OLD | NEW |
1 // Copyright 2012 the V8 project authors. All rights reserved. | 1 // Copyright 2012 the V8 project authors. All rights reserved. |
| 2 // |
| 3 // Copyright IBM Corp. 2012, 2013. All rights reserved. |
| 4 // |
2 // Use of this source code is governed by a BSD-style license that can be | 5 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 6 // found in the LICENSE file. |
4 | 7 |
5 #include "src/v8.h" | 8 #include "src/v8.h" |
6 | 9 |
7 #if V8_TARGET_ARCH_ARM | 10 #if V8_TARGET_ARCH_PPC |
8 | 11 |
9 #include "src/bootstrapper.h" | 12 #include "src/bootstrapper.h" |
10 #include "src/code-stubs.h" | 13 #include "src/code-stubs.h" |
11 #include "src/regexp-macro-assembler.h" | 14 #include "src/regexp-macro-assembler.h" |
12 #include "src/stub-cache.h" | 15 #include "src/stub-cache.h" |
13 | 16 |
| 17 #include "src/ppc/regexp-macro-assembler-ppc.h" |
| 18 |
14 namespace v8 { | 19 namespace v8 { |
15 namespace internal { | 20 namespace internal { |
16 | 21 |
17 | 22 |
18 void FastNewClosureStub::InitializeInterfaceDescriptor( | 23 void FastNewClosureStub::InitializeInterfaceDescriptor( |
19 CodeStubInterfaceDescriptor* descriptor) { | 24 CodeStubInterfaceDescriptor* descriptor) { |
20 Register registers[] = { cp, r2 }; | 25 Register registers[] = { cp, r5 }; |
21 descriptor->Initialize( | 26 descriptor->Initialize( |
22 ARRAY_SIZE(registers), registers, | 27 ARRAY_SIZE(registers), registers, |
23 Runtime::FunctionForId(Runtime::kNewClosureFromStubFailure)->entry); | 28 Runtime::FunctionForId(Runtime::kNewClosureFromStubFailure)->entry); |
24 } | 29 } |
25 | 30 |
26 | 31 |
27 void FastNewContextStub::InitializeInterfaceDescriptor( | 32 void FastNewContextStub::InitializeInterfaceDescriptor( |
28 CodeStubInterfaceDescriptor* descriptor) { | 33 CodeStubInterfaceDescriptor* descriptor) { |
29 Register registers[] = { cp, r1 }; | 34 Register registers[] = { cp, r4 }; |
30 descriptor->Initialize(ARRAY_SIZE(registers), registers); | 35 descriptor->Initialize(ARRAY_SIZE(registers), registers); |
31 } | 36 } |
32 | 37 |
33 | 38 |
34 void ToNumberStub::InitializeInterfaceDescriptor( | 39 void ToNumberStub::InitializeInterfaceDescriptor( |
35 CodeStubInterfaceDescriptor* descriptor) { | 40 CodeStubInterfaceDescriptor* descriptor) { |
36 Register registers[] = { cp, r0 }; | 41 Register registers[] = { cp, r3 }; |
37 descriptor->Initialize(ARRAY_SIZE(registers), registers); | 42 descriptor->Initialize(ARRAY_SIZE(registers), registers); |
38 } | 43 } |
39 | 44 |
40 | 45 |
41 void NumberToStringStub::InitializeInterfaceDescriptor( | 46 void NumberToStringStub::InitializeInterfaceDescriptor( |
42 CodeStubInterfaceDescriptor* descriptor) { | 47 CodeStubInterfaceDescriptor* descriptor) { |
43 Register registers[] = { cp, r0 }; | 48 Register registers[] = { cp, r3 }; |
44 descriptor->Initialize( | 49 descriptor->Initialize( |
45 ARRAY_SIZE(registers), registers, | 50 ARRAY_SIZE(registers), registers, |
46 Runtime::FunctionForId(Runtime::kNumberToStringRT)->entry); | 51 Runtime::FunctionForId(Runtime::kNumberToStringRT)->entry); |
47 } | 52 } |
48 | 53 |
49 | 54 |
50 void FastCloneShallowArrayStub::InitializeInterfaceDescriptor( | 55 void FastCloneShallowArrayStub::InitializeInterfaceDescriptor( |
51 CodeStubInterfaceDescriptor* descriptor) { | 56 CodeStubInterfaceDescriptor* descriptor) { |
52 Register registers[] = { cp, r3, r2, r1 }; | 57 Register registers[] = { cp, r6, r5, r4 }; |
53 Representation representations[] = { | 58 Representation representations[] = { |
