_false,
686 Label* fall_through) { 674 Label* fall_through) {
687 Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate()); 675 Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate());
688 CallIC(ic, condition->test_id()); 676 CallIC(ic, condition->test_id());
689 __ tst(result_register(), result_register()); 677 __ cmpi(result_register(), Operand::Zero());
690 Split(ne, if_true, if_false, fall_through); 678 Split(ne, if_true, if_false, fall_through);
691 } 679 }
692 680
693 681
694 void FullCodeGenerator::Split(Condition cond, 682 void FullCodeGenerator::Split(Condition cond,
695 Label* if_true, 683 Label* if_true,
696 Label* if_false, 684 Label* if_false,
697 Label* fall_through) { 685 Label* fall_through,
686 CRegister cr) {
698 if (if_false == fall_through) { 687 if (if_false == fall_through) {
699 __ b(cond, if_true); 688 __ b(cond, if_true, cr);
700 } else if (if_true == fall_through) { 689 } else if (if_true == fall_through) {
701 __ b(NegateCondition(cond), if_false); 690 __ b(NegateCondition(cond), if_false, cr);
702 } else { 691 } else {
703 __ b(cond, if_true); 692 __ b(cond, if_true, cr);
704 __ b(if_false); 693 __ b(if_false);
705 } 694 }
706 } 695 }
707 696
708 697
709 MemOperand FullCodeGenerator::StackOperand(Variable* var) { 698 MemOperand FullCodeGenerator::StackOperand(Variable* var) {
710 DCHECK(var->IsStackAllocated()); 699 DCHECK(var->IsStackAllocated());
711 // Offset is negative because higher indexes are at lower addresses. 700 // Offset is negative because higher indexes are at lower addresses.
712 int offset = -var->index() * kPointerSize; 701 int offset = -var->index() * kPointerSize;
713 // Adjust by a (parameter or local) base offset. 702 // Adjust by a (parameter or local) base offset.
(...skipping 14 matching lines...) Expand all
728 return ContextOperand(scratch, var->index()); 717 return ContextOperand(scratch, var->index());
729 } else { 718 } else {
730 return StackOperand(var); 719 return StackOperand(var);
731 } 720 }
732 } 721 }
733 722
734 723
735 void FullCodeGenerator::GetVar(Register dest, Variable* var) { 724 void FullCodeGenerator::GetVar(Register dest, Variable* var) {
736 // Use destination as scratch. 725 // Use destination as scratch.
737 MemOperand location = VarOperand(var, dest); 726 MemOperand location = VarOperand(var, dest);
738 __ ldr(dest, location); 727 __ LoadP(dest, location, r0);
739 } 728 }
740 729
741 730
742 void FullCodeGenerator::SetVar(Variable* var, 731 void FullCodeGenerator::SetVar(Variable* var,
743 Register src, 732 Register src,
744 Register scratch0, 733 Register scratch0,
745 Register scratch1) { 734 Register scratch1) {
746 DCHECK(var->IsContextSlot() || var->IsStackAllocated()); 735 DCHECK(var->IsContextSlot() || var->IsStackAllocated());
747 DCHECK(!scratch0.is(src)); 736 DCHECK(!scratch0.is(src));
748 DCHECK(!scratch0.is(scratch1)); 737 DCHECK(!scratch0.is(scratch1));
749 DCHECK(!scratch1.is(src)); 738 DCHECK(!scratch1.is(src));
750 MemOperand location = VarOperand(var, scratch0); 739 MemOperand location = VarOperand(var, scratch0);
751 __ str(src, location); 740 __ StoreP(src, location, r0);
752 741
753 // Emit the write barrier code if the location is in the heap. 742 // Emit the write barrier code if the location is in the heap.
754 if (var->IsContextSlot()) { 743 if (var->IsContextSlot()) {
755 __ RecordWriteContextSlot(scratch0, 744 __ RecordWriteContextSlot(scratch0,
756 location.offset(), 745 location.offset(),
757 src, 746 src,
758 scratch1, 747 scratch1,
759 kLRHasBeenSaved, 748 kLRHasBeenSaved,
760 kDontSaveFPRegs); 749 kDontSaveFPRegs);
761 } 750 }
762 } 751 }
763 752
764 753
765 void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr, 754 void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
766 bool should_normalize, 755 bool should_normalize,
767 Label* if_true, 756 Label* if_true,
768 Label* if_false) { 757 Label* if_false) {
769 // Only prepare for bailouts before splits if we're in a test 758 // Only prepare for bailouts before splits if we're in a test
770 // context. Otherwise, we let the Visit function deal with the 759 // context. Otherwise, we let the Visit function deal with the
771 // preparation to avoid preparing with the same AST id twice. 760 // preparation to avoid preparing with the same AST id twice.
772 if (!context()->IsTest() || !info_->IsOptimizable()) return; 761 if (!context()->IsTest() || !info_->IsOptimizable()) return;
773 762
774 Label skip; 763 Label skip;
775 if (should_normalize) __ b(&skip); 764 if (should_normalize) __ b(&skip);
776 PrepareForBailout(expr, TOS_REG); 765 PrepareForBailout(expr, TOS_REG);
777 if (should_normalize) { 766 if (should_normalize) {
778 __ LoadRoot(ip, Heap::kTrueValueRootIndex); 767 __ LoadRoot(ip, Heap::kTrueValueRootIndex);
779 __ cmp(r0, ip); 768 __ cmp(r3, ip);
780 Split(eq, if_true, if_false, NULL); 769 Split(eq, if_true, if_false, NULL);
781 __ bind(&skip); 770 __ bind(&skip);
782 } 771 }
783 } 772 }
784 773
785 774
786 void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) { 775 void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) {
787 // The variable in the declaration always resides in the current function 776 // The variable in the declaration always resides in the current function
788 // context. 777 // context.
789 DCHECK_EQ(0, scope()->ContextChainLength(variable->scope())); 778 DCHECK_EQ(0, scope()->ContextChainLength(variable->scope()));
790 if (generate_debug_code_) { 779 if (generate_debug_code_) {
791 // Check that we're not inside a with or catch context. 780 // Check that we're not inside a with or catch context.
792 __ ldr(r1, FieldMemOperand(cp, HeapObject::kMapOffset)); 781 __ LoadP(r4, FieldMemOperand(cp, HeapObject::kMapOffset));
793 __ CompareRoot(r1, Heap::kWithContextMapRootIndex); 782 __ CompareRoot(r4, Heap::kWithContextMapRootIndex);
794 __ Check(ne, kDeclarationInWithContext); 783 __ Check(ne, kDeclarationInWithContext);
795 __ CompareRoot(r1, Heap::kCatchContextMapRootIndex); 784 __ CompareRoot(r4, Heap::kCatchContextMapRootIndex);
796 __ Check(ne, kDeclarationInCatchContext); 785 __ Check(ne, kDeclarationInCatchContext);
797 } 786 }
798 } 787 }
799 788
800 789
801 void FullCodeGenerator::VisitVariableDeclaration( 790 void FullCodeGenerator::VisitVariableDeclaration(
802 VariableDeclaration* declaration) { 791 VariableDeclaration* declaration) {
803 // If it was not possible to allocate the variable at compile time, we 792 // If it was not possible to allocate the variable at compile time, we
804 // need to "declare" it at runtime to make sure it actually exists in the 793 // need to "declare" it at runtime to make sure it actually exists in the
805 // local context. 794 // local context.
806 VariableProxy* proxy = declaration->proxy(); 795 VariableProxy* proxy = declaration->proxy();
807 VariableMode mode = declaration->mode(); 796 VariableMode mode = declaration->mode();
808 Variable* variable = proxy->var(); 797 Variable* variable = proxy->var();
809 bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY; 798 bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY;
810 switch (variable->location()) { 799 switch (variable->location()) {
811 case Variable::UNALLOCATED: 800 case Variable::UNALLOCATED:
812 globals_->Add(variable->name(), zone()); 801 globals_->Add(variable->name(), zone());
813 globals_->Add(variable->binding_needs_init() 802 globals_->Add(variable->binding_needs_init()
814 ? isolate()->factory()->the_hole_value() 803 ? isolate()->factory()->the_hole_value()
815 : isolate()->factory()->undefined_value(), 804 : isolate()->factory()->undefined_value(),
816 zone()); 805 zone());
817 break; 806 break;
818 807
819 case Variable::PARAMETER: 808 case Variable::PARAMETER:
820 case Variable::LOCAL: 809 case Variable::LOCAL:
821 if (hole_init) { 810 if (hole_init) {
822 Comment cmnt(masm_, "[ VariableDeclaration"); 811 Comment cmnt(masm_, "[ VariableDeclaration");
823 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); 812 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
824 __ str(ip, StackOperand(variable)); 813 __ StoreP(ip, StackOperand(variable));
825 } 814 }
826 break; 815 break;
827 816
828 case Variable::CONTEXT: 817 case Variable::CONTEXT:
829 if (hole_init) { 818 if (hole_init) {
830 Comment cmnt(masm_, "[ VariableDeclaration"); 819 Comment cmnt(masm_, "[ VariableDeclaration");
831 EmitDebugCheckDeclarationContext(variable); 820 EmitDebugCheckDeclarationContext(variable);
832 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); 821 __ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
833 __ str(ip, ContextOperand(cp, variable->index())); 822 __ StoreP(ip, ContextOperand(cp, variable->index()), r0);
834 // No write barrier since the_hole_value is in old space. 823 // No write barrier since the_hole_value is in old space.
835 PrepareForBailoutForId(proxy->id(), NO_REGISTERS); 824 PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
836 } 825 }
837 break; 826 break;
838 827
839 case Variable::LOOKUP: { 828 case Variable::LOOKUP: {
840 Comment cmnt(masm_, "[ VariableDeclaration"); 829 Comment cmnt(masm_, "[ VariableDeclaration");
841 __ mov(r2, Operand(variable->name())); 830 __ mov(r5, Operand(variable->name()));
842 // Declaration nodes are always introduced in one of four modes. 831 // Declaration nodes are always introduced in one of four modes.
843 DCHECK(IsDeclaredVariableMode(mode)); 832 DCHECK(IsDeclaredVariableMode(mode));
844 PropertyAttributes attr = 833 PropertyAttributes attr =
845 IsImmutableVariableMode(mode) ? READ_ONLY : NONE; 834 IsImmutableVariableMode(mode) ? READ_ONLY : NONE;
846 __ mov(r1, Operand(Smi::FromInt(attr))); 835 __ LoadSmiLiteral(r4, Smi::FromInt(attr));
847 // Push initial value, if any. 836 // Push initial value, if any.
848 // Note: For variables we must not push an initial value (such as 837 // Note: For variables we must not push an initial value (such as
849 // 'undefined') because we may have a (legal) redeclaration and we 838 // 'undefined') because we may have a (legal) redeclaration and we
850 // must not destroy the current value. 839 // must not destroy the current value.
851 if (hole_init) { 840 if (hole_init) {
852 __ LoadRoot(r0, Heap::kTheHoleValueRootIndex); 841 __ LoadRoot(r3, Heap::kTheHoleValueRootIndex);
853 __ Push(cp, r2, r1, r0); 842 __ Push(cp, r5, r4, r3);
854 } else { 843 } else {
855 __ mov(r0, Operand(Smi::FromInt(0))); // Indicates no initial value. 844 __ LoadSmiLiteral(r3, Smi::FromInt(0)); // Indicates no initial value.
856 __ Push(cp, r2, r1, r0); 845 __ Push(cp, r5, r4, r3);
857 } 846 }
858 __ CallRuntime(Runtime::kDeclareLookupSlot, 4); 847 __ CallRuntime(Runtime::kDeclareLookupSlot, 4);
859 break; 848 break;
860 } 849 }
861 } 850 }
862 } 851 }
863 852
864 853
865 void FullCodeGenerator::VisitFunctionDeclaration( 854 void FullCodeGenerator::VisitFunctionDeclaration(
866 FunctionDeclaration* declaration) { 855 FunctionDeclaration* declaration) {
867 VariableProxy* proxy = declaration->proxy(); 856 VariableProxy* proxy = declaration->proxy();
868 Variable* variable = proxy->var(); 857 Variable* variable = proxy->var();
869 switch (variable->location()) { 858 switch (variable->location()) {
870 case Variable::UNALLOCATED: { 859 case Variable::UNALLOCATED: {
871 globals_->Add(variable->name(), zone()); 860 globals_->Add(variable->name(), zone());
872 Handle<SharedFunctionInfo> function = 861 Handle<SharedFunctionInfo> function =
873 Compiler::BuildFunctionInfo(declaration->fun(), script(), info_); 862 Compiler::BuildFunctionInfo(declaration->fun(), script(), info_);
874 // Check for stack-overflow exception. 863 // Check for stack-overflow exception.
875 if (function.is_null()) return SetStackOverflow(); 864 if (function.is_null()) return SetStackOverflow();
876 globals_->Add(function, zone()); 865 globals_->Add(function, zone());
877 break; 866 break;
878 } 867 }
879 868
880 case Variable::PARAMETER: 869 case Variable::PARAMETER:
881 case Variable::LOCAL: { 870 case Variable::LOCAL: {
882 Comment cmnt(masm_, "[ FunctionDeclaration"); 871 Comment cmnt(masm_, "[ FunctionDeclaration");
883 VisitForAccumulatorValue(declaration->fun()); 872 VisitForAccumulatorValue(declaration->fun());
884 __ str(result_register(), StackOperand(variable)); 873 __ StoreP(result_register(), StackOperand(variable));
885 break; 874 break;
886 } 875 }
887 876
888 case Variable::CONTEXT: { 877 case Variable::CONTEXT: {
889 Comment cmnt(masm_, "[ FunctionDeclaration"); 878 Comment cmnt(masm_, "[ FunctionDeclaration");
890 EmitDebugCheckDeclarationContext(variable); 879 EmitDebugCheckDeclarationContext(variable);
891 VisitForAccumulatorValue(declaration->fun()); 880 VisitForAccumulatorValue(declaration->fun());
892 __ str(result_register(), ContextOperand(cp, variable->index())); 881 __ StoreP(result_register(),
882 ContextOperand(cp, variable->index()), r0);
893 int offset = Context::SlotOffset(variable->index()); 883 int offset = Context::SlotOffset(variable->index());
894 // We know that we have written a function, which is not a smi. 884 // We know that we have written a function, which is not a smi.
895 __ RecordWriteContextSlot(cp, 885 __ RecordWriteContextSlot(cp,
896 offset, 886 offset,
897 result_register(), 887 result_register(),
898 r2, 888 r5,
899 kLRHasBeenSaved, 889 kLRHasBeenSaved,
900 kDontSaveFPRegs, 890 kDontSaveFPRegs,
901 EMIT_REMEMBERED_SET, 891 EMIT_REMEMBERED_SET,
902 OMIT_SMI_CHECK); 892 OMIT_SMI_CHECK);
903 PrepareForBailoutForId(proxy->id(), NO_REGISTERS); 893 PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
904 break; 894 break;
905 } 895 }
906 896
907 case Variable::LOOKUP: { 897 case Variable::LOOKUP: {
908 Comment cmnt(masm_, "[ FunctionDeclaration"); 898 Comment cmnt(masm_, "[ FunctionDeclaration");
909 __ mov(r2, Operand(variable->name())); 899 __ mov(r5, Operand(variable->name()));
910 __ mov(r1, Operand(Smi::FromInt(NONE))); 900 __ LoadSmiLiteral(r4, Smi::FromInt(NONE));
911 __ Push(cp, r2, r1); 901 __ Push(cp, r5, r4);
912 // Push initial value for function declaration. 902 // Push initial value for function declaration.
913 VisitForStackValue(declaration->fun()); 903 VisitForStackValue(declaration->fun());
914 __ CallRuntime(Runtime::kDeclareLookupSlot, 4); 904 __ CallRuntime(Runtime::kDeclareLookupSlot, 4);
915 break; 905 break;
916 } 906 }
917 } 907 }
918 } 908 }
919 909
920 910
921 void FullCodeGenerator::VisitModuleDeclaration(ModuleDeclaration* declaration) { 911 void FullCodeGenerator::VisitModuleDeclaration(ModuleDeclaration* declaration) {
922 Variable* variable = declaration->proxy()->var(); 912 Variable* variable = declaration->proxy()->var();
923 DCHECK(variable->location() == Variable::CONTEXT); 913 DCHECK(variable->location() == Variable::CONTEXT);
924 DCHECK(variable->interface()->IsFrozen()); 914 DCHECK(variable->interface()->IsFrozen());
925 915
926 Comment cmnt(masm_, "[ ModuleDeclaration"); 916 Comment cmnt(masm_, "[ ModuleDeclaration");
927 EmitDebugCheckDeclarationContext(variable); 917 EmitDebugCheckDeclarationContext(variable);
928 918
929 // Load instance object. 919 // Load instance object.
930 __ LoadContext(r1, scope_->ContextChainLength(scope_->GlobalScope())); 920 __ LoadContext(r4, scope_->ContextChainLength(scope_->GlobalScope()));
931 __ ldr(r1, ContextOperand(r1, variable->interface()->Index())); 921 __ LoadP(r4, ContextOperand(r4, variable->interface()->Index()));
932 __ ldr(r1, ContextOperand(r1, Context::EXTENSION_INDEX)); 922 __ LoadP(r4, ContextOperand(r4, Context::EXTENSION_INDEX));
933 923
934 // Assign it. 924 // Assign it.
935 __ str(r1, ContextOperand(cp, variable->index())); 925 __ StoreP(r4, ContextOperand(cp, variable->index()), r0);
936 // We know that we have written a module, which is not a smi. 926 // We know that we have written a module, which is not a smi.
937 __ RecordWriteContextSlot(cp, 927 __ RecordWriteContextSlot(cp,
938 Context::SlotOffset(variable->index()), 928 Context::SlotOffset(variable->index()),
939 r1, 929 r4,
940 r3, 930 r6,
941 kLRHasBeenSaved, 931 kLRHasBeenSaved,
942 kDontSaveFPRegs, 932 kDontSaveFPRegs,
943 EMIT_REMEMBERED_SET, 933 EMIT_REMEMBERED_SET,
944 OMIT_SMI_CHECK); 934 OMIT_SMI_CHECK);
945 PrepareForBailoutForId(declaration->proxy()->id(), NO_REGISTERS); 935 PrepareForBailoutForId(declaration->proxy()->id(), NO_REGISTERS);
946 936
947 // Traverse into body. 937 // Traverse into body.
948 Visit(declaration->module()); 938 Visit(declaration->module());
949 } 939 }
950 940
(...skipping 22 matching lines...) Expand all
973 963
974 964
975 void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) { 965 void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) {
976 // TODO(rossberg) 966 // TODO(rossberg)
977 } 967 }
978 968
979 969
980 void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { 970 void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
981 // Call the runtime to declare the globals. 971 // Call the runtime to declare the globals.
982 // The context is the first argument. 972 // The context is the first argument.
983 __ mov(r1, Operand(pairs)); 973 __ mov(r4, Operand(pairs));
984 __ mov(r0, Operand(Smi::FromInt(DeclareGlobalsFlags()))); 974 __ LoadSmiLiteral(r3, Smi::FromInt(DeclareGlobalsFlags()));
985 __ Push(cp, r1, r0); 975 __ Push(cp, r4, r3);
986 __ CallRuntime(Runtime::kDeclareGlobals, 3); 976 __ CallRuntime(Runtime::kDeclareGlobals, 3);
987 // Return value is ignored. 977 // Return value is ignored.
988 } 978 }
989 979
990 980
991 void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) { 981 void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) {
992 // Call the runtime to declare the modules. 982 // Call the runtime to declare the modules.
993 __ Push(descriptions); 983 __ Push(descriptions);
994 __ CallRuntime(Runtime::kDeclareModules, 1); 984 __ CallRuntime(Runtime::kDeclareModules, 1);
995 // Return value is ignored. 985 // Return value is ignored.
(...skipping 25 matching lines...) Expand all
1021 } 1011 }
1022 1012
1023 Comment cmnt(masm_, "[ Case comparison"); 1013 Comment cmnt(masm_, "[ Case comparison");
1024 __ bind(&next_test); 1014 __ bind(&next_test);
1025 next_test.Unuse(); 1015 next_test.Unuse();
1026 1016
1027 // Compile the label expression. 1017 // Compile the label expression.
1028 VisitForAccumulatorValue(clause->label()); 1018 VisitForAccumulatorValue(clause->label());
1029 1019
1030 // Perform the comparison as if via '==='. 1020 // Perform the comparison as if via '==='.
1031 __ ldr(r1, MemOperand(sp, 0)); // Switch value. 1021 __ LoadP(r4, MemOperand(sp, 0)); // Switch value.
1032 bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT); 1022 bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
1033 JumpPatchSite patch_site(masm_); 1023 JumpPatchSite patch_site(masm_);
1034 if (inline_smi_code) { 1024 if (inline_smi_code) {
1035 Label slow_case; 1025 Label slow_case;
1036 __ orr(r2, r1, r0); 1026 __ orx(r5, r4, r3);
1037 patch_site.EmitJumpIfNotSmi(r2, &slow_case); 1027 patch_site.EmitJumpIfNotSmi(r5, &slow_case);
1038 1028
1039 __ cmp(r1, r0); 1029 __ cmp(r4, r3);
1040 __ b(ne, &next_test); 1030 __ bne(&next_test);
1041 __ Drop(1); // Switch value is no longer needed. 1031 __ Drop(1); // Switch value is no longer needed.
1042 __ b(clause->body_target()); 1032 __ b(clause->body_target());
1043 __ bind(&slow_case); 1033 __ bind(&slow_case);
1044 } 1034 }
1045 1035
1046 // Record position before stub call for type feedback. 1036 // Record position before stub call for type feedback.
1047 SetSourcePosition(clause->position()); 1037 SetSourcePosition(clause->position());
1048 Handle<Code> ic = CompareIC::GetUninitialized(isolate(), Token::EQ_STRICT); 1038 Handle<Code> ic = CompareIC::GetUninitialized(isolate(), Token::EQ_STRICT);
1049 CallIC(ic, clause->CompareId()); 1039 CallIC(ic, clause->CompareId());
1050 patch_site.EmitPatchInfo(); 1040 patch_site.EmitPatchInfo();
1051 1041
1052 Label skip; 1042 Label skip;
1053 __ b(&skip); 1043 __ b(&skip);
1054 PrepareForBailout(clause, TOS_REG); 1044 PrepareForBailout(clause, TOS_REG);
1055 __ LoadRoot(ip, Heap::kTrueValueRootIndex); 1045 __ LoadRoot(ip, Heap::kTrueValueRootIndex);
1056 __ cmp(r0, ip); 1046 __ cmp(r3, ip);
1057 __ b(ne, &next_test); 1047 __ bne(&next_test);
1058 __ Drop(1); 1048 __ Drop(1);
1059 __ jmp(clause->body_target()); 1049 __ b(clause->body_target());
1060 __ bind(&skip); 1050 __ bind(&skip);
1061 1051
1062 __ cmp(r0, Operand::Zero()); 1052 __ cmpi(r3, Operand::Zero());
1063 __ b(ne, &next_test); 1053 __ bne(&next_test);
1064 __ Drop(1); // Switch value is no longer needed. 1054 __ Drop(1); // Switch value is no longer needed.
1065 __ b(clause->body_target()); 1055 __ b(clause->body_target());
1066 } 1056 }
1067 1057
1068 // Discard the test value and jump to the default if present, otherwise to 1058 // Discard the test value and jump to the default if present, otherwise to
1069 // the end of the statement. 1059 // the end of the statement.
1070 __ bind(&next_test); 1060 __ bind(&next_test);
1071 __ Drop(1); // Switch value is no longer needed. 1061 __ Drop(1); // Switch value is no longer needed.
1072 if (default_clause == NULL) { 1062 if (default_clause == NULL) {
1073 __ b(nested_statement.break_label()); 1063 __ b(nested_statement.break_label());
(...skipping 21 matching lines...) Expand all
1095 SetStatementPosition(stmt); 1085 SetStatementPosition(stmt);
1096 1086
1097 Label loop, exit; 1087 Label loop, exit;
1098 ForIn loop_statement(this, stmt); 1088 ForIn loop_statement(this, stmt);
1099 increment_loop_depth(); 1089 increment_loop_depth();
1100 1090
1101 // Get the object to enumerate over. If the object is null or undefined, skip 1091 // Get the object to enumerate over. If the object is null or undefined, skip
1102 // over the loop. See ECMA-262 version 5, section 12.6.4. 1092 // over the loop. See ECMA-262 version 5, section 12.6.4.
1103 VisitForAccumulatorValue(stmt->enumerable()); 1093 VisitForAccumulatorValue(stmt->enumerable());
1104 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); 1094 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
1105 __ cmp(r0, ip); 1095 __ cmp(r3, ip);
1106 __ b(eq, &exit); 1096 __ beq(&exit);
1107 Register null_value = r5; 1097 Register null_value = r7;
1108 __ LoadRoot(null_value, Heap::kNullValueRootIndex); 1098 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
1109 __ cmp(r0, null_value); 1099 __ cmp(r3, null_value);
1110 __ b(eq, &exit); 1100 __ beq(&exit);
1111 1101
1112 PrepareForBailoutForId(stmt->PrepareId(), TOS_REG); 1102 PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
1113 1103
1114 // Convert the object to a JS object. 1104 // Convert the object to a JS object.
1115 Label convert, done_convert; 1105 Label convert, done_convert;
1116 __ JumpIfSmi(r0, &convert); 1106 __ JumpIfSmi(r3, &convert);
1117 __ CompareObjectType(r0, r1, r1, FIRST_SPEC_OBJECT_TYPE); 1107 __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE);
1118 __ b(ge, &done_convert); 1108 __ bge(&done_convert);
1119 __ bind(&convert); 1109 __ bind(&convert);
1120 __ push(r0); 1110 __ push(r3);
1121 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); 1111 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1122 __ bind(&done_convert); 1112 __ bind(&done_convert);
1123 __ push(r0); 1113 __ push(r3);
1124 1114
1125 // Check for proxies. 1115 // Check for proxies.
1126 Label call_runtime; 1116 Label call_runtime;
1127 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); 1117 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1128 __ CompareObjectType(r0, r1, r1, LAST_JS_PROXY_TYPE); 1118 __ CompareObjectType(r3, r4, r4, LAST_JS_PROXY_TYPE);
1129 __ b(le, &call_runtime); 1119 __ ble(&call_runtime);
1130 1120
1131 // Check cache validity in generated code. This is a fast case for 1121 // Check cache validity in generated code. This is a fast case for
1132 // the JSObject::IsSimpleEnum cache validity checks. If we cannot 1122 // the JSObject::IsSimpleEnum cache validity checks. If we cannot
1133 // guarantee cache validity, call the runtime system to check cache 1123 // guarantee cache validity, call the runtime system to check cache
1134 // validity or get the property names in a fixed array. 1124 // validity or get the property names in a fixed array.
1135 __ CheckEnumCache(null_value, &call_runtime); 1125 __ CheckEnumCache(null_value, &call_runtime);
1136 1126
1137 // The enum cache is valid. Load the map of the object being 1127 // The enum cache is valid. Load the map of the object being
1138 // iterated over and use the cache for the iteration. 1128 // iterated over and use the cache for the iteration.
1139 Label use_cache; 1129 Label use_cache;
1140 __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); 1130 __ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
1141 __ b(&use_cache); 1131 __ b(&use_cache);
1142 1132
1143 // Get the set of properties to enumerate. 1133 // Get the set of properties to enumerate.
1144 __ bind(&call_runtime); 1134 __ bind(&call_runtime);
1145 __ push(r0); // Duplicate the enumerable object on the stack. 1135 __ push(r3); // Duplicate the enumerable object on the stack.
1146 __ CallRuntime(Runtime::kGetPropertyNamesFast, 1); 1136 __ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
1147 1137
1148 // If we got a map from the runtime call, we can do a fast 1138 // If we got a map from the runtime call, we can do a fast
1149 // modification check. Otherwise, we got a fixed array, and we have 1139 // modification check. Otherwise, we got a fixed array, and we have
1150 // to do a slow check. 1140 // to do a slow check.
1151 Label fixed_array; 1141 Label fixed_array;
1152 __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); 1142 __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
1153 __ LoadRoot(ip, Heap::kMetaMapRootIndex); 1143 __ LoadRoot(ip, Heap::kMetaMapRootIndex);
1154 __ cmp(r2, ip); 1144 __ cmp(r5, ip);
1155 __ b(ne, &fixed_array); 1145 __ bne(&fixed_array);
1156 1146
1157 // We got a map in register r0. Get the enumeration cache from it. 1147 // We got a map in register r3. Get the enumeration cache from it.
1158 Label no_descriptors; 1148 Label no_descriptors;
1159 __ bind(&use_cache); 1149 __ bind(&use_cache);
1160 1150
1161 __ EnumLength(r1, r0); 1151 __ EnumLength(r4, r3);
1162 __ cmp(r1, Operand(Smi::FromInt(0))); 1152 __ CmpSmiLiteral(r4, Smi::FromInt(0), r0);
1163 __ b(eq, &no_descriptors); 1153 __ beq(&no_descriptors);
1164 1154
1165 __ LoadInstanceDescriptors(r0, r2); 1155 __ LoadInstanceDescriptors(r3, r5);
1166 __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumCacheOffset)); 1156 __ LoadP(r5, FieldMemOperand(r5, DescriptorArray::kEnumCacheOffset));
1167 __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumCacheBridgeCacheOffset)); 1157 __ LoadP(r5,
1158 FieldMemOperand(r5, DescriptorArray::kEnumCacheBridgeCacheOffset));
1168 1159
1169 // Set up the four remaining stack slots. 1160 // Set up the four remaining stack slots.
1170 __ push(r0); // Map. 1161 __ push(r3); // Map.
1171 __ mov(r0, Operand(Smi::FromInt(0))); 1162 __ LoadSmiLiteral(r3, Smi::FromInt(0));
1172 // Push enumeration cache, enumeration cache length (as smi) and zero. 1163 // Push enumeration cache, enumeration cache length (as smi) and zero.
1173 __ Push(r2, r1, r0); 1164 __ Push(r5, r4, r3);
1174 __ jmp(&loop); 1165 __ b(&loop);
1175 1166
1176 __ bind(&no_descriptors); 1167 __ bind(&no_descriptors);
1177 __ Drop(1); 1168 __ Drop(1);
1178 __ jmp(&exit); 1169 __ b(&exit);
1179 1170
1180 // We got a fixed array in register r0. Iterate through that. 1171 // We got a fixed array in register r3. Iterate through that.
1181 Label non_proxy; 1172 Label non_proxy;
1182 __ bind(&fixed_array); 1173 __ bind(&fixed_array);
1183 1174
1184 __ Move(r1, FeedbackVector()); 1175 __ Move(r4, FeedbackVector());
1185 __ mov(r2, Operand(TypeFeedbackInfo::MegamorphicSentinel(isolate()))); 1176 __ mov(r5, Operand(TypeFeedbackInfo::MegamorphicSentinel(isolate())));
1186 __ str(r2, FieldMemOperand(r1, FixedArray::OffsetOfElementAt(slot))); 1177 __ StoreP(r5, FieldMemOperand(r4, FixedArray::OffsetOfElementAt(slot)), r0);
1187 1178
1188 __ mov(r1, Operand(Smi::FromInt(1))); // Smi indicates slow check 1179 __ LoadSmiLiteral(r4, Smi::FromInt(1)); // Smi indicates slow check
1189 __ ldr(r2, MemOperand(sp, 0 * kPointerSize)); // Get enumerated object 1180 __ LoadP(r5, MemOperand(sp, 0 * kPointerSize)); // Get enumerated object
1190 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); 1181 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
1191 __ CompareObjectType(r2, r3, r3, LAST_JS_PROXY_TYPE); 1182 __ CompareObjectType(r5, r6, r6, LAST_JS_PROXY_TYPE);
1192 __ b(gt, &non_proxy); 1183 __ bgt(&non_proxy);
1193 __ mov(r1, Operand(Smi::FromInt(0))); // Zero indicates proxy 1184 __ LoadSmiLiteral(r4, Smi::FromInt(0)); // Zero indicates proxy
1194 __ bind(&non_proxy); 1185 __ bind(&non_proxy);
1195 __ Push(r1, r0); // Smi and array 1186 __ Push(r4, r3); // Smi and array
1196 __ ldr(r1, FieldMemOperand(r0, FixedArray::kLengthOffset)); 1187 __ LoadP(r4, FieldMemOperand(r3, FixedArray::kLengthOffset));
1197 __ mov(r0, Operand(Smi::FromInt(0))); 1188 __ LoadSmiLiteral(r3, Smi::FromInt(0));
1198 __ Push(r1, r0); // Fixed array length (as smi) and initial index. 1189 __ Push(r4, r3); // Fixed array length (as smi) and initial index.
1199 1190
1200 // Generate code for doing the condition check. 1191 // Generate code for doing the condition check.
1201 PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS); 1192 PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
1202 __ bind(&loop); 1193 __ bind(&loop);
1203 // Load the current count to r0, load the length to r1. 1194 // Load the current count to r3, load the length to r4.
1204 __ Ldrd(r0, r1, MemOperand(sp, 0 * kPointerSize)); 1195 __ LoadP(r3, MemOperand(sp, 0 * kPointerSize));
1205 __ cmp(r0, r1); // Compare to the array length. 1196 __ LoadP(r4, MemOperand(sp, 1 * kPointerSize));
1206 __ b(hs, loop_statement.break_label()); 1197 __ cmpl(r3, r4); // Compare to the array length.
1198 __ bge(loop_statement.break_label());
1207 1199
1208 // Get the current entry of the array into register r3. 1200 // Get the current entry of the array into register r6.
1209 __ ldr(r2, MemOperand(sp, 2 * kPointerSize)); 1201 __ LoadP(r5, MemOperand(sp, 2 * kPointerSize));
1210 __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 1202 __ addi(r5, r5, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
1211 __ ldr(r3, MemOperand::PointerAddressFromSmiKey(r2, r0)); 1203 __ SmiToPtrArrayOffset(r6, r3);
1204 __ LoadPX(r6, MemOperand(r6, r5));
1212 1205
1213 // Get the expected map from the stack or a smi in the 1206 // Get the expected map from the stack or a smi in the
1214 // permanent slow case into register r2. 1207 // permanent slow case into register r5.
1215 __ ldr(r2, MemOperand(sp, 3 * kPointerSize)); 1208 __ LoadP(r5, MemOperand(sp, 3 * kPointerSize));
1216 1209
1217 // Check if the expected map still matches that of the enumerable. 1210 // Check if the expected map still matches that of the enumerable.
1218 // If not, we may have to filter the key. 1211 // If not, we may have to filter the key.
1219 Label update_each; 1212 Label update_each;
1220 __ ldr(r1, MemOperand(sp, 4 * kPointerSize)); 1213 __ LoadP(r4, MemOperand(sp, 4 * kPointerSize));
1221 __ ldr(r4, FieldMemOperand(r1, HeapObject::kMapOffset)); 1214 __ LoadP(r7, FieldMemOperand(r4, HeapObject::kMapOffset));
1222 __ cmp(r4, Operand(r2)); 1215 __ cmp(r7, r5);
1223 __ b(eq, &update_each); 1216 __ beq(&update_each);
1224 1217
1225 // For proxies, no filtering is done. 1218 // For proxies, no filtering is done.
1226 // TODO(rossberg): What if only a prototype is a proxy? Not specified yet. 1219 // TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
1227 __ cmp(r2, Operand(Smi::FromInt(0))); 1220 __ CmpSmiLiteral(r5, Smi::FromInt(0), r0);
1228 __ b(eq, &update_each); 1221 __ beq(&update_each);
1229 1222
1230 // Convert the entry to a string or (smi) 0 if it isn't a property 1223 // Convert the entry to a string or (smi) 0 if it isn't a property
1231 // any more. If the property has been removed while iterating, we 1224 // any more. If the property has been removed while iterating, we
1232 // just skip it. 1225 // just skip it.
1233 __ push(r1); // Enumerable. 1226 __ Push(r4, r6); // Enumerable and current entry.
1234 __ push(r3); // Current entry.
1235 __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION); 1227 __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
1236 __ mov(r3, Operand(r0), SetCC); 1228 __ mr(r6, r3);
1237 __ b(eq, loop_statement.continue_label()); 1229 __ cmpi(r6, Operand::Zero());
1230 __ beq(loop_statement.continue_label());
1238 1231
1239 // Update the 'each' property or variable from the possibly filtered 1232 // Update the 'each' property or variable from the possibly filtered
1240 // entry in register r3. 1233 // entry in register r6.
1241 __ bind(&update_each); 1234 __ bind(&update_each);
1242 __ mov(result_register(), r3); 1235 __ mr(result_register(), r6);
1243 // Perform the assignment as if via '='. 1236 // Perform the assignment as if via '='.
1244 { EffectContext context(this); 1237 { EffectContext context(this);
1245 EmitAssignment(stmt->each()); 1238 EmitAssignment(stmt->each());
1246 } 1239 }
1247 1240
1248 // Generate code for the body of the loop. 1241 // Generate code for the body of the loop.
1249 Visit(stmt->body()); 1242 Visit(stmt->body());
1250 1243
1251 // Generate code for the going to the next element by incrementing 1244 // Generate code for the going to the next element by incrementing
1252 // the index (smi) stored on top of the stack. 1245 // the index (smi) stored on top of the stack.
1253 __ bind(loop_statement.continue_label()); 1246 __ bind(loop_statement.continue_label());
1254 __ pop(r0); 1247 __ pop(r3);
1255 __ add(r0, r0, Operand(Smi::FromInt(1))); 1248 __ AddSmiLiteral(r3, r3, Smi::FromInt(1), r0);
1256 __ push(r0); 1249 __ push(r3);
1257 1250
1258 EmitBackEdgeBookkeeping(stmt, &loop); 1251 EmitBackEdgeBookkeeping(stmt, &loop);
1259 __ b(&loop); 1252 __ b(&loop);
1260 1253
1261 // Remove the pointers stored on the stack. 1254 // Remove the pointers stored on the stack.
1262 __ bind(loop_statement.break_label()); 1255 __ bind(loop_statement.break_label());
1263 __ Drop(5); 1256 __ Drop(5);
1264 1257
1265 // Exit and decrement the loop depth. 1258 // Exit and decrement the loop depth.
1266 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); 1259 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
(...skipping 28 matching lines...) Expand all
1295 1288
1296 // each = result.value 1289 // each = result.value
1297 VisitForEffect(stmt->assign_each()); 1290 VisitForEffect(stmt->assign_each());
1298 1291
1299 // Generate code for the body of the loop. 1292 // Generate code for the body of the loop.
