OLD | NEW |
(Empty) | |
| 1 // Copyright 2012 the V8 project authors. All rights reserved. |
| 2 // |
| 3 // Copyright IBM Corp. 2012, 2013. All rights reserved. |
| 4 // |
| 5 // Use of this source code is governed by a BSD-style license that can be |
| 6 // found in the LICENSE file. |
| 7 |
| 8 #include "src/v8.h" |
| 9 |
| 10 #if V8_TARGET_ARCH_PPC |
| 11 |
| 12 #include "src/codegen.h" |
| 13 #include "src/macro-assembler.h" |
| 14 #include "src/ppc/simulator-ppc.h" |
| 15 |
| 16 namespace v8 { |
| 17 namespace internal { |
| 18 |
| 19 |
| 20 #define __ masm. |
| 21 |
| 22 |
| 23 #if defined(USE_SIMULATOR) |
| 24 byte* fast_exp_ppc_machine_code = NULL; |
| 25 double fast_exp_simulator(double x) { |
| 26 return Simulator::current(Isolate::Current())->CallFPReturnsDouble( |
| 27 fast_exp_ppc_machine_code, x, 0); |
| 28 } |
| 29 #endif |
| 30 |
| 31 |
| 32 UnaryMathFunction CreateExpFunction() { |
| 33 if (!FLAG_fast_math) return &std::exp; |
| 34 size_t actual_size; |
| 35 byte* buffer = |
| 36 static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true)); |
| 37 if (buffer == NULL) return &std::exp; |
| 38 ExternalReference::InitializeMathExpData(); |
| 39 |
| 40 MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size)); |
| 41 |
| 42 { |
| 43 DoubleRegister input = d1; |
| 44 DoubleRegister result = d2; |
| 45 DoubleRegister double_scratch1 = d3; |
| 46 DoubleRegister double_scratch2 = d4; |
| 47 Register temp1 = r7; |
| 48 Register temp2 = r8; |
| 49 Register temp3 = r9; |
| 50 |
| 51 // Called from C |
| 52 #if ABI_USES_FUNCTION_DESCRIPTORS |
| 53 __ function_descriptor(); |
| 54 #endif |
| 55 |
| 56 __ Push(temp3, temp2, temp1); |
| 57 MathExpGenerator::EmitMathExp( |
| 58 &masm, input, result, double_scratch1, double_scratch2, |
| 59 temp1, temp2, temp3); |
| 60 __ Pop(temp3, temp2, temp1); |
| 61 __ fmr(d1, result); |
| 62 __ Ret(); |
| 63 } |
| 64 |
| 65 CodeDesc desc; |
| 66 masm.GetCode(&desc); |
| 67 #if !ABI_USES_FUNCTION_DESCRIPTORS |
| 68 ASSERT(!RelocInfo::RequiresRelocation(desc)); |
| 69 #endif |
| 70 |
| 71 CpuFeatures::FlushICache(buffer, actual_size); |
| 72 base::OS::ProtectCode(buffer, actual_size); |
| 73 |
| 74 #if !defined(USE_SIMULATOR) |
| 75 return FUNCTION_CAST<UnaryMathFunction>(buffer); |
| 76 #else |
| 77 fast_exp_ppc_machine_code = buffer; |
| 78 return &fast_exp_simulator; |
| 79 #endif |
| 80 } |
| 81 |
| 82 |
| 83 UnaryMathFunction CreateSqrtFunction() { |
| 84 #if defined(USE_SIMULATOR) |
| 85 return &std::sqrt; |
| 86 #else |
| 87 size_t actual_size; |
| 88 byte* buffer = |
| 89 static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true)); |
| 90 if (buffer == NULL) return &std::sqrt; |
| 91 |
| 92 MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size)); |
| 93 |
| 94 // Called from C |
| 95 #if ABI_USES_FUNCTION_DESCRIPTORS |
| 96 __ function_descriptor(); |
| 97 #endif |
| 98 |
| 99 __ MovFromFloatParameter(d1); |
| 100 __ fsqrt(d1, d1); |
| 101 __ MovToFloatResult(d1); |
| 102 __ Ret(); |
| 103 |
| 104 CodeDesc desc; |
| 105 masm.GetCode(&desc); |
| 106 #if !ABI_USES_FUNCTION_DESCRIPTORS |
| 107 ASSERT(!RelocInfo::RequiresRelocation(desc)); |
| 108 #endif |
| 109 |
| 110 CpuFeatures::FlushICache(buffer, actual_size); |
| 111 base::OS::ProtectCode(buffer, actual_size); |
| 112 return FUNCTION_CAST<UnaryMathFunction>(buffer); |
| 113 #endif |
| 114 } |
| 115 |
| 116 #undef __ |
| 117 |
| 118 |
| 119 // ------------------------------------------------------------------------- |