1300 Visit(stmt->body()); 1293 Visit(stmt->body());
1301 1294
1302 // Check stack before looping. 1295 // Check stack before looping.
1303 PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS); 1296 PrepareForBailoutForId(stmt->BackEdgeId(), NO_REGISTERS);
1304 EmitBackEdgeBookkeeping(stmt, loop_statement.continue_label()); 1297 EmitBackEdgeBookkeeping(stmt, loop_statement.continue_label());
1305 __ jmp(loop_statement.continue_label()); 1298 __ b(loop_statement.continue_label());
1306 1299
1307 // Exit and decrement the loop depth. 1300 // Exit and decrement the loop depth.
1308 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); 1301 PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
1309 __ bind(loop_statement.break_label()); 1302 __ bind(loop_statement.break_label());
1310 decrement_loop_depth(); 1303 decrement_loop_depth();
1311 } 1304 }
1312 1305
1313 1306
1314 void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info, 1307 void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
1315 bool pretenure) { 1308 bool pretenure) {
1316 // Use the fast case closure allocation code that allocates in new 1309 // Use the fast case closure allocation code that allocates in new
1317 // space for nested functions that don't need literals cloning. If 1310 // space for nested functions that don't need literals cloning. If
1318 // we're running with the --always-opt or the --prepare-always-opt 1311 // we're running with the --always-opt or the --prepare-always-opt
1319 // flag, we need to use the runtime function so that the new function 1312 // flag, we need to use the runtime function so that the new function
1320 // we are creating here gets a chance to have its code optimized and 1313 // we are creating here gets a chance to have its code optimized and
1321 // doesn't just get a copy of the existing unoptimized code. 1314 // doesn't just get a copy of the existing unoptimized code.
1322 if (!FLAG_always_opt && 1315 if (!FLAG_always_opt &&
1323 !FLAG_prepare_always_opt && 1316 !FLAG_prepare_always_opt &&
1324 !pretenure && 1317 !pretenure &&
1325 scope()->is_function_scope() && 1318 scope()->is_function_scope() &&
1326 info->num_literals() == 0) { 1319 info->num_literals() == 0) {
1327 FastNewClosureStub stub(isolate(), 1320 FastNewClosureStub stub(isolate(),
1328 info->strict_mode(), 1321 info->strict_mode(),
1329 info->is_generator()); 1322 info->is_generator());
1330 __ mov(r2, Operand(info)); 1323 __ mov(r5, Operand(info));
1331 __ CallStub(&stub); 1324 __ CallStub(&stub);
1332 } else { 1325 } else {
1333 __ mov(r0, Operand(info)); 1326 __ mov(r3, Operand(info));
1334 __ LoadRoot(r1, pretenure ? Heap::kTrueValueRootIndex 1327 __ LoadRoot(r4, pretenure ? Heap::kTrueValueRootIndex
1335 : Heap::kFalseValueRootIndex); 1328 : Heap::kFalseValueRootIndex);
1336 __ Push(cp, r0, r1); 1329 __ Push(cp, r3, r4);
1337 __ CallRuntime(Runtime::kNewClosure, 3); 1330 __ CallRuntime(Runtime::kNewClosure, 3);
1338 } 1331 }
1339 context()->Plug(r0); 1332 context()->Plug(r3);
1340 } 1333 }
1341 1334
1342 1335
1343 void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) { 1336 void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
1344 Comment cmnt(masm_, "[ VariableProxy"); 1337 Comment cmnt(masm_, "[ VariableProxy");
1345 EmitVariableLoad(expr); 1338 EmitVariableLoad(expr);
1346 } 1339 }
1347 1340
1348 1341
1349 void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy, 1342 void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy,
1350 TypeofState typeof_state, 1343 TypeofState typeof_state,
1351 Label* slow) { 1344 Label* slow) {
1352 Register current = cp; 1345 Register current = cp;
1353 Register next = r1; 1346 Register next = r4;
1354 Register temp = r2; 1347 Register temp = r5;
1355 1348
1356 Scope* s = scope(); 1349 Scope* s = scope();
1357 while (s != NULL) { 1350 while (s != NULL) {
1358 if (s->num_heap_slots() > 0) { 1351 if (s->num_heap_slots() > 0) {
1359 if (s->calls_sloppy_eval()) { 1352 if (s->calls_sloppy_eval()) {
1360 // Check that extension is NULL. 1353 // Check that extension is NULL.
1361 __ ldr(temp, ContextOperand(current, Context::EXTENSION_INDEX)); 1354 __ LoadP(temp, ContextOperand(current, Context::EXTENSION_INDEX));
1362 __ tst(temp, temp); 1355 __ cmpi(temp, Operand::Zero());
1363 __ b(ne, slow); 1356 __ bne(slow);
1364 } 1357 }
1365 // Load next context in chain. 1358 // Load next context in chain.
1366 __ ldr(next, ContextOperand(current, Context::PREVIOUS_INDEX)); 1359 __ LoadP(next, ContextOperand(current, Context::PREVIOUS_INDEX));
1367 // Walk the rest of the chain without clobbering cp. 1360 // Walk the rest of the chain without clobbering cp.
1368 current = next; 1361 current = next;
1369 } 1362 }
1370 // If no outer scope calls eval, we do not need to check more 1363 // If no outer scope calls eval, we do not need to check more
1371 // context extensions. 1364 // context extensions.
1372 if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break; 1365 if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break;
1373 s = s->outer_scope(); 1366 s = s->outer_scope();
1374 } 1367 }
1375 1368
1376 if (s->is_eval_scope()) { 1369 if (s->is_eval_scope()) {
1377 Label loop, fast; 1370 Label loop, fast;
1378 if (!current.is(next)) { 1371 if (!current.is(next)) {
1379 __ Move(next, current); 1372 __ Move(next, current);
1380 } 1373 }
1381 __ bind(&loop); 1374 __ bind(&loop);
1382 // Terminate at native context. 1375 // Terminate at native context.
1383 __ ldr(temp, FieldMemOperand(next, HeapObject::kMapOffset)); 1376 __ LoadP(temp, FieldMemOperand(next, HeapObject::kMapOffset));
1384 __ LoadRoot(ip, Heap::kNativeContextMapRootIndex); 1377 __ LoadRoot(ip, Heap::kNativeContextMapRootIndex);
1385 __ cmp(temp, ip); 1378 __ cmp(temp, ip);
1386 __ b(eq, &fast); 1379 __ beq(&fast);
1387 // Check that extension is NULL. 1380 // Check that extension is NULL.
1388 __ ldr(temp, ContextOperand(next, Context::EXTENSION_INDEX)); 1381 __ LoadP(temp, ContextOperand(next, Context::EXTENSION_INDEX));
1389 __ tst(temp, temp); 1382 __ cmpi(temp, Operand::Zero());
1390 __ b(ne, slow); 1383 __ bne(slow);
1391 // Load next context in chain. 1384 // Load next context in chain.
1392 __ ldr(next, ContextOperand(next, Context::PREVIOUS_INDEX)); 1385 __ LoadP(next, ContextOperand(next, Context::PREVIOUS_INDEX));
1393 __ b(&loop); 1386 __ b(&loop);
1394 __ bind(&fast); 1387 __ bind(&fast);
1395 } 1388 }
1396 1389
1397 __ ldr(LoadIC::ReceiverRegister(), GlobalObjectOperand()); 1390 __ LoadP(LoadIC::ReceiverRegister(), GlobalObjectOperand());
1398 __ mov(LoadIC::NameRegister(), Operand(proxy->var()->name())); 1391 __ mov(LoadIC::NameRegister(), Operand(proxy->var()->name()));
1399 if (FLAG_vector_ics) { 1392 if (FLAG_vector_ics) {
1400 __ mov(LoadIC::SlotRegister(), 1393 __ mov(LoadIC::SlotRegister(),
1401 Operand(Smi::FromInt(proxy->VariableFeedbackSlot()))); 1394 Operand(Smi::FromInt(proxy->VariableFeedbackSlot())));
1402 } 1395 }
1403
1404 ContextualMode mode = (typeof_state == INSIDE_TYPEOF) 1396 ContextualMode mode = (typeof_state == INSIDE_TYPEOF)
1405 ? NOT_CONTEXTUAL 1397 ? NOT_CONTEXTUAL
1406 : CONTEXTUAL; 1398 : CONTEXTUAL;
1407 CallLoadIC(mode); 1399 CallLoadIC(mode);
1408 } 1400 }
1409 1401
1410 1402
1411 MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var, 1403 MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
1412 Label* slow) { 1404 Label* slow) {
1413 DCHECK(var->IsContextSlot()); 1405 DCHECK(var->IsContextSlot());
1414 Register context = cp; 1406 Register context = cp;
1415 Register next = r3; 1407 Register next = r6;
1416 Register temp = r4; 1408 Register temp = r7;
1417 1409
1418 for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) { 1410 for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
1419 if (s->num_heap_slots() > 0) { 1411 if (s->num_heap_slots() > 0) {
1420 if (s->calls_sloppy_eval()) { 1412 if (s->calls_sloppy_eval()) {
1421 // Check that extension is NULL. 1413 // Check that extension is NULL.
1422 __ ldr(temp, ContextOperand(context, Context::EXTENSION_INDEX)); 1414 __ LoadP(temp, ContextOperand(context, Context::EXTENSION_INDEX));
1423 __ tst(temp, temp); 1415 __ cmpi(temp, Operand::Zero());
1424 __ b(ne, slow); 1416 __ bne(slow);
1425 } 1417 }
1426 __ ldr(next, ContextOperand(context, Context::PREVIOUS_INDEX)); 1418 __ LoadP(next, ContextOperand(context, Context::PREVIOUS_INDEX));
1427 // Walk the rest of the chain without clobbering cp. 1419 // Walk the rest of the chain without clobbering cp.
1428 context = next; 1420 context = next;
1429 } 1421 }
1430 } 1422 }
1431 // Check that last extension is NULL. 1423 // Check that last extension is NULL.
1432 __ ldr(temp, ContextOperand(context, Context::EXTENSION_INDEX)); 1424 __ LoadP(temp, ContextOperand(context, Context::EXTENSION_INDEX));
1433 __ tst(temp, temp); 1425 __ cmpi(temp, Operand::Zero());
1434 __ b(ne, slow); 1426 __ bne(slow);
1435 1427
1436 // This function is used only for loads, not stores, so it's safe to 1428 // This function is used only for loads, not stores, so it's safe to
1437 // return an cp-based operand (the write barrier cannot be allowed to 1429 // return an cp-based operand (the write barrier cannot be allowed to
1438 // destroy the cp register). 1430 // destroy the cp register).
1439 return ContextOperand(context, var->index()); 1431 return ContextOperand(context, var->index());
1440 } 1432 }
1441 1433
1442 1434
1443 void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy, 1435 void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy,
1444 TypeofState typeof_state, 1436 TypeofState typeof_state,
1445 Label* slow, 1437 Label* slow,
1446 Label* done) { 1438 Label* done) {
1447 // Generate fast-case code for variables that might be shadowed by 1439 // Generate fast-case code for variables that might be shadowed by
1448 // eval-introduced variables. Eval is used a lot without 1440 // eval-introduced variables. Eval is used a lot without
1449 // introducing variables. In those cases, we do not want to 1441 // introducing variables. In those cases, we do not want to
1450 // perform a runtime call for all variables in the scope 1442 // perform a runtime call for all variables in the scope
1451 // containing the eval. 1443 // containing the eval.
1452 Variable* var = proxy->var(); 1444 Variable* var = proxy->var();
1453 if (var->mode() == DYNAMIC_GLOBAL) { 1445 if (var->mode() == DYNAMIC_GLOBAL) {
1454 EmitLoadGlobalCheckExtensions(proxy, typeof_state, slow); 1446 EmitLoadGlobalCheckExtensions(proxy, typeof_state, slow);
1455 __ jmp(done); 1447 __ b(done);
1456 } else if (var->mode() == DYNAMIC_LOCAL) { 1448 } else if (var->mode() == DYNAMIC_LOCAL) {
1457 Variable* local = var->local_if_not_shadowed(); 1449 Variable* local = var->local_if_not_shadowed();
1458 __ ldr(r0, ContextSlotOperandCheckExtensions(local, slow)); 1450 __ LoadP(r3, ContextSlotOperandCheckExtensions(local, slow));
1459 if (local->mode() == LET || local->mode() == CONST || 1451 if (local->mode() == LET || local->mode() == CONST ||
1460 local->mode() == CONST_LEGACY) { 1452 local->mode() == CONST_LEGACY) {
1461 __ CompareRoot(r0, Heap::kTheHoleValueRootIndex); 1453 __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
1454 __ bne(done);
1462 if (local->mode() == CONST_LEGACY) { 1455 if (local->mode() == CONST_LEGACY) {
1463 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq); 1456 __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
1464 } else { // LET || CONST 1457 } else { // LET || CONST
1465 __ b(ne, done); 1458 __ mov(r3, Operand(var->name()));
1466 __ mov(r0, Operand(var->name())); 1459 __ push(r3);
1467 __ push(r0);
1468 __ CallRuntime(Runtime::kThrowReferenceError, 1); 1460 __ CallRuntime(Runtime::kThrowReferenceError, 1);
1469 } 1461 }
1470 } 1462 }
1471 __ jmp(done); 1463 __ b(done);
1472 } 1464 }
1473 } 1465 }
1474 1466
1475 1467
1476 void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) { 1468 void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) {
1477 // Record position before possible IC call. 1469 // Record position before possible IC call.
1478 SetSourcePosition(proxy->position()); 1470 SetSourcePosition(proxy->position());
1479 Variable* var = proxy->var(); 1471 Variable* var = proxy->var();
1480 1472
1481 // Three cases: global variables, lookup variables, and all other types of 1473 // Three cases: global variables, lookup variables, and all other types of
1482 // variables. 1474 // variables.
1483 switch (var->location()) { 1475 switch (var->location()) {
1484 case Variable::UNALLOCATED: { 1476 case Variable::UNALLOCATED: {
1485 Comment cmnt(masm_, "[ Global variable"); 1477 Comment cmnt(masm_, "[ Global variable");
1486 __ ldr(LoadIC::ReceiverRegister(), GlobalObjectOperand()); 1478 // Use inline caching. Variable name is passed in r5 and the global
1479 // object (receiver) in r3.
1480 __ LoadP(LoadIC::ReceiverRegister(), GlobalObjectOperand());
1487 __ mov(LoadIC::NameRegister(), Operand(var->name())); 1481 __ mov(LoadIC::NameRegister(), Operand(var->name()));
1488 if (FLAG_vector_ics) { 1482 if (FLAG_vector_ics) {
1489 __ mov(LoadIC::SlotRegister(), 1483 __ mov(LoadIC::SlotRegister(),
1490 Operand(Smi::FromInt(proxy->VariableFeedbackSlot()))); 1484 Operand(Smi::FromInt(proxy->VariableFeedbackSlot())));
1491 } 1485 }
1492 CallLoadIC(CONTEXTUAL); 1486 CallLoadIC(CONTEXTUAL);
1493 context()->Plug(r0); 1487 context()->Plug(r3);
1494 break; 1488 break;
1495 } 1489 }
1496 1490
1497 case Variable::PARAMETER: 1491 case Variable::PARAMETER:
1498 case Variable::LOCAL: 1492 case Variable::LOCAL:
1499 case Variable::CONTEXT: { 1493 case Variable::CONTEXT: {
1500 Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable" 1494 Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable"
1501 : "[ Stack variable"); 1495 : "[ Stack variable");
1502 if (var->binding_needs_init()) { 1496 if (var->binding_needs_init()) {
1503 // var->scope() may be NULL when the proxy is located in eval code and 1497 // var->scope() may be NULL when the proxy is located in eval code and
(...skipping 24 matching lines...) Expand all
1528 skip_init_check = false; 1522 skip_init_check = false;
1529 } else { 1523 } else {
1530 // Check that we always have valid source position. 1524 // Check that we always have valid source position.
1531 DCHECK(var->initializer_position() != RelocInfo::kNoPosition); 1525 DCHECK(var->initializer_position() != RelocInfo::kNoPosition);
1532 DCHECK(proxy->position() != RelocInfo::kNoPosition); 1526 DCHECK(proxy->position() != RelocInfo::kNoPosition);
1533 skip_init_check = var->mode() != CONST_LEGACY && 1527 skip_init_check = var->mode() != CONST_LEGACY &&
1534 var->initializer_position() < proxy->position(); 1528 var->initializer_position() < proxy->position();
1535 } 1529 }
1536 1530
1537 if (!skip_init_check) { 1531 if (!skip_init_check) {
1532 Label done;
1538 // Let and const need a read barrier. 1533 // Let and const need a read barrier.
1539 GetVar(r0, var); 1534 GetVar(r3, var);
1540 __ CompareRoot(r0, Heap::kTheHoleValueRootIndex); 1535 __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
1536 __ bne(&done);
1541 if (var->mode() == LET || var->mode() == CONST) { 1537 if (var->mode() == LET || var->mode() == CONST) {
1542 // Throw a reference error when using an uninitialized let/const 1538 // Throw a reference error when using an uninitialized let/const
1543 // binding in harmony mode. 1539 // binding in harmony mode.
1544 Label done; 1540 __ mov(r3, Operand(var->name()));
1545 __ b(ne, &done); 1541 __ push(r3);
1546 __ mov(r0, Operand(var->name()));
1547 __ push(r0);
1548 __ CallRuntime(Runtime::kThrowReferenceError, 1); 1542 __ CallRuntime(Runtime::kThrowReferenceError, 1);
1549 __ bind(&done);
1550 } else { 1543 } else {
1551 // Uninitalized const bindings outside of harmony mode are unholed. 1544 // Uninitalized const bindings outside of harmony mode are unholed.
1552 DCHECK(var->mode() == CONST_LEGACY); 1545 DCHECK(var->mode() == CONST_LEGACY);
1553 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq); 1546 __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
1554 } 1547 }
1555 context()->Plug(r0); 1548 __ bind(&done);
1549 context()->Plug(r3);
1556 break; 1550 break;
1557 } 1551 }
1558 } 1552 }
1559 context()->Plug(var); 1553 context()->Plug(var);
1560 break; 1554 break;
1561 } 1555 }
1562 1556
1563 case Variable::LOOKUP: { 1557 case Variable::LOOKUP: {
1564 Comment cmnt(masm_, "[ Lookup variable"); 1558 Comment cmnt(masm_, "[ Lookup variable");
1565 Label done, slow; 1559 Label done, slow;
1566 // Generate code for loading from variables potentially shadowed 1560 // Generate code for loading from variables potentially shadowed
1567 // by eval-introduced variables. 1561 // by eval-introduced variables.
1568 EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done); 1562 EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done);
1569 __ bind(&slow); 1563 __ bind(&slow);
1570 __ mov(r1, Operand(var->name())); 1564 __ mov(r4, Operand(var->name()));
1571 __ Push(cp, r1); // Context and name. 1565 __ Push(cp, r4); // Context and name.
1572 __ CallRuntime(Runtime::kLoadLookupSlot, 2); 1566 __ CallRuntime(Runtime::kLoadLookupSlot, 2);
1573 __ bind(&done); 1567 __ bind(&done);
1574 context()->Plug(r0); 1568 context()->Plug(r3);
1575 } 1569 }
1576 } 1570 }
1577 } 1571 }
1578 1572
1579 1573
1580 void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { 1574 void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
1581 Comment cmnt(masm_, "[ RegExpLiteral"); 1575 Comment cmnt(masm_, "[ RegExpLiteral");
1582 Label materialized; 1576 Label materialized;
1583 // Registers will be used as follows: 1577 // Registers will be used as follows:
1584 // r5 = materialized value (RegExp literal) 1578 // r8 = materialized value (RegExp literal)
1585 // r4 = JS function, literals array 1579 // r7 = JS function, literals array
1586 // r3 = literal index 1580 // r6 = literal index
1587 // r2 = RegExp pattern 1581 // r5 = RegExp pattern
1588 // r1 = RegExp flags 1582 // r4 = RegExp flags
1589 // r0 = RegExp literal clone 1583 // r3 = RegExp literal clone
1590 __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 1584 __ LoadP(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1591 __ ldr(r4, FieldMemOperand(r0, JSFunction::kLiteralsOffset)); 1585 __ LoadP(r7, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
1592 int literal_offset = 1586 int literal_offset =
1593 FixedArray::kHeaderSize + expr->literal_index() * kPointerSize; 1587 FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
1594 __ ldr(r5, FieldMemOperand(r4, literal_offset)); 1588 __ LoadP(r8, FieldMemOperand(r7, literal_offset), r0);
1595 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); 1589 __ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
1596 __ cmp(r5, ip); 1590 __ cmp(r8, ip);
1597 __ b(ne, &materialized); 1591 __ bne(&materialized);
1598 1592
1599 // Create regexp literal using runtime function. 1593 // Create regexp literal using runtime function.
1600 // Result will be in r0. 1594 // Result will be in r3.
1601 __ mov(r3, Operand(Smi::FromInt(expr->literal_index()))); 1595 __ LoadSmiLiteral(r6, Smi::FromInt(expr->literal_index()));
1602 __ mov(r2, Operand(expr->pattern())); 1596 __ mov(r5, Operand(expr->pattern()));
1603 __ mov(r1, Operand(expr->flags())); 1597 __ mov(r4, Operand(expr->flags()));
1604 __ Push(r4, r3, r2, r1); 1598 __ Push(r7, r6, r5, r4);
1605 __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); 1599 __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
1606 __ mov(r5, r0); 1600 __ mr(r8, r3);
1607 1601
1608 __ bind(&materialized); 1602 __ bind(&materialized);
1609 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; 1603 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
1610 Label allocated, runtime_allocate; 1604 Label allocated, runtime_allocate;
1611 __ Allocate(size, r0, r2, r3, &runtime_allocate, TAG_OBJECT); 1605 __ Allocate(size, r3, r5, r6, &runtime_allocate, TAG_OBJECT);
1612 __ jmp(&allocated); 1606 __ b(&allocated);
1613 1607
1614 __ bind(&runtime_allocate); 1608 __ bind(&runtime_allocate);
1615 __ mov(r0, Operand(Smi::FromInt(size))); 1609 __ LoadSmiLiteral(r3, Smi::FromInt(size));
1616 __ Push(r5, r0); 1610 __ Push(r8, r3);
1617 __ CallRuntime(Runtime::kAllocateInNewSpace, 1); 1611 __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
1618 __ pop(r5); 1612 __ pop(r8);
1619 1613
1620 __ bind(&allocated); 1614 __ bind(&allocated);
1621 // After this, registers are used as follows: 1615 // After this, registers are used as follows:
1622 // r0: Newly allocated regexp. 1616 // r3: Newly allocated regexp.
1623 // r5: Materialized regexp. 1617 // r8: Materialized regexp.
1624 // r2: temp. 1618 // r5: temp.
1625 __ CopyFields(r0, r5, d0, size / kPointerSize); 1619 __ CopyFields(r3, r8, r5.bit(), size / kPointerSize);
1626 context()->Plug(r0); 1620 context()->Plug(r3);
1627 } 1621 }
1628 1622
1629 1623
1630 void FullCodeGenerator::EmitAccessor(Expression* expression) { 1624 void FullCodeGenerator::EmitAccessor(Expression* expression) {
1631 if (expression == NULL) { 1625 if (expression == NULL) {
1632 __ LoadRoot(r1, Heap::kNullValueRootIndex); 1626 __ LoadRoot(r4, Heap::kNullValueRootIndex);
1633 __ push(r1); 1627 __ push(r4);
1634 } else { 1628 } else {
1635 VisitForStackValue(expression); 1629 VisitForStackValue(expression);
1636 } 1630 }
1637 } 1631 }
1638 1632
1639 1633
1640 void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { 1634 void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
1641 Comment cmnt(masm_, "[ ObjectLiteral"); 1635 Comment cmnt(masm_, "[ ObjectLiteral");
1642 1636
1643 expr->BuildConstantProperties(isolate()); 1637 expr->BuildConstantProperties(isolate());
1644 Handle<FixedArray> constant_properties = expr->constant_properties(); 1638 Handle<FixedArray> constant_properties = expr->constant_properties();
1645 __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 1639 __ LoadP(r6, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1646 __ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset)); 1640 __ LoadP(r6, FieldMemOperand(r6, JSFunction::kLiteralsOffset));
1647 __ mov(r2, Operand(Smi::FromInt(expr->literal_index()))); 1641 __ LoadSmiLiteral(r5, Smi::FromInt(expr->literal_index()));
1648 __ mov(r1, Operand(constant_properties)); 1642 __ mov(r4, Operand(constant_properties));
1649 int flags = expr->fast_elements() 1643 int flags = expr->fast_elements()
1650 ? ObjectLiteral::kFastElements 1644 ? ObjectLiteral::kFastElements
1651 : ObjectLiteral::kNoFlags; 1645 : ObjectLiteral::kNoFlags;
1652 flags |= expr->has_function() 1646 flags |= expr->has_function()
1653 ? ObjectLiteral::kHasFunction 1647 ? ObjectLiteral::kHasFunction
1654 : ObjectLiteral::kNoFlags; 1648 : ObjectLiteral::kNoFlags;
1655 __ mov(r0, Operand(Smi::FromInt(flags))); 1649 __ LoadSmiLiteral(r3, Smi::FromInt(flags));
1656 int properties_count = constant_properties->length() / 2; 1650 int properties_count = constant_properties->length() / 2;
1657 if (expr->may_store_doubles() || expr->depth() > 1 || 1651 if (expr->may_store_doubles() || expr->depth() > 1 ||
1658 masm()->serializer_enabled() || flags != ObjectLiteral::kFastElements || 1652 masm()->serializer_enabled() || flags != ObjectLiteral::kFastElements ||
1659 properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) { 1653 properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
1660 __ Push(r3, r2, r1, r0); 1654 __ Push(r6, r5, r4, r3);
1661 __ CallRuntime(Runtime::kCreateObjectLiteral, 4); 1655 __ CallRuntime(Runtime::kCreateObjectLiteral, 4);
1662 } else { 1656 } else {
1663 FastCloneShallowObjectStub stub(isolate(), properties_count); 1657 FastCloneShallowObjectStub stub(isolate(), properties_count);
1664 __ CallStub(&stub); 1658 __ CallStub(&stub);
1665 } 1659 }
1666 1660
1667 // If result_saved is true the result is on top of the stack. If 1661 // If result_saved is true the result is on top of the stack. If
1668 // result_saved is false the result is in r0. 1662 // result_saved is false the result is in r3.
1669 bool result_saved = false; 1663 bool result_saved = false;
1670 1664
1671 // Mark all computed expressions that are bound to a key that 1665 // Mark all computed expressions that are bound to a key that
1672 // is shadowed by a later occurrence of the same key. For the 1666 // is shadowed by a later occurrence of the same key. For the
1673 // marked expressions, no store code is emitted. 1667 // marked expressions, no store code is emitted.
1674 expr->CalculateEmitStore(zone()); 1668 expr->CalculateEmitStore(zone());
1675 1669
1676 AccessorTable accessor_table(zone()); 1670 AccessorTable accessor_table(zone());
1677 for (int i = 0; i < expr->properties()->length(); i++) { 1671 for (int i = 0; i < expr->properties()->length(); i++) {
1678 ObjectLiteral::Property* property = expr->properties()->at(i); 1672 ObjectLiteral::Property* property = expr->properties()->at(i);
1679 if (property->IsCompileTimeValue()) continue; 1673 if (property->IsCompileTimeValue()) continue;
1680 1674
1681 Literal* key = property->key(); 1675 Literal* key = property->key();
1682 Expression* value = property->value(); 1676 Expression* value = property->value();
1683 if (!result_saved) { 1677 if (!result_saved) {
1684 __ push(r0); // Save result on stack 1678 __ push(r3); // Save result on stack
1685 result_saved = true; 1679 result_saved = true;
1686 } 1680 }
1687 switch (property->kind()) { 1681 switch (property->kind()) {
1688 case ObjectLiteral::Property::CONSTANT: 1682 case ObjectLiteral::Property::CONSTANT:
1689 UNREACHABLE(); 1683 UNREACHABLE();
1690 case ObjectLiteral::Property::MATERIALIZED_LITERAL: 1684 case ObjectLiteral::Property::MATERIALIZED_LITERAL:
1691 DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value())); 1685 DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value()));
1692 // Fall through. 1686 // Fall through.
1693 case ObjectLiteral::Property::COMPUTED: 1687 case ObjectLiteral::Property::COMPUTED:
1694 if (key->value()->IsInternalizedString()) { 1688 if (key->value()->IsInternalizedString()) {
1695 if (property->emit_store()) { 1689 if (property->emit_store()) {
1696 VisitForAccumulatorValue(value); 1690 VisitForAccumulatorValue(value);
1697 DCHECK(StoreIC::ValueRegister().is(r0)); 1691 DCHECK(StoreIC::ValueRegister().is(r3));
1698 __ mov(StoreIC::NameRegister(), Operand(key->value())); 1692 __ mov(StoreIC::NameRegister(), Operand(key->value()));
1699 __ ldr(StoreIC::ReceiverRegister(), MemOperand(sp)); 1693 __ LoadP(StoreIC::ReceiverRegister(), MemOperand(sp));
1700 CallStoreIC(key->LiteralFeedbackId()); 1694 CallStoreIC(key->LiteralFeedbackId());
1701 PrepareForBailoutForId(key->id(), NO_REGISTERS); 1695 PrepareForBailoutForId(key->id(), NO_REGISTERS);
1702 } else { 1696 } else {
1703 VisitForEffect(value); 1697 VisitForEffect(value);
1704 } 1698 }
1705 break; 1699 break;
1706 } 1700 }
1707 // Duplicate receiver on stack. 1701 // Duplicate receiver on stack.
1708 __ ldr(r0, MemOperand(sp)); 1702 __ LoadP(r3, MemOperand(sp));
1709 __ push(r0); 1703 __ push(r3);
1710 VisitForStackValue(key); 1704 VisitForStackValue(key);
1711 VisitForStackValue(value); 1705 VisitForStackValue(value);
1712 if (property->emit_store()) { 1706 if (property->emit_store()) {
1713 __ mov(r0, Operand(Smi::FromInt(SLOPPY))); // PropertyAttributes 1707 __ LoadSmiLiteral(r3, Smi::FromInt(SLOPPY)); // PropertyAttributes
1714 __ push(r0); 1708 __ push(r3);
1715 __ CallRuntime(Runtime::kSetProperty, 4); 1709 __ CallRuntime(Runtime::kSetProperty, 4);
1716 } else { 1710 } else {
1717 __ Drop(3); 1711 __ Drop(3);
1718 } 1712 }
1719 break; 1713 break;
1720 case ObjectLiteral::Property::PROTOTYPE: 1714 case ObjectLiteral::Property::PROTOTYPE:
1721 // Duplicate receiver on stack. 1715 // Duplicate receiver on stack.
1722 __ ldr(r0, MemOperand(sp)); 1716 __ LoadP(r3, MemOperand(sp));
1723 __ push(r0); 1717 __ push(r3);
1724 VisitForStackValue(value); 1718 VisitForStackValue(value);
1725 if (property->emit_store()) { 1719 if (property->emit_store()) {
1726 __ CallRuntime(Runtime::kSetPrototype, 2); 1720 __ CallRuntime(Runtime::kSetPrototype, 2);
1727 } else { 1721 } else {
1728 __ Drop(2); 1722 __ Drop(2);
1729 } 1723 }
1730 break; 1724 break;
1731
1732 case ObjectLiteral::Property::GETTER: 1725 case ObjectLiteral::Property::GETTER:
1733 accessor_table.lookup(key)->second->getter = value; 1726 accessor_table.lookup(key)->second->getter = value;
1734 break; 1727 break;
1735 case ObjectLiteral::Property::SETTER: 1728 case ObjectLiteral::Property::SETTER:
1736 accessor_table.lookup(key)->second->setter = value; 1729 accessor_table.lookup(key)->second->setter = value;
1737 break; 1730 break;
1738 } 1731 }
1739 } 1732 }
1740 1733
1741 // Emit code to define accessors, using only a single call to the runtime for 1734 // Emit code to define accessors, using only a single call to the runtime for
1742 // each pair of corresponding getters and setters. 1735 // each pair of corresponding getters and setters.
1743 for (AccessorTable::Iterator it = accessor_table.begin(); 1736 for (AccessorTable::Iterator it = accessor_table.begin();
1744 it != accessor_table.end(); 1737 it != accessor_table.end();
1745 ++it) { 1738 ++it) {
1746 __ ldr(r0, MemOperand(sp)); // Duplicate receiver. 1739 __ LoadP(r3, MemOperand(sp)); // Duplicate receiver.
1747 __ push(r0); 1740 __ push(r3);
1748 VisitForStackValue(it->first); 1741 VisitForStackValue(it->first);
1749 EmitAccessor(it->second->getter); 1742 EmitAccessor(it->second->getter);
1750 EmitAccessor(it->second->setter); 1743 EmitAccessor(it->second->setter);
1751 __ mov(r0, Operand(Smi::FromInt(NONE))); 1744 __ LoadSmiLiteral(r3, Smi::FromInt(NONE));
1752 __ push(r0); 1745 __ push(r3);
1753 __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked, 5); 1746 __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked, 5);
1754 } 1747 }
1755 1748
1756 if (expr->has_function()) { 1749 if (expr->has_function()) {
1757 DCHECK(result_saved); 1750 DCHECK(result_saved);
1758 __ ldr(r0, MemOperand(sp)); 1751 __ LoadP(r3, MemOperand(sp));
1759 __ push(r0); 1752 __ push(r3);
1760 __ CallRuntime(Runtime::kToFastProperties, 1); 1753 __ CallRuntime(Runtime::kToFastProperties, 1);
1761 } 1754 }
1762 1755
1763 if (result_saved) { 1756 if (result_saved) {
1764 context()->PlugTOS(); 1757 context()->PlugTOS();
1765 } else { 1758 } else {
1766 context()->Plug(r0); 1759 context()->Plug(r3);
1767 } 1760 }
1768 } 1761 }
1769 1762
1770 1763
1771 void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { 1764 void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
1772 Comment cmnt(masm_, "[ ArrayLiteral"); 1765 Comment cmnt(masm_, "[ ArrayLiteral");
1773 1766
1774 expr->BuildConstantElements(isolate()); 1767 expr->BuildConstantElements(isolate());
1775 int flags = expr->depth() == 1 1768 int flags = expr->depth() == 1
1776 ? ArrayLiteral::kShallowElements 1769 ? ArrayLiteral::kShallowElements
1777 : ArrayLiteral::kNoFlags; 1770 : ArrayLiteral::kNoFlags;
1778 1771
1779 ZoneList<Expression*>* subexprs = expr->values(); 1772 ZoneList<Expression*>* subexprs = expr->values();
1780 int length = subexprs->length(); 1773 int length = subexprs->length();
1781 Handle<FixedArray> constant_elements = expr->constant_elements(); 1774 Handle<FixedArray> constant_elements = expr->constant_elements();
1782 DCHECK_EQ(2, constant_elements->length()); 1775 DCHECK_EQ(2, constant_elements->length());
1783 ElementsKind constant_elements_kind = 1776 ElementsKind constant_elements_kind =
1784 static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value()); 1777 static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
1785 bool has_fast_elements = IsFastObjectElementsKind(constant_elements_kind); 1778 bool has_fast_elements = IsFastObjectElementsKind(constant_elements_kind);
1786 Handle<FixedArrayBase> constant_elements_values( 1779 Handle<FixedArrayBase> constant_elements_values(
1787 FixedArrayBase::cast(constant_elements->get(1))); 1780 FixedArrayBase::cast(constant_elements->get(1)));
1788 1781
1789 AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE; 1782 AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE;
1790 if (has_fast_elements && !FLAG_allocation_site_pretenuring) { 1783 if (has_fast_elements && !FLAG_allocation_site_pretenuring) {
1791 // If the only customer of allocation sites is transitioning, then 1784 // If the only customer of allocation sites is transitioning, then
1792 // we can turn it off if we don't have anywhere else to transition to. 1785 // we can turn it off if we don't have anywhere else to transition to.
1793 allocation_site_mode = DONT_TRACK_ALLOCATION_SITE; 1786 allocation_site_mode = DONT_TRACK_ALLOCATION_SITE;
1794 } 1787 }
1795 1788
1796 __ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 1789 __ LoadP(r6, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1797 __ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset)); 1790 __ LoadP(r6, FieldMemOperand(r6, JSFunction::kLiteralsOffset));
1798 __ mov(r2, Operand(Smi::FromInt(expr->literal_index()))); 1791 __ LoadSmiLiteral(r5, Smi::FromInt(expr->literal_index()));
1799 __ mov(r1, Operand(constant_elements)); 1792 __ mov(r4, Operand(constant_elements));
1800 if (expr->depth() > 1 || length > JSObject::kInitialMaxFastElementArray) { 1793 if (expr->depth() > 1 || length > JSObject::kInitialMaxFastElementArray) {
1801 __ mov(r0, Operand(Smi::FromInt(flags))); 1794 __ LoadSmiLiteral(r3, Smi::FromInt(flags));
1802 __ Push(r3, r2, r1, r0); 1795 __ Push(r6, r5, r4, r3);
1803 __ CallRuntime(Runtime::kCreateArrayLiteral, 4); 1796 __ CallRuntime(Runtime::kCreateArrayLiteral, 4);
1804 } else { 1797 } else {
1805 FastCloneShallowArrayStub stub(isolate(), allocation_site_mode); 1798 FastCloneShallowArrayStub stub(isolate(), allocation_site_mode);
1806 __ CallStub(&stub); 1799 __ CallStub(&stub);
1807 } 1800 }
1808 1801
1809 bool result_saved = false; // Is the result saved to the stack? 1802 bool result_saved = false; // Is the result saved to the stack?
1810 1803
1811 // Emit code to evaluate all the non-constant subexpressions and to store 1804 // Emit code to evaluate all the non-constant subexpressions and to store
1812 // them into the newly cloned array. 1805 // them into the newly cloned array.
1813 for (int i = 0; i < length; i++) { 1806 for (int i = 0; i < length; i++) {
1814 Expression* subexpr = subexprs->at(i); 1807 Expression* subexpr = subexprs->at(i);
1815 // If the subexpression is a literal or a simple materialized literal it 1808 // If the subexpression is a literal or a simple materialized literal it
1816 // is already set in the cloned array. 1809 // is already set in the cloned array.
1817 if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue; 1810 if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
1818 1811
1819 if (!result_saved) { 1812 if (!result_saved) {
1820 __ push(r0); 1813 __ push(r3);
1821 __ Push(Smi::FromInt(expr->literal_index())); 1814 __ Push(Smi::FromInt(expr->literal_index()));
1822 result_saved = true; 1815 result_saved = true;
1823 } 1816 }
1824 VisitForAccumulatorValue(subexpr); 1817 VisitForAccumulatorValue(subexpr);
1825 1818
1826 if (IsFastObjectElementsKind(constant_elements_kind)) { 1819 if (IsFastObjectElementsKind(constant_elements_kind)) {
1827 int offset = FixedArray::kHeaderSize + (i * kPointerSize); 1820 int offset = FixedArray::kHeaderSize + (i * kPointerSize);
1828 __ ldr(r6, MemOperand(sp, kPointerSize)); // Copy of array literal. 1821 __ LoadP(r8, MemOperand(sp, kPointerSize)); // Copy of array literal.
1829 __ ldr(r1, FieldMemOperand(r6, JSObject::kElementsOffset)); 1822 __ LoadP(r4, FieldMemOperand(r8, JSObject::kElementsOffset));
1830 __ str(result_register(), FieldMemOperand(r1, offset)); 1823 __ StoreP(result_register(), FieldMemOperand(r4, offset), r0);
1831 // Update the write barrier for the array store. 1824 // Update the write barrier for the array store.
1832 __ RecordWriteField(r1, offset, result_register(), r2, 1825 __ RecordWriteField(r4, offset, result_register(), r5,
1833 kLRHasBeenSaved, kDontSaveFPRegs, 1826 kLRHasBeenSaved, kDontSaveFPRegs,
1834 EMIT_REMEMBERED_SET, INLINE_SMI_CHECK); 1827 EMIT_REMEMBERED_SET, INLINE_SMI_CHECK);
1835 } else { 1828 } else {
1836 __ mov(r3, Operand(Smi::FromInt(i))); 1829 __ LoadSmiLiteral(r6, Smi::FromInt(i));
1837 StoreArrayLiteralElementStub stub(isolate()); 1830 StoreArrayLiteralElementStub stub(isolate());
1838 __ CallStub(&stub); 1831 __ CallStub(&stub);
1839 } 1832 }
1840 1833
1841 PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS); 1834 PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
1842 } 1835 }
1843 1836
1844 if (result_saved) { 1837 if (result_saved) {
1845 __ pop(); // literal index 1838 __ pop(); // literal index
1846 context()->PlugTOS(); 1839 context()->PlugTOS();
1847 } else { 1840 } else {
1848 context()->Plug(r0); 1841 context()->Plug(r3);
1849 } 1842 }
1850 } 1843 }
1851 1844
1852 1845
1853 void FullCodeGenerator::VisitAssignment(Assignment* expr) { 1846 void FullCodeGenerator::VisitAssignment(Assignment* expr) {
1854 DCHECK(expr->target()->IsValidReferenceExpression()); 1847 DCHECK(expr->target()->IsValidReferenceExpression());
1855 1848
1856 Comment cmnt(masm_, "[ Assignment"); 1849 Comment cmnt(masm_, "[ Assignment");
1857 1850
1858 // Left-hand side can only be a property, a global or a (parameter or local) 1851 // Left-hand side can only be a property, a global or a (parameter or local)
1859 // slot. 1852 // slot.
1860 enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; 1853 enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
1861 LhsKind assign_type = VARIABLE; 1854 LhsKind assign_type = VARIABLE;
1862 Property* property = expr->target()->AsProperty(); 1855 Property* property = expr->target()->AsProperty();
1863 if (property != NULL) { 1856 if (property != NULL) {
1864 assign_type = (property->key()->IsPropertyName()) 1857 assign_type = (property->key()->IsPropertyName())
1865 ? NAMED_PROPERTY 1858 ? NAMED_PROPERTY
1866 : KEYED_PROPERTY; 1859 : KEYED_PROPERTY;
1867 } 1860 }
1868 1861
1869 // Evaluate LHS expression. 1862 // Evaluate LHS expression.
1870 switch (assign_type) { 1863 switch (assign_type) {
1871 case VARIABLE: 1864 case VARIABLE:
1872 // Nothing to do here. 1865 // Nothing to do here.
1873 break; 1866 break;
1874 case NAMED_PROPERTY: 1867 case NAMED_PROPERTY:
1875 if (expr->is_compound()) { 1868 if (expr->is_compound()) {
1876 // We need the receiver both on the stack and in the register. 1869 // We need the receiver both on the stack and in the register.
1877 VisitForStackValue(property->obj()); 1870 VisitForStackValue(property->obj());
1878 __ ldr(LoadIC::ReceiverRegister(), MemOperand(sp, 0)); 1871 __ LoadP(LoadIC::ReceiverRegister(), MemOperand(sp, 0));
1879 } else { 1872 } else {
1880 VisitForStackValue(property->obj()); 1873 VisitForStackValue(property->obj());
1881 } 1874 }
1882 break; 1875 break;
1883 case KEYED_PROPERTY: 1876 case KEYED_PROPERTY:
1884 if (expr->is_compound()) { 1877 if (expr->is_compound()) {
1885 VisitForStackValue(property->obj()); 1878 VisitForStackValue(property->obj());
1886 VisitForStackValue(property->key()); 1879 VisitForStackValue(property->key());
1887 __ ldr(LoadIC::ReceiverRegister(), MemOperand(sp, 1 * kPointerSize)); 1880 __ LoadP(LoadIC::ReceiverRegister(), MemOperand(sp, 1 * kPointerSize));
1888 __ ldr(LoadIC::NameRegister(), MemOperand(sp, 0)); 1881 __ LoadP(LoadIC::NameRegister(), MemOperand(sp, 0));
1889 } else { 1882 } else {
1890 VisitForStackValue(property->obj()); 1883 VisitForStackValue(property->obj());
1891 VisitForStackValue(property->key()); 1884 VisitForStackValue(property->key());
1892 } 1885 }
1893 break; 1886 break;
1894 } 1887 }
1895 1888
1896 // For compound assignments we need another deoptimization point after the 1889 // For compound assignments we need another deoptimization point after the
1897 // variable/property load. 1890 // variable/property load.
1898 if (expr->is_compound()) { 1891 if (expr->is_compound()) {
1899 { AccumulatorValueContext context(this); 1892 { AccumulatorValueContext context(this);
1900 switch (assign_type) { 1893 switch (assign_type) {
1901 case VARIABLE: 1894 case VARIABLE:
1902 EmitVariableLoad(expr->target()->AsVariableProxy()); 1895 EmitVariableLoad(expr->target()->AsVariableProxy());
1903 PrepareForBailout(expr->target(), TOS_REG); 1896 PrepareForBailout(expr->target(), TOS_REG);
1904 break; 1897 break;
1905 case NAMED_PROPERTY: 1898 case NAMED_PROPERTY:
1906 EmitNamedPropertyLoad(property); 1899 EmitNamedPropertyLoad(property);
1907 PrepareForBailoutForId(property->LoadId(), TOS_REG); 1900 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1908 break; 1901 break;
1909 case KEYED_PROPERTY: 1902 case KEYED_PROPERTY:
1910 EmitKeyedPropertyLoad(property); 1903 EmitKeyedPropertyLoad(property);
1911 PrepareForBailoutForId(property->LoadId(), TOS_REG); 1904 PrepareForBailoutForId(property->LoadId(), TOS_REG);
1912 break; 1905 break;
1913 } 1906 }
1914 } 1907 }
1915 1908
1916 Token::Value op = expr->binary_op(); 1909 Token::Value op = expr->binary_op();
1917 __ push(r0); // Left operand goes on the stack. 1910 __ push(r3); // Left operand goes on the stack.
1918 VisitForAccumulatorValue(expr->value()); 1911 VisitForAccumulatorValue(expr->value());
1919 1912
1920 OverwriteMode mode = expr->value()->ResultOverwriteAllowed() 1913 OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
1921 ? OVERWRITE_RIGHT 1914 ? OVERWRITE_RIGHT
1922 : NO_OVERWRITE; 1915 : NO_OVERWRITE;
1923 SetSourcePosition(expr->position() + 1); 1916 SetSourcePosition(expr->position() + 1);
1924 AccumulatorValueContext context(this); 1917 AccumulatorValueContext context(this);
1925 if (ShouldInlineSmiCase(op)) { 1918 if (ShouldInlineSmiCase(op)) {
1926 EmitInlineSmiBinaryOp(expr->binary_operation(), 1919 EmitInlineSmiBinaryOp(expr->binary_operation(),
1927 op, 1920 op,
(...skipping 12 matching lines...) Expand all
1940 1933
1941 // Record source position before possible IC call. 1934 // Record source position before possible IC call.
1942 SetSourcePosition(expr->position()); 1935 SetSourcePosition(expr->position());
1943 1936
1944 // Store the value. 1937 // Store the value.
1945 switch (assign_type) { 1938 switch (assign_type) {
1946 case VARIABLE: 1939 case VARIABLE:
1947 EmitVariableAssignment(expr->target()->AsVariableProxy()->var(), 1940 EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
1948 expr->op()); 1941 expr->op());
1949 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); 1942 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
1950 context()->Plug(r0); 1943 context()->Plug(r3);
1951 break; 1944 break;
1952 case NAMED_PROPERTY: 1945 case NAMED_PROPERTY:
1953 EmitNamedPropertyAssignment(expr); 1946 EmitNamedPropertyAssignment(expr);
1954 break; 1947 break;
1955 case KEYED_PROPERTY: 1948 case KEYED_PROPERTY:
1956 EmitKeyedPropertyAssignment(expr); 1949 EmitKeyedPropertyAssignment(expr);
1957 break; 1950 break;
1958 } 1951 }
1959 } 1952 }
1960 1953
1961 1954
1962 void FullCodeGenerator::VisitYield(Yield* expr) { 1955 void FullCodeGenerator::VisitYield(Yield* expr) {
1963 Comment cmnt(masm_, "[ Yield"); 1956 Comment cmnt(masm_, "[ Yield");
1964 // Evaluate yielded value first; the initial iterator definition depends on 1957 // Evaluate yielded value first; the initial iterator definition depends on
1965 // this. It stays on the stack while we update the iterator. 1958 // this. It stays on the stack while we update the iterator.
1966 VisitForStackValue(expr->expression()); 1959 VisitForStackValue(expr->expression());
1967 1960
1968 switch (expr->yield_kind()) { 1961 switch (expr->yield_kind()) {
1969 case Yield::SUSPEND: 1962 case Yield::SUSPEND:
1970 // Pop value from top-of-stack slot; box result into result register. 1963 // Pop value from top-of-stack slot; box result into result register.
1971 EmitCreateIteratorResult(false); 1964 EmitCreateIteratorResult(false);
1972 __ push(result_register()); 1965 __ push(result_register());
1973 // Fall through. 1966 // Fall through.
1974 case Yield::INITIAL: { 1967 case Yield::INITIAL: {
1975 Label suspend, continuation, post_runtime, resume; 1968 Label suspend, continuation, post_runtime, resume;
1976 1969
1977 __ jmp(&suspend); 1970 __ b(&suspend);
1978 1971
1979 __ bind(&continuation); 1972 __ bind(&continuation);
1980 __ jmp(&resume); 1973 __ b(&resume);
1981 1974
1982 __ bind(&suspend); 1975 __ bind(&suspend);
1983 VisitForAccumulatorValue(expr->generator_object()); 1976 VisitForAccumulatorValue(expr->generator_object());
1984 DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos())); 1977 DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos()));
1985 __ mov(r1, Operand(Smi::FromInt(continuation.pos()))); 1978 __ LoadSmiLiteral(r4, Smi::FromInt(continuation.pos()));
1986 __ str(r1, FieldMemOperand(r0, JSGeneratorObject::kContinuationOffset)); 1979 __ StoreP(r4, FieldMemOperand(r3, JSGeneratorObject::kContinuationOffset),
1987 __ str(cp, FieldMemOperand(r0, JSGeneratorObject::kContextOffset)); 1980 r0);
1988 __ mov(r1, cp); 1981 __ StoreP(cp, FieldMemOperand(r3, JSGeneratorObject::kContextOffset), r0);
1989 __ RecordWriteField(r0, JSGeneratorObject::kContextOffset, r1, r2, 1982 __ mr(r4, cp);
1983 __ RecordWriteField(r3, JSGeneratorObject::kContextOffset, r4, r5,
1990 kLRHasBeenSaved, kDontSaveFPRegs); 1984 kLRHasBeenSaved, kDontSaveFPRegs);
1991 __ add(r1, fp, Operand(StandardFrameConstants::kExpressionsOffset)); 1985 __ addi(r4, fp, Operand(StandardFrameConstants::kExpressionsOffset));
1992 __ cmp(sp, r1); 1986 __ cmp(sp, r4);
1993 __ b(eq, &post_runtime); 1987 __ beq(&post_runtime);
1994 __ push(r0); // generator object 1988 __ push(r3); // generator object
1995 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1); 1989 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
1996 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 1990 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1997 __ bind(&post_runtime); 1991 __ bind(&post_runtime);
1998 __ pop(result_register()); 1992 __ pop(result_register());
1999 EmitReturnSequence(); 1993 EmitReturnSequence();
2000 1994
2001 __ bind(&resume); 1995 __ bind(&resume);
2002 context()->Plug(result_register()); 1996 context()->Plug(result_register());
2003 break; 1997 break;
2004 } 1998 }
2005 1999
2006 case Yield::FINAL: { 2000 case Yield::FINAL: {
2007 VisitForAccumulatorValue(expr->generator_object()); 2001 VisitForAccumulatorValue(expr->generator_object());
2008 __ mov(r1, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorClosed))); 2002 __ LoadSmiLiteral(r4, Smi::FromInt(JSGeneratorObject::kGeneratorClosed));
2009 __ str(r1, FieldMemOperand(result_register(), 2003 __ StoreP(r4, FieldMemOperand(result_register(),
2010 JSGeneratorObject::kContinuationOffset)); 2004 JSGeneratorObject::kContinuationOffset),
2005 r0);
2011 // Pop value from top-of-stack slot, box result into result register. 2006 // Pop value from top-of-stack slot, box result into result register.
2012 EmitCreateIteratorResult(true); 2007 EmitCreateIteratorResult(true);
2013 EmitUnwindBeforeReturn(); 2008 EmitUnwindBeforeReturn();
2014 EmitReturnSequence(); 2009 EmitReturnSequence();
2015 break; 2010 break;
2016 } 2011 }
2017 2012
2018 case Yield::DELEGATING: { 2013 case Yield::DELEGATING: {
2019 VisitForStackValue(expr->generator_object()); 2014 VisitForStackValue(expr->generator_object());
2020 2015
2021 // Initial stack layout is as follows: 2016 // Initial stack layout is as follows:
2022 // [sp + 1 * kPointerSize] iter 2017 // [sp + 1 * kPointerSize] iter
2023 // [sp + 0 * kPointerSize] g 2018 // [sp + 0 * kPointerSize] g
2024 2019
2025 Label l_catch, l_try, l_suspend, l_continuation, l_resume; 2020 Label l_catch, l_try, l_suspend, l_continuation, l_resume;
2026 Label l_next, l_call, l_loop; 2021 Label l_next, l_call;
2027 Register load_receiver = LoadIC::ReceiverRegister(); 2022 Register load_receiver = LoadIC::ReceiverRegister();
2028 Register load_name = LoadIC::NameRegister(); 2023 Register load_name = LoadIC::NameRegister();
2029 2024
2030 // Initial send value is undefined. 2025 // Initial send value is undefined.
2031 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); 2026 __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
2032 __ b(&l_next); 2027 __ b(&l_next);
2033 2028
2034 // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; } 2029 // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; }
2035 __ bind(&l_catch); 2030 __ bind(&l_catch);
2036 handler_table()->set(expr->index(), Smi::FromInt(l_catch.pos())); 2031 handler_table()->set(expr->index(), Smi::FromInt(l_catch.pos()));
2037 __ LoadRoot(load_name, Heap::kthrow_stringRootIndex); // "throw" 2032 __ LoadRoot(load_name, Heap::kthrow_stringRootIndex); // "throw"
2038 __ ldr(r3, MemOperand(sp, 1 * kPointerSize)); // iter 2033 __ LoadP(r6, MemOperand(sp, 1 * kPointerSize)); // iter
2039 __ Push(load_name, r3, r0); // "throw", iter, except 2034 __ Push(load_name, r6, r3); // "throw", iter, except
2040 __ jmp(&l_call); 2035 __ b(&l_call);
2041 2036
2042 // try { received = %yield result } 2037 // try { received = %yield result }
2043 // Shuffle the received result above a try handler and yield it without 2038 // Shuffle the received result above a try handler and yield it without
2044 // re-boxing. 2039 // re-boxing.
2045 __ bind(&l_try); 2040 __ bind(&l_try);
2046 __ pop(r0); // result 2041 __ pop(r3); // result
2047 __ PushTryHandler(StackHandler::CATCH, expr->index()); 2042 __ PushTryHandler(StackHandler::CATCH, expr->index());
2048 const int handler_size = StackHandlerConstants::kSize; 2043 const int handler_size = StackHandlerConstants::kSize;
2049 __ push(r0); // result 2044 __ push(r3); // result
2050 __ jmp(&l_suspend); 2045 __ b(&l_suspend);
2051 __ bind(&l_continuation); 2046 __ bind(&l_continuation);
2052 __ jmp(&l_resume); 2047 __ b(&l_resume);
2053 __ bind(&l_suspend); 2048 __ bind(&l_suspend);
2054 const int generator_object_depth = kPointerSize + handler_size; 2049 const int generator_object_depth = kPointerSize + handler_size;
2055 __ ldr(r0, MemOperand(sp, generator_object_depth)); 2050 __ LoadP(r3, MemOperand(sp, generator_object_depth));
2056 __ push(r0); // g 2051 __ push(r3); // g
2057 DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos())); 2052 DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos()));
2058 __ mov(r1, Operand(Smi::FromInt(l_continuation.pos()))); 2053 __ LoadSmiLiteral(r4, Smi::FromInt(l_continuation.pos()));
2059 __ str(r1, FieldMemOperand(r0, JSGeneratorObject::kContinuationOffset)); 2054 __ StoreP(r4, FieldMemOperand(r3, JSGeneratorObject::kContinuationOffset),
2060 __ str(cp, FieldMemOperand(r0, JSGeneratorObject::kContextOffset)); 2055 r0);
2061 __ mov(r1, cp); 2056 __ StoreP(cp, FieldMemOperand(r3, JSGeneratorObject::kContextOffset), r0);
2062 __ RecordWriteField(r0, JSGeneratorObject::kContextOffset, r1, r2, 2057 __ mr(r4, cp);
2058 __ RecordWriteField(r3, JSGeneratorObject::kContextOffset, r4, r5,
2063 kLRHasBeenSaved, kDontSaveFPRegs); 2059 kLRHasBeenSaved, kDontSaveFPRegs);
2064 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1); 2060 __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1);
2065 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 2061 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2066 __ pop(r0); // result 2062 __ pop(r3); // result
2067 EmitReturnSequence(); 2063 EmitReturnSequence();
2068 __ bind(&l_resume); // received in r0 2064 __ bind(&l_resume); // received in r3
2069 __ PopTryHandler(); 2065 __ PopTryHandler();
2070 2066
2071 // receiver = iter; f = 'next'; arg = received; 2067 // receiver = iter; f = 'next'; arg = received;
2072 __ bind(&l_next); 2068 __ bind(&l_next);
2073 2069
2074 __ LoadRoot(load_name, Heap::knext_stringRootIndex); // "next" 2070 __ LoadRoot(load_name, Heap::knext_stringRootIndex); // "next"
2075 __ ldr(r3, MemOperand(sp, 1 * kPointerSize)); // iter 2071 __ LoadP(r6, MemOperand(sp, 1 * kPointerSize)); // iter
2076 __ Push(load_name, r3, r0); // "next", iter, received 2072 __ Push(load_name, r6, r3); // "next", iter, received
2077 2073
2078 // result = receiver[f](arg); 2074 // result = receiver[f](arg);
2079 __ bind(&l_call); 2075 __ bind(&l_call);
2080 __ ldr(load_receiver, MemOperand(sp, kPointerSize)); 2076 __ LoadP(load_receiver, MemOperand(sp, kPointerSize));
2081 __ ldr(load_name, MemOperand(sp, 2 * kPointerSize)); 2077 __ LoadP(load_name, MemOperand(sp, 2 * kPointerSize));
2082 if (FLAG_vector_ics) { 2078 if (FLAG_vector_ics) {
2083 __ mov(LoadIC::SlotRegister(), 2079 __ mov(LoadIC::SlotRegister(),
2084 Operand(Smi::FromInt(expr->KeyedLoadFeedbackSlot()))); 2080 Operand(Smi::FromInt(expr->KeyedLoadFeedbackSlot())));
2085 } 2081 }
2086 Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize(); 2082 Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
2087 CallIC(ic, TypeFeedbackId::None()); 2083 CallIC(ic, TypeFeedbackId::None());
2088 __ mov(r1, r0); 2084 __ mr(r4, r3);
2089 __ str(r1, MemOperand(sp, 2 * kPointerSize)); 2085 __ StoreP(r4, MemOperand(sp, 2 * kPointerSize));
2090 CallFunctionStub stub(isolate(), 1, CALL_AS_METHOD); 2086 CallFunctionStub stub(isolate(), 1, CALL_AS_METHOD);
2091 __ CallStub(&stub); 2087 __ CallStub(&stub);
2092 2088
2093 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 2089 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2094 __ Drop(1); // The function is still on the stack; drop it. 2090 __ Drop(1); // The function is still on the stack; drop it.
2095 2091
2096 // if (!result.done) goto l_try; 2092 // if (!result.done) goto l_try;
2097 __ bind(&l_loop); 2093 __ Move(load_receiver, r3);
2098 __ Move(load_receiver, r0);
2099 2094
2100 __ push(load_receiver); // save result 2095 __ push(load_receiver); // save result
2101 __ LoadRoot(load_name, Heap::kdone_stringRootIndex); // "done" 2096 __ LoadRoot(load_name, Heap::kdone_stringRootIndex); // "done"
2102 if (FLAG_vector_ics) { 2097 if (FLAG_vector_ics) {
2103 __ mov(LoadIC::SlotRegister(), 2098 __ mov(LoadIC::SlotRegister(),
2104 Operand(Smi::FromInt(expr->DoneFeedbackSlot()))); 2099 Operand(Smi::FromInt(expr->DoneFeedbackSlot())));
2105 } 2100 }
2106 CallLoadIC(NOT_CONTEXTUAL); // r0=result.done 2101 CallLoadIC(NOT_CONTEXTUAL); // r0=result.done
2107 Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate()); 2102 Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate());
2108 CallIC(bool_ic); 2103 CallIC(bool_ic);
2109 __ cmp(r0, Operand(0)); 2104 __ cmpi(r3, Operand::Zero());
2110 __ b(eq, &l_try); 2105 __ beq(&l_try);
2111 2106
2112 // result.value 2107 // result.value
2113 __ pop(load_receiver); // result 2108 __ pop(load_receiver); // result
2114 __ LoadRoot(load_name, Heap::kvalue_stringRootIndex); // "value" 2109 __ LoadRoot(load_name, Heap::kvalue_stringRootIndex); // "value"
2115 if (FLAG_vector_ics) { 2110 if (FLAG_vector_ics) {
2116 __ mov(LoadIC::SlotRegister(), 2111 __ mov(LoadIC::SlotRegister(),
2117 Operand(Smi::FromInt(expr->ValueFeedbackSlot()))); 2112 Operand(Smi::FromInt(expr->ValueFeedbackSlot())));
2118 } 2113 }
2119 CallLoadIC(NOT_CONTEXTUAL); // r0=result.value 2114 CallLoadIC(NOT_CONTEXTUAL); // r3=result.value
2120 context()->DropAndPlug(2, r0); // drop iter and g 2115 context()->DropAndPlug(2, r3); // drop iter and g
2121 break; 2116 break;
2122 } 2117 }
2123 } 2118 }
2124 } 2119 }
2125 2120
2126 2121
2127 void FullCodeGenerator::EmitGeneratorResume(Expression *generator, 2122 void FullCodeGenerator::EmitGeneratorResume(Expression *generator,
2128 Expression *value, 2123 Expression *value,
2129 JSGeneratorObject::ResumeMode resume_mode) { 2124 JSGeneratorObject::ResumeMode resume_mode) {
2130 // The value stays in r0, and is ultimately read by the resumed generator, as 2125 // The value stays in r3, and is ultimately read by the resumed generator, as
2131 // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it 2126 // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it
2132 // is read to throw the value when the resumed generator is already closed. 2127 // is read to throw the value when the resumed generator is already closed.
2133 // r1 will hold the generator object until the activation has been resumed. 2128 // r4 will hold the generator object until the activation has been resumed.
2134 VisitForStackValue(generator); 2129 VisitForStackValue(generator);
2135 VisitForAccumulatorValue(value); 2130 VisitForAccumulatorValue(value);
2136 __ pop(r1); 2131 __ pop(r4);
2137 2132
2138 // Check generator state. 2133 // Check generator state.
2139 Label wrong_state, closed_state, done; 2134 Label wrong_state, closed_state, done;
2140 __ ldr(r3, FieldMemOperand(r1, JSGeneratorObject::kContinuationOffset)); 2135 __ LoadP(r6, FieldMemOperand(r4, JSGeneratorObject::kContinuationOffset));
2141 STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0); 2136 STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0);
2142 STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0); 2137 STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0);
2143 __ cmp(r3, Operand(Smi::FromInt(0))); 2138 __ CmpSmiLiteral(r6, Smi::FromInt(0), r0);
2144 __ b(eq, &closed_state); 2139 __ beq(&closed_state);
2145 __ b(lt, &wrong_state); 2140 __ blt(&wrong_state);
2146 2141
2147 // Load suspended function and context. 2142 // Load suspended function and context.
2148 __ ldr(cp, FieldMemOperand(r1, JSGeneratorObject::kContextOffset)); 2143 __ LoadP(cp, FieldMemOperand(r4, JSGeneratorObject::kContextOffset));
2149 __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset)); 2144 __ LoadP(r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset));
2150 2145
2151 // Load receiver and store as the first argument. 2146 // Load receiver and store as the first argument.
2152 __ ldr(r2, FieldMemOperand(r1, JSGeneratorObject::kReceiverOffset)); 2147 __ LoadP(r5, FieldMemOperand(r4, JSGeneratorObject::kReceiverOffset));
2153 __ push(r2); 2148 __ push(r5);
2154 2149
2155 // Push holes for the rest of the arguments to the generator function. 2150 // Push holes for the rest of the arguments to the generator function.
2156 __ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); 2151 __ LoadP(r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset));
2157 __ ldr(r3, 2152 __ LoadWordArith(r6,
2158 FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset)); 2153 FieldMemOperand(r6, SharedFunctionInfo::kFormalParameterCountOffset));
2159 __ LoadRoot(r2, Heap::kTheHoleValueRootIndex); 2154 __ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
2160 Label push_argument_holes, push_frame; 2155 Label argument_loop, push_frame;
2161 __ bind(&push_argument_holes); 2156 #if V8_TARGET_ARCH_PPC64
2162 __ sub(r3, r3, Operand(Smi::FromInt(1)), SetCC); 2157 __ cmpi(r6, Operand::Zero());
2163 __ b(mi, &push_frame); 2158 __ beq(&push_frame);
2164 __ push(r2); 2159 #else
2165 __ jmp(&push_argument_holes); 2160 __ SmiUntag(r6, SetRC);
2161 __ beq(&push_frame, cr0);
2162 #endif
2163 __ mtctr(r6);
2164 __ bind(&argument_loop);
2165 __ push(r5);
2166 __ bdnz(&argument_loop);
2166 2167
2167 // Enter a new JavaScript frame, and initialize its slots as they were when 2168 // Enter a new JavaScript frame, and initialize its slots as they were when
2168 // the generator was suspended. 2169 // the generator was suspended.
2169 Label resume_frame; 2170 Label resume_frame;
2170 __ bind(&push_frame); 2171 __ bind(&push_frame);
2171 __ bl(&resume_frame); 2172 __ b(&resume_frame, SetLK);
2172 __ jmp(&done); 2173 __ b(&done);
2173 __ bind(&resume_frame); 2174 __ bind(&resume_frame);
2174 // lr = return address. 2175 // lr = return address.
2175 // fp = caller's frame pointer. 2176 // fp = caller's frame pointer.
2176 // pp = caller's constant pool (if FLAG_enable_ool_constant_pool),
2177 // cp = callee's context, 2177 // cp = callee's context,
2178 // r4 = callee's JS function. 2178 // r7 = callee's JS function.
2179 __ PushFixedFrame(r4); 2179 __ PushFixedFrame(r7);
2180 // Adjust FP to point to saved FP. 2180 // Adjust FP to point to saved FP.
2181 __ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); 2181 __ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
2182 2182
2183 // Load the operand stack size. 2183 // Load the operand stack size.
2184 __ ldr(r3, FieldMemOperand(r1, JSGeneratorObject::kOperandStackOffset)); 2184 __ LoadP(r6, FieldMemOperand(r4, JSGeneratorObject::kOperandStackOffset));
2185 __ ldr(r3, FieldMemOperand(r3, FixedArray::kLengthOffset)); 2185 __ LoadP(r6, FieldMemOperand(r6, FixedArray::kLengthOffset));
2186 __ SmiUntag(r3); 2186 __ SmiUntag(r6, SetRC);
2187 2187
2188 // If we are sending a value and there is no operand stack, we can jump back 2188 // If we are sending a value and there is no operand stack, we can jump back
2189 // in directly. 2189 // in directly.
2190 Label call_resume;
2190 if (resume_mode == JSGeneratorObject::NEXT) { 2191 if (resume_mode == JSGeneratorObject::NEXT) {
2191 Label slow_resume; 2192 Label slow_resume;
2192 __ cmp(r3, Operand(0)); 2193 __ bne(&slow_resume, cr0);
2193 __ b(ne, &slow_resume); 2194 __ LoadP(r6, FieldMemOperand(r7, JSFunction::kCodeEntryOffset));
2194 __ ldr(r3, FieldMemOperand(r4, JSFunction::kCodeEntryOffset)); 2195 #if V8_OOL_CONSTANT_POOL
2195
2196 { ConstantPoolUnavailableScope constant_pool_unavailable(masm_); 2196 { ConstantPoolUnavailableScope constant_pool_unavailable(masm_);
2197 if (FLAG_enable_ool_constant_pool) { 2197 // Load the new code object's constant pool pointer.
2198 // Load the new code object's constant pool pointer. 2198 __ LoadP(kConstantPoolRegister,
2199 __ ldr(pp, 2199 MemOperand(r6, Code::kConstantPoolOffset - Code::kHeaderSize));
2200 MemOperand(r3, Code::kConstantPoolOffset - Code::kHeaderSize)); 2200 #endif
2201 } 2201 __ LoadP(r5, FieldMemOperand(r4, JSGeneratorObject::kContinuationOffset));
2202 2202 __ SmiUntag(r5);
2203 __ ldr(r2, FieldMemOperand(r1, JSGeneratorObject::kContinuationOffset)); 2203 __ add(r6, r6, r5);
2204 __ SmiUntag(r2); 2204 __ LoadSmiLiteral(r5,
2205 __ add(r3, r3, r2); 2205 Smi::FromInt(JSGeneratorObject::kGeneratorExecuting));
2206 __ mov(r2, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorExecuting))); 2206 __ StoreP(r5, FieldMemOperand(r4, JSGeneratorObject::kContinuationOffset),
2207 __ str(r2, FieldMemOperand(r1, JSGeneratorObject::kContinuationOffset)); 2207 r0);
2208 __ Jump(r3); 2208 __ Jump(r6);
2209 __ bind(&slow_resume);
2210 #if V8_OOL_CONSTANT_POOL
2209 } 2211 }
2210 __ bind(&slow_resume); 2212 #endif
2213 } else {
2214 __ beq(&call_resume, cr0);
2211 } 2215 }
2212 2216
2213 // Otherwise, we push holes for the operand stack and call the runtime to fix 2217 // Otherwise, we push holes for the operand stack and call the runtime to fix
2214 // up the stack and the handlers. 2218 // up the stack and the handlers.
2215 Label push_operand_holes, call_resume; 2219 Label operand_loop;
2216 __ bind(&push_operand_holes); 2220 __ mtctr(r6);
2217 __ sub(r3, r3, Operand(1), SetCC); 2221 __ bind(&operand_loop);
2218 __ b(mi, &call_resume); 2222 __ push(r5);
2219 __ push(r2); 2223 __ bdnz(&operand_loop);
2220 __ b(&push_operand_holes); 2224
2221 __ bind(&call_resume); 2225 __ bind(&call_resume);
2222 DCHECK(!result_register().is(r1)); 2226 DCHECK(!result_register().is(r4));
2223 __ Push(r1, result_register()); 2227 __ Push(r4, result_register());
2224 __ Push(Smi::FromInt(resume_mode)); 2228 __ Push(Smi::FromInt(resume_mode));
2225 __ CallRuntime(Runtime::kResumeJSGeneratorObject, 3); 2229 __ CallRuntime(Runtime::kResumeJSGeneratorObject, 3);
2226 // Not reached: the runtime call returns elsewhere. 2230 // Not reached: the runtime call returns elsewhere.
2227 __ stop("not-reached"); 2231 __ stop("not-reached");
2228 2232
2229 // Reach here when generator is closed. 2233 // Reach here when generator is closed.
2230 __ bind(&closed_state); 2234 __ bind(&closed_state);
2231 if (resume_mode == JSGeneratorObject::NEXT) { 2235 if (resume_mode == JSGeneratorObject::NEXT) {
2232 // Return completed iterator result when generator is closed. 2236 // Return completed iterator result when generator is closed.
2233 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); 2237 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
2234 __ push(r2); 2238 __ push(r5);
2235 // Pop value from top-of-stack slot; box result into result register. 2239 // Pop value from top-of-stack slot; box result into result register.
2236 EmitCreateIteratorResult(true); 2240 EmitCreateIteratorResult(true);
2237 } else { 2241 } else {
2238 // Throw the provided value. 2242 // Throw the provided value.
2239 __ push(r0); 2243 __ push(r3);
2240 __ CallRuntime(Runtime::kThrow, 1); 2244 __ CallRuntime(Runtime::kThrow, 1);
2241 } 2245 }
2242 __ jmp(&done); 2246 __ b(&done);
2243 2247
2244 // Throw error if we attempt to operate on a running generator. 2248 // Throw error if we attempt to operate on a running generator.
2245 __ bind(&wrong_state); 2249 __ bind(&wrong_state);
2246 __ push(r1); 2250 __ push(r4);
2247 __ CallRuntime(Runtime::kThrowGeneratorStateError, 1); 2251 __ CallRuntime(Runtime::kThrowGeneratorStateError, 1);
2248 2252
2249 __ bind(&done); 2253 __ bind(&done);
2250 context()->Plug(result_register()); 2254 context()->Plug(result_register());
2251 } 2255 }
2252 2256
2253 2257
2254 void FullCodeGenerator::EmitCreateIteratorResult(bool done) { 2258 void FullCodeGenerator::EmitCreateIteratorResult(bool done) {
2255 Label gc_required; 2259 Label gc_required;
2256 Label allocated; 2260 Label allocated;
2257 2261
2258 Handle<Map> map(isolate()->native_context()->iterator_result_map()); 2262 Handle<Map> map(isolate()->native_context()->iterator_result_map());
2259 2263
2260 __ Allocate(map->instance_size(), r0, r2, r3, &gc_required, TAG_OBJECT); 2264 __ Allocate(map->instance_size(), r3, r5, r6, &gc_required, TAG_OBJECT);
2261 __ jmp(&allocated); 2265 __ b(&allocated);
2262 2266
2263 __ bind(&gc_required); 2267 __ bind(&gc_required);
2264 __ Push(Smi::FromInt(map->instance_size())); 2268 __ Push(Smi::FromInt(map->instance_size()));
2265 __ CallRuntime(Runtime::kAllocateInNewSpace, 1); 2269 __ CallRuntime(Runtime::kAllocateInNewSpace, 1);
2266 __ ldr(context_register(), 2270 __ LoadP(context_register(),
2267 MemOperand(fp, StandardFrameConstants::kContextOffset)); 2271 MemOperand(fp, StandardFrameConstants::kContextOffset));
2268 2272
2269 __ bind(&allocated); 2273 __ bind(&allocated);
2270 __ mov(r1, Operand(map)); 2274 __ mov(r4, Operand(map));
2271 __ pop(r2); 2275 __ pop(r5);
2272 __ mov(r3, Operand(isolate()->factory()->ToBoolean(done))); 2276 __ mov(r6, Operand(isolate()->factory()->ToBoolean(done)));
2273 __ mov(r4, Operand(isolate()->factory()->empty_fixed_array())); 2277 __ mov(r7, Operand(isolate()->factory()->empty_fixed_array()));
2274 DCHECK_EQ(map->instance_size(), 5 * kPointerSize); 2278 DCHECK_EQ(map->instance_size(), 5 * kPointerSize);
2275 __ str(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); 2279 __ StoreP(r4, FieldMemOperand(r3, HeapObject::kMapOffset), r0);
2276 __ str(r4, FieldMemOperand(r0, JSObject::kPropertiesOffset)); 2280 __ StoreP(r7, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
2277 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); 2281 __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
2278 __ str(r2, 2282 __ StoreP(r5,
2279 FieldMemOperand(r0, JSGeneratorObject::kResultValuePropertyOffset)); 2283 FieldMemOperand(r3, JSGeneratorObject::kResultValuePropertyOffset),
2280 __ str(r3, 2284 r0);
2281 FieldMemOperand(r0, JSGeneratorObject::kResultDonePropertyOffset)); 2285 __ StoreP(r6,
2286 FieldMemOperand(r3, JSGeneratorObject::kResultDonePropertyOffset),
2287 r0);
2282 2288
2283 // Only the value field needs a write barrier, as the other values are in the 2289 // Only the value field needs a write barrier, as the other values are in the
2284 // root set. 2290 // root set.