| 120 // Platform-specific RuntimeCallHelper functions. |
| 121 |
| 122 void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { |
| 123 masm->EnterFrame(StackFrame::INTERNAL); |
| 124 ASSERT(!masm->has_frame()); |
| 125 masm->set_has_frame(true); |
| 126 } |
| 127 |
| 128 |
| 129 void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { |
| 130 masm->LeaveFrame(StackFrame::INTERNAL); |
| 131 ASSERT(masm->has_frame()); |
| 132 masm->set_has_frame(false); |
| 133 } |
| 134 |
| 135 |
| 136 // ------------------------------------------------------------------------- |
| 137 // Code generators |
| 138 |
| 139 #define __ ACCESS_MASM(masm) |
| 140 |
| 141 void ElementsTransitionGenerator::GenerateMapChangeElementsTransition( |
| 142 MacroAssembler* masm, |
| 143 Register receiver, |
| 144 Register key, |
| 145 Register value, |
| 146 Register target_map, |
| 147 AllocationSiteMode mode, |
| 148 Label* allocation_memento_found) { |
| 149 Register scratch_elements = r7; |
| 150 ASSERT(!AreAliased(receiver, key, value, target_map, |
| 151 scratch_elements)); |
| 152 |
| 153 if (mode == TRACK_ALLOCATION_SITE) { |
| 154 ASSERT(allocation_memento_found != NULL); |
| 155 __ JumpIfJSArrayHasAllocationMemento( |
| 156 receiver, scratch_elements, allocation_memento_found); |
| 157 } |
| 158 |
| 159 // Set transitioned map. |
| 160 __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0); |
| 161 __ RecordWriteField(receiver, |
| 162 HeapObject::kMapOffset, |
| 163 target_map, |
| 164 r11, |
| 165 kLRHasNotBeenSaved, |
| 166 kDontSaveFPRegs, |
| 167 EMIT_REMEMBERED_SET, |
| 168 OMIT_SMI_CHECK); |
| 169 } |
| 170 |
| 171 |
| 172 void ElementsTransitionGenerator::GenerateSmiToDouble( |
| 173 MacroAssembler* masm, |
| 174 Register receiver, |
| 175 Register key, |
| 176 Register value, |
| 177 Register target_map, |
| 178 AllocationSiteMode mode, |
| 179 Label* fail) { |
| 180 // lr contains the return address |
| 181 Label loop, entry, convert_hole, gc_required, only_change_map, done; |
| 182 Register elements = r7; |
| 183 Register length = r8; |
| 184 Register array = r9; |
| 185 Register array_end = array; |
| 186 |
| 187 // target_map parameter can be clobbered. |
| 188 Register scratch1 = target_map; |
| 189 Register scratch2 = r11; |
| 190 |
| 191 // Verify input registers don't conflict with locals. |
| 192 ASSERT(!AreAliased(receiver, key, value, target_map, |
| 193 elements, length, array, scratch2)); |
| 194 |
| 195 if (mode == TRACK_ALLOCATION_SITE) { |
| 196 __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail); |
| 197 } |
| 198 |
| 199 // Check for empty arrays, which only require a map transition and no changes |
| 200 // to the backing store. |
| 201 __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
| 202 __ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex); |
| 203 __ beq(&only_change_map); |
| 204 |
| 205 // Preserve lr and use r17 as a temporary register. |
| 206 __ mflr(r0); |
| 207 __ Push(r0); |
| 208 |
| 209 __ LoadP(length, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
| 210 // length: number of elements (smi-tagged) |
| 211 |
| 212 // Allocate new FixedDoubleArray. |
| 213 __ SmiToDoubleArrayOffset(r17, length); |
| 214 __ addi(r17, r17, Operand(FixedDoubleArray::kHeaderSize)); |
| 215 __ Allocate(r17, array, r10, scratch2, &gc_required, DOUBLE_ALIGNMENT); |
| 216 |
| 217 // Set destination FixedDoubleArray's length and map. |
| 218 __ LoadRoot(scratch2, Heap::kFixedDoubleArrayMapRootIndex); |
| 219 __ StoreP(length, MemOperand(array, FixedDoubleArray::kLengthOffset)); |