2285 __ RecordWriteField(r0, JSGeneratorObject::kResultValuePropertyOffset, 2291 __ RecordWriteField(r3, JSGeneratorObject::kResultValuePropertyOffset,
2286 r2, r3, kLRHasBeenSaved, kDontSaveFPRegs); 2292 r5, r6, kLRHasBeenSaved, kDontSaveFPRegs);
2287 } 2293 }
2288 2294
2289 2295
2290 void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) { 2296 void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
2291 SetSourcePosition(prop->position()); 2297 SetSourcePosition(prop->position());
2292 Literal* key = prop->key()->AsLiteral(); 2298 Literal* key = prop->key()->AsLiteral();
2293 __ mov(LoadIC::NameRegister(), Operand(key->value())); 2299 __ mov(LoadIC::NameRegister(), Operand(key->value()));
2294 if (FLAG_vector_ics) { 2300 if (FLAG_vector_ics) {
2295 __ mov(LoadIC::SlotRegister(), 2301 __ mov(LoadIC::SlotRegister(),
2296 Operand(Smi::FromInt(prop->PropertyFeedbackSlot()))); 2302 Operand(Smi::FromInt(prop->PropertyFeedbackSlot())));
2297 CallLoadIC(NOT_CONTEXTUAL); 2303 CallLoadIC(NOT_CONTEXTUAL);
2298 } else { 2304 } else {
2299 CallLoadIC(NOT_CONTEXTUAL, prop->PropertyFeedbackId()); 2305 CallLoadIC(NOT_CONTEXTUAL, prop->PropertyFeedbackId());
2300 } 2306 }
2301 } 2307 }
2302 2308
2303 2309
2304 void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) { 2310 void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
2305 SetSourcePosition(prop->position()); 2311 SetSourcePosition(prop->position());
2306 Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize(); 2312 Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
2307 if (FLAG_vector_ics) { 2313 if (FLAG_vector_ics) {
2308 __ mov(LoadIC::SlotRegister(), 2314 __ mov(LoadIC::SlotRegister(),
2309 Operand(Smi::FromInt(prop->PropertyFeedbackSlot()))); 2315 Operand(Smi::FromInt(prop->PropertyFeedbackSlot())));
2310 CallIC(ic); 2316 CallIC(ic);
2311 } else { 2317 } else {
2312 CallIC(ic, prop->PropertyFeedbackId()); 2318 CallIC(ic, prop->PropertyFeedbackId());
2313 } 2319 }
2314 } 2320 }
2315 2321
2316 2322
2317 void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr, 2323 void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
2318 Token::Value op, 2324 Token::Value op,
2319 OverwriteMode mode, 2325 OverwriteMode mode,
2320 Expression* left_expr, 2326 Expression* left_expr,
2321 Expression* right_expr) { 2327 Expression* right_expr) {
2322 Label done, smi_case, stub_call; 2328 Label done, smi_case, stub_call;
2323 2329
2324 Register scratch1 = r2; 2330 Register scratch1 = r5;
2325 Register scratch2 = r3; 2331 Register scratch2 = r6;
2326 2332
2327 // Get the arguments. 2333 // Get the arguments.
2328 Register left = r1; 2334 Register left = r4;
2329 Register right = r0; 2335 Register right = r3;
2330 __ pop(left); 2336 __ pop(left);
2331 2337
2332 // Perform combined smi check on both operands. 2338 // Perform combined smi check on both operands.
2333 __ orr(scratch1, left, Operand(right)); 2339 __ orx(scratch1, left, right);
2334 STATIC_ASSERT(kSmiTag == 0); 2340 STATIC_ASSERT(kSmiTag == 0);
2335 JumpPatchSite patch_site(masm_); 2341 JumpPatchSite patch_site(masm_);
2336 patch_site.EmitJumpIfSmi(scratch1, &smi_case); 2342 patch_site.EmitJumpIfSmi(scratch1, &smi_case);
2337 2343
2338 __ bind(&stub_call); 2344 __ bind(&stub_call);
2339 BinaryOpICStub stub(isolate(), op, mode); 2345 BinaryOpICStub stub(isolate(), op, mode);
2340 CallIC(stub.GetCode(), expr->BinaryOperationFeedbackId()); 2346 CallIC(stub.GetCode(), expr->BinaryOperationFeedbackId());
2341 patch_site.EmitPatchInfo(); 2347 patch_site.EmitPatchInfo();
2342 __ jmp(&done); 2348 __ b(&done);
2343 2349
2344 __ bind(&smi_case); 2350 __ bind(&smi_case);
2345 // Smi case. This code works the same way as the smi-smi case in the type 2351 // Smi case. This code works the same way as the smi-smi case in the type
2346 // recording binary operation stub, see 2352 // recording binary operation stub.
2347 switch (op) { 2353 switch (op) {
2348 case Token::SAR: 2354 case Token::SAR:
2349 __ GetLeastBitsFromSmi(scratch1, right, 5); 2355 __ GetLeastBitsFromSmi(scratch1, right, 5);
2350 __ mov(right, Operand(left, ASR, scratch1)); 2356 __ ShiftRightArith(right, left, scratch1);
2351 __ bic(right, right, Operand(kSmiTagMask)); 2357 __ ClearRightImm(right, right, Operand(kSmiTagSize + kSmiShiftSize));
2352 break; 2358 break;
2353 case Token::SHL: { 2359 case Token::SHL: {
2360 __ GetLeastBitsFromSmi(scratch2, right, 5);
2361 #if V8_TARGET_ARCH_PPC64
2362 __ ShiftLeft(right, left, scratch2);
2363 #else
2354 __ SmiUntag(scratch1, left); 2364 __ SmiUntag(scratch1, left);
2355 __ GetLeastBitsFromSmi(scratch2, right, 5); 2365 __ ShiftLeft(scratch1, scratch1, scratch2);
2356 __ mov(scratch1, Operand(scratch1, LSL, scratch2)); 2366 // Check that the *signed* result fits in a smi
2357 __ TrySmiTag(right, scratch1, &stub_call); 2367 __ JumpIfNotSmiCandidate(scratch1, scratch2, &stub_call);
2368 __ SmiTag(right, scratch1);
2369 #endif
2358 break; 2370 break;
2359 } 2371 }
2360 case Token::SHR: { 2372 case Token::SHR: {
2361 __ SmiUntag(scratch1, left); 2373 __ SmiUntag(scratch1, left);
2362 __ GetLeastBitsFromSmi(scratch2, right, 5); 2374 __ GetLeastBitsFromSmi(scratch2, right, 5);
2363 __ mov(scratch1, Operand(scratch1, LSR, scratch2)); 2375 __ srw(scratch1, scratch1, scratch2);
2364 __ tst(scratch1, Operand(0xc0000000)); 2376 // Unsigned shift is not allowed to produce a negative number.
2365 __ b(ne, &stub_call); 2377 __ JumpIfNotUnsignedSmiCandidate(scratch1, r0, &stub_call);
2366 __ SmiTag(right, scratch1); 2378 __ SmiTag(right, scratch1);
2367 break; 2379 break;
2368 } 2380 }
2369 case Token::ADD: 2381 case Token::ADD: {
2370 __ add(scratch1, left, Operand(right), SetCC); 2382 __ AddAndCheckForOverflow(scratch1, left, right, scratch2, r0);
2371 __ b(vs, &stub_call); 2383 __ bne(&stub_call, cr0);
2372 __ mov(right, scratch1); 2384 __ mr(right, scratch1);
2373 break; 2385 break;
2374 case Token::SUB: 2386 }
2375 __ sub(scratch1, left, Operand(right), SetCC); 2387 case Token::SUB: {
2376 __ b(vs, &stub_call); 2388 __ SubAndCheckForOverflow(scratch1, left, right, scratch2, r0);
2377 __ mov(right, scratch1); 2389 __ bne(&stub_call, cr0);
2390 __ mr(right, scratch1);
2378 break; 2391 break;
2392 }
2379 case Token::MUL: { 2393 case Token::MUL: {
2394 Label mul_zero;
2395 #if V8_TARGET_ARCH_PPC64
2396 // Remove tag from both operands.
2380 __ SmiUntag(ip, right); 2397 __ SmiUntag(ip, right);
2381 __ smull(scratch1, scratch2, left, ip); 2398 __ SmiUntag(r0, left);
2382 __ mov(ip, Operand(scratch1, ASR, 31)); 2399 __ Mul(scratch1, r0, ip);
2383 __ cmp(ip, Operand(scratch2)); 2400 // Check for overflowing the smi range - no overflow if higher 33 bits of
2384 __ b(ne, &stub_call); 2401 // the result are identical.
2385 __ cmp(scratch1, Operand::Zero()); 2402 __ TestIfInt32(scratch1, scratch2, ip);
2386 __ mov(right, Operand(scratch1), LeaveCC, ne); 2403 __ bne(&stub_call);
2387 __ b(ne, &done); 2404 #else
2388 __ add(scratch2, right, Operand(left), SetCC); 2405 __ SmiUntag(ip, right);
2389 __ mov(right, Operand(Smi::FromInt(0)), LeaveCC, pl); 2406 __ mullw(scratch1, left, ip);
2390 __ b(mi, &stub_call); 2407 __ mulhw(scratch2, left, ip);
2408 // Check for overflowing the smi range - no overflow if higher 33 bits of
2409 // the result are identical.
2410 __ TestIfInt32(scratch2, scratch1, ip);
2411 __ bne(&stub_call);
2412 #endif
2413 // Go slow on zero result to handle -0.
2414 __ cmpi(scratch1, Operand::Zero());
2415 __ beq(&mul_zero);
2416 #if V8_TARGET_ARCH_PPC64
2417 __ SmiTag(right, scratch1);
2418 #else
2419 __ mr(right, scratch1);
2420 #endif
2421 __ b(&done);
2422 // We need -0 if we were multiplying a negative number with 0 to get 0.
2423 // We know one of them was zero.
2424 __ bind(&mul_zero);
2425 __ add(scratch2, right, left);
2426 __ cmpi(scratch2, Operand::Zero());
2427 __ blt(&stub_call);
2428 __ LoadSmiLiteral(right, Smi::FromInt(0));
2391 break; 2429 break;
2392 } 2430 }
2393 case Token::BIT_OR: 2431 case Token::BIT_OR:
2394 __ orr(right, left, Operand(right)); 2432 __ orx(right, left, right);
2395 break; 2433 break;
2396 case Token::BIT_AND: 2434 case Token::BIT_AND:
2397 __ and_(right, left, Operand(right)); 2435 __ and_(right, left, right);
2398 break; 2436 break;
2399 case Token::BIT_XOR: 2437 case Token::BIT_XOR:
2400 __ eor(right, left, Operand(right)); 2438 __ xor_(right, left, right);
2401 break; 2439 break;
2402 default: 2440 default:
2403 UNREACHABLE(); 2441 UNREACHABLE();
2404 } 2442 }
2405 2443
2406 __ bind(&done); 2444 __ bind(&done);
2407 context()->Plug(r0); 2445 context()->Plug(r3);
2408 } 2446 }
2409 2447
2410 2448
2411 void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, 2449 void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr,
2412 Token::Value op, 2450 Token::Value op,
2413 OverwriteMode mode) { 2451 OverwriteMode mode) {
2414 __ pop(r1); 2452 __ pop(r4);
2415 BinaryOpICStub stub(isolate(), op, mode); 2453 BinaryOpICStub stub(isolate(), op, mode);
2416 JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code. 2454 JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code.
2417 CallIC(stub.GetCode(), expr->BinaryOperationFeedbackId()); 2455 CallIC(stub.GetCode(), expr->BinaryOperationFeedbackId());
2418 patch_site.EmitPatchInfo(); 2456 patch_site.EmitPatchInfo();
2419 context()->Plug(r0); 2457 context()->Plug(r3);
2420 } 2458 }
2421 2459
2422 2460
2423 void FullCodeGenerator::EmitAssignment(Expression* expr) { 2461 void FullCodeGenerator::EmitAssignment(Expression* expr) {
2424 DCHECK(expr->IsValidReferenceExpression()); 2462 DCHECK(expr->IsValidReferenceExpression());
2425 2463
2426 // Left-hand side can only be a property, a global or a (parameter or local) 2464 // Left-hand side can only be a property, a global or a (parameter or local)
2427 // slot. 2465 // slot.
2428 enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; 2466 enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
2429 LhsKind assign_type = VARIABLE; 2467 LhsKind assign_type = VARIABLE;
2430 Property* prop = expr->AsProperty(); 2468 Property* prop = expr->AsProperty();
2431 if (prop != NULL) { 2469 if (prop != NULL) {
2432 assign_type = (prop->key()->IsPropertyName()) 2470 assign_type = (prop->key()->IsPropertyName())
2433 ? NAMED_PROPERTY 2471 ? NAMED_PROPERTY
2434 : KEYED_PROPERTY; 2472 : KEYED_PROPERTY;
2435 } 2473 }
2436 2474
2437 switch (assign_type) { 2475 switch (assign_type) {
2438 case VARIABLE: { 2476 case VARIABLE: {
2439 Variable* var = expr->AsVariableProxy()->var(); 2477 Variable* var = expr->AsVariableProxy()->var();
2440 EffectContext context(this); 2478 EffectContext context(this);
2441 EmitVariableAssignment(var, Token::ASSIGN); 2479 EmitVariableAssignment(var, Token::ASSIGN);
2442 break; 2480 break;
2443 } 2481 }
2444 case NAMED_PROPERTY: { 2482 case NAMED_PROPERTY: {
2445 __ push(r0); // Preserve value. 2483 __ push(r3); // Preserve value.
2446 VisitForAccumulatorValue(prop->obj()); 2484 VisitForAccumulatorValue(prop->obj());
2447 __ Move(StoreIC::ReceiverRegister(), r0); 2485 __ Move(StoreIC::ReceiverRegister(), r3);
2448 __ pop(StoreIC::ValueRegister()); // Restore value. 2486 __ pop(StoreIC::ValueRegister()); // Restore value.
2449 __ mov(StoreIC::NameRegister(), 2487 __ mov(StoreIC::NameRegister(),
2450 Operand(prop->key()->AsLiteral()->value())); 2488 Operand(prop->key()->AsLiteral()->value()));
2451 CallStoreIC(); 2489 CallStoreIC();
2452 break; 2490 break;
2453 } 2491 }
2454 case KEYED_PROPERTY: { 2492 case KEYED_PROPERTY: {
2455 __ push(r0); // Preserve value. 2493 __ push(r3); // Preserve value.
2456 VisitForStackValue(prop->obj()); 2494 VisitForStackValue(prop->obj());
2457 VisitForAccumulatorValue(prop->key()); 2495 VisitForAccumulatorValue(prop->key());
2458 __ Move(KeyedStoreIC::NameRegister(), r0); 2496 __ Move(KeyedStoreIC::NameRegister(), r3);
2459 __ Pop(KeyedStoreIC::ValueRegister(), KeyedStoreIC::ReceiverRegister()); 2497 __ Pop(KeyedStoreIC::ValueRegister(), KeyedStoreIC::ReceiverRegister());
2460 Handle<Code> ic = strict_mode() == SLOPPY 2498 Handle<Code> ic = strict_mode() == SLOPPY
2461 ? isolate()->builtins()->KeyedStoreIC_Initialize() 2499 ? isolate()->builtins()->KeyedStoreIC_Initialize()
2462 : isolate()->builtins()->KeyedStoreIC_Initialize_Strict(); 2500 : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
2463 CallIC(ic); 2501 CallIC(ic);
2464 break; 2502 break;
2465 } 2503 }
2466 } 2504 }
2467 context()->Plug(r0); 2505 context()->Plug(r3);
2468 } 2506 }
2469 2507
2470 2508
2471 void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot( 2509 void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot(
2472 Variable* var, MemOperand location) { 2510 Variable* var, MemOperand location) {
2473 __ str(result_register(), location); 2511 __ StoreP(result_register(), location, r0);
2474 if (var->IsContextSlot()) { 2512 if (var->IsContextSlot()) {
2475 // RecordWrite may destroy all its register arguments. 2513 // RecordWrite may destroy all its register arguments.
2476 __ mov(r3, result_register()); 2514 __ mr(r6, result_register());
2477 int offset = Context::SlotOffset(var->index()); 2515 int offset = Context::SlotOffset(var->index());
2478 __ RecordWriteContextSlot( 2516 __ RecordWriteContextSlot(
2479 r1, offset, r3, r2, kLRHasBeenSaved, kDontSaveFPRegs); 2517 r4, offset, r6, r5, kLRHasBeenSaved, kDontSaveFPRegs);
2480 } 2518 }
2481 } 2519 }
2482 2520
2483 2521
2484 void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op) { 2522 void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op) {
2485 if (var->IsUnallocated()) { 2523 if (var->IsUnallocated()) {
2486 // Global var, const, or let. 2524 // Global var, const, or let.
2487 __ mov(StoreIC::NameRegister(), Operand(var->name())); 2525 __ mov(StoreIC::NameRegister(), Operand(var->name()));
2488 __ ldr(StoreIC::ReceiverRegister(), GlobalObjectOperand()); 2526 __ LoadP(StoreIC::ReceiverRegister(), GlobalObjectOperand());
2489 CallStoreIC(); 2527 CallStoreIC();
2490 2528
2491 } else if (op == Token::INIT_CONST_LEGACY) { 2529 } else if (op == Token::INIT_CONST_LEGACY) {
2492 // Const initializers need a write barrier. 2530 // Const initializers need a write barrier.
2493 DCHECK(!var->IsParameter()); // No const parameters. 2531 DCHECK(!var->IsParameter()); // No const parameters.
2494 if (var->IsLookupSlot()) { 2532 if (var->IsLookupSlot()) {
2495 __ push(r0); 2533 __ push(r3);
2496 __ mov(r0, Operand(var->name())); 2534 __ mov(r3, Operand(var->name()));
2497 __ Push(cp, r0); // Context and name. 2535 __ Push(cp, r3); // Context and name.
2498 __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot, 3); 2536 __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot, 3);
2499 } else { 2537 } else {
2500 DCHECK(var->IsStackAllocated() || var->IsContextSlot()); 2538 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2501 Label skip; 2539 Label skip;
2502 MemOperand location = VarOperand(var, r1); 2540 MemOperand location = VarOperand(var, r4);
2503 __ ldr(r2, location); 2541 __ LoadP(r5, location);
2504 __ CompareRoot(r2, Heap::kTheHoleValueRootIndex); 2542 __ CompareRoot(r5, Heap::kTheHoleValueRootIndex);
2505 __ b(ne, &skip); 2543 __ bne(&skip);
2506 EmitStoreToStackLocalOrContextSlot(var, location); 2544 EmitStoreToStackLocalOrContextSlot(var, location);
2507 __ bind(&skip); 2545 __ bind(&skip);
2508 } 2546 }
2509 2547
2510 } else if (var->mode() == LET && op != Token::INIT_LET) { 2548 } else if (var->mode() == LET && op != Token::INIT_LET) {
2511 // Non-initializing assignment to let variable needs a write barrier. 2549 // Non-initializing assignment to let variable needs a write barrier.
2512 DCHECK(!var->IsLookupSlot()); 2550 DCHECK(!var->IsLookupSlot());
2513 DCHECK(var->IsStackAllocated() || var->IsContextSlot()); 2551 DCHECK(var->IsStackAllocated() || var->IsContextSlot());
2514 Label assign; 2552 Label assign;
2515 MemOperand location = VarOperand(var, r1); 2553 MemOperand location = VarOperand(var, r4);
2516 __ ldr(r3, location); 2554 __ LoadP(r6, location);
2517 __ CompareRoot(r3, Heap::kTheHoleValueRootIndex); 2555 __ CompareRoot(r6, Heap::kTheHoleValueRootIndex);
2518 __ b(ne, &assign); 2556 __ bne(&assign);
2519 __ mov(r3, Operand(var->name())); 2557 __ mov(r6, Operand(var->name()));
2520 __ push(r3); 2558 __ push(r6);
2521 __ CallRuntime(Runtime::kThrowReferenceError, 1); 2559 __ CallRuntime(Runtime::kThrowReferenceError, 1);
2522 // Perform the assignment. 2560 // Perform the assignment.
2523 __ bind(&assign); 2561 __ bind(&assign);
2524 EmitStoreToStackLocalOrContextSlot(var, location); 2562 EmitStoreToStackLocalOrContextSlot(var, location);
2525 2563
2526 } else if (!var->is_const_mode() || op == Token::INIT_CONST) { 2564 } else if (!var->is_const_mode() || op == Token::INIT_CONST) {
2527 if (var->IsLookupSlot()) { 2565 if (var->IsLookupSlot()) {
2528 // Assignment to var. 2566 // Assignment to var.
2529 __ push(r0); // Value. 2567 __ push(r3); // Value.
2530 __ mov(r1, Operand(var->name())); 2568 __ mov(r4, Operand(var->name()));
2531 __ mov(r0, Operand(Smi::FromInt(strict_mode()))); 2569 __ mov(r3, Operand(Smi::FromInt(strict_mode())));
2532 __ Push(cp, r1, r0); // Context, name, strict mode. 2570 __ Push(cp, r4, r3); // Context, name, strict mode.
2533 __ CallRuntime(Runtime::kStoreLookupSlot, 4); 2571 __ CallRuntime(Runtime::kStoreLookupSlot, 4);
2534 } else { 2572 } else {
2535 // Assignment to var or initializing assignment to let/const in harmony 2573 // Assignment to var or initializing assignment to let/const in harmony
2536 // mode. 2574 // mode.
2537 DCHECK((var->IsStackAllocated() || var->IsContextSlot())); 2575 DCHECK((var->IsStackAllocated() || var->IsContextSlot()));
2538 MemOperand location = VarOperand(var, r1); 2576 MemOperand location = VarOperand(var, r4);
2539 if (generate_debug_code_ && op == Token::INIT_LET) { 2577 if (generate_debug_code_ && op == Token::INIT_LET) {
2540 // Check for an uninitialized let binding. 2578 // Check for an uninitialized let binding.
2541 __ ldr(r2, location); 2579 __ LoadP(r5, location);
2542 __ CompareRoot(r2, Heap::kTheHoleValueRootIndex); 2580 __ CompareRoot(r5, Heap::kTheHoleValueRootIndex);
2543 __ Check(eq, kLetBindingReInitialization); 2581 __ Check(eq, kLetBindingReInitialization);
2544 } 2582 }
2545 EmitStoreToStackLocalOrContextSlot(var, location); 2583 EmitStoreToStackLocalOrContextSlot(var, location);
2546 } 2584 }
2547 } 2585 }
2548 // Non-initializing assignments to consts are ignored. 2586 // Non-initializing assignments to consts are ignored.
2549 } 2587 }
2550 2588
2551 2589
2552 void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { 2590 void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
2553 // Assignment to a property, using a named store IC. 2591 // Assignment to a property, using a named store IC.
2554 Property* prop = expr->target()->AsProperty(); 2592 Property* prop = expr->target()->AsProperty();
2555 DCHECK(prop != NULL); 2593 DCHECK(prop != NULL);
2556 DCHECK(prop->key()->IsLiteral()); 2594 DCHECK(prop->key()->IsLiteral());
2557 2595
2558 // Record source code position before IC call. 2596 // Record source code position before IC call.
2559 SetSourcePosition(expr->position()); 2597 SetSourcePosition(expr->position());
2560 __ mov(StoreIC::NameRegister(), Operand(prop->key()->AsLiteral()->value())); 2598 __ mov(StoreIC::NameRegister(), Operand(prop->key()->AsLiteral()->value()));
2561 __ pop(StoreIC::ReceiverRegister()); 2599 __ pop(StoreIC::ReceiverRegister());
2562 CallStoreIC(expr->AssignmentFeedbackId()); 2600 CallStoreIC(expr->AssignmentFeedbackId());
2563 2601
2564 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); 2602 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2565 context()->Plug(r0); 2603 context()->Plug(r3);
2566 } 2604 }
2567 2605
2568 2606
2569 void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { 2607 void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
2570 // Assignment to a property, using a keyed store IC. 2608 // Assignment to a property, using a keyed store IC.
2571 2609
2572 // Record source code position before IC call. 2610 // Record source code position before IC call.
2573 SetSourcePosition(expr->position()); 2611 SetSourcePosition(expr->position());
2574 __ Pop(KeyedStoreIC::ReceiverRegister(), KeyedStoreIC::NameRegister()); 2612 __ Pop(KeyedStoreIC::ReceiverRegister(), KeyedStoreIC::NameRegister());
2575 DCHECK(KeyedStoreIC::ValueRegister().is(r0)); 2613 DCHECK(KeyedStoreIC::ValueRegister().is(r3));
2576 2614
2577 Handle<Code> ic = strict_mode() == SLOPPY 2615 Handle<Code> ic = strict_mode() == SLOPPY
2578 ? isolate()->builtins()->KeyedStoreIC_Initialize() 2616 ? isolate()->builtins()->KeyedStoreIC_Initialize()
2579 : isolate()->builtins()->KeyedStoreIC_Initialize_Strict(); 2617 : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
2580 CallIC(ic, expr->AssignmentFeedbackId()); 2618 CallIC(ic, expr->AssignmentFeedbackId());
2581 2619
2582 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); 2620 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
2583 context()->Plug(r0); 2621 context()->Plug(r3);
2584 } 2622 }
2585 2623
2586 2624
2587 void FullCodeGenerator::VisitProperty(Property* expr) { 2625 void FullCodeGenerator::VisitProperty(Property* expr) {
2588 Comment cmnt(masm_, "[ Property"); 2626 Comment cmnt(masm_, "[ Property");
2589 Expression* key = expr->key(); 2627 Expression* key = expr->key();
2590 2628
2591 if (key->IsPropertyName()) { 2629 if (key->IsPropertyName()) {
2592 VisitForAccumulatorValue(expr->obj()); 2630 VisitForAccumulatorValue(expr->obj());
2593 __ Move(LoadIC::ReceiverRegister(), r0); 2631 __ Move(LoadIC::ReceiverRegister(), r3);
2594 EmitNamedPropertyLoad(expr); 2632 EmitNamedPropertyLoad(expr);
2595 PrepareForBailoutForId(expr->LoadId(), TOS_REG); 2633 PrepareForBailoutForId(expr->LoadId(), TOS_REG);
2596 context()->Plug(r0); 2634 context()->Plug(r3);
2597 } else { 2635 } else {
2598 VisitForStackValue(expr->obj()); 2636 VisitForStackValue(expr->obj());
2599 VisitForAccumulatorValue(expr->key()); 2637 VisitForAccumulatorValue(expr->key());
2600 __ Move(LoadIC::NameRegister(), r0); 2638 __ Move(LoadIC::NameRegister(), r3);
2601 __ pop(LoadIC::ReceiverRegister()); 2639 __ pop(LoadIC::ReceiverRegister());
2602 EmitKeyedPropertyLoad(expr); 2640 EmitKeyedPropertyLoad(expr);
2603 context()->Plug(r0); 2641 context()->Plug(r3);
2604 } 2642 }
2605 } 2643 }
2606 2644
2607 2645
2608 void FullCodeGenerator::CallIC(Handle<Code> code, 2646 void FullCodeGenerator::CallIC(Handle<Code> code,
2609 TypeFeedbackId ast_id) { 2647 TypeFeedbackId ast_id) {
2610 ic_total_count_++; 2648 ic_total_count_++;
2611 // All calls must have a predictable size in full-codegen code to ensure that 2649 __ Call(code, RelocInfo::CODE_TARGET, ast_id);
2612 // the debugger can patch them correctly.
2613 __ Call(code, RelocInfo::CODE_TARGET, ast_id, al,
2614 NEVER_INLINE_TARGET_ADDRESS);
2615 } 2650 }
2616 2651
2617 2652
2618 // Code common for calls using the IC. 2653 // Code common for calls using the IC.
2619 void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) { 2654 void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) {
2620 Expression* callee = expr->expression(); 2655 Expression* callee = expr->expression();
2621 2656
2622 CallIC::CallType call_type = callee->IsVariableProxy() 2657 CallIC::CallType call_type = callee->IsVariableProxy()
2623 ? CallIC::FUNCTION 2658 ? CallIC::FUNCTION
2624 : CallIC::METHOD; 2659 : CallIC::METHOD;
2625 2660
2626 // Get the target function. 2661 // Get the target function.
2627 if (call_type == CallIC::FUNCTION) { 2662 if (call_type == CallIC::FUNCTION) {
2628 { StackValueContext context(this); 2663 { StackValueContext context(this);
2629 EmitVariableLoad(callee->AsVariableProxy()); 2664 EmitVariableLoad(callee->AsVariableProxy());
2630 PrepareForBailout(callee, NO_REGISTERS); 2665 PrepareForBailout(callee, NO_REGISTERS);
2631 } 2666 }
2632 // Push undefined as receiver. This is patched in the method prologue if it 2667 // Push undefined as receiver. This is patched in the method prologue if it
2633 // is a sloppy mode method. 2668 // is a sloppy mode method.
2634 __ Push(isolate()->factory()->undefined_value()); 2669 __ Push(isolate()->factory()->undefined_value());
2635 } else { 2670 } else {
2636 // Load the function from the receiver. 2671 // Load the function from the receiver.
2637 DCHECK(callee->IsProperty()); 2672 DCHECK(callee->IsProperty());
2638 __ ldr(LoadIC::ReceiverRegister(), MemOperand(sp, 0)); 2673 __ LoadP(LoadIC::ReceiverRegister(), MemOperand(sp, 0));
2639 EmitNamedPropertyLoad(callee->AsProperty()); 2674 EmitNamedPropertyLoad(callee->AsProperty());
2640 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG); 2675 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2641 // Push the target function under the receiver. 2676 // Push the target function under the receiver.
2642 __ ldr(ip, MemOperand(sp, 0)); 2677 __ LoadP(ip, MemOperand(sp, 0));
2643 __ push(ip); 2678 __ push(ip);
2644 __ str(r0, MemOperand(sp, kPointerSize)); 2679 __ StoreP(r3, MemOperand(sp, kPointerSize));
2645 } 2680 }
2646 2681
2647 EmitCall(expr, call_type); 2682 EmitCall(expr, call_type);
2648 } 2683 }
2649 2684
2650 2685
2651 // Code common for calls using the IC. 2686 // Code common for calls using the IC.
2652 void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr, 2687 void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr,
2653 Expression* key) { 2688 Expression* key) {
2654 // Load the key. 2689 // Load the key.
2655 VisitForAccumulatorValue(key); 2690 VisitForAccumulatorValue(key);
2656 2691
2657 Expression* callee = expr->expression(); 2692 Expression* callee = expr->expression();
2658 2693
2659 // Load the function from the receiver. 2694 // Load the function from the receiver.
2660 DCHECK(callee->IsProperty()); 2695 DCHECK(callee->IsProperty());
2661 __ ldr(LoadIC::ReceiverRegister(), MemOperand(sp, 0)); 2696 __ LoadP(LoadIC::ReceiverRegister(), MemOperand(sp, 0));
2662 __ Move(LoadIC::NameRegister(), r0); 2697 __ Move(LoadIC::NameRegister(), r3);
2663 EmitKeyedPropertyLoad(callee->AsProperty()); 2698 EmitKeyedPropertyLoad(callee->AsProperty());
2664 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG); 2699 PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG);
2665 2700
2666 // Push the target function under the receiver. 2701 // Push the target function under the receiver.
2667 __ ldr(ip, MemOperand(sp, 0)); 2702 __ LoadP(ip, MemOperand(sp, 0));
2668 __ push(ip); 2703 __ push(ip);
2669 __ str(r0, MemOperand(sp, kPointerSize)); 2704 __ StoreP(r3, MemOperand(sp, kPointerSize));
2670 2705
2671 EmitCall(expr, CallIC::METHOD); 2706 EmitCall(expr, CallIC::METHOD);
2672 } 2707 }
2673 2708
2674 2709
2675 void FullCodeGenerator::EmitCall(Call* expr, CallIC::CallType call_type) { 2710 void FullCodeGenerator::EmitCall(Call* expr, CallIC::CallType call_type) {
2676 // Load the arguments. 2711 // Load the arguments.
2677 ZoneList<Expression*>* args = expr->arguments(); 2712 ZoneList<Expression*>* args = expr->arguments();
2678 int arg_count = args->length(); 2713 int arg_count = args->length();
2679 { PreservePositionScope scope(masm()->positions_recorder()); 2714 { PreservePositionScope scope(masm()->positions_recorder());
2680 for (int i = 0; i < arg_count; i++) { 2715 for (int i = 0; i < arg_count; i++) {
2681 VisitForStackValue(args->at(i)); 2716 VisitForStackValue(args->at(i));
2682 } 2717 }
2683 } 2718 }
2684 2719
2685 // Record source position of the IC call. 2720 // Record source position of the IC call.
2686 SetSourcePosition(expr->position()); 2721 SetSourcePosition(expr->position());
2687 Handle<Code> ic = CallIC::initialize_stub( 2722 Handle<Code> ic = CallIC::initialize_stub(
2688 isolate(), arg_count, call_type); 2723 isolate(), arg_count, call_type);
2689 __ mov(r3, Operand(Smi::FromInt(expr->CallFeedbackSlot()))); 2724 __ LoadSmiLiteral(r6, Smi::FromInt(expr->CallFeedbackSlot()));
2690 __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize)); 2725 __ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
2691 // Don't assign a type feedback id to the IC, since type feedback is provided 2726 // Don't assign a type feedback id to the IC, since type feedback is provided
2692 // by the vector above. 2727 // by the vector above.
2693 CallIC(ic); 2728 CallIC(ic);
2694 2729
2695 RecordJSReturnSite(expr); 2730 RecordJSReturnSite(expr);
2696 // Restore context register. 2731 // Restore context register.
2697 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 2732 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2698 context()->DropAndPlug(1, r0); 2733 context()->DropAndPlug(1, r3);
2699 } 2734 }
2700 2735
2701 2736
2702 void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) { 2737 void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
2703 // r4: copy of the first argument or undefined if it doesn't exist. 2738 // r7: copy of the first argument or undefined if it doesn't exist.
2704 if (arg_count > 0) { 2739 if (arg_count > 0) {
2705 __ ldr(r4, MemOperand(sp, arg_count * kPointerSize)); 2740 __ LoadP(r7, MemOperand(sp, arg_count * kPointerSize), r0);
2706 } else { 2741 } else {
2707 __ LoadRoot(r4, Heap::kUndefinedValueRootIndex); 2742 __ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
2708 } 2743 }
2709 2744
2710 // r3: the receiver of the enclosing function. 2745 // r6: the receiver of the enclosing function.
2711 int receiver_offset = 2 + info_->scope()->num_parameters(); 2746 int receiver_offset = 2 + info_->scope()->num_parameters();
2712 __ ldr(r3, MemOperand(fp, receiver_offset * kPointerSize)); 2747 __ LoadP(r6, MemOperand(fp, receiver_offset * kPointerSize), r0);
2713 2748
2714 // r2: strict mode. 2749 // r5: strict mode.
2715 __ mov(r2, Operand(Smi::FromInt(strict_mode()))); 2750 __ LoadSmiLiteral(r5, Smi::FromInt(strict_mode()));
2716 2751
2717 // r1: the start position of the scope the calls resides in. 2752 // r4: the start position of the scope the calls resides in.
2718 __ mov(r1, Operand(Smi::FromInt(scope()->start_position()))); 2753 __ LoadSmiLiteral(r4, Smi::FromInt(scope()->start_position()));
2719 2754
2720 // Do the runtime call. 2755 // Do the runtime call.
2721 __ Push(r4, r3, r2, r1); 2756 __ Push(r7, r6, r5, r4);
2722 __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 5); 2757 __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 5);
2723 } 2758 }
2724 2759
2725 2760
2726 void FullCodeGenerator::VisitCall(Call* expr) { 2761 void FullCodeGenerator::VisitCall(Call* expr) {
2727 #ifdef DEBUG 2762 #ifdef DEBUG
2728 // We want to verify that RecordJSReturnSite gets called on all paths 2763 // We want to verify that RecordJSReturnSite gets called on all paths
2729 // through this function. Avoid early returns. 2764 // through this function. Avoid early returns.
2730 expr->return_is_recorded_ = false; 2765 expr->return_is_recorded_ = false;
2731 #endif 2766 #endif
2732 2767
2733 Comment cmnt(masm_, "[ Call"); 2768 Comment cmnt(masm_, "[ Call");
2734 Expression* callee = expr->expression(); 2769 Expression* callee = expr->expression();
2735 Call::CallType call_type = expr->GetCallType(isolate()); 2770 Call::CallType call_type = expr->GetCallType(isolate());
2736 2771
2737 if (call_type == Call::POSSIBLY_EVAL_CALL) { 2772 if (call_type == Call::POSSIBLY_EVAL_CALL) {
2738 // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval 2773 // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval
2739 // to resolve the function we need to call and the receiver of the 2774 // to resolve the function we need to call and the receiver of the
2740 // call. Then we call the resolved function using the given 2775 // call. Then we call the resolved function using the given
2741 // arguments. 2776 // arguments.
2742 ZoneList<Expression*>* args = expr->arguments(); 2777 ZoneList<Expression*>* args = expr->arguments();
2743 int arg_count = args->length(); 2778 int arg_count = args->length();
2744 2779
2745 { PreservePositionScope pos_scope(masm()->positions_recorder()); 2780 { PreservePositionScope pos_scope(masm()->positions_recorder());
2746 VisitForStackValue(callee); 2781 VisitForStackValue(callee);
2747 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); 2782 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
2748 __ push(r2); // Reserved receiver slot. 2783 __ push(r5); // Reserved receiver slot.
2749 2784
2750 // Push the arguments. 2785 // Push the arguments.
2751 for (int i = 0; i < arg_count; i++) { 2786 for (int i = 0; i < arg_count; i++) {
2752 VisitForStackValue(args->at(i)); 2787 VisitForStackValue(args->at(i));
2753 } 2788 }
2754 2789
2755 // Push a copy of the function (found below the arguments) and 2790 // Push a copy of the function (found below the arguments) and
2756 // resolve eval. 2791 // resolve eval.
2757 __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize)); 2792 __ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
2758 __ push(r1); 2793 __ push(r4);
2759 EmitResolvePossiblyDirectEval(arg_count); 2794 EmitResolvePossiblyDirectEval(arg_count);
2760 2795
2761 // The runtime call returns a pair of values in r0 (function) and 2796 // The runtime call returns a pair of values in r3 (function) and
2762 // r1 (receiver). Touch up the stack with the right values. 2797 // r4 (receiver). Touch up the stack with the right values.
2763 __ str(r0, MemOperand(sp, (arg_count + 1) * kPointerSize)); 2798 __ StoreP(r3, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
2764 __ str(r1, MemOperand(sp, arg_count * kPointerSize)); 2799 __ StoreP(r4, MemOperand(sp, arg_count * kPointerSize), r0);
2765 } 2800 }
2766 2801
2767 // Record source position for debugger. 2802 // Record source position for debugger.
2768 SetSourcePosition(expr->position()); 2803 SetSourcePosition(expr->position());
2769 CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS); 2804 CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
2770 __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize)); 2805 __ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
2771 __ CallStub(&stub); 2806 __ CallStub(&stub);
2772 RecordJSReturnSite(expr); 2807 RecordJSReturnSite(expr);
2773 // Restore context register. 2808 // Restore context register.
2774 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 2809 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
2775 context()->DropAndPlug(1, r0); 2810 context()->DropAndPlug(1, r3);
2776 } else if (call_type == Call::GLOBAL_CALL) { 2811 } else if (call_type == Call::GLOBAL_CALL) {
2777 EmitCallWithLoadIC(expr); 2812 EmitCallWithLoadIC(expr);
2778 2813
2779 } else if (call_type == Call::LOOKUP_SLOT_CALL) { 2814 } else if (call_type == Call::LOOKUP_SLOT_CALL) {
2780 // Call to a lookup slot (dynamically introduced variable). 2815 // Call to a lookup slot (dynamically introduced variable).
2781 VariableProxy* proxy = callee->AsVariableProxy(); 2816 VariableProxy* proxy = callee->AsVariableProxy();
2782 Label slow, done; 2817 Label slow, done;
2783 2818
2784 { PreservePositionScope scope(masm()->positions_recorder()); 2819 { PreservePositionScope scope(masm()->positions_recorder());
2785 // Generate code for loading from variables potentially shadowed 2820 // Generate code for loading from variables potentially shadowed
2786 // by eval-introduced variables. 2821 // by eval-introduced variables.
2787 EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done); 2822 EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done);
2788 } 2823 }
2789 2824
2790 __ bind(&slow); 2825 __ bind(&slow);
2791 // Call the runtime to find the function to call (returned in r0) 2826 // Call the runtime to find the function to call (returned in r3)
2792 // and the object holding it (returned in edx). 2827 // and the object holding it (returned in edx).
2793 DCHECK(!context_register().is(r2)); 2828 DCHECK(!context_register().is(r5));
2794 __ mov(r2, Operand(proxy->name())); 2829 __ mov(r5, Operand(proxy->name()));
2795 __ Push(context_register(), r2); 2830 __ Push(context_register(), r5);
2796 __ CallRuntime(Runtime::kLoadLookupSlot, 2); 2831 __ CallRuntime(Runtime::kLoadLookupSlot, 2);
2797 __ Push(r0, r1); // Function, receiver. 2832 __ Push(r3, r4); // Function, receiver.
2798 2833
2799 // If fast case code has been generated, emit code to push the 2834 // If fast case code has been generated, emit code to push the
2800 // function and receiver and have the slow path jump around this 2835 // function and receiver and have the slow path jump around this
2801 // code. 2836 // code.
2802 if (done.is_linked()) { 2837 if (done.is_linked()) {
2803 Label call; 2838 Label call;
2804 __ b(&call); 2839 __ b(&call);
2805 __ bind(&done); 2840 __ bind(&done);
2806 // Push function. 2841 // Push function.
2807 __ push(r0); 2842 __ push(r3);
2808 // The receiver is implicitly the global receiver. Indicate this 2843 // The receiver is implicitly the global receiver. Indicate this
2809 // by passing the hole to the call function stub. 2844 // by passing the hole to the call function stub.
2810 __ LoadRoot(r1, Heap::kUndefinedValueRootIndex); 2845 __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
2811 __ push(r1); 2846 __ push(r4);
2812 __ bind(&call); 2847 __ bind(&call);
2813 } 2848 }
2814 2849
2815 // The receiver is either the global receiver or an object found 2850 // The receiver is either the global receiver or an object found
2816 // by LoadContextSlot. 2851 // by LoadContextSlot.
2817 EmitCall(expr); 2852 EmitCall(expr);
2818 } else if (call_type == Call::PROPERTY_CALL) { 2853 } else if (call_type == Call::PROPERTY_CALL) {
2819 Property* property = callee->AsProperty(); 2854 Property* property = callee->AsProperty();
2820 { PreservePositionScope scope(masm()->positions_recorder()); 2855 { PreservePositionScope scope(masm()->positions_recorder());
2821 VisitForStackValue(property->obj()); 2856 VisitForStackValue(property->obj());
2822 } 2857 }
2823 if (property->key()->IsPropertyName()) { 2858 if (property->key()->IsPropertyName()) {
2824 EmitCallWithLoadIC(expr); 2859 EmitCallWithLoadIC(expr);
2825 } else { 2860 } else {
2826 EmitKeyedCallWithLoadIC(expr, property->key()); 2861 EmitKeyedCallWithLoadIC(expr, property->key());
2827 } 2862 }
2828 } else { 2863 } else {
2829 DCHECK(call_type == Call::OTHER_CALL); 2864 DCHECK(call_type == Call::OTHER_CALL);
2830 // Call to an arbitrary expression not handled specially above. 2865 // Call to an arbitrary expression not handled specially above.
2831 { PreservePositionScope scope(masm()->positions_recorder()); 2866 { PreservePositionScope scope(masm()->positions_recorder());
2832 VisitForStackValue(callee); 2867 VisitForStackValue(callee);
2833 } 2868 }
2834 __ LoadRoot(r1, Heap::kUndefinedValueRootIndex); 2869 __ LoadRoot(r4, Heap::kUndefinedValueRootIndex);
2835 __ push(r1); 2870 __ push(r4);
2836 // Emit function call. 2871 // Emit function call.
2837 EmitCall(expr); 2872 EmitCall(expr);
2838 } 2873 }
2839 2874
2840 #ifdef DEBUG 2875 #ifdef DEBUG
2841 // RecordJSReturnSite should have been called. 2876 // RecordJSReturnSite should have been called.
2842 DCHECK(expr->return_is_recorded_); 2877 DCHECK(expr->return_is_recorded_);
2843 #endif 2878 #endif
2844 } 2879 }
2845 2880
(...skipping 13 matching lines...) Expand all
2859 ZoneList<Expression*>* args = expr->arguments(); 2894 ZoneList<Expression*>* args = expr->arguments();
2860 int arg_count = args->length(); 2895 int arg_count = args->length();
2861 for (int i = 0; i < arg_count; i++) { 2896 for (int i = 0; i < arg_count; i++) {
2862 VisitForStackValue(args->at(i)); 2897 VisitForStackValue(args->at(i));
2863 } 2898 }
2864 2899
2865 // Call the construct call builtin that handles allocation and 2900 // Call the construct call builtin that handles allocation and
2866 // constructor invocation. 2901 // constructor invocation.
2867 SetSourcePosition(expr->position()); 2902 SetSourcePosition(expr->position());
2868 2903
2869 // Load function and argument count into r1 and r0. 2904 // Load function and argument count into r4 and r3.
2870 __ mov(r0, Operand(arg_count)); 2905 __ mov(r3, Operand(arg_count));
2871 __ ldr(r1, MemOperand(sp, arg_count * kPointerSize)); 2906 __ LoadP(r4, MemOperand(sp, arg_count * kPointerSize), r0);
2872 2907
2873 // Record call targets in unoptimized code. 2908 // Record call targets in unoptimized code.
2874 if (FLAG_pretenuring_call_new) { 2909 if (FLAG_pretenuring_call_new) {
2875 EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot()); 2910 EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot());
2876 DCHECK(expr->AllocationSiteFeedbackSlot() == 2911 DCHECK(expr->AllocationSiteFeedbackSlot() ==
2877 expr->CallNewFeedbackSlot() + 1); 2912 expr->CallNewFeedbackSlot() + 1);
2878 } 2913 }
2879 2914
2880 __ Move(r2, FeedbackVector()); 2915 __ Move(r5, FeedbackVector());
2881 __ mov(r3, Operand(Smi::FromInt(expr->CallNewFeedbackSlot()))); 2916 __ LoadSmiLiteral(r6, Smi::FromInt(expr->CallNewFeedbackSlot()));
2882 2917
2883 CallConstructStub stub(isolate(), RECORD_CONSTRUCTOR_TARGET); 2918 CallConstructStub stub(isolate(), RECORD_CONSTRUCTOR_TARGET);
2884 __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL); 2919 __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
2885 PrepareForBailoutForId(expr->ReturnId(), TOS_REG); 2920 PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
2886 context()->Plug(r0); 2921 context()->Plug(r3);
2887 } 2922 }
2888 2923
2889 2924
2890 void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) { 2925 void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
2891 ZoneList<Expression*>* args = expr->arguments(); 2926 ZoneList<Expression*>* args = expr->arguments();
2892 DCHECK(args->length() == 1); 2927 DCHECK(args->length() == 1);
2893 2928
2894 VisitForAccumulatorValue(args->at(0)); 2929 VisitForAccumulatorValue(args->at(0));
2895 2930
2896 Label materialize_true, materialize_false; 2931 Label materialize_true, materialize_false;
2897 Label* if_true = NULL; 2932 Label* if_true = NULL;
2898 Label* if_false = NULL; 2933 Label* if_false = NULL;
2899 Label* fall_through = NULL; 2934 Label* fall_through = NULL;
2900 context()->PrepareTest(&materialize_true, &materialize_false, 2935 context()->PrepareTest(&materialize_true, &materialize_false,
2901 &if_true, &if_false, &fall_through); 2936 &if_true, &if_false, &fall_through);
2902 2937
2903 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 2938 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2904 __ SmiTst(r0); 2939 __ TestIfSmi(r3, r0);
2905 Split(eq, if_true, if_false, fall_through); 2940 Split(eq, if_true, if_false, fall_through, cr0);
2906 2941
2907 context()->Plug(if_true, if_false); 2942 context()->Plug(if_true, if_false);
2908 } 2943 }
2909 2944
2910 2945
2911 void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) { 2946 void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
2912 ZoneList<Expression*>* args = expr->arguments(); 2947 ZoneList<Expression*>* args = expr->arguments();
2913 DCHECK(args->length() == 1); 2948 DCHECK(args->length() == 1);
2914 2949
2915 VisitForAccumulatorValue(args->at(0)); 2950 VisitForAccumulatorValue(args->at(0));
2916 2951
2917 Label materialize_true, materialize_false; 2952 Label materialize_true, materialize_false;
2918 Label* if_true = NULL; 2953 Label* if_true = NULL;
2919 Label* if_false = NULL; 2954 Label* if_false = NULL;
2920 Label* fall_through = NULL; 2955 Label* fall_through = NULL;
2921 context()->PrepareTest(&materialize_true, &materialize_false, 2956 context()->PrepareTest(&materialize_true, &materialize_false,
2922 &if_true, &if_false, &fall_through); 2957 &if_true, &if_false, &fall_through);
2923 2958
2924 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 2959 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2925 __ NonNegativeSmiTst(r0); 2960 __ TestIfPositiveSmi(r3, r0);
2926 Split(eq, if_true, if_false, fall_through); 2961 Split(eq, if_true, if_false, fall_through, cr0);
2927 2962
2928 context()->Plug(if_true, if_false); 2963 context()->Plug(if_true, if_false);
2929 } 2964 }
2930 2965
2931 2966
2932 void FullCodeGenerator::EmitIsObject(CallRuntime* expr) { 2967 void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
2933 ZoneList<Expression*>* args = expr->arguments(); 2968 ZoneList<Expression*>* args = expr->arguments();
2934 DCHECK(args->length() == 1); 2969 DCHECK(args->length() == 1);
2935 2970
2936 VisitForAccumulatorValue(args->at(0)); 2971 VisitForAccumulatorValue(args->at(0));
2937 2972
2938 Label materialize_true, materialize_false; 2973 Label materialize_true, materialize_false;
2939 Label* if_true = NULL; 2974 Label* if_true = NULL;
2940 Label* if_false = NULL; 2975 Label* if_false = NULL;
2941 Label* fall_through = NULL; 2976 Label* fall_through = NULL;
2942 context()->PrepareTest(&materialize_true, &materialize_false, 2977 context()->PrepareTest(&materialize_true, &materialize_false,
2943 &if_true, &if_false, &fall_through); 2978 &if_true, &if_false, &fall_through);
2944 2979
2945 __ JumpIfSmi(r0, if_false); 2980 __ JumpIfSmi(r3, if_false);
2946 __ LoadRoot(ip, Heap::kNullValueRootIndex); 2981 __ LoadRoot(ip, Heap::kNullValueRootIndex);
2947 __ cmp(r0, ip); 2982 __ cmp(r3, ip);
2948 __ b(eq, if_true); 2983 __ beq(if_true);
2949 __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); 2984 __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
2950 // Undetectable objects behave like undefined when tested with typeof. 2985 // Undetectable objects behave like undefined when tested with typeof.
2951 __ ldrb(r1, FieldMemOperand(r2, Map::kBitFieldOffset)); 2986 __ lbz(r4, FieldMemOperand(r5, Map::kBitFieldOffset));
2952 __ tst(r1, Operand(1 << Map::kIsUndetectable)); 2987 __ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
2953 __ b(ne, if_false); 2988 __ bne(if_false, cr0);
2954 __ ldrb(r1, FieldMemOperand(r2, Map::kInstanceTypeOffset)); 2989 __ lbz(r4, FieldMemOperand(r5, Map::kInstanceTypeOffset));
2955 __ cmp(r1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); 2990 __ cmpi(r4, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2956 __ b(lt, if_false); 2991 __ blt(if_false);
2957 __ cmp(r1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); 2992 __ cmpi(r4, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
2958 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 2993 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2959 Split(le, if_true, if_false, fall_through); 2994 Split(le, if_true, if_false, fall_through);
2960 2995
2961 context()->Plug(if_true, if_false); 2996 context()->Plug(if_true, if_false);
2962 } 2997 }
2963 2998
2964 2999
2965 void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) { 3000 void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
2966 ZoneList<Expression*>* args = expr->arguments(); 3001 ZoneList<Expression*>* args = expr->arguments();
2967 DCHECK(args->length() == 1); 3002 DCHECK(args->length() == 1);
2968 3003
2969 VisitForAccumulatorValue(args->at(0)); 3004 VisitForAccumulatorValue(args->at(0));
2970 3005
2971 Label materialize_true, materialize_false; 3006 Label materialize_true, materialize_false;
2972 Label* if_true = NULL; 3007 Label* if_true = NULL;
2973 Label* if_false = NULL; 3008 Label* if_false = NULL;
2974 Label* fall_through = NULL; 3009 Label* fall_through = NULL;
2975 context()->PrepareTest(&materialize_true, &materialize_false, 3010 context()->PrepareTest(&materialize_true, &materialize_false,
2976 &if_true, &if_false, &fall_through); 3011 &if_true, &if_false, &fall_through);
2977 3012
2978 __ JumpIfSmi(r0, if_false); 3013 __ JumpIfSmi(r3, if_false);
2979 __ CompareObjectType(r0, r1, r1, FIRST_SPEC_OBJECT_TYPE); 3014 __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE);
2980 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 3015 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
2981 Split(ge, if_true, if_false, fall_through); 3016 Split(ge, if_true, if_false, fall_through);
2982 3017
2983 context()->Plug(if_true, if_false); 3018 context()->Plug(if_true, if_false);
2984 } 3019 }
2985 3020
2986 3021
2987 void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) { 3022 void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
2988 ZoneList<Expression*>* args = expr->arguments(); 3023 ZoneList<Expression*>* args = expr->arguments();
2989 DCHECK(args->length() == 1); 3024 DCHECK(args->length() == 1);
2990 3025
2991 VisitForAccumulatorValue(args->at(0)); 3026 VisitForAccumulatorValue(args->at(0));
2992 3027
2993 Label materialize_true, materialize_false; 3028 Label materialize_true, materialize_false;
2994 Label* if_true = NULL; 3029 Label* if_true = NULL;
2995 Label* if_false = NULL; 3030 Label* if_false = NULL;
2996 Label* fall_through = NULL; 3031 Label* fall_through = NULL;
2997 context()->PrepareTest(&materialize_true, &materialize_false, 3032 context()->PrepareTest(&materialize_true, &materialize_false,
2998 &if_true, &if_false, &fall_through); 3033 &if_true, &if_false, &fall_through);
2999 3034
3000 __ JumpIfSmi(r0, if_false); 3035 __ JumpIfSmi(r3, if_false);
3001 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); 3036 __ LoadP(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
3002 __ ldrb(r1, FieldMemOperand(r1, Map::kBitFieldOffset)); 3037 __ lbz(r4, FieldMemOperand(r4, Map::kBitFieldOffset));
3003 __ tst(r1, Operand(1 << Map::kIsUndetectable)); 3038 __ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
3004 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 3039 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3005 Split(ne, if_true, if_false, fall_through); 3040 Split(ne, if_true, if_false, fall_through, cr0);
3006 3041
3007 context()->Plug(if_true, if_false); 3042 context()->Plug(if_true, if_false);
3008 } 3043 }
3009 3044
3010 3045
3011 void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf( 3046 void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
3012 CallRuntime* expr) { 3047 CallRuntime* expr) {
3013 ZoneList<Expression*>* args = expr->arguments(); 3048 ZoneList<Expression*>* args = expr->arguments();
3014 DCHECK(args->length() == 1); 3049 DCHECK(args->length() == 1);
3015 3050
3016 VisitForAccumulatorValue(args->at(0)); 3051 VisitForAccumulatorValue(args->at(0));
3017 3052
3018 Label materialize_true, materialize_false, skip_lookup; 3053 Label materialize_true, materialize_false, skip_lookup;
3019 Label* if_true = NULL; 3054 Label* if_true = NULL;
3020 Label* if_false = NULL; 3055 Label* if_false = NULL;
3021 Label* fall_through = NULL; 3056 Label* fall_through = NULL;
3022 context()->PrepareTest(&materialize_true, &materialize_false, 3057 context()->PrepareTest(&materialize_true, &materialize_false,
3023 &if_true, &if_false, &fall_through); 3058 &if_true, &if_false, &fall_through);
3024 3059
3025 __ AssertNotSmi(r0); 3060 __ AssertNotSmi(r3);
3026 3061
3027 __ ldr(r1, FieldMemOperand(r0, HeapObject::kMapOffset)); 3062 __ LoadP(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
3028 __ ldrb(ip, FieldMemOperand(r1, Map::kBitField2Offset)); 3063 __ lbz(ip, FieldMemOperand(r4, Map::kBitField2Offset));
3029 __ tst(ip, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); 3064 __ andi(r0, ip, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
3030 __ b(ne, &skip_lookup); 3065 __ bne(&skip_lookup, cr0);
3031 3066
3032 // Check for fast case object. Generate false result for slow case object. 3067 // Check for fast case object. Generate false result for slow case object.
3033 __ ldr(r2, FieldMemOperand(r0, JSObject::kPropertiesOffset)); 3068 __ LoadP(r5, FieldMemOperand(r3, JSObject::kPropertiesOffset));
3034 __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset)); 3069 __ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset));
3035 __ LoadRoot(ip, Heap::kHashTableMapRootIndex); 3070 __ LoadRoot(ip, Heap::kHashTableMapRootIndex);
3036 __ cmp(r2, ip); 3071 __ cmp(r5, ip);
3037 __ b(eq, if_false); 3072 __ beq(if_false);
3038 3073
3039 // Look for valueOf name in the descriptor array, and indicate false if 3074 // Look for valueOf name in the descriptor array, and indicate false if
3040 // found. Since we omit an enumeration index check, if it is added via a 3075 // found. Since we omit an enumeration index check, if it is added via a
3041 // transition that shares its descriptor array, this is a false positive. 3076 // transition that shares its descriptor array, this is a false positive.
3042 Label entry, loop, done; 3077 Label entry, loop, done;
3043 3078
3044 // Skip loop if no descriptors are valid. 3079 // Skip loop if no descriptors are valid.
3045 __ NumberOfOwnDescriptors(r3, r1); 3080 __ NumberOfOwnDescriptors(r6, r4);
3046 __ cmp(r3, Operand::Zero()); 3081 __ cmpi(r6, Operand::Zero());
3047 __ b(eq, &done); 3082 __ beq(&done);
3048 3083
3049 __ LoadInstanceDescriptors(r1, r4); 3084 __ LoadInstanceDescriptors(r4, r7);
3050 // r4: descriptor array. 3085 // r7: descriptor array.
3051 // r3: valid entries in the descriptor array. 3086 // r6: valid entries in the descriptor array.
3052 __ mov(ip, Operand(DescriptorArray::kDescriptorSize)); 3087 __ mov(ip, Operand(DescriptorArray::kDescriptorSize));
3053 __ mul(r3, r3, ip); 3088 __ Mul(r6, r6, ip);
3054 // Calculate location of the first key name. 3089 // Calculate location of the first key name.
3055 __ add(r4, r4, Operand(DescriptorArray::kFirstOffset - kHeapObjectTag)); 3090 __ addi(r7, r7, Operand(DescriptorArray::kFirstOffset - kHeapObjectTag));
3056 // Calculate the end of the descriptor array. 3091 // Calculate the end of the descriptor array.
3057 __ mov(r2, r4); 3092 __ mr(r5, r7);
3058 __ add(r2, r2, Operand(r3, LSL, kPointerSizeLog2)); 3093 __ ShiftLeftImm(ip, r6, Operand(kPointerSizeLog2));
3094 __ add(r5, r5, ip);
3059 3095
3060 // Loop through all the keys in the descriptor array. If one of these is the 3096 // Loop through all the keys in the descriptor array. If one of these is the
3061 // string "valueOf" the result is false. 3097 // string "valueOf" the result is false.
3062 // The use of ip to store the valueOf string assumes that it is not otherwise 3098 // The use of ip to store the valueOf string assumes that it is not otherwise
3063 // used in the loop below. 3099 // used in the loop below.
3064 __ mov(ip, Operand(isolate()->factory()->value_of_string())); 3100 __ mov(ip, Operand(isolate()->factory()->value_of_string()));
3065 __ jmp(&entry); 3101 __ b(&entry);
3066 __ bind(&loop); 3102 __ bind(&loop);
3067 __ ldr(r3, MemOperand(r4, 0)); 3103 __ LoadP(r6, MemOperand(r7, 0));
3068 __ cmp(r3, ip); 3104 __ cmp(r6, ip);
3069 __ b(eq, if_false); 3105 __ beq(if_false);
3070 __ add(r4, r4, Operand(DescriptorArray::kDescriptorSize * kPointerSize)); 3106 __ addi(r7, r7, Operand(DescriptorArray::kDescriptorSize * kPointerSize));
3071 __ bind(&entry); 3107 __ bind(&entry);
3072 __ cmp(r4, Operand(r2)); 3108 __ cmp(r7, r5);
3073 __ b(ne, &loop); 3109 __ bne(&loop);
3074 3110
3075 __ bind(&done); 3111 __ bind(&done);
3076 3112
3077 // Set the bit in the map to indicate that there is no local valueOf field. 3113 // Set the bit in the map to indicate that there is no local valueOf field.
3078 __ ldrb(r2, FieldMemOperand(r1, Map::kBitField2Offset)); 3114 __ lbz(r5, FieldMemOperand(r4, Map::kBitField2Offset));
3079 __ orr(r2, r2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); 3115 __ ori(r5, r5, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
3080 __ strb(r2, FieldMemOperand(r1, Map::kBitField2Offset)); 3116 __ stb(r5, FieldMemOperand(r4, Map::kBitField2Offset));
3081 3117
3082 __ bind(&skip_lookup); 3118 __ bind(&skip_lookup);
3083 3119
3084 // If a valueOf property is not found on the object check that its 3120 // If a valueOf property is not found on the object check that its
3085 // prototype is the un-modified String prototype. If not result is false. 3121 // prototype is the un-modified String prototype. If not result is false.
3086 __ ldr(r2, FieldMemOperand(r1, Map::kPrototypeOffset)); 3122 __ LoadP(r5, FieldMemOperand(r4, Map::kPrototypeOffset));
3087 __ JumpIfSmi(r2, if_false); 3123 __ JumpIfSmi(r5, if_false);
3088 __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset)); 3124 __ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset));
3089 __ ldr(r3, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX)); 3125 __ LoadP(r6, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
3090 __ ldr(r3, FieldMemOperand(r3, GlobalObject::kNativeContextOffset)); 3126 __ LoadP(r6, FieldMemOperand(r6, GlobalObject::kNativeContextOffset));
3091 __ ldr(r3, ContextOperand(r3, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX)); 3127 __ LoadP(r6, ContextOperand(r6,
3092 __ cmp(r2, r3); 3128 Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
3129 __ cmp(r5, r6);
3093 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 3130 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3094 Split(eq, if_true, if_false, fall_through); 3131 Split(eq, if_true, if_false, fall_through);
3095 3132
3096 context()->Plug(if_true, if_false); 3133 context()->Plug(if_true, if_false);
3097 } 3134 }
3098 3135
3099 3136
3100 void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) { 3137 void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
3101 ZoneList<Expression*>* args = expr->arguments(); 3138 ZoneList<Expression*>* args = expr->arguments();
3102 DCHECK(args->length() == 1); 3139 DCHECK(args->length() == 1);
3103 3140
3104 VisitForAccumulatorValue(args->at(0)); 3141 VisitForAccumulatorValue(args->at(0));
3105 3142
3106 Label materialize_true, materialize_false; 3143 Label materialize_true, materialize_false;
3107 Label* if_true = NULL; 3144 Label* if_true = NULL;
3108 Label* if_false = NULL; 3145 Label* if_false = NULL;
3109 Label* fall_through = NULL; 3146 Label* fall_through = NULL;
3110 context()->PrepareTest(&materialize_true, &materialize_false, 3147 context()->PrepareTest(&materialize_true, &materialize_false,
3111 &if_true, &if_false, &fall_through); 3148 &if_true, &if_false, &fall_through);
3112 3149
3113 __ JumpIfSmi(r0, if_false); 3150 __ JumpIfSmi(r3, if_false);
3114 __ CompareObjectType(r0, r1, r2, JS_FUNCTION_TYPE); 3151 __ CompareObjectType(r3, r4, r5, JS_FUNCTION_TYPE);
3115 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 3152 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3116 Split(eq, if_true, if_false, fall_through); 3153 Split(eq, if_true, if_false, fall_through);
3117 3154
3118 context()->Plug(if_true, if_false); 3155 context()->Plug(if_true, if_false);
3119 } 3156 }
3120 3157
3121 3158
3122 void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) { 3159 void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) {
3123 ZoneList<Expression*>* args = expr->arguments(); 3160 ZoneList<Expression*>* args = expr->arguments();
3124 DCHECK(args->length() == 1); 3161 DCHECK(args->length() == 1);
3125 3162
3126 VisitForAccumulatorValue(args->at(0)); 3163 VisitForAccumulatorValue(args->at(0));
3127 3164
3128 Label materialize_true, materialize_false; 3165 Label materialize_true, materialize_false;
3129 Label* if_true = NULL; 3166 Label* if_true = NULL;
3130 Label* if_false = NULL; 3167 Label* if_false = NULL;
3131 Label* fall_through = NULL; 3168 Label* fall_through = NULL;
3132 context()->PrepareTest(&materialize_true, &materialize_false, 3169 context()->PrepareTest(&materialize_true, &materialize_false,
3133 &if_true, &if_false, &fall_through); 3170 &if_true, &if_false, &fall_through);
3134 3171
3135 __ CheckMap(r0, r1, Heap::kHeapNumberMapRootIndex, if_false, DO_SMI_CHECK); 3172 __ CheckMap(r3, r4, Heap::kHeapNumberMapRootIndex, if_false, DO_SMI_CHECK);
3136 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); 3173 #if V8_TARGET_ARCH_PPC64
3137 __ ldr(r1, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); 3174 __ LoadP(r4, FieldMemOperand(r3, HeapNumber::kValueOffset));
3138 __ cmp(r2, Operand(0x80000000)); 3175 __ li(r5, Operand(1));
3139 __ cmp(r1, Operand(0x00000000), eq); 3176 __ rotrdi(r5, r5, 1); // r5 = 0x80000000_00000000
3177 __ cmp(r4, r5);
3178 #else
3179 __ lwz(r5, FieldMemOperand(r3, HeapNumber::kExponentOffset));
3180 __ lwz(r4, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
3181 Label skip;
3182 __ lis(r0, Operand(SIGN_EXT_IMM16(0x8000)));
3183 __ cmp(r5, r0);
3184 __ bne(&skip);
3185 __ cmpi(r4, Operand::Zero());
3186 __ bind(&skip);
3187 #endif
3140 3188
3141 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 3189 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3142 Split(eq, if_true, if_false, fall_through); 3190 Split(eq, if_true, if_false, fall_through);
3143 3191
3144 context()->Plug(if_true, if_false); 3192 context()->Plug(if_true, if_false);
3145 } 3193 }
3146 3194
3147 3195
3148 void FullCodeGenerator::EmitIsArray(CallRuntime* expr) { 3196 void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
3149 ZoneList<Expression*>* args = expr->arguments(); 3197 ZoneList<Expression*>* args = expr->arguments();
3150 DCHECK(args->length() == 1); 3198 DCHECK(args->length() == 1);
3151 3199
3152 VisitForAccumulatorValue(args->at(0)); 3200 VisitForAccumulatorValue(args->at(0));
3153 3201
3154 Label materialize_true, materialize_false; 3202 Label materialize_true, materialize_false;
3155 Label* if_true = NULL; 3203 Label* if_true = NULL;
3156 Label* if_false = NULL; 3204 Label* if_false = NULL;
3157 Label* fall_through = NULL; 3205 Label* fall_through = NULL;
3158 context()->PrepareTest(&materialize_true, &materialize_false, 3206 context()->PrepareTest(&materialize_true, &materialize_false,
3159 &if_true, &if_false, &fall_through); 3207 &if_true, &if_false, &fall_through);
3160 3208
3161 __ JumpIfSmi(r0, if_false); 3209 __ JumpIfSmi(r3, if_false);
3162 __ CompareObjectType(r0, r1, r1, JS_ARRAY_TYPE); 3210 __ CompareObjectType(r3, r4, r4, JS_ARRAY_TYPE);
3163 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 3211 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3164 Split(eq, if_true, if_false, fall_through); 3212 Split(eq, if_true, if_false, fall_through);
3165 3213
3166 context()->Plug(if_true, if_false); 3214 context()->Plug(if_true, if_false);
3167 } 3215 }
3168 3216
3169 3217
3170 void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) { 3218 void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
3171 ZoneList<Expression*>* args = expr->arguments(); 3219 ZoneList<Expression*>* args = expr->arguments();
3172 DCHECK(args->length() == 1); 3220 DCHECK(args->length() == 1);
3173 3221
3174 VisitForAccumulatorValue(args->at(0)); 3222 VisitForAccumulatorValue(args->at(0));
3175 3223
3176 Label materialize_true, materialize_false; 3224 Label materialize_true, materialize_false;
3177 Label* if_true = NULL; 3225 Label* if_true = NULL;
3178 Label* if_false = NULL; 3226 Label* if_false = NULL;
3179 Label* fall_through = NULL; 3227 Label* fall_through = NULL;
3180 context()->PrepareTest(&materialize_true, &materialize_false, 3228 context()->PrepareTest(&materialize_true, &materialize_false,
3181 &if_true, &if_false, &fall_through); 3229 &if_true, &if_false, &fall_through);
3182 3230
3183 __ JumpIfSmi(r0, if_false); 3231 __ JumpIfSmi(r3, if_false);
3184 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE); 3232 __ CompareObjectType(r3, r4, r4, JS_REGEXP_TYPE);
3185 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 3233 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3186 Split(eq, if_true, if_false, fall_through); 3234 Split(eq, if_true, if_false, fall_through);
3187 3235
3188 context()->Plug(if_true, if_false); 3236 context()->Plug(if_true, if_false);
3189 } 3237 }
3190 3238
3191 3239
3192 3240
3193 void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) { 3241 void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
3194 DCHECK(expr->arguments()->length() == 0); 3242 DCHECK(expr->arguments()->length() == 0);
3195 3243
3196 Label materialize_true, materialize_false; 3244 Label materialize_true, materialize_false;
3197 Label* if_true = NULL; 3245 Label* if_true = NULL;
3198 Label* if_false = NULL; 3246 Label* if_false = NULL;
3199 Label* fall_through = NULL; 3247 Label* fall_through = NULL;
3200 context()->PrepareTest(&materialize_true, &materialize_false, 3248 context()->PrepareTest(&materialize_true, &materialize_false,
3201 &if_true, &if_false, &fall_through); 3249 &if_true, &if_false, &fall_through);
3202 3250
3203 // Get the frame pointer for the calling frame. 3251 // Get the frame pointer for the calling frame.
3204 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 3252 __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3205 3253
3206 // Skip the arguments adaptor frame if it exists. 3254 // Skip the arguments adaptor frame if it exists.
3207 __ ldr(r1, MemOperand(r2, StandardFrameConstants::kContextOffset)); 3255 Label check_frame_marker;
3208 __ cmp(r1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); 3256 __ LoadP(r4, MemOperand(r5, StandardFrameConstants::kContextOffset));
3209 __ ldr(r2, MemOperand(r2, StandardFrameConstants::kCallerFPOffset), eq); 3257 __ CmpSmiLiteral(r4, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
3258 __ bne(&check_frame_marker);
3259 __ LoadP(r5, MemOperand(r5, StandardFrameConstants::kCallerFPOffset));
3210 3260
3211 // Check the marker in the calling frame. 3261 // Check the marker in the calling frame.
3212 __ ldr(r1, MemOperand(r2, StandardFrameConstants::kMarkerOffset)); 3262 __ bind(&check_frame_marker);
3213 __ cmp(r1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); 3263 __ LoadP(r4, MemOperand(r5, StandardFrameConstants::kMarkerOffset));
3264 STATIC_ASSERT(StackFrame::CONSTRUCT < 0x4000);
3265 __ CmpSmiLiteral(r4, Smi::FromInt(StackFrame::CONSTRUCT), r0);
3214 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 3266 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3215 Split(eq, if_true, if_false, fall_through); 3267 Split(eq, if_true, if_false, fall_through);
3216 3268
3217 context()->Plug(if_true, if_false); 3269 context()->Plug(if_true, if_false);
3218 } 3270 }
3219 3271
3220 3272
3221 void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) { 3273 void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
3222 ZoneList<Expression*>* args = expr->arguments(); 3274 ZoneList<Expression*>* args = expr->arguments();
3223 DCHECK(args->length() == 2); 3275 DCHECK(args->length() == 2);
3224 3276
3225 // Load the two objects into registers and perform the comparison. 3277 // Load the two objects into registers and perform the comparison.
3226 VisitForStackValue(args->at(0)); 3278 VisitForStackValue(args->at(0));
3227 VisitForAccumulatorValue(args->at(1)); 3279 VisitForAccumulatorValue(args->at(1));
3228 3280
3229 Label materialize_true, materialize_false; 3281 Label materialize_true, materialize_false;
3230 Label* if_true = NULL; 3282 Label* if_true = NULL;
3231 Label* if_false = NULL; 3283 Label* if_false = NULL;
3232 Label* fall_through = NULL; 3284 Label* fall_through = NULL;
3233 context()->PrepareTest(&materialize_true, &materialize_false, 3285 context()->PrepareTest(&materialize_true, &materialize_false,
3234 &if_true, &if_false, &fall_through); 3286 &if_true, &if_false, &fall_through);
3235 3287
3236 __ pop(r1); 3288 __ pop(r4);
3237 __ cmp(r0, r1); 3289 __ cmp(r3, r4);
3238 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 3290 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3239 Split(eq, if_true, if_false, fall_through); 3291 Split(eq, if_true, if_false, fall_through);
3240 3292
3241 context()->Plug(if_true, if_false); 3293 context()->Plug(if_true, if_false);
3242 } 3294 }
3243 3295
3244 3296
3245 void FullCodeGenerator::EmitArguments(CallRuntime* expr) { 3297 void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
3246 ZoneList<Expression*>* args = expr->arguments(); 3298 ZoneList<Expression*>* args = expr->arguments();
3247 DCHECK(args->length() == 1); 3299 DCHECK(args->length() == 1);
3248 3300
3249 // ArgumentsAccessStub expects the key in edx and the formal 3301 // ArgumentsAccessStub expects the key in edx and the formal
3250 // parameter count in r0. 3302 // parameter count in r3.
3251 VisitForAccumulatorValue(args->at(0)); 3303 VisitForAccumulatorValue(args->at(0));
3252 __ mov(r1, r0); 3304 __ mr(r4, r3);
3253 __ mov(r0, Operand(Smi::FromInt(info_->scope()->num_parameters()))); 3305 __ LoadSmiLiteral(r3, Smi::FromInt(info_->scope()->num_parameters()));
3254 ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT); 3306 ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT);
3255 __ CallStub(&stub); 3307 __ CallStub(&stub);
3256 context()->Plug(r0); 3308 context()->Plug(r3);
3257 } 3309 }
3258 3310
3259 3311
3260 void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) { 3312 void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
3261 DCHECK(expr->arguments()->length() == 0); 3313 DCHECK(expr->arguments()->length() == 0);
3262 3314 Label exit;
3263 // Get the number of formal parameters. 3315 // Get the number of formal parameters.
3264 __ mov(r0, Operand(Smi::FromInt(info_->scope()->num_parameters()))); 3316 __ LoadSmiLiteral(r3, Smi::FromInt(info_->scope()->num_parameters()));
3265 3317
3266 // Check if the calling frame is an arguments adaptor frame. 3318 // Check if the calling frame is an arguments adaptor frame.
3267 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 3319 __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3268 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); 3320 __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset));
3269 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); 3321 __ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
3322 __ bne(&exit);
3270 3323
3271 // Arguments adaptor case: Read the arguments length from the 3324 // Arguments adaptor case: Read the arguments length from the
3272 // adaptor frame. 3325 // adaptor frame.
3273 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset), eq); 3326 __ LoadP(r3, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset));
3274 3327
3275 context()->Plug(r0); 3328 __ bind(&exit);
3329 context()->Plug(r3);
3276 } 3330 }
3277 3331
3278 3332
3279 void FullCodeGenerator::EmitClassOf(CallRuntime* expr) { 3333 void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
3280 ZoneList<Expression*>* args = expr->arguments(); 3334 ZoneList<Expression*>* args = expr->arguments();
3281 DCHECK(args->length() == 1); 3335 DCHECK(args->length() == 1);
3282 Label done, null, function, non_function_constructor; 3336 Label done, null, function, non_function_constructor;
3283 3337
3284 VisitForAccumulatorValue(args->at(0)); 3338 VisitForAccumulatorValue(args->at(0));
3285 3339
3286 // If the object is a smi, we return null. 3340 // If the object is a smi, we return null.
3287 __ JumpIfSmi(r0, &null); 3341 __ JumpIfSmi(r3, &null);
3288 3342
3289 // Check that the object is a JS object but take special care of JS 3343 // Check that the object is a JS object but take special care of JS
3290 // functions to make sure they have 'Function' as their class. 3344 // functions to make sure they have 'Function' as their class.
3291 // Assume that there are only two callable types, and one of them is at 3345 // Assume that there are only two callable types, and one of them is at
3292 // either end of the type range for JS object types. Saves extra comparisons. 3346 // either end of the type range for JS object types. Saves extra comparisons.
3293 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); 3347 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
3294 __ CompareObjectType(r0, r0, r1, FIRST_SPEC_OBJECT_TYPE); 3348 __ CompareObjectType(r3, r3, r4, FIRST_SPEC_OBJECT_TYPE);
3295 // Map is now in r0. 3349 // Map is now in r3.