| 220 // Update receiver's map. |
| 221 __ StoreP(scratch2, MemOperand(array, HeapObject::kMapOffset)); |
| 222 |
| 223 __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0); |
| 224 __ RecordWriteField(receiver, |
| 225 HeapObject::kMapOffset, |
| 226 target_map, |
| 227 scratch2, |
| 228 kLRHasBeenSaved, |
| 229 kDontSaveFPRegs, |
| 230 OMIT_REMEMBERED_SET, |
| 231 OMIT_SMI_CHECK); |
| 232 // Replace receiver's backing store with newly created FixedDoubleArray. |
| 233 __ addi(scratch1, array, Operand(kHeapObjectTag)); |
| 234 __ StoreP(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset), r0); |
| 235 __ RecordWriteField(receiver, |
| 236 JSObject::kElementsOffset, |
| 237 scratch1, |
| 238 scratch2, |
| 239 kLRHasBeenSaved, |
| 240 kDontSaveFPRegs, |
| 241 EMIT_REMEMBERED_SET, |
| 242 OMIT_SMI_CHECK); |
| 243 |
| 244 // Prepare for conversion loop. |
| 245 __ addi(target_map, elements, |
| 246 Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| 247 __ addi(r10, array, Operand(FixedDoubleArray::kHeaderSize)); |
| 248 __ SmiToDoubleArrayOffset(array, length); |
| 249 __ add(array_end, r10, array); |
| 250 // Repurpose registers no longer in use. |
| 251 #if V8_TARGET_ARCH_PPC64 |
| 252 Register hole_int64 = elements; |
| 253 #else |
| 254 Register hole_lower = elements; |
| 255 Register hole_upper = length; |
| 256 #endif |
| 257 // scratch1: begin of source FixedArray element fields, not tagged |
| 258 // hole_lower: kHoleNanLower32 OR hol_int64 |
| 259 // hole_upper: kHoleNanUpper32 |
| 260 // array_end: end of destination FixedDoubleArray, not tagged |
| 261 // scratch2: begin of FixedDoubleArray element fields, not tagged |
| 262 |
| 263 __ b(&entry); |
| 264 |
| 265 __ bind(&only_change_map); |
| 266 __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0); |
| 267 __ RecordWriteField(receiver, |
| 268 HeapObject::kMapOffset, |
| 269 target_map, |
| 270 scratch2, |
| 271 kLRHasNotBeenSaved, |
| 272 kDontSaveFPRegs, |
| 273 OMIT_REMEMBERED_SET, |
| 274 OMIT_SMI_CHECK); |
| 275 __ b(&done); |
| 276 |
| 277 // Call into runtime if GC is required. |
| 278 __ bind(&gc_required); |
| 279 __ Pop(r0); |
| 280 __ mtlr(r0); |
| 281 __ b(fail); |
| 282 |
| 283 // Convert and copy elements. |
| 284 __ bind(&loop); |
| 285 __ LoadP(r11, MemOperand(scratch1)); |
| 286 __ addi(scratch1, scratch1, Operand(kPointerSize)); |
| 287 // r11: current element |
| 288 __ UntagAndJumpIfNotSmi(r11, r11, &convert_hole); |
| 289 |
| 290 // Normal smi, convert to double and store. |
| 291 __ ConvertIntToDouble(r11, d0); |
| 292 __ stfd(d0, MemOperand(scratch2, 0)); |
| 293 __ addi(r10, r10, Operand(8)); |
| 294 |
| 295 __ b(&entry); |
| 296 |
| 297 // Hole found, store the-hole NaN. |
| 298 __ bind(&convert_hole); |
| 299 if (FLAG_debug_code) { |
| 300 // Restore a "smi-untagged" heap object. |
| 301 __ LoadP(r11, MemOperand(r6, -kPointerSize)); |
| 302 __ CompareRoot(r11, Heap::kTheHoleValueRootIndex); |
| 303 __ Assert(eq, kObjectFoundInSmiOnlyArray); |
| 304 } |
| 305 #if V8_TARGET_ARCH_PPC64 |
| 306 __ std(hole_int64, MemOperand(r10, 0)); |
| 307 #else |
| 308 __ stw(hole_upper, MemOperand(r10, Register::kExponentOffset)); |
| 309 __ stw(hole_lower, MemOperand(r10, Register::kMantissaOffset)); |
| 310 #endif |
| 311 __ addi(r10, r10, Operand(8)); |
| 312 |
| 313 __ bind(&entry); |
| 314 __ cmp(r10, array_end); |
| 315 __ blt(&loop); |
| 316 |
| 317 __ Pop(r0); |
| 318 __ mtlr(r0); |
| 319 __ bind(&done); |
| 320 } |