3296 __ b(lt, &null); 3350 __ blt(&null);
3297 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == 3351 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
3298 FIRST_SPEC_OBJECT_TYPE + 1); 3352 FIRST_SPEC_OBJECT_TYPE + 1);
3299 __ b(eq, &function); 3353 __ beq(&function);
3300 3354
3301 __ cmp(r1, Operand(LAST_SPEC_OBJECT_TYPE)); 3355 __ cmpi(r4, Operand(LAST_SPEC_OBJECT_TYPE));
3302 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == 3356 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
3303 LAST_SPEC_OBJECT_TYPE - 1); 3357 LAST_SPEC_OBJECT_TYPE - 1);
3304 __ b(eq, &function); 3358 __ beq(&function);
3305 // Assume that there is no larger type. 3359 // Assume that there is no larger type.
3306 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1); 3360 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
3307 3361
3308 // Check if the constructor in the map is a JS function. 3362 // Check if the constructor in the map is a JS function.
3309 __ ldr(r0, FieldMemOperand(r0, Map::kConstructorOffset)); 3363 __ LoadP(r3, FieldMemOperand(r3, Map::kConstructorOffset));
3310 __ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE); 3364 __ CompareObjectType(r3, r4, r4, JS_FUNCTION_TYPE);
3311 __ b(ne, &non_function_constructor); 3365 __ bne(&non_function_constructor);
3312 3366
3313 // r0 now contains the constructor function. Grab the 3367 // r3 now contains the constructor function. Grab the
3314 // instance class name from there. 3368 // instance class name from there.
3315 __ ldr(r0, FieldMemOperand(r0, JSFunction::kSharedFunctionInfoOffset)); 3369 __ LoadP(r3, FieldMemOperand(r3, JSFunction::kSharedFunctionInfoOffset));
3316 __ ldr(r0, FieldMemOperand(r0, SharedFunctionInfo::kInstanceClassNameOffset)); 3370 __ LoadP(r3,
3371 FieldMemOperand(r3, SharedFunctionInfo::kInstanceClassNameOffset));
3317 __ b(&done); 3372 __ b(&done);
3318 3373
3319 // Functions have class 'Function'. 3374 // Functions have class 'Function'.
3320 __ bind(&function); 3375 __ bind(&function);
3321 __ LoadRoot(r0, Heap::kfunction_class_stringRootIndex); 3376 __ LoadRoot(r3, Heap::kfunction_class_stringRootIndex);
3322 __ jmp(&done); 3377 __ b(&done);
3323 3378
3324 // Objects with a non-function constructor have class 'Object'. 3379 // Objects with a non-function constructor have class 'Object'.
3325 __ bind(&non_function_constructor); 3380 __ bind(&non_function_constructor);
3326 __ LoadRoot(r0, Heap::kObject_stringRootIndex); 3381 __ LoadRoot(r3, Heap::kObject_stringRootIndex);
3327 __ jmp(&done); 3382 __ b(&done);
3328 3383
3329 // Non-JS objects have class null. 3384 // Non-JS objects have class null.
3330 __ bind(&null); 3385 __ bind(&null);
3331 __ LoadRoot(r0, Heap::kNullValueRootIndex); 3386 __ LoadRoot(r3, Heap::kNullValueRootIndex);
3332 3387
3333 // All done. 3388 // All done.
3334 __ bind(&done); 3389 __ bind(&done);
3335 3390
3336 context()->Plug(r0); 3391 context()->Plug(r3);
3337 } 3392 }
3338 3393
3339 3394
3340 void FullCodeGenerator::EmitSubString(CallRuntime* expr) { 3395 void FullCodeGenerator::EmitSubString(CallRuntime* expr) {
3341 // Load the arguments on the stack and call the stub. 3396 // Load the arguments on the stack and call the stub.
3342 SubStringStub stub(isolate()); 3397 SubStringStub stub(isolate());
3343 ZoneList<Expression*>* args = expr->arguments(); 3398 ZoneList<Expression*>* args = expr->arguments();
3344 DCHECK(args->length() == 3); 3399 DCHECK(args->length() == 3);
3345 VisitForStackValue(args->at(0)); 3400 VisitForStackValue(args->at(0));
3346 VisitForStackValue(args->at(1)); 3401 VisitForStackValue(args->at(1));
3347 VisitForStackValue(args->at(2)); 3402 VisitForStackValue(args->at(2));
3348 __ CallStub(&stub); 3403 __ CallStub(&stub);
3349 context()->Plug(r0); 3404 context()->Plug(r3);
3350 } 3405 }
3351 3406
3352 3407
3353 void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) { 3408 void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) {
3354 // Load the arguments on the stack and call the stub. 3409 // Load the arguments on the stack and call the stub.
3355 RegExpExecStub stub(isolate()); 3410 RegExpExecStub stub(isolate());
3356 ZoneList<Expression*>* args = expr->arguments(); 3411 ZoneList<Expression*>* args = expr->arguments();
3357 DCHECK(args->length() == 4); 3412 DCHECK(args->length() == 4);
3358 VisitForStackValue(args->at(0)); 3413 VisitForStackValue(args->at(0));
3359 VisitForStackValue(args->at(1)); 3414 VisitForStackValue(args->at(1));
3360 VisitForStackValue(args->at(2)); 3415 VisitForStackValue(args->at(2));
3361 VisitForStackValue(args->at(3)); 3416 VisitForStackValue(args->at(3));
3362 __ CallStub(&stub); 3417 __ CallStub(&stub);
3363 context()->Plug(r0); 3418 context()->Plug(r3);
3364 } 3419 }
3365 3420
3366 3421
3367 void FullCodeGenerator::EmitValueOf(CallRuntime* expr) { 3422 void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
3368 ZoneList<Expression*>* args = expr->arguments(); 3423 ZoneList<Expression*>* args = expr->arguments();
3369 DCHECK(args->length() == 1); 3424 DCHECK(args->length() == 1);
3370 VisitForAccumulatorValue(args->at(0)); // Load the object. 3425 VisitForAccumulatorValue(args->at(0)); // Load the object.
3371 3426
3372 Label done; 3427 Label done;
3373 // If the object is a smi return the object. 3428 // If the object is a smi return the object.
3374 __ JumpIfSmi(r0, &done); 3429 __ JumpIfSmi(r3, &done);
3375 // If the object is not a value type, return the object. 3430 // If the object is not a value type, return the object.
3376 __ CompareObjectType(r0, r1, r1, JS_VALUE_TYPE); 3431 __ CompareObjectType(r3, r4, r4, JS_VALUE_TYPE);
3377 __ ldr(r0, FieldMemOperand(r0, JSValue::kValueOffset), eq); 3432 __ bne(&done);
3433 __ LoadP(r3, FieldMemOperand(r3, JSValue::kValueOffset));
3378 3434
3379 __ bind(&done); 3435 __ bind(&done);
3380 context()->Plug(r0); 3436 context()->Plug(r3);
3381 } 3437 }
3382 3438
3383 3439
3384 void FullCodeGenerator::EmitDateField(CallRuntime* expr) { 3440 void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
3385 ZoneList<Expression*>* args = expr->arguments(); 3441 ZoneList<Expression*>* args = expr->arguments();
3386 DCHECK(args->length() == 2); 3442 DCHECK(args->length() == 2);
3387 DCHECK_NE(NULL, args->at(1)->AsLiteral()); 3443 DCHECK_NE(NULL, args->at(1)->AsLiteral());
3388 Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value())); 3444 Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value()));
3389 3445
3390 VisitForAccumulatorValue(args->at(0)); // Load the object. 3446 VisitForAccumulatorValue(args->at(0)); // Load the object.
3391 3447
3392 Label runtime, done, not_date_object; 3448 Label runtime, done, not_date_object;
3393 Register object = r0; 3449 Register object = r3;
3394 Register result = r0; 3450 Register result = r3;
3395 Register scratch0 = r9; 3451 Register scratch0 = r11;
3396 Register scratch1 = r1; 3452 Register scratch1 = r4;
3397 3453
3398 __ JumpIfSmi(object, &not_date_object); 3454 __ JumpIfSmi(object, &not_date_object);
3399 __ CompareObjectType(object, scratch1, scratch1, JS_DATE_TYPE); 3455 __ CompareObjectType(object, scratch1, scratch1, JS_DATE_TYPE);
3400 __ b(ne, &not_date_object); 3456 __ bne(&not_date_object);
3401 3457
3402 if (index->value() == 0) { 3458 if (index->value() == 0) {
3403 __ ldr(result, FieldMemOperand(object, JSDate::kValueOffset)); 3459 __ LoadP(result, FieldMemOperand(object, JSDate::kValueOffset));
3404 __ jmp(&done); 3460 __ b(&done);
3405 } else { 3461 } else {
3406 if (index->value() < JSDate::kFirstUncachedField) { 3462 if (index->value() < JSDate::kFirstUncachedField) {
3407 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); 3463 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
3408 __ mov(scratch1, Operand(stamp)); 3464 __ mov(scratch1, Operand(stamp));
3409 __ ldr(scratch1, MemOperand(scratch1)); 3465 __ LoadP(scratch1, MemOperand(scratch1));
3410 __ ldr(scratch0, FieldMemOperand(object, JSDate::kCacheStampOffset)); 3466 __ LoadP(scratch0, FieldMemOperand(object, JSDate::kCacheStampOffset));
3411 __ cmp(scratch1, scratch0); 3467 __ cmp(scratch1, scratch0);
3412 __ b(ne, &runtime); 3468 __ bne(&runtime);
3413 __ ldr(result, FieldMemOperand(object, JSDate::kValueOffset + 3469 __ LoadP(result, FieldMemOperand(object, JSDate::kValueOffset +
3414 kPointerSize * index->value())); 3470 kPointerSize * index->value()),
3415 __ jmp(&done); 3471 scratch0);
3472 __ b(&done);
3416 } 3473 }
3417 __ bind(&runtime); 3474 __ bind(&runtime);
3418 __ PrepareCallCFunction(2, scratch1); 3475 __ PrepareCallCFunction(2, scratch1);
3419 __ mov(r1, Operand(index)); 3476 __ LoadSmiLiteral(r4, index);
3420 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); 3477 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
3421 __ jmp(&done); 3478 __ b(&done);
3422 } 3479 }
3423 3480
3424 __ bind(&not_date_object); 3481 __ bind(&not_date_object);
3425 __ CallRuntime(Runtime::kThrowNotDateError, 0); 3482 __ CallRuntime(Runtime::kThrowNotDateError, 0);
3426 __ bind(&done); 3483 __ bind(&done);
3427 context()->Plug(r0); 3484 context()->Plug(r3);
3428 } 3485 }
3429 3486
3430 3487
3431 void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) { 3488 void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) {
3432 ZoneList<Expression*>* args = expr->arguments(); 3489 ZoneList<Expression*>* args = expr->arguments();
3433 DCHECK_EQ(3, args->length()); 3490 DCHECK_EQ(3, args->length());
3434 3491
3435 Register string = r0; 3492 Register string = r3;
3436 Register index = r1; 3493 Register index = r4;
3437 Register value = r2; 3494 Register value = r5;
3438 3495
3439 VisitForStackValue(args->at(1)); // index 3496 VisitForStackValue(args->at(1)); // index
3440 VisitForStackValue(args->at(2)); // value 3497 VisitForStackValue(args->at(2)); // value
3441 VisitForAccumulatorValue(args->at(0)); // string 3498 VisitForAccumulatorValue(args->at(0)); // string
3442 __ Pop(index, value); 3499 __ Pop(index, value);
3443 3500
3444 if (FLAG_debug_code) { 3501 if (FLAG_debug_code) {
3445 __ SmiTst(value); 3502 __ TestIfSmi(value, r0);
3446 __ Check(eq, kNonSmiValue); 3503 __ Check(eq, kNonSmiValue, cr0);
3447 __ SmiTst(index); 3504 __ TestIfSmi(index, r0);
3448 __ Check(eq, kNonSmiIndex); 3505 __ Check(eq, kNonSmiIndex, cr0);
3449 __ SmiUntag(index, index); 3506 __ SmiUntag(index, index);
3450 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; 3507 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
3451 __ EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type); 3508 __ EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type);
3452 __ SmiTag(index, index); 3509 __ SmiTag(index, index);
3453 } 3510 }
3454 3511
3455 __ SmiUntag(value, value); 3512 __ SmiUntag(value);
3456 __ add(ip, 3513 __ addi(ip,
3457 string, 3514 string,
3458 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); 3515 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3459 __ strb(value, MemOperand(ip, index, LSR, kSmiTagSize)); 3516 __ SmiToByteArrayOffset(r0, index);
3517 __ stbx(value, MemOperand(ip, r0));
3460 context()->Plug(string); 3518 context()->Plug(string);
3461 } 3519 }
3462 3520
3463 3521
3464 void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) { 3522 void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) {
3465 ZoneList<Expression*>* args = expr->arguments(); 3523 ZoneList<Expression*>* args = expr->arguments();
3466 DCHECK_EQ(3, args->length()); 3524 DCHECK_EQ(3, args->length());
3467 3525
3468 Register string = r0; 3526 Register string = r3;
3469 Register index = r1; 3527 Register index = r4;
3470 Register value = r2; 3528 Register value = r5;
3471 3529
3472 VisitForStackValue(args->at(1)); // index 3530 VisitForStackValue(args->at(1)); // index
3473 VisitForStackValue(args->at(2)); // value 3531 VisitForStackValue(args->at(2)); // value
3474 VisitForAccumulatorValue(args->at(0)); // string 3532 VisitForAccumulatorValue(args->at(0)); // string
3475 __ Pop(index, value); 3533 __ Pop(index, value);
3476 3534
3477 if (FLAG_debug_code) { 3535 if (FLAG_debug_code) {
3478 __ SmiTst(value); 3536 __ TestIfSmi(value, r0);
3479 __ Check(eq, kNonSmiValue); 3537 __ Check(eq, kNonSmiValue, cr0);
3480 __ SmiTst(index); 3538 __ TestIfSmi(index, r0);
3481 __ Check(eq, kNonSmiIndex); 3539 __ Check(eq, kNonSmiIndex, cr0);
3482 __ SmiUntag(index, index); 3540 __ SmiUntag(index, index);
3483 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; 3541 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
3484 __ EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type); 3542 __ EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type);
3485 __ SmiTag(index, index); 3543 __ SmiTag(index, index);
3486 } 3544 }
3487 3545
3488 __ SmiUntag(value, value); 3546 __ SmiUntag(value);
3489 __ add(ip, 3547 __ addi(ip,
3490 string, 3548 string,
3491 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 3549 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3492 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); 3550 __ SmiToShortArrayOffset(r0, index);
3493 __ strh(value, MemOperand(ip, index)); 3551 __ sthx(value, MemOperand(ip, r0));
3494 context()->Plug(string); 3552 context()->Plug(string);
3495 } 3553 }
3496 3554
3497 3555
3498
3499 void FullCodeGenerator::EmitMathPow(CallRuntime* expr) { 3556 void FullCodeGenerator::EmitMathPow(CallRuntime* expr) {
3500 // Load the arguments on the stack and call the runtime function. 3557 // Load the arguments on the stack and call the runtime function.
3501 ZoneList<Expression*>* args = expr->arguments(); 3558 ZoneList<Expression*>* args = expr->arguments();
3502 DCHECK(args->length() == 2); 3559 DCHECK(args->length() == 2);
3503 VisitForStackValue(args->at(0)); 3560 VisitForStackValue(args->at(0));
3504 VisitForStackValue(args->at(1)); 3561 VisitForStackValue(args->at(1));
3505 MathPowStub stub(isolate(), MathPowStub::ON_STACK); 3562 MathPowStub stub(isolate(), MathPowStub::ON_STACK);
3506 __ CallStub(&stub); 3563 __ CallStub(&stub);
3507 context()->Plug(r0); 3564 context()->Plug(r3);
3508 } 3565 }
3509 3566
3510 3567
3511 void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) { 3568 void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
3512 ZoneList<Expression*>* args = expr->arguments(); 3569 ZoneList<Expression*>* args = expr->arguments();
3513 DCHECK(args->length() == 2); 3570 DCHECK(args->length() == 2);
3514 VisitForStackValue(args->at(0)); // Load the object. 3571 VisitForStackValue(args->at(0)); // Load the object.
3515 VisitForAccumulatorValue(args->at(1)); // Load the value. 3572 VisitForAccumulatorValue(args->at(1)); // Load the value.
3516 __ pop(r1); // r0 = value. r1 = object. 3573 __ pop(r4); // r3 = value. r4 = object.
3517 3574
3518 Label done; 3575 Label done;
3519 // If the object is a smi, return the value. 3576 // If the object is a smi, return the value.
3520 __ JumpIfSmi(r1, &done); 3577 __ JumpIfSmi(r4, &done);
3521 3578
3522 // If the object is not a value type, return the value. 3579 // If the object is not a value type, return the value.
3523 __ CompareObjectType(r1, r2, r2, JS_VALUE_TYPE); 3580 __ CompareObjectType(r4, r5, r5, JS_VALUE_TYPE);
3524 __ b(ne, &done); 3581 __ bne(&done);
3525 3582
3526 // Store the value. 3583 // Store the value.
3527 __ str(r0, FieldMemOperand(r1, JSValue::kValueOffset)); 3584 __ StoreP(r3, FieldMemOperand(r4, JSValue::kValueOffset), r0);
3528 // Update the write barrier. Save the value as it will be 3585 // Update the write barrier. Save the value as it will be
3529 // overwritten by the write barrier code and is needed afterward. 3586 // overwritten by the write barrier code and is needed afterward.
3530 __ mov(r2, r0); 3587 __ mr(r5, r3);
3531 __ RecordWriteField( 3588 __ RecordWriteField(
3532 r1, JSValue::kValueOffset, r2, r3, kLRHasBeenSaved, kDontSaveFPRegs); 3589 r4, JSValue::kValueOffset, r5, r6, kLRHasBeenSaved, kDontSaveFPRegs);
3533 3590
3534 __ bind(&done); 3591 __ bind(&done);
3535 context()->Plug(r0); 3592 context()->Plug(r3);
3536 } 3593 }
3537 3594
3538 3595
3539 void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) { 3596 void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
3540 ZoneList<Expression*>* args = expr->arguments(); 3597 ZoneList<Expression*>* args = expr->arguments();
3541 DCHECK_EQ(args->length(), 1); 3598 DCHECK_EQ(args->length(), 1);
3542 // Load the argument into r0 and call the stub. 3599 // Load the argument into r3 and call the stub.
3543 VisitForAccumulatorValue(args->at(0)); 3600 VisitForAccumulatorValue(args->at(0));
3544 3601
3545 NumberToStringStub stub(isolate()); 3602 NumberToStringStub stub(isolate());
3546 __ CallStub(&stub); 3603 __ CallStub(&stub);
3547 context()->Plug(r0); 3604 context()->Plug(r3);
3548 } 3605 }
3549 3606
3550 3607
3551 void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) { 3608 void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
3552 ZoneList<Expression*>* args = expr->arguments(); 3609 ZoneList<Expression*>* args = expr->arguments();
3553 DCHECK(args->length() == 1); 3610 DCHECK(args->length() == 1);
3554 VisitForAccumulatorValue(args->at(0)); 3611 VisitForAccumulatorValue(args->at(0));
3555 3612
3556 Label done; 3613 Label done;
3557 StringCharFromCodeGenerator generator(r0, r1); 3614 StringCharFromCodeGenerator generator(r3, r4);
3558 generator.GenerateFast(masm_); 3615 generator.GenerateFast(masm_);
3559 __ jmp(&done); 3616 __ b(&done);
3560 3617
3561 NopRuntimeCallHelper call_helper; 3618 NopRuntimeCallHelper call_helper;
3562 generator.GenerateSlow(masm_, call_helper); 3619 generator.GenerateSlow(masm_, call_helper);
3563 3620
3564 __ bind(&done); 3621 __ bind(&done);
3565 context()->Plug(r1); 3622 context()->Plug(r4);
3566 } 3623 }
3567 3624
3568 3625
3569 void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) { 3626 void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
3570 ZoneList<Expression*>* args = expr->arguments(); 3627 ZoneList<Expression*>* args = expr->arguments();
3571 DCHECK(args->length() == 2); 3628 DCHECK(args->length() == 2);
3572 VisitForStackValue(args->at(0)); 3629 VisitForStackValue(args->at(0));
3573 VisitForAccumulatorValue(args->at(1)); 3630 VisitForAccumulatorValue(args->at(1));
3574 3631
3575 Register object = r1; 3632 Register object = r4;
3576 Register index = r0; 3633 Register index = r3;
3577 Register result = r3; 3634 Register result = r6;
3578 3635
3579 __ pop(object); 3636 __ pop(object);
3580 3637
3581 Label need_conversion; 3638 Label need_conversion;
3582 Label index_out_of_range; 3639 Label index_out_of_range;
3583 Label done; 3640 Label done;
3584 StringCharCodeAtGenerator generator(object, 3641 StringCharCodeAtGenerator generator(object,
3585 index, 3642 index,
3586 result, 3643 result,
3587 &need_conversion, 3644 &need_conversion,
3588 &need_conversion, 3645 &need_conversion,
3589 &index_out_of_range, 3646 &index_out_of_range,
3590 STRING_INDEX_IS_NUMBER); 3647 STRING_INDEX_IS_NUMBER);
3591 generator.GenerateFast(masm_); 3648 generator.GenerateFast(masm_);
3592 __ jmp(&done); 3649 __ b(&done);
3593 3650
3594 __ bind(&index_out_of_range); 3651 __ bind(&index_out_of_range);
3595 // When the index is out of range, the spec requires us to return 3652 // When the index is out of range, the spec requires us to return
3596 // NaN. 3653 // NaN.
3597 __ LoadRoot(result, Heap::kNanValueRootIndex); 3654 __ LoadRoot(result, Heap::kNanValueRootIndex);
3598 __ jmp(&done); 3655 __ b(&done);
3599 3656
3600 __ bind(&need_conversion); 3657 __ bind(&need_conversion);
3601 // Load the undefined value into the result register, which will 3658 // Load the undefined value into the result register, which will
3602 // trigger conversion. 3659 // trigger conversion.
3603 __ LoadRoot(result, Heap::kUndefinedValueRootIndex); 3660 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3604 __ jmp(&done); 3661 __ b(&done);
3605 3662
3606 NopRuntimeCallHelper call_helper; 3663 NopRuntimeCallHelper call_helper;
3607 generator.GenerateSlow(masm_, call_helper); 3664 generator.GenerateSlow(masm_, call_helper);
3608 3665
3609 __ bind(&done); 3666 __ bind(&done);
3610 context()->Plug(result); 3667 context()->Plug(result);
3611 } 3668 }
3612 3669
3613 3670
3614 void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) { 3671 void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
3615 ZoneList<Expression*>* args = expr->arguments(); 3672 ZoneList<Expression*>* args = expr->arguments();
3616 DCHECK(args->length() == 2); 3673 DCHECK(args->length() == 2);
3617 VisitForStackValue(args->at(0)); 3674 VisitForStackValue(args->at(0));
3618 VisitForAccumulatorValue(args->at(1)); 3675 VisitForAccumulatorValue(args->at(1));
3619 3676
3620 Register object = r1; 3677 Register object = r4;
3621 Register index = r0; 3678 Register index = r3;
3622 Register scratch = r3; 3679 Register scratch = r6;
3623 Register result = r0; 3680 Register result = r3;
3624 3681
3625 __ pop(object); 3682 __ pop(object);
3626 3683
3627 Label need_conversion; 3684 Label need_conversion;
3628 Label index_out_of_range; 3685 Label index_out_of_range;
3629 Label done; 3686 Label done;
3630 StringCharAtGenerator generator(object, 3687 StringCharAtGenerator generator(object,
3631 index, 3688 index,
3632 scratch, 3689 scratch,
3633 result, 3690 result,
3634 &need_conversion, 3691 &need_conversion,
3635 &need_conversion, 3692 &need_conversion,
3636 &index_out_of_range, 3693 &index_out_of_range,
3637 STRING_INDEX_IS_NUMBER); 3694 STRING_INDEX_IS_NUMBER);
3638 generator.GenerateFast(masm_); 3695 generator.GenerateFast(masm_);
3639 __ jmp(&done); 3696 __ b(&done);
3640 3697
3641 __ bind(&index_out_of_range); 3698 __ bind(&index_out_of_range);
3642 // When the index is out of range, the spec requires us to return 3699 // When the index is out of range, the spec requires us to return
3643 // the empty string. 3700 // the empty string.
3644 __ LoadRoot(result, Heap::kempty_stringRootIndex); 3701 __ LoadRoot(result, Heap::kempty_stringRootIndex);
3645 __ jmp(&done); 3702 __ b(&done);
3646 3703
3647 __ bind(&need_conversion); 3704 __ bind(&need_conversion);
3648 // Move smi zero into the result register, which will trigger 3705 // Move smi zero into the result register, which will trigger
3649 // conversion. 3706 // conversion.
3650 __ mov(result, Operand(Smi::FromInt(0))); 3707 __ LoadSmiLiteral(result, Smi::FromInt(0));
3651 __ jmp(&done); 3708 __ b(&done);
3652 3709
3653 NopRuntimeCallHelper call_helper; 3710 NopRuntimeCallHelper call_helper;
3654 generator.GenerateSlow(masm_, call_helper); 3711 generator.GenerateSlow(masm_, call_helper);
3655 3712
3656 __ bind(&done); 3713 __ bind(&done);
3657 context()->Plug(result); 3714 context()->Plug(result);
3658 } 3715 }
3659 3716
3660 3717
3661 void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) { 3718 void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
3662 ZoneList<Expression*>* args = expr->arguments(); 3719 ZoneList<Expression*>* args = expr->arguments();
3663 DCHECK_EQ(2, args->length()); 3720 DCHECK_EQ(2, args->length());
3664 VisitForStackValue(args->at(0)); 3721 VisitForStackValue(args->at(0));
3665 VisitForAccumulatorValue(args->at(1)); 3722 VisitForAccumulatorValue(args->at(1));
3666 3723
3667 __ pop(r1); 3724 __ pop(r4);
3668 StringAddStub stub(isolate(), STRING_ADD_CHECK_BOTH, NOT_TENURED); 3725 StringAddStub stub(isolate(), STRING_ADD_CHECK_BOTH, NOT_TENURED);
3669 __ CallStub(&stub); 3726 __ CallStub(&stub);
3670 context()->Plug(r0); 3727 context()->Plug(r3);
3671 } 3728 }
3672 3729
3673 3730
3674 void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) { 3731 void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) {
3675 ZoneList<Expression*>* args = expr->arguments(); 3732 ZoneList<Expression*>* args = expr->arguments();
3676 DCHECK_EQ(2, args->length()); 3733 DCHECK_EQ(2, args->length());
3677 VisitForStackValue(args->at(0)); 3734 VisitForStackValue(args->at(0));
3678 VisitForStackValue(args->at(1)); 3735 VisitForStackValue(args->at(1));
3679 3736
3680 StringCompareStub stub(isolate()); 3737 StringCompareStub stub(isolate());
3681 __ CallStub(&stub); 3738 __ CallStub(&stub);
3682 context()->Plug(r0); 3739 context()->Plug(r3);
3683 } 3740 }
3684 3741
3685 3742
3686 void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) { 3743 void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
3687 ZoneList<Expression*>* args = expr->arguments(); 3744 ZoneList<Expression*>* args = expr->arguments();
3688 DCHECK(args->length() >= 2); 3745 DCHECK(args->length() >= 2);
3689 3746
3690 int arg_count = args->length() - 2; // 2 ~ receiver and function. 3747 int arg_count = args->length() - 2; // 2 ~ receiver and function.
3691 for (int i = 0; i < arg_count + 1; i++) { 3748 for (int i = 0; i < arg_count + 1; i++) {
3692 VisitForStackValue(args->at(i)); 3749 VisitForStackValue(args->at(i));
3693 } 3750 }
3694 VisitForAccumulatorValue(args->last()); // Function. 3751 VisitForAccumulatorValue(args->last()); // Function.
3695 3752
3696 Label runtime, done; 3753 Label runtime, done;
3697 // Check for non-function argument (including proxy). 3754 // Check for non-function argument (including proxy).
3698 __ JumpIfSmi(r0, &runtime); 3755 __ JumpIfSmi(r3, &runtime);
3699 __ CompareObjectType(r0, r1, r1, JS_FUNCTION_TYPE); 3756 __ CompareObjectType(r3, r4, r4, JS_FUNCTION_TYPE);
3700 __ b(ne, &runtime); 3757 __ bne(&runtime);
3701 3758
3702 // InvokeFunction requires the function in r1. Move it in there. 3759 // InvokeFunction requires the function in r4. Move it in there.
3703 __ mov(r1, result_register()); 3760 __ mr(r4, result_register());
3704 ParameterCount count(arg_count); 3761 ParameterCount count(arg_count);
3705 __ InvokeFunction(r1, count, CALL_FUNCTION, NullCallWrapper()); 3762 __ InvokeFunction(r4, count, CALL_FUNCTION, NullCallWrapper());
3706 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 3763 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
3707 __ jmp(&done); 3764 __ b(&done);
3708 3765
3709 __ bind(&runtime); 3766 __ bind(&runtime);
3710 __ push(r0); 3767 __ push(r3);
3711 __ CallRuntime(Runtime::kCall, args->length()); 3768 __ CallRuntime(Runtime::kCall, args->length());
3712 __ bind(&done); 3769 __ bind(&done);
3713 3770
3714 context()->Plug(r0); 3771 context()->Plug(r3);
3715 } 3772 }
3716 3773
3717 3774
3718 void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) { 3775 void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
3719 RegExpConstructResultStub stub(isolate()); 3776 RegExpConstructResultStub stub(isolate());
3720 ZoneList<Expression*>* args = expr->arguments(); 3777 ZoneList<Expression*>* args = expr->arguments();
3721 DCHECK(args->length() == 3); 3778 DCHECK(args->length() == 3);
3722 VisitForStackValue(args->at(0)); 3779 VisitForStackValue(args->at(0));
3723 VisitForStackValue(args->at(1)); 3780 VisitForStackValue(args->at(1));
3724 VisitForAccumulatorValue(args->at(2)); 3781 VisitForAccumulatorValue(args->at(2));
3725 __ pop(r1); 3782 __ Pop(r5, r4);
3726 __ pop(r2);
3727 __ CallStub(&stub); 3783 __ CallStub(&stub);
3728 context()->Plug(r0); 3784 context()->Plug(r3);
3729 } 3785 }
3730 3786
3731 3787
3732 void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) { 3788 void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
3733 ZoneList<Expression*>* args = expr->arguments(); 3789 ZoneList<Expression*>* args = expr->arguments();
3734 DCHECK_EQ(2, args->length()); 3790 DCHECK_EQ(2, args->length());
3735 DCHECK_NE(NULL, args->at(0)->AsLiteral()); 3791 DCHECK_NE(NULL, args->at(0)->AsLiteral());
3736 int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value(); 3792 int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value();
3737 3793
3738 Handle<FixedArray> jsfunction_result_caches( 3794 Handle<FixedArray> jsfunction_result_caches(
3739 isolate()->native_context()->jsfunction_result_caches()); 3795 isolate()->native_context()->jsfunction_result_caches());
3740 if (jsfunction_result_caches->length() <= cache_id) { 3796 if (jsfunction_result_caches->length() <= cache_id) {
3741 __ Abort(kAttemptToUseUndefinedCache); 3797 __ Abort(kAttemptToUseUndefinedCache);
3742 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); 3798 __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
3743 context()->Plug(r0); 3799 context()->Plug(r3);
3744 return; 3800 return;
3745 } 3801 }
3746 3802
3747 VisitForAccumulatorValue(args->at(1)); 3803 VisitForAccumulatorValue(args->at(1));
3748 3804
3749 Register key = r0; 3805 Register key = r3;
3750 Register cache = r1; 3806 Register cache = r4;
3751 __ ldr(cache, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX)); 3807 __ LoadP(cache, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
3752 __ ldr(cache, FieldMemOperand(cache, GlobalObject::kNativeContextOffset)); 3808 __ LoadP(cache, FieldMemOperand(cache, GlobalObject::kNativeContextOffset));
3753 __ ldr(cache, ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX)); 3809 __ LoadP(cache,
3754 __ ldr(cache, 3810 ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
3755 FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id))); 3811 __ LoadP(cache,
3756 3812 FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id)), r0);
3757 3813
3758 Label done, not_found; 3814 Label done, not_found;
3759 __ ldr(r2, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset)); 3815 __ LoadP(r5, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset));
3760 // r2 now holds finger offset as a smi. 3816 // r5 now holds finger offset as a smi.
3761 __ add(r3, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 3817 __ addi(r6, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3762 // r3 now points to the start of fixed array elements. 3818 // r6 now points to the start of fixed array elements.
3763 __ ldr(r2, MemOperand::PointerAddressFromSmiKey(r3, r2, PreIndex)); 3819 __ SmiToPtrArrayOffset(r5, r5);
3764 // Note side effect of PreIndex: r3 now points to the key of the pair. 3820 __ LoadPUX(r5, MemOperand(r6, r5));
3765 __ cmp(key, r2); 3821 // r6 now points to the key of the pair.
3766 __ b(ne, &not_found); 3822 __ cmp(key, r5);
3823 __ bne(&not_found);
3767 3824
3768 __ ldr(r0, MemOperand(r3, kPointerSize)); 3825 __ LoadP(r3, MemOperand(r6, kPointerSize));
3769 __ b(&done); 3826 __ b(&done);
3770 3827
3771 __ bind(&not_found); 3828 __ bind(&not_found);
3772 // Call runtime to perform the lookup. 3829 // Call runtime to perform the lookup.
3773 __ Push(cache, key); 3830 __ Push(cache, key);
3774 __ CallRuntime(Runtime::kGetFromCache, 2); 3831 __ CallRuntime(Runtime::kGetFromCache, 2);
3775 3832
3776 __ bind(&done); 3833 __ bind(&done);
3777 context()->Plug(r0); 3834 context()->Plug(r3);
3778 } 3835 }
3779 3836
3780 3837
3781 void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) { 3838 void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
3782 ZoneList<Expression*>* args = expr->arguments(); 3839 ZoneList<Expression*>* args = expr->arguments();
3783 VisitForAccumulatorValue(args->at(0)); 3840 VisitForAccumulatorValue(args->at(0));
3784 3841
3785 Label materialize_true, materialize_false; 3842 Label materialize_true, materialize_false;
3786 Label* if_true = NULL; 3843 Label* if_true = NULL;
3787 Label* if_false = NULL; 3844 Label* if_false = NULL;
3788 Label* fall_through = NULL; 3845 Label* fall_through = NULL;
3789 context()->PrepareTest(&materialize_true, &materialize_false, 3846 context()->PrepareTest(&materialize_true, &materialize_false,
3790 &if_true, &if_false, &fall_through); 3847 &if_true, &if_false, &fall_through);
3791 3848
3792 __ ldr(r0, FieldMemOperand(r0, String::kHashFieldOffset)); 3849 __ lwz(r3, FieldMemOperand(r3, String::kHashFieldOffset));
3793 __ tst(r0, Operand(String::kContainsCachedArrayIndexMask)); 3850 // PPC - assume ip is free
3851 __ mov(ip, Operand(String::kContainsCachedArrayIndexMask));
3852 __ and_(r0, r3, ip);
3853 __ cmpi(r0, Operand::Zero());
3794 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 3854 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
3795 Split(eq, if_true, if_false, fall_through); 3855 Split(eq, if_true, if_false, fall_through);
3796 3856
3797 context()->Plug(if_true, if_false); 3857 context()->Plug(if_true, if_false);
3798 } 3858 }
3799 3859
3800 3860
3801 void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) { 3861 void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
3802 ZoneList<Expression*>* args = expr->arguments(); 3862 ZoneList<Expression*>* args = expr->arguments();
3803 DCHECK(args->length() == 1); 3863 DCHECK(args->length() == 1);
3804 VisitForAccumulatorValue(args->at(0)); 3864 VisitForAccumulatorValue(args->at(0));
3805 3865
3806 __ AssertString(r0); 3866 __ AssertString(r3);
3807 3867
3808 __ ldr(r0, FieldMemOperand(r0, String::kHashFieldOffset)); 3868 __ lwz(r3, FieldMemOperand(r3, String::kHashFieldOffset));
3809 __ IndexFromHash(r0, r0); 3869 __ IndexFromHash(r3, r3);
3810 3870
3811 context()->Plug(r0); 3871 context()->Plug(r3);
3812 } 3872 }
3813 3873
3814 3874
3815 void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) { 3875 void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
3816 Label bailout, done, one_char_separator, long_separator, non_trivial_array, 3876 Label bailout, done, one_char_separator, long_separator,
3817 not_size_one_array, loop, empty_separator_loop, one_char_separator_loop, 3877 non_trivial_array, not_size_one_array, loop,
3878 empty_separator_loop, one_char_separator_loop,
3818 one_char_separator_loop_entry, long_separator_loop; 3879 one_char_separator_loop_entry, long_separator_loop;
3819 ZoneList<Expression*>* args = expr->arguments(); 3880 ZoneList<Expression*>* args = expr->arguments();
3820 DCHECK(args->length() == 2); 3881 DCHECK(args->length() == 2);
3821 VisitForStackValue(args->at(1)); 3882 VisitForStackValue(args->at(1));
3822 VisitForAccumulatorValue(args->at(0)); 3883 VisitForAccumulatorValue(args->at(0));
3823 3884
3824 // All aliases of the same register have disjoint lifetimes. 3885 // All aliases of the same register have disjoint lifetimes.
3825 Register array = r0; 3886 Register array = r3;
3826 Register elements = no_reg; // Will be r0. 3887 Register elements = no_reg; // Will be r3.
3827 Register result = no_reg; // Will be r0. 3888 Register result = no_reg; // Will be r3.
3828 Register separator = r1; 3889 Register separator = r4;
3829 Register array_length = r2; 3890 Register array_length = r5;
3830 Register result_pos = no_reg; // Will be r2 3891 Register result_pos = no_reg; // Will be r5
3831 Register string_length = r3; 3892 Register string_length = r6;
3832 Register string = r4; 3893 Register string = r7;
3833 Register element = r5; 3894 Register element = r8;
3834 Register elements_end = r6; 3895 Register elements_end = r9;
3835 Register scratch = r9; 3896 Register scratch1 = r10;
3897 Register scratch2 = r11;
3836 3898
3837 // Separator operand is on the stack. 3899 // Separator operand is on the stack.
3838 __ pop(separator); 3900 __ pop(separator);
3839 3901
3840 // Check that the array is a JSArray. 3902 // Check that the array is a JSArray.