| 321 |
| 322 |
| 323 void ElementsTransitionGenerator::GenerateDoubleToObject( |
| 324 MacroAssembler* masm, |
| 325 Register receiver, |
| 326 Register key, |
| 327 Register value, |
| 328 Register target_map, |
| 329 AllocationSiteMode mode, |
| 330 Label* fail) { |
| 331 // Register lr contains the return address. |
| 332 Label entry, loop, convert_hole, gc_required, only_change_map; |
| 333 Register elements = r7; |
| 334 Register array = r9; |
| 335 Register length = r8; |
| 336 Register scratch = r11; |
| 337 |
| 338 // Verify input registers don't conflict with locals. |
| 339 ASSERT(!AreAliased(receiver, key, value, target_map, |
| 340 elements, array, length, scratch)); |
| 341 |
| 342 if (mode == TRACK_ALLOCATION_SITE) { |
| 343 __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail); |
| 344 } |
| 345 |
| 346 // Check for empty arrays, which only require a map transition and no changes |
| 347 // to the backing store. |
| 348 __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
| 349 __ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex); |
| 350 __ beq(&only_change_map); |
| 351 |
| 352 __ Push(target_map, receiver, key, value); |
| 353 __ LoadP(length, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
| 354 // elements: source FixedDoubleArray |
| 355 // length: number of elements (smi-tagged) |
| 356 |
| 357 // Allocate new FixedArray. |
| 358 // Re-use value and target_map registers, as they have been saved on the |
| 359 // stack. |
| 360 Register array_size = value; |
| 361 Register allocate_scratch = target_map; |
| 362 __ li(array_size, Operand(FixedDoubleArray::kHeaderSize)); |
| 363 __ SmiToPtrArrayOffset(r0, length); |
| 364 __ add(array_size, array_size, r0); |
| 365 __ Allocate(array_size, array, allocate_scratch, scratch, &gc_required, |
| 366 NO_ALLOCATION_FLAGS); |
| 367 // array: destination FixedArray, not tagged as heap object |
| 368 // Set destination FixedDoubleArray's length and map. |
| 369 __ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex); |
| 370 __ StoreP(length, MemOperand(array, FixedDoubleArray::kLengthOffset)); |
| 371 __ StoreP(scratch, MemOperand(array, HeapObject::kMapOffset)); |
| 372 |
| 373 // Prepare for conversion loop. |
| 374 Register src_elements = elements; |
| 375 Register dst_elements = target_map; |
| 376 Register dst_end = length; |
| 377 Register heap_number_map = scratch; |
| 378 __ addi(src_elements, elements, |
| 379 Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); |
| 380 __ addi(dst_elements, array, Operand(FixedArray::kHeaderSize)); |
| 381 __ addi(array, array, Operand(kHeapObjectTag)); |
| 382 __ SmiToPtrArrayOffset(length, length); |
| 383 __ add(dst_end, dst_elements, length); |
| 384 __ LoadRoot(r10, Heap::kTheHoleValueRootIndex); |
| 385 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| 386 // Using offsetted addresses in src_elements to fully take advantage of |
| 387 // post-indexing. |
| 388 // dst_elements: begin of destination FixedArray element fields, not tagged |
| 389 // src_elements: begin of source FixedDoubleArray element fields, |
| 390 // not tagged, +4 |
| 391 // dst_end: end of destination FixedArray, not tagged |
| 392 // array: destination FixedArray |
| 393 // r10: the-hole pointer |
| 394 // heap_number_map: heap number map |
| 395 __ b(&entry); |
| 396 |
| 397 // Call into runtime if GC is required. |
| 398 __ bind(&gc_required); |
| 399 __ Pop(target_map, receiver, key, value); |
| 400 __ b(fail); |
| 401 |
| 402 __ bind(&loop); |
| 403 Register upper_bits = key; |
| 404 __ lwz(upper_bits, MemOperand(src_elements, Register::kExponentOffset)); |
| 405 __ addi(src_elements, src_elements, Operand(kDoubleSize)); |
| 406 // upper_bits: current element's upper 32 bit |
| 407 // src_elements: address of next element's upper 32 bit |
| 408 __ Cmpi(upper_bits, Operand(kHoleNanUpper32), r0); |
| 409 __ beq(&convert_hole); |
| 410 |
| 411 // Non-hole double, copy value into a heap number. |
| 412 Register heap_number = receiver; |
| 413 Register scratch2 = value; |
| 414 __ AllocateHeapNumber(heap_number, scratch2, r11, heap_number_map, |
| 415 &gc_required); |
| 416 // heap_number: new heap number |
| 417 #if V8_TARGET_ARCH_PPC64 |
| 418 __ ld(scratch2, MemOperand(src_elements, -kDoubleSize)); |
| 419 __ addi(upper_bits, heap_number, Operand(-1)); // subtract tag for std |
| 420 __ std(scratch2, MemOperand(upper_bits, HeapNumber::kValueOffset)); |
| 421 #else |
| 422 __ lwz(scratch2, MemOperand(src_elements, |
| 423 Register::kMantissaOffset - kDoubleSize)); |
| 424 __ lwz(upper_bits, MemOperand(src_elements, |
| 425 Register::kExponentOffset - kDoubleSize)); |
| 426 __ stw(scratch2, FieldMemOperand(heap_number, HeapNumber::kMantissaOffset)); |
| 427 __ stw(upper_bits, FieldMemOperand(heap_number, HeapNumber::kExponentOffset)); |
| 428 #endif |
| 429 __ mr(scratch2, dst_elements); |
| 430 __ StoreP(heap_number, MemOperand(dst_elements)); |
| 431 __ addi(dst_elements, dst_elements, Operand(kPointerSize)); |
| 432 __ RecordWrite(array, |
| 433 scratch2, |
| 434 heap_number, |
| 435 kLRHasNotBeenSaved, |
| 436 kDontSaveFPRegs, |
| 437 EMIT_REMEMBERED_SET, |
| 438 OMIT_SMI_CHECK); |
| 439 __ b(&entry); |
| 440 |
| 441 // Replace the-hole NaN with the-hole pointer. |
| 442 __ bind(&convert_hole); |
| 443 __ StoreP(r10, MemOperand(dst_elements)); |
| 444 __ addi(dst_elements, dst_elements, Operand(kPointerSize)); |
| 445 |
| 446 __ bind(&entry); |
| 447 __ cmpl(dst_elements, dst_end); |
| 448 __ blt(&loop); |
| 449 |
| 450 __ Pop(target_map, receiver, key, value); |
| 451 // Replace receiver's backing store with newly created and filled FixedArray. |
| 452 __ StoreP(array, FieldMemOperand(receiver, JSObject::kElementsOffset), r0); |
| 453 __ RecordWriteField(receiver, |
| 454 JSObject::kElementsOffset, |
| 455 array, |
| 456 scratch, |
| 457 kLRHasNotBeenSaved, |
| 458 kDontSaveFPRegs, |
| 459 EMIT_REMEMBERED_SET, |
| 460 OMIT_SMI_CHECK); |
| 461 |
| 462 __ bind(&only_change_map); |
| 463 // Update receiver's map. |
| 464 __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0); |
| 465 __ RecordWriteField(receiver, |
| 466 HeapObject::kMapOffset, |
| 467 target_map, |
| 468 scratch, |
| 469 kLRHasNotBeenSaved, |
| 470 kDontSaveFPRegs, |
| 471 OMIT_REMEMBERED_SET, |
| 472 OMIT_SMI_CHECK); |
| 473 } |
| 474 |
| 475 |
| 476 // assume ip can be used as a scratch register below |
| 477 void StringCharLoadGenerator::Generate(MacroAssembler* masm, |
| 478 Register string, |
| 479 Register index, |
| 480 Register result, |
| 481 Label* call_runtime) { |
| 482 // Fetch the instance type of the receiver into result register. |
| 483 __ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset)); |
| 484 __ lbz(result, FieldMemOperand(result, Map::kInstanceTypeOffset)); |
| 485 |
| 486 // We need special handling for indirect strings. |
| 487 Label check_sequential; |
| 488 __ andi(r0, result, Operand(kIsIndirectStringMask)); |
| 489 __ beq(&check_sequential, cr0); |
| 490 |