3841 __ JumpIfSmi(array, &bailout); 3903 __ JumpIfSmi(array, &bailout);
3842 __ CompareObjectType(array, scratch, array_length, JS_ARRAY_TYPE); 3904 __ CompareObjectType(array, scratch1, scratch2, JS_ARRAY_TYPE);
3843 __ b(ne, &bailout); 3905 __ bne(&bailout);
3844 3906
3845 // Check that the array has fast elements. 3907 // Check that the array has fast elements.
3846 __ CheckFastElements(scratch, array_length, &bailout); 3908 __ CheckFastElements(scratch1, scratch2, &bailout);
3847 3909
3848 // If the array has length zero, return the empty string. 3910 // If the array has length zero, return the empty string.
3849 __ ldr(array_length, FieldMemOperand(array, JSArray::kLengthOffset)); 3911 __ LoadP(array_length, FieldMemOperand(array, JSArray::kLengthOffset));
3850 __ SmiUntag(array_length, SetCC); 3912 __ SmiUntag(array_length);
3851 __ b(ne, &non_trivial_array); 3913 __ cmpi(array_length, Operand::Zero());
3852 __ LoadRoot(r0, Heap::kempty_stringRootIndex); 3914 __ bne(&non_trivial_array);
3915 __ LoadRoot(r3, Heap::kempty_stringRootIndex);
3853 __ b(&done); 3916 __ b(&done);
3854 3917
3855 __ bind(&non_trivial_array); 3918 __ bind(&non_trivial_array);
3856 3919
3857 // Get the FixedArray containing array's elements. 3920 // Get the FixedArray containing array's elements.
3858 elements = array; 3921 elements = array;
3859 __ ldr(elements, FieldMemOperand(array, JSArray::kElementsOffset)); 3922 __ LoadP(elements, FieldMemOperand(array, JSArray::kElementsOffset));
3860 array = no_reg; // End of array's live range. 3923 array = no_reg; // End of array's live range.
3861 3924
3862 // Check that all array elements are sequential ASCII strings, and 3925 // Check that all array elements are sequential ASCII strings, and
3863 // accumulate the sum of their lengths, as a smi-encoded value. 3926 // accumulate the sum of their lengths, as a smi-encoded value.
3864 __ mov(string_length, Operand::Zero()); 3927 __ li(string_length, Operand::Zero());
3865 __ add(element, 3928 __ addi(element,
3866 elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 3929 elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3867 __ add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2)); 3930 __ ShiftLeftImm(elements_end, array_length, Operand(kPointerSizeLog2));
3931 __ add(elements_end, element, elements_end);
3868 // Loop condition: while (element < elements_end). 3932 // Loop condition: while (element < elements_end).
3869 // Live values in registers: 3933 // Live values in registers:
3870 // elements: Fixed array of strings. 3934 // elements: Fixed array of strings.
3871 // array_length: Length of the fixed array of strings (not smi) 3935 // array_length: Length of the fixed array of strings (not smi)
3872 // separator: Separator string 3936 // separator: Separator string
3873 // string_length: Accumulated sum of string lengths (smi). 3937 // string_length: Accumulated sum of string lengths (smi).
3874 // element: Current array element. 3938 // element: Current array element.
3875 // elements_end: Array end. 3939 // elements_end: Array end.
3876 if (generate_debug_code_) { 3940 if (generate_debug_code_) {
3877 __ cmp(array_length, Operand::Zero()); 3941 __ cmpi(array_length, Operand::Zero());
3878 __ Assert(gt, kNoEmptyArraysHereInEmitFastAsciiArrayJoin); 3942 __ Assert(gt, kNoEmptyArraysHereInEmitFastAsciiArrayJoin);
3879 } 3943 }
3880 __ bind(&loop); 3944 __ bind(&loop);
3881 __ ldr(string, MemOperand(element, kPointerSize, PostIndex)); 3945 __ LoadP(string, MemOperand(element));
3946 __ addi(element, element, Operand(kPointerSize));
3882 __ JumpIfSmi(string, &bailout); 3947 __ JumpIfSmi(string, &bailout);
3883 __ ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset)); 3948 __ LoadP(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
3884 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 3949 __ lbz(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
3885 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &bailout); 3950 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
3886 __ ldr(scratch, FieldMemOperand(string, SeqOneByteString::kLengthOffset)); 3951 __ LoadP(scratch1, FieldMemOperand(string, SeqOneByteString::kLengthOffset));
3887 __ add(string_length, string_length, Operand(scratch), SetCC); 3952
3888 __ b(vs, &bailout); 3953 __ AddAndCheckForOverflow(string_length, string_length, scratch1,
3954 scratch2, r0);
3955 __ BranchOnOverflow(&bailout);
3956
3889 __ cmp(element, elements_end); 3957 __ cmp(element, elements_end);
3890 __ b(lt, &loop); 3958 __ blt(&loop);
3891 3959
3892 // If array_length is 1, return elements[0], a string. 3960 // If array_length is 1, return elements[0], a string.
3893 __ cmp(array_length, Operand(1)); 3961 __ cmpi(array_length, Operand(1));
3894 __ b(ne, &not_size_one_array); 3962 __ bne(&not_size_one_array);
3895 __ ldr(r0, FieldMemOperand(elements, FixedArray::kHeaderSize)); 3963 __ LoadP(r3, FieldMemOperand(elements, FixedArray::kHeaderSize));
3896 __ b(&done); 3964 __ b(&done);
3897 3965
3898 __ bind(&not_size_one_array); 3966 __ bind(&not_size_one_array);
3899 3967
3900 // Live values in registers: 3968 // Live values in registers:
3901 // separator: Separator string 3969 // separator: Separator string
3902 // array_length: Length of the array. 3970 // array_length: Length of the array.
3903 // string_length: Sum of string lengths (smi). 3971 // string_length: Sum of string lengths (smi).
3904 // elements: FixedArray of strings. 3972 // elements: FixedArray of strings.
3905 3973
3906 // Check that the separator is a flat ASCII string. 3974 // Check that the separator is a flat ASCII string.
3907 __ JumpIfSmi(separator, &bailout); 3975 __ JumpIfSmi(separator, &bailout);
3908 __ ldr(scratch, FieldMemOperand(separator, HeapObject::kMapOffset)); 3976 __ LoadP(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
3909 __ ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); 3977 __ lbz(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
3910 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &bailout); 3978 __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
3911 3979
3912 // Add (separator length times array_length) - separator length to the 3980 // Add (separator length times array_length) - separator length to the
3913 // string_length to get the length of the result string. array_length is not 3981 // string_length to get the length of the result string.
3914 // smi but the other values are, so the result is a smi 3982 __ LoadP(scratch1,
3915 __ ldr(scratch, FieldMemOperand(separator, SeqOneByteString::kLengthOffset)); 3983 FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
3916 __ sub(string_length, string_length, Operand(scratch)); 3984 __ sub(string_length, string_length, scratch1);
3917 __ smull(scratch, ip, array_length, scratch); 3985 #if V8_TARGET_ARCH_PPC64
3986 __ SmiUntag(scratch1, scratch1);
3987 __ Mul(scratch2, array_length, scratch1);
3918 // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are 3988 // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
3919 // zero. 3989 // zero.
3920 __ cmp(ip, Operand::Zero()); 3990 __ ShiftRightImm(ip, scratch2, Operand(31), SetRC);
3921 __ b(ne, &bailout); 3991 __ bne(&bailout, cr0);
3922 __ tst(scratch, Operand(0x80000000)); 3992 __ SmiTag(scratch2, scratch2);
3923 __ b(ne, &bailout); 3993 #else
3924 __ add(string_length, string_length, Operand(scratch), SetCC); 3994 // array_length is not smi but the other values are, so the result is a smi
3925 __ b(vs, &bailout); 3995 __ mullw(scratch2, array_length, scratch1);
3996 __ mulhw(ip, array_length, scratch1);
3997 // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
3998 // zero.
3999 __ cmpi(ip, Operand::Zero());
4000 __ bne(&bailout);
4001 __ cmpwi(scratch2, Operand::Zero());
4002 __ blt(&bailout);
4003 #endif
4004
4005 __ AddAndCheckForOverflow(string_length, string_length, scratch2,
4006 scratch1, r0);
4007 __ BranchOnOverflow(&bailout);
3926 __ SmiUntag(string_length); 4008 __ SmiUntag(string_length);
3927 4009
3928 // Get first element in the array to free up the elements register to be used 4010 // Get first element in the array to free up the elements register to be used
3929 // for the result. 4011 // for the result.
3930 __ add(element, 4012 __ addi(element,
3931 elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 4013 elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
3932 result = elements; // End of live range for elements. 4014 result = elements; // End of live range for elements.
3933 elements = no_reg; 4015 elements = no_reg;
3934 // Live values in registers: 4016 // Live values in registers:
3935 // element: First array element 4017 // element: First array element
3936 // separator: Separator string 4018 // separator: Separator string
3937 // string_length: Length of result string (not smi) 4019 // string_length: Length of result string (not smi)
3938 // array_length: Length of the array. 4020 // array_length: Length of the array.
3939 __ AllocateAsciiString(result, 4021 __ AllocateAsciiString(result,
3940 string_length, 4022 string_length,
3941 scratch, 4023 scratch1,
3942 string, // used as scratch 4024 scratch2,
3943 elements_end, // used as scratch 4025 elements_end,
3944 &bailout); 4026 &bailout);
3945 // Prepare for looping. Set up elements_end to end of the array. Set 4027 // Prepare for looping. Set up elements_end to end of the array. Set
3946 // result_pos to the position of the result where to write the first 4028 // result_pos to the position of the result where to write the first
3947 // character. 4029 // character.
3948 __ add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2)); 4030 __ ShiftLeftImm(elements_end, array_length, Operand(kPointerSizeLog2));
4031 __ add(elements_end, element, elements_end);
3949 result_pos = array_length; // End of live range for array_length. 4032 result_pos = array_length; // End of live range for array_length.
3950 array_length = no_reg; 4033 array_length = no_reg;
3951 __ add(result_pos, 4034 __ addi(result_pos,
3952 result, 4035 result,
3953 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); 4036 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3954 4037
3955 // Check the length of the separator. 4038 // Check the length of the separator.
3956 __ ldr(scratch, FieldMemOperand(separator, SeqOneByteString::kLengthOffset)); 4039 __ LoadP(scratch1,
3957 __ cmp(scratch, Operand(Smi::FromInt(1))); 4040 FieldMemOperand(separator, SeqOneByteString::kLengthOffset));
3958 __ b(eq, &one_char_separator); 4041 __ CmpSmiLiteral(scratch1, Smi::FromInt(1), r0);
3959 __ b(gt, &long_separator); 4042 __ beq(&one_char_separator);
4043 __ bgt(&long_separator);
3960 4044
3961 // Empty separator case 4045 // Empty separator case
3962 __ bind(&empty_separator_loop); 4046 __ bind(&empty_separator_loop);
3963 // Live values in registers: 4047 // Live values in registers:
3964 // result_pos: the position to which we are currently copying characters. 4048 // result_pos: the position to which we are currently copying characters.
3965 // element: Current array element. 4049 // element: Current array element.
3966 // elements_end: Array end. 4050 // elements_end: Array end.
3967 4051
3968 // Copy next array element to the result. 4052 // Copy next array element to the result.
3969 __ ldr(string, MemOperand(element, kPointerSize, PostIndex)); 4053 __ LoadP(string, MemOperand(element));
3970 __ ldr(string_length, FieldMemOperand(string, String::kLengthOffset)); 4054 __ addi(element, element, Operand(kPointerSize));
4055 __ LoadP(string_length, FieldMemOperand(string, String::kLengthOffset));
3971 __ SmiUntag(string_length); 4056 __ SmiUntag(string_length);
3972 __ add(string, 4057 __ addi(string, string,
3973 string, 4058 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3974 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); 4059 __ CopyBytes(string, result_pos, string_length, scratch1);
3975 __ CopyBytes(string, result_pos, string_length, scratch);
3976 __ cmp(element, elements_end); 4060 __ cmp(element, elements_end);
3977 __ b(lt, &empty_separator_loop); // End while (element < elements_end). 4061 __ blt(&empty_separator_loop); // End while (element < elements_end).
3978 DCHECK(result.is(r0)); 4062 DCHECK(result.is(r3));
3979 __ b(&done); 4063 __ b(&done);
3980 4064
3981 // One-character separator case 4065 // One-character separator case
3982 __ bind(&one_char_separator); 4066 __ bind(&one_char_separator);
3983 // Replace separator with its ASCII character value. 4067 // Replace separator with its ASCII character value.
3984 __ ldrb(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize)); 4068 __ lbz(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize));
3985 // Jump into the loop after the code that copies the separator, so the first 4069 // Jump into the loop after the code that copies the separator, so the first
3986 // element is not preceded by a separator 4070 // element is not preceded by a separator
3987 __ jmp(&one_char_separator_loop_entry); 4071 __ b(&one_char_separator_loop_entry);
3988 4072
3989 __ bind(&one_char_separator_loop); 4073 __ bind(&one_char_separator_loop);
3990 // Live values in registers: 4074 // Live values in registers:
3991 // result_pos: the position to which we are currently copying characters. 4075 // result_pos: the position to which we are currently copying characters.
3992 // element: Current array element. 4076 // element: Current array element.
3993 // elements_end: Array end. 4077 // elements_end: Array end.
3994 // separator: Single separator ASCII char (in lower byte). 4078 // separator: Single separator ASCII char (in lower byte).
3995 4079
3996 // Copy the separator character to the result. 4080 // Copy the separator character to the result.
3997 __ strb(separator, MemOperand(result_pos, 1, PostIndex)); 4081 __ stb(separator, MemOperand(result_pos));
4082 __ addi(result_pos, result_pos, Operand(1));
3998 4083
3999 // Copy next array element to the result. 4084 // Copy next array element to the result.
4000 __ bind(&one_char_separator_loop_entry); 4085 __ bind(&one_char_separator_loop_entry);
4001 __ ldr(string, MemOperand(element, kPointerSize, PostIndex)); 4086 __ LoadP(string, MemOperand(element));
4002 __ ldr(string_length, FieldMemOperand(string, String::kLengthOffset)); 4087 __ addi(element, element, Operand(kPointerSize));
4088 __ LoadP(string_length, FieldMemOperand(string, String::kLengthOffset));
4003 __ SmiUntag(string_length); 4089 __ SmiUntag(string_length);
4004 __ add(string, 4090 __ addi(string, string,
4005 string, 4091 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4006 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); 4092 __ CopyBytes(string, result_pos, string_length, scratch1);
4007 __ CopyBytes(string, result_pos, string_length, scratch); 4093 __ cmpl(element, elements_end);
4008 __ cmp(element, elements_end); 4094 __ blt(&one_char_separator_loop); // End while (element < elements_end).
4009 __ b(lt, &one_char_separator_loop); // End while (element < elements_end). 4095 DCHECK(result.is(r3));
4010 DCHECK(result.is(r0));
4011 __ b(&done); 4096 __ b(&done);
4012 4097
4013 // Long separator case (separator is more than one character). Entry is at the 4098 // Long separator case (separator is more than one character). Entry is at the
4014 // label long_separator below. 4099 // label long_separator below.
4015 __ bind(&long_separator_loop); 4100 __ bind(&long_separator_loop);
4016 // Live values in registers: 4101 // Live values in registers:
4017 // result_pos: the position to which we are currently copying characters. 4102 // result_pos: the position to which we are currently copying characters.
4018 // element: Current array element. 4103 // element: Current array element.
4019 // elements_end: Array end. 4104 // elements_end: Array end.
4020 // separator: Separator string. 4105 // separator: Separator string.
4021 4106
4022 // Copy the separator to the result. 4107 // Copy the separator to the result.
4023 __ ldr(string_length, FieldMemOperand(separator, String::kLengthOffset)); 4108 __ LoadP(string_length, FieldMemOperand(separator, String::kLengthOffset));
4024 __ SmiUntag(string_length); 4109 __ SmiUntag(string_length);
4025 __ add(string, 4110 __ addi(string,
4026 separator, 4111 separator,
4027 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); 4112 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4028 __ CopyBytes(string, result_pos, string_length, scratch); 4113 __ CopyBytes(string, result_pos, string_length, scratch1);
4029 4114
4030 __ bind(&long_separator); 4115 __ bind(&long_separator);
4031 __ ldr(string, MemOperand(element, kPointerSize, PostIndex)); 4116 __ LoadP(string, MemOperand(element));
4032 __ ldr(string_length, FieldMemOperand(string, String::kLengthOffset)); 4117 __ addi(element, element, Operand(kPointerSize));
4118 __ LoadP(string_length, FieldMemOperand(string, String::kLengthOffset));
4033 __ SmiUntag(string_length); 4119 __ SmiUntag(string_length);
4034 __ add(string, 4120 __ addi(string, string,
4035 string, 4121 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
4036 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); 4122 __ CopyBytes(string, result_pos, string_length, scratch1);
4037 __ CopyBytes(string, result_pos, string_length, scratch); 4123 __ cmpl(element, elements_end);
4038 __ cmp(element, elements_end); 4124 __ blt(&long_separator_loop); // End while (element < elements_end).
4039 __ b(lt, &long_separator_loop); // End while (element < elements_end). 4125 DCHECK(result.is(r3));
4040 DCHECK(result.is(r0));
4041 __ b(&done); 4126 __ b(&done);
4042 4127
4043 __ bind(&bailout); 4128 __ bind(&bailout);
4044 __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); 4129 __ LoadRoot(r3, Heap::kUndefinedValueRootIndex);
4045 __ bind(&done); 4130 __ bind(&done);
4046 context()->Plug(r0); 4131 context()->Plug(r3);
4047 } 4132 }
4048 4133
4049 4134
4050 void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) { 4135 void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) {
4051 DCHECK(expr->arguments()->length() == 0); 4136 DCHECK(expr->arguments()->length() == 0);
4052 ExternalReference debug_is_active = 4137 ExternalReference debug_is_active =
4053 ExternalReference::debug_is_active_address(isolate()); 4138 ExternalReference::debug_is_active_address(isolate());
4054 __ mov(ip, Operand(debug_is_active)); 4139 __ mov(ip, Operand(debug_is_active));
4055 __ ldrb(r0, MemOperand(ip)); 4140 __ lbz(r3, MemOperand(ip));
4056 __ SmiTag(r0); 4141 __ SmiTag(r3);
4057 context()->Plug(r0); 4142 context()->Plug(r3);
4058 } 4143 }
4059 4144
4060 4145
4061 void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) { 4146 void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
4062 if (expr->function() != NULL && 4147 if (expr->function() != NULL &&
4063 expr->function()->intrinsic_type == Runtime::INLINE) { 4148 expr->function()->intrinsic_type == Runtime::INLINE) {
4064 Comment cmnt(masm_, "[ InlineRuntimeCall"); 4149 Comment cmnt(masm_, "[ InlineRuntimeCall");
4065 EmitInlineRuntimeCall(expr); 4150 EmitInlineRuntimeCall(expr);
4066 return; 4151 return;
4067 } 4152 }
4068 4153
4069 Comment cmnt(masm_, "[ CallRuntime"); 4154 Comment cmnt(masm_, "[ CallRuntime");
4070 ZoneList<Expression*>* args = expr->arguments(); 4155 ZoneList<Expression*>* args = expr->arguments();
4071 int arg_count = args->length(); 4156 int arg_count = args->length();
4072 4157
4073 if (expr->is_jsruntime()) { 4158 if (expr->is_jsruntime()) {
4074 // Push the builtins object as the receiver. 4159 // Push the builtins object as the receiver.
4075 Register receiver = LoadIC::ReceiverRegister(); 4160 Register receiver = LoadIC::ReceiverRegister();
4076 __ ldr(receiver, GlobalObjectOperand()); 4161 __ LoadP(receiver, GlobalObjectOperand());
4077 __ ldr(receiver, FieldMemOperand(receiver, GlobalObject::kBuiltinsOffset)); 4162 __ LoadP(receiver,
4163 FieldMemOperand(receiver, GlobalObject::kBuiltinsOffset));
4078 __ push(receiver); 4164 __ push(receiver);
4079 4165
4080 // Load the function from the receiver. 4166 // Load the function from the receiver.
4081 __ mov(LoadIC::NameRegister(), Operand(expr->name())); 4167 __ mov(LoadIC::NameRegister(), Operand(expr->name()));
4082 if (FLAG_vector_ics) { 4168 if (FLAG_vector_ics) {
4083 __ mov(LoadIC::SlotRegister(), 4169 __ mov(LoadIC::SlotRegister(),
4084 Operand(Smi::FromInt(expr->CallRuntimeFeedbackSlot()))); 4170 Operand(Smi::FromInt(expr->CallRuntimeFeedbackSlot())));
4085 CallLoadIC(NOT_CONTEXTUAL); 4171 CallLoadIC(NOT_CONTEXTUAL);
4086 } else { 4172 } else {
4087 CallLoadIC(NOT_CONTEXTUAL, expr->CallRuntimeFeedbackId()); 4173 CallLoadIC(NOT_CONTEXTUAL, expr->CallRuntimeFeedbackId());
4088 } 4174 }
4089 4175
4090 // Push the target function under the receiver. 4176 // Push the target function under the receiver.
4091 __ ldr(ip, MemOperand(sp, 0)); 4177 __ LoadP(ip, MemOperand(sp, 0));
4092 __ push(ip); 4178 __ push(ip);
4093 __ str(r0, MemOperand(sp, kPointerSize)); 4179 __ StoreP(r3, MemOperand(sp, kPointerSize));
4094 4180
4095 // Push the arguments ("left-to-right"). 4181 // Push the arguments ("left-to-right").
4096 int arg_count = args->length(); 4182 int arg_count = args->length();
4097 for (int i = 0; i < arg_count; i++) { 4183 for (int i = 0; i < arg_count; i++) {
4098 VisitForStackValue(args->at(i)); 4184 VisitForStackValue(args->at(i));
4099 } 4185 }
4100 4186
4101 // Record source position of the IC call. 4187 // Record source position of the IC call.
4102 SetSourcePosition(expr->position()); 4188 SetSourcePosition(expr->position());
4103 CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS); 4189 CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS);
4104 __ ldr(r1, MemOperand(sp, (arg_count + 1) * kPointerSize)); 4190 __ LoadP(r4, MemOperand(sp, (arg_count + 1) * kPointerSize), r0);
4105 __ CallStub(&stub); 4191 __ CallStub(&stub);
4106 4192
4107 // Restore context register. 4193 // Restore context register.
4108 __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 4194 __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4109 4195
4110 context()->DropAndPlug(1, r0); 4196 context()->DropAndPlug(1, r3);
4111 } else { 4197 } else {
4112 // Push the arguments ("left-to-right"). 4198 // Push the arguments ("left-to-right").
4113 for (int i = 0; i < arg_count; i++) { 4199 for (int i = 0; i < arg_count; i++) {
4114 VisitForStackValue(args->at(i)); 4200 VisitForStackValue(args->at(i));
4115 } 4201 }
4116 4202
4117 // Call the C runtime function. 4203 // Call the C runtime function.
4118 __ CallRuntime(expr->function(), arg_count); 4204 __ CallRuntime(expr->function(), arg_count);
4119 context()->Plug(r0); 4205 context()->Plug(r3);
4120 } 4206 }
4121 } 4207 }
4122 4208
4123 4209
4124 void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { 4210 void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
4125 switch (expr->op()) { 4211 switch (expr->op()) {
4126 case Token::DELETE: { 4212 case Token::DELETE: {
4127 Comment cmnt(masm_, "[ UnaryOperation (DELETE)"); 4213 Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
4128 Property* property = expr->expression()->AsProperty(); 4214 Property* property = expr->expression()->AsProperty();
4129 VariableProxy* proxy = expr->expression()->AsVariableProxy(); 4215 VariableProxy* proxy = expr->expression()->AsVariableProxy();
4130 4216
4131 if (property != NULL) { 4217 if (property != NULL) {
4132 VisitForStackValue(property->obj()); 4218 VisitForStackValue(property->obj());
4133 VisitForStackValue(property->key()); 4219 VisitForStackValue(property->key());
4134 __ mov(r1, Operand(Smi::FromInt(strict_mode()))); 4220 __ LoadSmiLiteral(r4, Smi::FromInt(strict_mode()));
4135 __ push(r1); 4221 __ push(r4);
4136 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION); 4222 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
4137 context()->Plug(r0); 4223 context()->Plug(r3);
4138 } else if (proxy != NULL) { 4224 } else if (proxy != NULL) {
4139 Variable* var = proxy->var(); 4225 Variable* var = proxy->var();
4140 // Delete of an unqualified identifier is disallowed in strict mode 4226 // Delete of an unqualified identifier is disallowed in strict mode
4141 // but "delete this" is allowed. 4227 // but "delete this" is allowed.
4142 DCHECK(strict_mode() == SLOPPY || var->is_this()); 4228 DCHECK(strict_mode() == SLOPPY || var->is_this());
4143 if (var->IsUnallocated()) { 4229 if (var->IsUnallocated()) {
4144 __ ldr(r2, GlobalObjectOperand()); 4230 __ LoadP(r5, GlobalObjectOperand());
4145 __ mov(r1, Operand(var->name())); 4231 __ mov(r4, Operand(var->name()));
4146 __ mov(r0, Operand(Smi::FromInt(SLOPPY))); 4232 __ LoadSmiLiteral(r3, Smi::FromInt(SLOPPY));
4147 __ Push(r2, r1, r0); 4233 __ Push(r5, r4, r3);
4148 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION); 4234 __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
4149 context()->Plug(r0); 4235 context()->Plug(r3);
4150 } else if (var->IsStackAllocated() || var->IsContextSlot()) { 4236 } else if (var->IsStackAllocated() || var->IsContextSlot()) {
4151 // Result of deleting non-global, non-dynamic variables is false. 4237 // Result of deleting non-global, non-dynamic variables is false.
4152 // The subexpression does not have side effects. 4238 // The subexpression does not have side effects.
4153 context()->Plug(var->is_this()); 4239 context()->Plug(var->is_this());
4154 } else { 4240 } else {
4155 // Non-global variable. Call the runtime to try to delete from the 4241 // Non-global variable. Call the runtime to try to delete from the
4156 // context where the variable was introduced. 4242 // context where the variable was introduced.
4157 DCHECK(!context_register().is(r2)); 4243 DCHECK(!context_register().is(r5));
4158 __ mov(r2, Operand(var->name())); 4244 __ mov(r5, Operand(var->name()));
4159 __ Push(context_register(), r2); 4245 __ Push(context_register(), r5);
4160 __ CallRuntime(Runtime::kDeleteLookupSlot, 2); 4246 __ CallRuntime(Runtime::kDeleteLookupSlot, 2);
4161 context()->Plug(r0); 4247 context()->Plug(r3);
4162 } 4248 }
4163 } else { 4249 } else {
4164 // Result of deleting non-property, non-variable reference is true. 4250 // Result of deleting non-property, non-variable reference is true.
4165 // The subexpression may have side effects. 4251 // The subexpression may have side effects.
4166 VisitForEffect(expr->expression()); 4252 VisitForEffect(expr->expression());
4167 context()->Plug(true); 4253 context()->Plug(true);
4168 } 4254 }
4169 break; 4255 break;
4170 } 4256 }
4171 4257
(...skipping 24 matching lines...) Expand all
4196 // because we need to prepare a pair of extra administrative AST ids 4282 // because we need to prepare a pair of extra administrative AST ids
4197 // for the optimizing compiler. 4283 // for the optimizing compiler.
4198 DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue()); 4284 DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue());
4199 Label materialize_true, materialize_false, done; 4285 Label materialize_true, materialize_false, done;
4200 VisitForControl(expr->expression(), 4286 VisitForControl(expr->expression(),
4201 &materialize_false, 4287 &materialize_false,
4202 &materialize_true, 4288 &materialize_true,
4203 &materialize_true); 4289 &materialize_true);
4204 __ bind(&materialize_true); 4290 __ bind(&materialize_true);
4205 PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS); 4291 PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
4206 __ LoadRoot(r0, Heap::kTrueValueRootIndex); 4292 __ LoadRoot(r3, Heap::kTrueValueRootIndex);
4207 if (context()->IsStackValue()) __ push(r0); 4293 if (context()->IsStackValue()) __ push(r3);
4208 __ jmp(&done); 4294 __ b(&done);
4209 __ bind(&materialize_false); 4295 __ bind(&materialize_false);
4210 PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS); 4296 PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
4211 __ LoadRoot(r0, Heap::kFalseValueRootIndex); 4297 __ LoadRoot(r3, Heap::kFalseValueRootIndex);
4212 if (context()->IsStackValue()) __ push(r0); 4298 if (context()->IsStackValue()) __ push(r3);
4213 __ bind(&done); 4299 __ bind(&done);
4214 } 4300 }
4215 break; 4301 break;
4216 } 4302 }
4217 4303
4218 case Token::TYPEOF: { 4304 case Token::TYPEOF: {
4219 Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); 4305 Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
4220 { StackValueContext context(this); 4306 { StackValueContext context(this);
4221 VisitForTypeofValue(expr->expression()); 4307 VisitForTypeofValue(expr->expression());
4222 } 4308 }
4223 __ CallRuntime(Runtime::kTypeof, 1); 4309 __ CallRuntime(Runtime::kTypeof, 1);
4224 context()->Plug(r0); 4310 context()->Plug(r3);
4225 break; 4311 break;
4226 } 4312 }
4227 4313
4228 default: 4314 default:
4229 UNREACHABLE(); 4315 UNREACHABLE();
4230 } 4316 }
4231 } 4317 }
4232 4318
4233 4319
4234 void FullCodeGenerator::VisitCountOperation(CountOperation* expr) { 4320 void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
(...skipping 15 matching lines...) Expand all
4250 } 4336 }
4251 4337
4252 // Evaluate expression and get value. 4338 // Evaluate expression and get value.
4253 if (assign_type == VARIABLE) { 4339 if (assign_type == VARIABLE) {
4254 DCHECK(expr->expression()->AsVariableProxy()->var() != NULL); 4340 DCHECK(expr->expression()->AsVariableProxy()->var() != NULL);
4255 AccumulatorValueContext context(this); 4341 AccumulatorValueContext context(this);
4256 EmitVariableLoad(expr->expression()->AsVariableProxy()); 4342 EmitVariableLoad(expr->expression()->AsVariableProxy());
4257 } else { 4343 } else {
4258 // Reserve space for result of postfix operation. 4344 // Reserve space for result of postfix operation.
4259 if (expr->is_postfix() && !context()->IsEffect()) { 4345 if (expr->is_postfix() && !context()->IsEffect()) {
4260 __ mov(ip, Operand(Smi::FromInt(0))); 4346 __ LoadSmiLiteral(ip, Smi::FromInt(0));
4261 __ push(ip); 4347 __ push(ip);
4262 } 4348 }
4263 if (assign_type == NAMED_PROPERTY) { 4349 if (assign_type == NAMED_PROPERTY) {
4264 // Put the object both on the stack and in the register. 4350 // Put the object both on the stack and in the register.
4265 VisitForStackValue(prop->obj()); 4351 VisitForStackValue(prop->obj());
4266 __ ldr(LoadIC::ReceiverRegister(), MemOperand(sp, 0)); 4352 __ LoadP(LoadIC::ReceiverRegister(), MemOperand(sp, 0));
4267 EmitNamedPropertyLoad(prop); 4353 EmitNamedPropertyLoad(prop);
4268 } else { 4354 } else {
4269 VisitForStackValue(prop->obj()); 4355 VisitForStackValue(prop->obj());
4270 VisitForStackValue(prop->key()); 4356 VisitForStackValue(prop->key());
4271 __ ldr(LoadIC::ReceiverRegister(), MemOperand(sp, 1 * kPointerSize)); 4357 __ LoadP(LoadIC::ReceiverRegister(), MemOperand(sp, 1 * kPointerSize));
4272 __ ldr(LoadIC::NameRegister(), MemOperand(sp, 0)); 4358 __ LoadP(LoadIC::NameRegister(), MemOperand(sp, 0));
4273 EmitKeyedPropertyLoad(prop); 4359 EmitKeyedPropertyLoad(prop);
4274 } 4360 }
4275 } 4361 }
4276 4362
4277 // We need a second deoptimization point after loading the value 4363 // We need a second deoptimization point after loading the value
4278 // in case evaluating the property load my have a side effect. 4364 // in case evaluating the property load my have a side effect.
4279 if (assign_type == VARIABLE) { 4365 if (assign_type == VARIABLE) {
4280 PrepareForBailout(expr->expression(), TOS_REG); 4366 PrepareForBailout(expr->expression(), TOS_REG);
4281 } else { 4367 } else {
4282 PrepareForBailoutForId(prop->LoadId(), TOS_REG); 4368 PrepareForBailoutForId(prop->LoadId(), TOS_REG);
4283 } 4369 }
4284 4370
4285 // Inline smi case if we are in a loop. 4371 // Inline smi case if we are in a loop.
4286 Label stub_call, done; 4372 Label stub_call, done;
4287 JumpPatchSite patch_site(masm_); 4373 JumpPatchSite patch_site(masm_);
4288 4374
4289 int count_value = expr->op() == Token::INC ? 1 : -1; 4375 int count_value = expr->op() == Token::INC ? 1 : -1;
4290 if (ShouldInlineSmiCase(expr->op())) { 4376 if (ShouldInlineSmiCase(expr->op())) {
4291 Label slow; 4377 Label slow;
4292 patch_site.EmitJumpIfNotSmi(r0, &slow); 4378 patch_site.EmitJumpIfNotSmi(r3, &slow);
4293 4379
4294 // Save result for postfix expressions. 4380 // Save result for postfix expressions.
4295 if (expr->is_postfix()) { 4381 if (expr->is_postfix()) {
4296 if (!context()->IsEffect()) { 4382 if (!context()->IsEffect()) {
4297 // Save the result on the stack. If we have a named or keyed property 4383 // Save the result on the stack. If we have a named or keyed property
4298 // we store the result under the receiver that is currently on top 4384 // we store the result under the receiver that is currently on top
4299 // of the stack. 4385 // of the stack.
4300 switch (assign_type) { 4386 switch (assign_type) {
4301 case VARIABLE: 4387 case VARIABLE:
4302 __ push(r0); 4388 __ push(r3);
4303 break; 4389 break;
4304 case NAMED_PROPERTY: 4390 case NAMED_PROPERTY:
4305 __ str(r0, MemOperand(sp, kPointerSize)); 4391 __ StoreP(r3, MemOperand(sp, kPointerSize));
4306 break; 4392 break;
4307 case KEYED_PROPERTY: 4393 case KEYED_PROPERTY:
4308 __ str(r0, MemOperand(sp, 2 * kPointerSize)); 4394 __ StoreP(r3, MemOperand(sp, 2 * kPointerSize));
4309 break; 4395 break;
4310 } 4396 }
4311 } 4397 }
4312 } 4398 }
4313 4399
4314 __ add(r0, r0, Operand(Smi::FromInt(count_value)), SetCC); 4400 Register scratch1 = r4;
4315 __ b(vc, &done); 4401 Register scratch2 = r5;
4402 __ LoadSmiLiteral(scratch1, Smi::FromInt(count_value));
4403 __ AddAndCheckForOverflow(r3, r3, scratch1, scratch2, r0);
4404 __ BranchOnNoOverflow(&done);
4316 // Call stub. Undo operation first. 4405 // Call stub. Undo operation first.
4317 __ sub(r0, r0, Operand(Smi::FromInt(count_value))); 4406 __ sub(r3, r3, scratch1);
4318 __ jmp(&stub_call); 4407 __ b(&stub_call);
4319 __ bind(&slow); 4408 __ bind(&slow);
4320 } 4409 }
4321 ToNumberStub convert_stub(isolate()); 4410 ToNumberStub convert_stub(isolate());
4322 __ CallStub(&convert_stub); 4411 __ CallStub(&convert_stub);
4323 4412
4324 // Save result for postfix expressions. 4413 // Save result for postfix expressions.
4325 if (expr->is_postfix()) { 4414 if (expr->is_postfix()) {
4326 if (!context()->IsEffect()) { 4415 if (!context()->IsEffect()) {
4327 // Save the result on the stack. If we have a named or keyed property 4416 // Save the result on the stack. If we have a named or keyed property
4328 // we store the result under the receiver that is currently on top 4417 // we store the result under the receiver that is currently on top
4329 // of the stack. 4418 // of the stack.
4330 switch (assign_type) { 4419 switch (assign_type) {
4331 case VARIABLE: 4420 case VARIABLE:
4332 __ push(r0); 4421 __ push(r3);
4333 break; 4422 break;
4334 case NAMED_PROPERTY: 4423 case NAMED_PROPERTY:
4335 __ str(r0, MemOperand(sp, kPointerSize)); 4424 __ StoreP(r3, MemOperand(sp, kPointerSize));
4336 break; 4425 break;
4337 case KEYED_PROPERTY: 4426 case KEYED_PROPERTY:
4338 __ str(r0, MemOperand(sp, 2 * kPointerSize)); 4427 __ StoreP(r3, MemOperand(sp, 2 * kPointerSize));
4339 break; 4428 break;
4340 } 4429 }
4341 } 4430 }
4342 } 4431 }
4343 4432
4344
4345 __ bind(&stub_call); 4433 __ bind(&stub_call);
4346 __ mov(r1, r0); 4434 __ mr(r4, r3);
4347 __ mov(r0, Operand(Smi::FromInt(count_value))); 4435 __ LoadSmiLiteral(r3, Smi::FromInt(count_value));
4348 4436
4349 // Record position before stub call. 4437 // Record position before stub call.
4350 SetSourcePosition(expr->position()); 4438 SetSourcePosition(expr->position());
4351 4439
4352 BinaryOpICStub stub(isolate(), Token::ADD, NO_OVERWRITE); 4440 BinaryOpICStub stub(isolate(), Token::ADD, NO_OVERWRITE);
4353 CallIC(stub.GetCode(), expr->CountBinOpFeedbackId()); 4441 CallIC(stub.GetCode(), expr->CountBinOpFeedbackId());
4354 patch_site.EmitPatchInfo(); 4442 patch_site.EmitPatchInfo();
4355 __ bind(&done); 4443 __ bind(&done);
4356 4444
4357 // Store the value returned in r0. 4445 // Store the value returned in r3.
4358 switch (assign_type) { 4446 switch (assign_type) {
4359 case VARIABLE: 4447 case VARIABLE:
4360 if (expr->is_postfix()) { 4448 if (expr->is_postfix()) {
4361 { EffectContext context(this); 4449 { EffectContext context(this);
4362 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), 4450 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4363 Token::ASSIGN); 4451 Token::ASSIGN);
4364 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); 4452 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4365 context.Plug(r0); 4453 context.Plug(r3);
4366 } 4454 }
4367 // For all contexts except EffectConstant We have the result on 4455 // For all contexts except EffectConstant We have the result on
4368 // top of the stack. 4456 // top of the stack.
4369 if (!context()->IsEffect()) { 4457 if (!context()->IsEffect()) {
4370 context()->PlugTOS(); 4458 context()->PlugTOS();
4371 } 4459 }
4372 } else { 4460 } else {
4373 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), 4461 EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
4374 Token::ASSIGN); 4462 Token::ASSIGN);
4375 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); 4463 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4376 context()->Plug(r0); 4464 context()->Plug(r3);
4377 } 4465 }
4378 break; 4466 break;
4379 case NAMED_PROPERTY: { 4467 case NAMED_PROPERTY: {
4380 __ mov(StoreIC::NameRegister(), 4468 __ mov(StoreIC::NameRegister(),
4381 Operand(prop->key()->AsLiteral()->value())); 4469 Operand(prop->key()->AsLiteral()->value()));
4382 __ pop(StoreIC::ReceiverRegister()); 4470 __ pop(StoreIC::ReceiverRegister());
4383 CallStoreIC(expr->CountStoreFeedbackId()); 4471 CallStoreIC(expr->CountStoreFeedbackId());
4384 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); 4472 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4385 if (expr->is_postfix()) { 4473 if (expr->is_postfix()) {
4386 if (!context()->IsEffect()) { 4474 if (!context()->IsEffect()) {
4387 context()->PlugTOS(); 4475 context()->PlugTOS();
4388 } 4476 }
4389 } else { 4477 } else {
4390 context()->Plug(r0); 4478 context()->Plug(r3);
4391 } 4479 }
4392 break; 4480 break;
4393 } 4481 }
4394 case KEYED_PROPERTY: { 4482 case KEYED_PROPERTY: {
4395 __ Pop(KeyedStoreIC::ReceiverRegister(), KeyedStoreIC::NameRegister()); 4483 __ Pop(KeyedStoreIC::ReceiverRegister(), KeyedStoreIC::NameRegister());
4396 Handle<Code> ic = strict_mode() == SLOPPY 4484 Handle<Code> ic = strict_mode() == SLOPPY
4397 ? isolate()->builtins()->KeyedStoreIC_Initialize() 4485 ? isolate()->builtins()->KeyedStoreIC_Initialize()
4398 : isolate()->builtins()->KeyedStoreIC_Initialize_Strict(); 4486 : isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
4399 CallIC(ic, expr->CountStoreFeedbackId()); 4487 CallIC(ic, expr->CountStoreFeedbackId());
4400 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); 4488 PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
4401 if (expr->is_postfix()) { 4489 if (expr->is_postfix()) {
4402 if (!context()->IsEffect()) { 4490 if (!context()->IsEffect()) {
4403 context()->PlugTOS(); 4491 context()->PlugTOS();
4404 } 4492 }
4405 } else { 4493 } else {
4406 context()->Plug(r0); 4494 context()->Plug(r3);
4407 } 4495 }
4408 break; 4496 break;
4409 } 4497 }
4410 } 4498 }
4411 } 4499 }
4412 4500
4413 4501
4414 void FullCodeGenerator::VisitForTypeofValue(Expression* expr) { 4502 void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
4415 DCHECK(!context()->IsEffect()); 4503 DCHECK(!context()->IsEffect());
4416 DCHECK(!context()->IsTest()); 4504 DCHECK(!context()->IsTest());
4417 VariableProxy* proxy = expr->AsVariableProxy(); 4505 VariableProxy* proxy = expr->AsVariableProxy();
4418 if (proxy != NULL && proxy->var()->IsUnallocated()) { 4506 if (proxy != NULL && proxy->var()->IsUnallocated()) {
4419 Comment cmnt(masm_, "[ Global variable"); 4507 Comment cmnt(masm_, "[ Global variable");
4420 __ ldr(LoadIC::ReceiverRegister(), GlobalObjectOperand()); 4508 __ LoadP(LoadIC::ReceiverRegister(), GlobalObjectOperand());
4421 __ mov(LoadIC::NameRegister(), Operand(proxy->name())); 4509 __ mov(LoadIC::NameRegister(), Operand(proxy->name()));
4422 if (FLAG_vector_ics) { 4510 if (FLAG_vector_ics) {
4423 __ mov(LoadIC::SlotRegister(), 4511 __ mov(LoadIC::SlotRegister(),
4424 Operand(Smi::FromInt(proxy->VariableFeedbackSlot()))); 4512 Operand(Smi::FromInt(proxy->VariableFeedbackSlot())));
4425 } 4513 }
4426 // Use a regular load, not a contextual load, to avoid a reference 4514 // Use a regular load, not a contextual load, to avoid a reference
4427 // error. 4515 // error.
4428 CallLoadIC(NOT_CONTEXTUAL); 4516 CallLoadIC(NOT_CONTEXTUAL);
4429 PrepareForBailout(expr, TOS_REG); 4517 PrepareForBailout(expr, TOS_REG);
4430 context()->Plug(r0); 4518 context()->Plug(r3);
4431 } else if (proxy != NULL && proxy->var()->IsLookupSlot()) { 4519 } else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
4432 Comment cmnt(masm_, "[ Lookup slot"); 4520 Comment cmnt(masm_, "[ Lookup slot");
4433 Label done, slow; 4521 Label done, slow;
4434 4522
4435 // Generate code for loading from variables potentially shadowed 4523 // Generate code for loading from variables potentially shadowed
4436 // by eval-introduced variables. 4524 // by eval-introduced variables.
4437 EmitDynamicLookupFastCase(proxy, INSIDE_TYPEOF, &slow, &done); 4525 EmitDynamicLookupFastCase(proxy, INSIDE_TYPEOF, &slow, &done);
4438 4526
4439 __ bind(&slow); 4527 __ bind(&slow);
4440 __ mov(r0, Operand(proxy->name())); 4528 __ mov(r3, Operand(proxy->name()));
4441 __ Push(cp, r0); 4529 __ Push(cp, r3);
4442 __ CallRuntime(Runtime::kLoadLookupSlotNoReferenceError, 2); 4530 __ CallRuntime(Runtime::kLoadLookupSlotNoReferenceError, 2);
4443 PrepareForBailout(expr, TOS_REG); 4531 PrepareForBailout(expr, TOS_REG);
4444 __ bind(&done); 4532 __ bind(&done);
4445 4533
4446 context()->Plug(r0); 4534 context()->Plug(r3);
4447 } else { 4535 } else {
4448 // This expression cannot throw a reference error at the top level. 4536 // This expression cannot throw a reference error at the top level.
4449 VisitInDuplicateContext(expr); 4537 VisitInDuplicateContext(expr);
4450 } 4538 }
4451 } 4539 }
4452 4540
4453 4541
4454 void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr, 4542 void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
4455 Expression* sub_expr, 4543 Expression* sub_expr,
4456 Handle<String> check) { 4544 Handle<String> check) {
4457 Label materialize_true, materialize_false; 4545 Label materialize_true, materialize_false;
4458 Label* if_true = NULL; 4546 Label* if_true = NULL;
4459 Label* if_false = NULL; 4547 Label* if_false = NULL;
4460 Label* fall_through = NULL; 4548 Label* fall_through = NULL;
4461 context()->PrepareTest(&materialize_true, &materialize_false, 4549 context()->PrepareTest(&materialize_true, &materialize_false,
4462 &if_true, &if_false, &fall_through); 4550 &if_true, &if_false, &fall_through);
4463 4551
4464 { AccumulatorValueContext context(this); 4552 { AccumulatorValueContext context(this);
4465 VisitForTypeofValue(sub_expr); 4553 VisitForTypeofValue(sub_expr);
4466 } 4554 }
4467 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 4555 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4468 4556
4469 Factory* factory = isolate()->factory(); 4557 Factory* factory = isolate()->factory();
4470 if (String::Equals(check, factory->number_string())) { 4558 if (String::Equals(check, factory->number_string())) {
4471 __ JumpIfSmi(r0, if_true); 4559 __ JumpIfSmi(r3, if_true);
4472 __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); 4560 __ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
4473 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); 4561 __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
4474 __ cmp(r0, ip); 4562 __ cmp(r3, ip);
4475 Split(eq, if_true, if_false, fall_through); 4563 Split(eq, if_true, if_false, fall_through);
4476 } else if (String::Equals(check, factory->string_string())) { 4564 } else if (String::Equals(check, factory->string_string())) {
4477 __ JumpIfSmi(r0, if_false); 4565 __ JumpIfSmi(r3, if_false);
4478 // Check for undetectable objects => false. 4566 // Check for undetectable objects => false.
4479 __ CompareObjectType(r0, r0, r1, FIRST_NONSTRING_TYPE); 4567 __ CompareObjectType(r3, r3, r4, FIRST_NONSTRING_TYPE);
4480 __ b(ge, if_false); 4568 __ bge(if_false);
4481 __ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset)); 4569 __ lbz(r4, FieldMemOperand(r3, Map::kBitFieldOffset));
4482 __ tst(r1, Operand(1 << Map::kIsUndetectable)); 4570 STATIC_ASSERT((1 << Map::kIsUndetectable) < 0x8000);
4483 Split(eq, if_true, if_false, fall_through); 4571 __ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
4572 Split(eq, if_true, if_false, fall_through, cr0);
4484 } else if (String::Equals(check, factory->symbol_string())) { 4573 } else if (String::Equals(check, factory->symbol_string())) {
4485 __ JumpIfSmi(r0, if_false); 4574 __ JumpIfSmi(r3, if_false);
4486 __ CompareObjectType(r0, r0, r1, SYMBOL_TYPE); 4575 __ CompareObjectType(r3, r3, r4, SYMBOL_TYPE);
4487 Split(eq, if_true, if_false, fall_through); 4576 Split(eq, if_true, if_false, fall_through);
4488 } else if (String::Equals(check, factory->boolean_string())) { 4577 } else if (String::Equals(check, factory->boolean_string())) {
4489 __ CompareRoot(r0, Heap::kTrueValueRootIndex); 4578 __ CompareRoot(r3, Heap::kTrueValueRootIndex);
4490 __ b(eq, if_true); 4579 __ beq(if_true);
4491 __ CompareRoot(r0, Heap::kFalseValueRootIndex); 4580 __ CompareRoot(r3, Heap::kFalseValueRootIndex);
4492 Split(eq, if_true, if_false, fall_through); 4581 Split(eq, if_true, if_false, fall_through);
4493 } else if (String::Equals(check, factory->undefined_string())) { 4582 } else if (String::Equals(check, factory->undefined_string())) {
4494 __ CompareRoot(r0, Heap::kUndefinedValueRootIndex); 4583 __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
4495 __ b(eq, if_true); 4584 __ beq(if_true);
4496 __ JumpIfSmi(r0, if_false); 4585 __ JumpIfSmi(r3, if_false);
4497 // Check for undetectable objects => true. 4586 // Check for undetectable objects => true.
4498 __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); 4587 __ LoadP(r3, FieldMemOperand(r3, HeapObject::kMapOffset));
4499 __ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset)); 4588 __ lbz(r4, FieldMemOperand(r3, Map::kBitFieldOffset));
4500 __ tst(r1, Operand(1 << Map::kIsUndetectable)); 4589 __ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
4501 Split(ne, if_true, if_false, fall_through); 4590 Split(ne, if_true, if_false, fall_through, cr0);
4502 4591
4503 } else if (String::Equals(check, factory->function_string())) { 4592 } else if (String::Equals(check, factory->function_string())) {
4504 __ JumpIfSmi(r0, if_false); 4593 __ JumpIfSmi(r3, if_false);
4505 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); 4594 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
4506 __ CompareObjectType(r0, r0, r1, JS_FUNCTION_TYPE); 4595 __ CompareObjectType(r3, r3, r4, JS_FUNCTION_TYPE);
4507 __ b(eq, if_true); 4596 __ beq(if_true);
4508 __ cmp(r1, Operand(JS_FUNCTION_PROXY_TYPE)); 4597 __ cmpi(r4, Operand(JS_FUNCTION_PROXY_TYPE));
4509 Split(eq, if_true, if_false, fall_through); 4598 Split(eq, if_true, if_false, fall_through);
4510 } else if (String::Equals(check, factory->object_string())) { 4599 } else if (String::Equals(check, factory->object_string())) {
4511 __ JumpIfSmi(r0, if_false); 4600 __ JumpIfSmi(r3, if_false);
4512 __ CompareRoot(r0, Heap::kNullValueRootIndex); 4601 __ CompareRoot(r3, Heap::kNullValueRootIndex);
4513 __ b(eq, if_true); 4602 __ beq(if_true);
4514 // Check for JS objects => true. 4603 // Check for JS objects => true.
4515 __ CompareObjectType(r0, r0, r1, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE); 4604 __ CompareObjectType(r3, r3, r4, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
4516 __ b(lt, if_false); 4605 __ blt(if_false);
4517 __ CompareInstanceType(r0, r1, LAST_NONCALLABLE_SPEC_OBJECT_TYPE); 4606 __ CompareInstanceType(r3, r4, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
4518 __ b(gt, if_false); 4607 __ bgt(if_false);
4519 // Check for undetectable objects => false. 4608 // Check for undetectable objects => false.
4520 __ ldrb(r1, FieldMemOperand(r0, Map::kBitFieldOffset)); 4609 __ lbz(r4, FieldMemOperand(r3, Map::kBitFieldOffset));
4521 __ tst(r1, Operand(1 << Map::kIsUndetectable)); 4610 __ andi(r0, r4, Operand(1 << Map::kIsUndetectable));
4522 Split(eq, if_true, if_false, fall_through); 4611 Split(eq, if_true, if_false, fall_through, cr0);
4523 } else { 4612 } else {
4524 if (if_false != fall_through) __ jmp(if_false); 4613 if (if_false != fall_through) __ b(if_false);
4525 } 4614 }
4526 context()->Plug(if_true, if_false); 4615 context()->Plug(if_true, if_false);
4527 } 4616 }
4528 4617
4529 4618
4530 void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) { 4619 void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
4531 Comment cmnt(masm_, "[ CompareOperation"); 4620 Comment cmnt(masm_, "[ CompareOperation");
4532 SetSourcePosition(expr->position()); 4621 SetSourcePosition(expr->position());
4533 4622
4534 // First we try a fast inlined version of the compare when one of 4623 // First we try a fast inlined version of the compare when one of
(...skipping 10 matching lines...) Expand all
4545 &if_true, &if_false, &fall_through); 4634 &if_true, &if_false, &fall_through);
4546 4635
4547 Token::Value op = expr->op(); 4636 Token::Value op = expr->op();
4548 VisitForStackValue(expr->left()); 4637 VisitForStackValue(expr->left());
4549 switch (op) { 4638 switch (op) {
4550 case Token::IN: 4639 case Token::IN:
4551 VisitForStackValue(expr->right()); 4640 VisitForStackValue(expr->right());
4552 __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION); 4641 __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
4553 PrepareForBailoutBeforeSplit(expr, false, NULL, NULL); 4642 PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
4554 __ LoadRoot(ip, Heap::kTrueValueRootIndex); 4643 __ LoadRoot(ip, Heap::kTrueValueRootIndex);
4555 __ cmp(r0, ip); 4644 __ cmp(r3, ip);
4556 Split(eq, if_true, if_false, fall_through); 4645 Split(eq, if_true, if_false, fall_through);
4557 break; 4646 break;
4558 4647
4559 case Token::INSTANCEOF: { 4648 case Token::INSTANCEOF: {
4560 VisitForStackValue(expr->right()); 4649 VisitForStackValue(expr->right());
4561 InstanceofStub stub(isolate(), InstanceofStub::kNoFlags); 4650 InstanceofStub stub(isolate(), InstanceofStub::kNoFlags);
4562 __ CallStub(&stub); 4651 __ CallStub(&stub);
4563 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 4652 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4564 // The stub returns 0 for true. 4653 // The stub returns 0 for true.
4565 __ tst(r0, r0); 4654 __ cmpi(r3, Operand::Zero());
4566 Split(eq, if_true, if_false, fall_through); 4655 Split(eq, if_true, if_false, fall_through);
4567 break; 4656 break;
4568 } 4657 }
4569 4658
4570 default: { 4659 default: {
4571 VisitForAccumulatorValue(expr->right()); 4660 VisitForAccumulatorValue(expr->right());
4572 Condition cond = CompareIC::ComputeCondition(op); 4661 Condition cond = CompareIC::ComputeCondition(op);
4573 __ pop(r1); 4662 __ pop(r4);
4574 4663
4575 bool inline_smi_code = ShouldInlineSmiCase(op); 4664 bool inline_smi_code = ShouldInlineSmiCase(op);
4576 JumpPatchSite patch_site(masm_); 4665 JumpPatchSite patch_site(masm_);
4577 if (inline_smi_code) { 4666 if (inline_smi_code) {
4578 Label slow_case; 4667 Label slow_case;
4579 __ orr(r2, r0, Operand(r1)); 4668 __ orx(r5, r3, r4);
4580 patch_site.EmitJumpIfNotSmi(r2, &slow_case); 4669 patch_site.EmitJumpIfNotSmi(r5, &slow_case);
4581 __ cmp(r1, r0); 4670 __ cmp(r4, r3);
4582 Split(cond, if_true, if_false, NULL); 4671 Split(cond, if_true, if_false, NULL);
4583 __ bind(&slow_case); 4672 __ bind(&slow_case);
4584 } 4673 }
4585 4674
4586 // Record position and call the compare IC. 4675 // Record position and call the compare IC.
4587 SetSourcePosition(expr->position()); 4676 SetSourcePosition(expr->position());
4588 Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op); 4677 Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
4589 CallIC(ic, expr->CompareOperationFeedbackId()); 4678 CallIC(ic, expr->CompareOperationFeedbackId());
4590 patch_site.EmitPatchInfo(); 4679 patch_site.EmitPatchInfo();
4591 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 4680 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4592 __ cmp(r0, Operand::Zero()); 4681 __ cmpi(r3, Operand::Zero());
4593 Split(cond, if_true, if_false, fall_through); 4682 Split(cond, if_true, if_false, fall_through);
4594 } 4683 }
4595 } 4684 }
4596 4685
4597 // Convert the result of the comparison into one expected for this 4686 // Convert the result of the comparison into one expected for this
4598 // expression's context. 4687 // expression's context.
4599 context()->Plug(if_true, if_false); 4688 context()->Plug(if_true, if_false);
4600 } 4689 }
4601 4690
4602 4691
4603 void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr, 4692 void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
4604 Expression* sub_expr, 4693 Expression* sub_expr,
4605 NilValue nil) { 4694 NilValue nil) {
4606 Label materialize_true, materialize_false; 4695 Label materialize_true, materialize_false;
4607 Label* if_true = NULL; 4696 Label* if_true = NULL;
4608 Label* if_false = NULL; 4697 Label* if_false = NULL;
4609 Label* fall_through = NULL; 4698 Label* fall_through = NULL;
4610 context()->PrepareTest(&materialize_true, &materialize_false, 4699 context()->PrepareTest(&materialize_true, &materialize_false,
4611 &if_true, &if_false, &fall_through); 4700 &if_true, &if_false, &fall_through);
4612 4701
4613 VisitForAccumulatorValue(sub_expr); 4702 VisitForAccumulatorValue(sub_expr);
4614 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); 4703 PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
4615 if (expr->op() == Token::EQ_STRICT) { 4704 if (expr->op() == Token::EQ_STRICT) {
4616 Heap::RootListIndex nil_value = nil == kNullValue ? 4705 Heap::RootListIndex nil_value = nil == kNullValue ?
4617 Heap::kNullValueRootIndex : 4706 Heap::kNullValueRootIndex :
4618 Heap::kUndefinedValueRootIndex; 4707 Heap::kUndefinedValueRootIndex;
4619 __ LoadRoot(r1, nil_value); 4708 __ LoadRoot(r4, nil_value);
4620 __ cmp(r0, r1); 4709 __ cmp(r3, r4);
4621 Split(eq, if_true, if_false, fall_through); 4710 Split(eq, if_true, if_false, fall_through);
4622 } else { 4711 } else {
4623 Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil); 4712 Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil);
4624 CallIC(ic, expr->CompareOperationFeedbackId()); 4713 CallIC(ic, expr->CompareOperationFeedbackId());
4625 __ cmp(r0, Operand(0)); 4714 __ cmpi(r3, Operand::Zero());
4626 Split(ne, if_true, if_false, fall_through); 4715 Split(ne, if_true, if_false, fall_through);
4627 } 4716 }
4628 context()->Plug(if_true, if_false); 4717 context()->Plug(if_true, if_false);
4629 } 4718 }
4630 4719
4631 4720
4632 void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) { 4721 void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
4633 __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 4722 __ LoadP(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4634 context()->Plug(r0); 4723 context()->Plug(r3);
4635 } 4724 }
4636 4725
4637 4726
4638 Register FullCodeGenerator::result_register() { 4727 Register FullCodeGenerator::result_register() {
4639 return r0; 4728 return r3;
4640 } 4729 }
4641 4730
4642 4731
4643 Register FullCodeGenerator::context_register() { 4732 Register FullCodeGenerator::context_register() {
4644 return cp; 4733 return cp;
4645 } 4734 }
4646 4735
4647 4736
4648 void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) { 4737 void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
4649 DCHECK_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset); 4738 DCHECK_EQ(static_cast<int>(POINTER_SIZE_ALIGN(frame_offset)), frame_offset);
4650 __ str(value, MemOperand(fp, frame_offset)); 4739 __ StoreP(value, MemOperand(fp, frame_offset), r0);
4651 } 4740 }
4652 4741
4653 4742
4654 void FullCodeGenerator::LoadContextField(Register dst, int context_index) { 4743 void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
4655 __ ldr(dst, ContextOperand(cp, context_index)); 4744 __ LoadP(dst, ContextOperand(cp, context_index), r0);
4656 } 4745 }
4657 4746
4658 4747
4659 void FullCodeGenerator::PushFunctionArgumentForContextAllocation() { 4748 void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
4660 Scope* declaration_scope = scope()->DeclarationScope(); 4749 Scope* declaration_scope = scope()->DeclarationScope();
4661 if (declaration_scope->is_global_scope() || 4750 if (declaration_scope->is_global_scope() ||
4662 declaration_scope->is_module_scope()) { 4751 declaration_scope->is_module_scope()) {
4663 // Contexts nested in the native context have a canonical empty function 4752 // Contexts nested in the native context have a canonical empty function
4664 // as their closure, not the anonymous closure containing the global 4753 // as their closure, not the anonymous closure containing the global
4665 // code. Pass a smi sentinel and let the runtime look up the empty 4754 // code. Pass a smi sentinel and let the runtime look up the empty
4666 // function. 4755 // function.
4667 __ mov(ip, Operand(Smi::FromInt(0))); 4756 __ LoadSmiLiteral(ip, Smi::FromInt(0));
4668 } else if (declaration_scope->is_eval_scope()) { 4757 } else if (declaration_scope->is_eval_scope()) {
4669 // Contexts created by a call to eval have the same closure as the 4758 // Contexts created by a call to eval have the same closure as the
4670 // context calling eval, not the anonymous closure containing the eval 4759 // context calling eval, not the anonymous closure containing the eval
4671 // code. Fetch it from the context. 4760 // code. Fetch it from the context.
4672 __ ldr(ip, ContextOperand(cp, Context::CLOSURE_INDEX)); 4761 __ LoadP(ip, ContextOperand(cp, Context::CLOSURE_INDEX));
4673 } else { 4762 } else {
4674 DCHECK(declaration_scope->is_function_scope()); 4763 DCHECK(declaration_scope->is_function_scope());
4675 __ ldr(ip, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 4764 __ LoadP(ip, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4676 } 4765 }
4677 __ push(ip); 4766 __ push(ip);
4678 } 4767 }
4679 4768
4680 4769
4681 // ---------------------------------------------------------------------------- 4770 // ----------------------------------------------------------------------------
4682 // Non-local control flow support. 4771 // Non-local control flow support.
4683 4772
4684 void FullCodeGenerator::EnterFinallyBlock() { 4773 void FullCodeGenerator::EnterFinallyBlock() {
4685 DCHECK(!result_register().is(r1)); 4774 DCHECK(!result_register().is(r4));
4686 // Store result register while executing finally block. 4775 // Store result register while executing finally block.
4687 __ push(result_register()); 4776 __ push(result_register());
4688 // Cook return address in link register to stack (smi encoded Code* delta) 4777 // Cook return address in link register to stack (smi encoded Code* delta)
4689 __ sub(r1, lr, Operand(masm_->CodeObject())); 4778 __ mflr(r4);
4690 __ SmiTag(r1); 4779 __ mov(ip, Operand(masm_->CodeObject()));
4780 __ sub(r4, r4, ip);
4781 __ SmiTag(r4);
4691 4782
4692 // Store result register while executing finally block. 4783 // Store result register while executing finally block.
4693 __ push(r1); 4784 __ push(r4);
4694 4785
4695 // Store pending message while executing finally block. 4786 // Store pending message while executing finally block.
4696 ExternalReference pending_message_obj = 4787 ExternalReference pending_message_obj =
4697 ExternalReference::address_of_pending_message_obj(isolate()); 4788 ExternalReference::address_of_pending_message_obj(isolate());
4698 __ mov(ip, Operand(pending_message_obj)); 4789 __ mov(ip, Operand(pending_message_obj));
4699 __ ldr(r1, MemOperand(ip)); 4790 __ LoadP(r4, MemOperand(ip));
4700 __ push(r1); 4791 __ push(r4);
4701 4792
4702 ExternalReference has_pending_message = 4793 ExternalReference has_pending_message =
4703 ExternalReference::address_of_has_pending_message(isolate()); 4794 ExternalReference::address_of_has_pending_message(isolate());
4704 __ mov(ip, Operand(has_pending_message)); 4795 __ mov(ip, Operand(has_pending_message));
4705 STATIC_ASSERT(sizeof(bool) == 1); // NOLINT(runtime/sizeof) 4796 __ lbz(r4, MemOperand(ip));
4706 __ ldrb(r1, MemOperand(ip)); 4797 __ SmiTag(r4);
4707 __ SmiTag(r1); 4798 __ push(r4);
4708 __ push(r1);
4709 4799
4710 ExternalReference pending_message_script = 4800 ExternalReference pending_message_script =
4711 ExternalReference::address_of_pending_message_script(isolate()); 4801 ExternalReference::address_of_pending_message_script(isolate());
4712 __ mov(ip, Operand(pending_message_script)); 4802 __ mov(ip, Operand(pending_message_script));
4713 __ ldr(r1, MemOperand(ip)); 4803 __ LoadP(r4, MemOperand(ip));
4714 __ push(r1); 4804 __ push(r4);
4715 } 4805 }
4716 4806
4717 4807
4718 void FullCodeGenerator::ExitFinallyBlock() { 4808 void FullCodeGenerator::ExitFinallyBlock() {
4719 DCHECK(!result_register().is(r1)); 4809 DCHECK(!result_register().is(r4));
4720 // Restore pending message from stack. 4810 // Restore pending message from stack.
4721 __ pop(r1); 4811 __ pop(r4);
4722 ExternalReference pending_message_script = 4812 ExternalReference pending_message_script =
4723 ExternalReference::address_of_pending_message_script(isolate()); 4813 ExternalReference::address_of_pending_message_script(isolate());
4724 __ mov(ip, Operand(pending_message_script)); 4814 __ mov(ip, Operand(pending_message_script));
4725 __ str(r1, MemOperand(ip)); 4815 __ StoreP(r4, MemOperand(ip));
4726 4816
4727 __ pop(r1); 4817 __ pop(r4);
4728 __ SmiUntag(r1); 4818 __ SmiUntag(r4);
4729 ExternalReference has_pending_message = 4819 ExternalReference has_pending_message =
4730 ExternalReference::address_of_has_pending_message(isolate()); 4820 ExternalReference::address_of_has_pending_message(isolate());
4731 __ mov(ip, Operand(has_pending_message)); 4821 __ mov(ip, Operand(has_pending_message));
4732 STATIC_ASSERT(sizeof(bool) == 1); // NOLINT(runtime/sizeof) 4822 __ stb(r4, MemOperand(ip));
4733 __ strb(r1, MemOperand(ip));
4734 4823
4735 __ pop(r1); 4824 __ pop(r4);
4736 ExternalReference pending_message_obj = 4825 ExternalReference pending_message_obj =
4737 ExternalReference::address_of_pending_message_obj(isolate()); 4826 ExternalReference::address_of_pending_message_obj(isolate());
4738 __ mov(ip, Operand(pending_message_obj)); 4827 __ mov(ip, Operand(pending_message_obj));
4739 __ str(r1, MemOperand(ip)); 4828 __ StoreP(r4, MemOperand(ip));
4740 4829
4741 // Restore result register from stack. 4830 // Restore result register from stack.
4742 __ pop(r1); 4831 __ pop(r4);
4743 4832
4744 // Uncook return address and return. 4833 // Uncook return address and return.
4745 __ pop(result_register()); 4834 __ pop(result_register());
4746 __ SmiUntag(r1); 4835 __ SmiUntag(r4);
4747 __ add(pc, r1, Operand(masm_->CodeObject())); 4836 __ mov(ip, Operand(masm_->CodeObject()));
4837 __ add(ip, ip, r4);
4838 __ mtctr(ip);
4839 __ bctr();
4748 } 4840 }
4749 4841
4750 4842
4751 #undef __ 4843 #undef __
4752 4844
4753 #define __ ACCESS_MASM(masm()) 4845 #define __ ACCESS_MASM(masm())
4754 4846
4755 FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit( 4847 FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit(
4756 int* stack_depth, 4848 int* stack_depth,
4757 int* context_length) { 4849 int* context_length) {
4758 // The macros used here must preserve the result register. 4850 // The macros used here must preserve the result register.
4759 4851
4760 // Because the handler block contains the context of the finally 4852 // Because the handler block contains the context of the finally
4761 // code, we can restore it directly from there for the finally code 4853 // code, we can restore it directly from there for the finally code
4762 // rather than iteratively unwinding contexts via their previous 4854 // rather than iteratively unwinding contexts via their previous
4763 // links. 4855 // links.
4764 __ Drop(*stack_depth); // Down to the handler block. 4856 __ Drop(*stack_depth); // Down to the handler block.
4765 if (*context_length > 0) { 4857 if (*context_length > 0) {
4766 // Restore the context to its dedicated register and the stack. 4858 // Restore the context to its dedicated register and the stack.
4767 __ ldr(cp, MemOperand(sp, StackHandlerConstants::kContextOffset)); 4859 __ LoadP(cp, MemOperand(sp, StackHandlerConstants::kContextOffset));
4768 __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); 4860 __ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4769 } 4861 }
4770 __ PopTryHandler(); 4862 __ PopTryHandler();
4771 __ bl(finally_entry_); 4863 __ b(finally_entry_, SetLK);
4772 4864
4773 *stack_depth = 0; 4865 *stack_depth = 0;
4774 *context_length = 0; 4866 *context_length = 0;
4775 return previous_; 4867 return previous_;
4776 } 4868 }
4777 4869
4778
4779 #undef __ 4870 #undef __
4780 4871
4781 4872
4782 static Address GetInterruptImmediateLoadAddress(Address pc) {
4783 Address load_address = pc - 2 * Assembler::kInstrSize;
4784 if (!FLAG_enable_ool_constant_pool) {
4785 DCHECK(Assembler::IsLdrPcImmediateOffset(Memory::int32_at(load_address)));
4786 } else if (Assembler::IsLdrPpRegOffset(Memory::int32_at(load_address))) {
4787 // This is an extended constant pool lookup.
4788 load_address -= 2 * Assembler::kInstrSize;
4789 DCHECK(Assembler::IsMovW(Memory::int32_at(load_address)));
4790 DCHECK(Assembler::IsMovT(
4791 Memory::int32_at(load_address + Assembler::kInstrSize)));
4792 } else if (Assembler::IsMovT(Memory::int32_at(load_address))) {
4793 // This is a movw_movt immediate load.
4794 load_address -= Assembler::kInstrSize;
4795 DCHECK(Assembler::IsMovW(Memory::int32_at(load_address)));
4796 } else {
4797 // This is a small constant pool lookup.
4798 DCHECK(Assembler::IsLdrPpImmediateOffset(Memory::int32_at(load_address)));
4799 }
4800 return load_address;
4801 }
4802
4803
4804 void BackEdgeTable::PatchAt(Code* unoptimized_code, 4873 void BackEdgeTable::PatchAt(Code* unoptimized_code,
4805 Address pc, 4874 Address pc,
4806 BackEdgeState target_state, 4875 BackEdgeState target_state,
4807 Code* replacement_code) { 4876 Code* replacement_code) {
4808 Address pc_immediate_load_address = GetInterruptImmediateLoadAddress(pc); 4877 Address mov_address = Assembler::target_address_from_return_address(pc);
4809 Address branch_address = pc_immediate_load_address - Assembler::kInstrSize; 4878 Address cmp_address = mov_address - 2 * Assembler::kInstrSize;
4810 CodePatcher patcher(branch_address, 1); 4879 CodePatcher patcher(cmp_address, 1);
4880
4811 switch (target_state) { 4881 switch (target_state) {
4812 case INTERRUPT: 4882 case INTERRUPT:
4813 { 4883 {
4814 // <decrement profiling counter> 4884 // <decrement profiling counter>
4815 // bpl ok 4885 // cmpi r6, 0
4816 // ; load interrupt stub address into ip - either of: 4886 // bge <ok> ;; not changed
4817 // ; <small cp load> | <extended cp load> | <immediate load> 4887 // mov r12, <interrupt stub address>
4818 // ldr ip, [pc/pp, #imm] | movw ip, #imm | movw ip, #imm 4888 // mtlr r12
4819 // | movt ip, #imm> | movw ip, #imm 4889 // blrl
4820 // | ldr ip, [pp, ip]
4821 // blx ip
4822 // <reset profiling counter> 4890 // <reset profiling counter>
4823 // ok-label 4891 // ok-label
4824 4892 patcher.masm()->cmpi(r6, Operand::Zero());
4825 // Calculate branch offset to the ok-label - this is the difference
4826 // between the branch address and |pc| (which points at <blx ip>) plus
4827 // kProfileCounterResetSequence instructions
4828 int branch_offset = pc - Instruction::kPCReadOffset - branch_address +
4829 kProfileCounterResetSequenceLength;
4830 patcher.masm()->b(branch_offset, pl);
4831 break; 4893 break;
4832 } 4894 }
4833 case ON_STACK_REPLACEMENT: 4895 case ON_STACK_REPLACEMENT:
4834 case OSR_AFTER_STACK_CHECK: 4896 case OSR_AFTER_STACK_CHECK:
4835 // <decrement profiling counter> 4897 // <decrement profiling counter>
4836 // mov r0, r0 (NOP) 4898 // crset
4837 // ; load on-stack replacement address into ip - either of: 4899 // bge <ok> ;; not changed
4838 // ; <small cp load> | <extended cp load> | <immediate load> 4900 // mov r12, <on-stack replacement address>
4839 // ldr ip, [pc/pp, #imm] | movw ip, #imm | movw ip, #imm 4901 // mtlr r12
4840 // | movt ip, #imm> | movw ip, #imm 4902 // blrl
4841 // | ldr ip, [pp, ip]
4842 // blx ip
4843 // <reset profiling counter> 4903 // <reset profiling counter>
4844 // ok-label 4904 // ok-label ----- pc_after points here
4845 patcher.masm()->nop(); 4905
4906 // Set the LT bit such that bge is a NOP
4907 patcher.masm()->crset(Assembler::encode_crbit(cr7, CR_LT));
4846 break; 4908 break;
4847 } 4909 }
4848 4910
4849 // Replace the call address. 4911 // Replace the stack check address in the mov sequence with the
4850 Assembler::set_target_address_at(pc_immediate_load_address, unoptimized_code, 4912 // entry address of the replacement code.
4851 replacement_code->entry()); 4913 Assembler::set_target_address_at(mov_address, unoptimized_code,
4914 replacement_code->entry());
4852 4915
4853 unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( 4916 unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch(
4854 unoptimized_code, pc_immediate_load_address, replacement_code); 4917 unoptimized_code, mov_address, replacement_code);
4855 } 4918 }
4856 4919
4857 4920
4858 BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState( 4921 BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState(
4859 Isolate* isolate, 4922 Isolate* isolate,
4860 Code* unoptimized_code, 4923 Code* unoptimized_code,
4861 Address pc) { 4924 Address pc) {
4862 DCHECK(Assembler::IsBlxIp(Memory::int32_at(pc - Assembler::kInstrSize))); 4925 Address mov_address = Assembler::target_address_from_return_address(pc);
4926 Address cmp_address = mov_address - 2 * Assembler::kInstrSize;
4927 Address interrupt_address = Assembler::target_address_at(mov_address,
4928 unoptimized_code);
4863 4929
4864 Address pc_immediate_load_address = GetInterruptImmediateLoadAddress(pc); 4930 if (Assembler::IsCmpImmediate(Assembler::instr_at(cmp_address))) {
4865 Address branch_address = pc_immediate_load_address - Assembler::kInstrSize;
4866 Address interrupt_address = Assembler::target_address_at(
4867 pc_immediate_load_address, unoptimized_code);
4868
4869 if (Assembler::IsBranch(Assembler::instr_at(branch_address))) {
4870 DCHECK(interrupt_address == 4931 DCHECK(interrupt_address ==
4871 isolate->builtins()->InterruptCheck()->entry()); 4932 isolate->builtins()->InterruptCheck()->entry());
4872 return INTERRUPT; 4933 return INTERRUPT;
4873 } 4934 }
4874 4935
4875 DCHECK(Assembler::IsNop(Assembler::instr_at(branch_address))); 4936 DCHECK(Assembler::IsCrSet(Assembler::instr_at(cmp_address)));
4876 4937
4877 if (interrupt_address == 4938 if (interrupt_address ==
4878 isolate->builtins()->OnStackReplacement()->entry()) { 4939 isolate->builtins()->OnStackReplacement()->entry()) {
4879 return ON_STACK_REPLACEMENT; 4940 return ON_STACK_REPLACEMENT;
4880 } 4941 }
4881 4942
4882 DCHECK(interrupt_address == 4943 DCHECK(interrupt_address ==
4883 isolate->builtins()->OsrAfterStackCheck()->entry()); 4944 isolate->builtins()->OsrAfterStackCheck()->entry());
4884 return OSR_AFTER_STACK_CHECK; 4945 return OSR_AFTER_STACK_CHECK;
4885 } 4946 }
4886 4947
4887 4948
4888 } } // namespace v8::internal 4949 } } // namespace v8::internal
4889 4950
4890 #endif // V8_TARGET_ARCH_ARM 4951 #endif // V8_TARGET_ARCH_PPC
OLDNEW
« src/objects-printer.cc ('K') | « src/ppc/frames-ppc.cc ('k') | src/ppc/ic-ppc.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698