| 491 // Dispatch on the indirect string shape: slice or cons. |
| 492 Label cons_string; |
| 493 __ mov(ip, Operand(kSlicedNotConsMask)); |
| 494 __ and_(r0, result, ip, SetRC); |
| 495 __ beq(&cons_string, cr0); |
| 496 |
| 497 // Handle slices. |
| 498 Label indirect_string_loaded; |
| 499 __ LoadP(result, FieldMemOperand(string, SlicedString::kOffsetOffset)); |
| 500 __ LoadP(string, FieldMemOperand(string, SlicedString::kParentOffset)); |
| 501 __ SmiUntag(ip, result); |
| 502 __ add(index, index, ip); |
| 503 __ b(&indirect_string_loaded); |
| 504 |
| 505 // Handle cons strings. |
| 506 // Check whether the right hand side is the empty string (i.e. if |
| 507 // this is really a flat string in a cons string). If that is not |
| 508 // the case we would rather go to the runtime system now to flatten |
| 509 // the string. |
| 510 __ bind(&cons_string); |
| 511 __ LoadP(result, FieldMemOperand(string, ConsString::kSecondOffset)); |
| 512 __ CompareRoot(result, Heap::kempty_stringRootIndex); |
| 513 __ bne(call_runtime); |
| 514 // Get the first of the two strings and load its instance type. |
| 515 __ LoadP(string, FieldMemOperand(string, ConsString::kFirstOffset)); |
| 516 |
| 517 __ bind(&indirect_string_loaded); |
| 518 __ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset)); |
| 519 __ lbz(result, FieldMemOperand(result, Map::kInstanceTypeOffset)); |
| 520 |
| 521 // Distinguish sequential and external strings. Only these two string |
| 522 // representations can reach here (slices and flat cons strings have been |
| 523 // reduced to the underlying sequential or external string). |
| 524 Label external_string, check_encoding; |
| 525 __ bind(&check_sequential); |
| 526 STATIC_ASSERT(kSeqStringTag == 0); |
| 527 __ andi(r0, result, Operand(kStringRepresentationMask)); |
| 528 __ bne(&external_string, cr0); |
| 529 |
| 530 // Prepare sequential strings |
| 531 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); |
| 532 __ addi(string, |
| 533 string, |
| 534 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| 535 __ b(&check_encoding); |
| 536 |
| 537 // Handle external strings. |
| 538 __ bind(&external_string); |
| 539 if (FLAG_debug_code) { |
| 540 // Assert that we do not have a cons or slice (indirect strings) here. |
| 541 // Sequential strings have already been ruled out. |
| 542 __ andi(r0, result, Operand(kIsIndirectStringMask)); |
| 543 __ Assert(eq, kExternalStringExpectedButNotFound, cr0); |
| 544 } |
| 545 // Rule out short external strings. |
| 546 STATIC_ASSERT(kShortExternalStringTag != 0); |
| 547 __ andi(r0, result, Operand(kShortExternalStringMask)); |
| 548 __ bne(call_runtime, cr0); |
| 549 __ LoadP(string, |
| 550 FieldMemOperand(string, ExternalString::kResourceDataOffset)); |
| 551 |
| 552 Label ascii, done; |
| 553 __ bind(&check_encoding); |
| 554 STATIC_ASSERT(kTwoByteStringTag == 0); |
| 555 __ andi(r0, result, Operand(kStringEncodingMask)); |
| 556 __ bne(&ascii, cr0); |
| 557 // Two-byte string. |
| 558 __ ShiftLeftImm(result, index, Operand(1)); |
| 559 __ lhzx(result, MemOperand(string, result)); |
| 560 __ b(&done); |
| 561 __ bind(&ascii); |
| 562 // Ascii string. |
| 563 __ lbzx(result, MemOperand(string, index)); |
| 564 __ bind(&done); |
| 565 } |
| 566 |
| 567 |
| 568 static MemOperand ExpConstant(int index, Register base) { |
| 569 return MemOperand(base, index * kDoubleSize); |
| 570 } |
| 571 |
| 572 |
| 573 void MathExpGenerator::EmitMathExp(MacroAssembler* masm, |
| 574 DoubleRegister input, |
| 575 DoubleRegister result, |
| 576 DoubleRegister double_scratch1, |
| 577 DoubleRegister double_scratch2, |
| 578 Register temp1, |
| 579 Register temp2, |
| 580 Register temp3) { |
| 581 ASSERT(!input.is(result)); |
| 582 ASSERT(!input.is(double_scratch1)); |
| 583 ASSERT(!input.is(double_scratch2)); |
| 584 ASSERT(!result.is(double_scratch1)); |
| 585 ASSERT(!result.is(double_scratch2)); |
| 586 ASSERT(!double_scratch1.is(double_scratch2)); |
| 587 ASSERT(!temp1.is(temp2)); |
| 588 ASSERT(!temp1.is(temp3)); |
| 589 ASSERT(!temp2.is(temp3)); |
| 590 ASSERT(ExternalReference::math_exp_constants(0).address() != NULL); |
| 591 |
| 592 Label zero, infinity, done; |
| 593 |
| 594 __ mov(temp3, Operand(ExternalReference::math_exp_constants(0))); |
| 595 |
| 596 __ lfd(double_scratch1, ExpConstant(0, temp3)); |
| 597 __ fcmpu(double_scratch1, input); |
| 598 __ fmr(result, input); |
| 599 __ bunordered(&done); |
| 600 __ bge(&zero); |
| 601 |
| 602 __ lfd(double_scratch2, ExpConstant(1, temp3)); |
| 603 __ fcmpu(input, double_scratch2); |
| 604 __ bge(&infinity); |
| 605 |
| 606 __ lfd(double_scratch1, ExpConstant(3, temp3)); |
| 607 __ lfd(result, ExpConstant(4, temp3)); |
| 608 __ fmul(double_scratch1, double_scratch1, input); |
| 609 __ fadd(double_scratch1, double_scratch1, result); |
| 610 |
| 611 // Move low word of double_scratch1 to temp2 |
| 612 __ subi(sp, sp, Operand(kDoubleSize)); |
| 613 __ stfd(double_scratch1, MemOperand(sp)); |
| 614 __ nop(); // LHS/RAW optimization |
| 615 __ lwz(temp2, MemOperand(sp, Register::kMantissaOffset)); |
| 616 |
| 617 __ fsub(double_scratch1, double_scratch1, result); |
| 618 __ lfd(result, ExpConstant(6, temp3)); |
| 619 __ lfd(double_scratch2, ExpConstant(5, temp3)); |
| 620 __ fmul(double_scratch1, double_scratch1, double_scratch2); |
| 621 __ fsub(double_scratch1, double_scratch1, input); |
| 622 __ fsub(result, result, double_scratch1); |
| 623 __ fmul(double_scratch2, double_scratch1, double_scratch1); |
| 624 __ fmul(result, result, double_scratch2); |
| 625 __ lfd(double_scratch2, ExpConstant(7, temp3)); |
| 626 __ fmul(result, result, double_scratch2); |
| 627 __ fsub(result, result, double_scratch1); |
| 628 __ lfd(double_scratch2, ExpConstant(8, temp3)); |
| 629 __ fadd(result, result, double_scratch2); |
| 630 __ srwi(temp1, temp2, Operand(11)); |
| 631 __ andi(temp2, temp2, Operand(0x7ff)); |
| 632 __ addi(temp1, temp1, Operand(0x3ff)); |
| 633 |
| 634 // Must not call ExpConstant() after overwriting temp3! |
| 635 __ mov(temp3, Operand(ExternalReference::math_exp_log_table())); |
| 636 __ slwi(temp2, temp2, Operand(3)); |
| 637 #if V8_TARGET_ARCH_PPC64 |
| 638 __ ldx(temp2, MemOperand(temp3, temp2)); |
| 639 __ sldi(temp1, temp1, Operand(52)); |
| 640 __ orx(temp2, temp1, temp2); |
| 641 __ std(temp2, MemOperand(sp, 0)); |
| 642 #else |
| 643 __ add(ip, temp3, temp2); |
| 644 __ lwz(temp3, MemOperand(ip, Register::kExponentOffset)); |
| 645 __ lwz(temp2, MemOperand(ip, Register::kMantissaOffset)); |
| 646 __ slwi(temp1, temp1, Operand(20)); |
| 647 __ orx(temp3, temp1, temp3); |
| 648 __ stw(temp3, MemOperand(sp, Register::kExponentOffset)); |
| 649 __ stw(temp2, MemOperand(sp, Register::kMantissaOffset)); |
| 650 #endif |
| 651 __ nop(); // LHS/RAW optimization |
| 652 __ lfd(double_scratch1, MemOperand(sp, 0)); |
| 653 __ addi(sp, sp, Operand(kDoubleSize)); |
| 654 |
| 655 __ fmul(result, result, double_scratch1); |
| 656 __ b(&done); |
| 657 |
| 658 __ bind(&zero); |
| 659 __ fmr(result, kDoubleRegZero); |
| 660 __ b(&done); |
| 661 |
| 662 __ bind(&infinity); |
| 663 __ lfd(result, ExpConstant(2, temp3)); |
| 664 |
| 665 __ bind(&done); |
| 666 } |
| 667 |
| 668 #undef __ |
| 669 |
| 670 #ifdef DEBUG |
| 671 // mflr ip |
| 672 static const uint32_t kCodeAgePatchFirstInstruction = 0x7d8802a6; |
| 673 #endif |
| 674 |
| 675 CodeAgingHelper::CodeAgingHelper() { |
| 676 ASSERT(young_sequence_.length() == kNoCodeAgeSequenceLength); |
| 677 // Since patcher is a large object, allocate it dynamically when needed, |
| 678 // to avoid overloading the stack in stress conditions. |
| 679 // DONT_FLUSH is used because the CodeAgingHelper is initialized early in |
| 680 // the process, before ARM simulator ICache is setup. |
| 681 SmartPointer<CodePatcher> patcher( |
| 682 new CodePatcher(young_sequence_.start(), |
| 683 young_sequence_.length() / Assembler::kInstrSize, |
| 684 CodePatcher::DONT_FLUSH)); |
| 685 PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length()); |
| 686 patcher->masm()->PushFixedFrame(r4); |
| 687 patcher->masm()->addi( |
| 688 fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); |
| 689 for (int i = 0; i < kNoCodeAgeSequenceNops; i++) { |
| 690 patcher->masm()->nop(); |
| 691 } |
| 692 } |
| 693 |
| 694 |
| 695 #ifdef DEBUG |
| 696 bool CodeAgingHelper::IsOld(byte* candidate) const { |
| 697 return Memory::uint32_at(candidate) == kCodeAgePatchFirstInstruction; |
| 698 } |
| 699 #endif |
| 700 |
| 701 |
| 702 bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) { |
| 703 bool result = isolate->code_aging_helper()->IsYoung(sequence); |
| 704 ASSERT(result || isolate->code_aging_helper()->IsOld(sequence)); |
| 705 return result; |
| 706 } |
| 707 |
| 708 |
| 709 void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age, |
| 710 MarkingParity* parity) { |
| 711 if (IsYoungSequence(isolate, sequence)) { |
| 712 *age = kNoAgeCodeAge; |
| 713 *parity = NO_MARKING_PARITY; |
| 714 } else { |
| 715 ConstantPoolArray *constant_pool = NULL; |
| 716 Address target_address = Assembler::target_address_at( |
| 717 sequence + kCodeAgingTargetDelta, constant_pool); |
| 718 Code* stub = GetCodeFromTargetAddress(target_address); |
| 719 GetCodeAgeAndParity(stub, age, parity); |
| 720 } |
| 721 } |
| 722 |
| 723 |
| 724 void Code::PatchPlatformCodeAge(Isolate* isolate, |
| 725 byte* sequence, |
| 726 Code::Age age, |
| 727 MarkingParity parity) { |
| 728 uint32_t young_length = isolate->code_aging_helper()->young_sequence_length(); |
| 729 if (age == kNoAgeCodeAge) { |
| 730 isolate->code_aging_helper()->CopyYoungSequenceTo(sequence); |
| 731 CpuFeatures::FlushICache(sequence, young_length); |
| 732 } else { |
| 733 // FIXED_SEQUENCE |
| 734 Code* stub = GetCodeAgeStub(isolate, age, parity); |
| 735 CodePatcher patcher(sequence, young_length / Assembler::kInstrSize); |
| 736 Assembler::BlockTrampolinePoolScope block_trampoline_pool(patcher.masm()); |
| 737 intptr_t target = reinterpret_cast<intptr_t>(stub->instruction_start()); |
| 738 // We use Call to compute the address of this patch sequence. |
| 739 // Preserve lr since it will be clobbered. See |
| 740 // GenerateMakeCodeYoungAgainCommon for the stub code. |
| 741 patcher.masm()->mflr(ip); |
| 742 patcher.masm()->mov(r3, Operand(target)); |
| 743 patcher.masm()->Call(r3); |
| 744 for (int i = 0; i < kCodeAgingSequenceNops; i++) { |
| 745 patcher.masm()->nop(); |
| 746 } |
| 747 } |
| 748 } |
| 749 |
| 750 |
| 751 } } // namespace v8::internal |
| 752 |
| 753 #endif // V8_TARGET_ARCH_PPC |
OLD | NEW |