54 Representation::Tagged(), | 59 Representation::Tagged(), |
55 Representation::Tagged(), | 60 Representation::Tagged(), |
56 Representation::Smi(), | 61 Representation::Smi(), |
57 Representation::Tagged() }; | 62 Representation::Tagged() }; |
58 descriptor->Initialize( | 63 descriptor->Initialize( |
59 ARRAY_SIZE(registers), registers, | 64 ARRAY_SIZE(registers), registers, |
60 Runtime::FunctionForId( | 65 Runtime::FunctionForId( |
61 Runtime::kCreateArrayLiteralStubBailout)->entry, | 66 Runtime::kCreateArrayLiteralStubBailout)->entry, |
62 representations); | 67 representations); |
63 } | 68 } |
64 | 69 |
65 | 70 |
66 void FastCloneShallowObjectStub::InitializeInterfaceDescriptor( | 71 void FastCloneShallowObjectStub::InitializeInterfaceDescriptor( |
67 CodeStubInterfaceDescriptor* descriptor) { | 72 CodeStubInterfaceDescriptor* descriptor) { |
68 Register registers[] = { cp, r3, r2, r1, r0 }; | 73 Register registers[] = { cp, r6, r5, r4, r3 }; |
69 descriptor->Initialize( | 74 descriptor->Initialize( |
70 ARRAY_SIZE(registers), registers, | 75 ARRAY_SIZE(registers), registers, |
71 Runtime::FunctionForId(Runtime::kCreateObjectLiteral)->entry); | 76 Runtime::FunctionForId(Runtime::kCreateObjectLiteral)->entry); |
72 } | 77 } |
73 | 78 |
74 | 79 |
75 void CreateAllocationSiteStub::InitializeInterfaceDescriptor( | 80 void CreateAllocationSiteStub::InitializeInterfaceDescriptor( |
76 CodeStubInterfaceDescriptor* descriptor) { | 81 CodeStubInterfaceDescriptor* descriptor) { |
77 Register registers[] = { cp, r2, r3 }; | 82 Register registers[] = { cp, r5, r6 }; |
78 descriptor->Initialize(ARRAY_SIZE(registers), registers); | 83 descriptor->Initialize(ARRAY_SIZE(registers), registers); |
79 } | 84 } |
80 | 85 |
81 | 86 |
82 void RegExpConstructResultStub::InitializeInterfaceDescriptor( | 87 void RegExpConstructResultStub::InitializeInterfaceDescriptor( |
83 CodeStubInterfaceDescriptor* descriptor) { | 88 CodeStubInterfaceDescriptor* descriptor) { |
84 Register registers[] = { cp, r2, r1, r0 }; | 89 Register registers[] = { cp, r5, r4, r3 }; |
85 descriptor->Initialize( | 90 descriptor->Initialize( |
86 ARRAY_SIZE(registers), registers, | 91 ARRAY_SIZE(registers), registers, |
87 Runtime::FunctionForId(Runtime::kRegExpConstructResult)->entry); | 92 Runtime::FunctionForId(Runtime::kRegExpConstructResult)->entry); |
88 } | 93 } |
89 | 94 |
90 | 95 |
91 void TransitionElementsKindStub::InitializeInterfaceDescriptor( | 96 void TransitionElementsKindStub::InitializeInterfaceDescriptor( |
92 CodeStubInterfaceDescriptor* descriptor) { | 97 CodeStubInterfaceDescriptor* descriptor) { |
93 Register registers[] = { cp, r0, r1 }; | 98 Register registers[] = { cp, r3, r4 }; |
94 Address entry = | 99 Address entry = |
95 Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry; | 100 Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry; |
96 descriptor->Initialize(ARRAY_SIZE(registers), registers, | 101 descriptor->Initialize(ARRAY_SIZE(registers), registers, |
97 FUNCTION_ADDR(entry)); | 102 FUNCTION_ADDR(entry)); |
98 } | 103 } |
99 | 104 |
100 | 105 |
101 void CompareNilICStub::InitializeInterfaceDescriptor( | 106 void CompareNilICStub::InitializeInterfaceDescriptor( |
102 CodeStubInterfaceDescriptor* descriptor) { | 107 CodeStubInterfaceDescriptor* descriptor) { |
103 Register registers[] = { cp, r0 }; | 108 Register registers[] = { cp, r3 }; |
104 descriptor->Initialize(ARRAY_SIZE(registers), registers, | 109 descriptor->Initialize(ARRAY_SIZE(registers), registers, |
105 FUNCTION_ADDR(CompareNilIC_Miss)); | 110 FUNCTION_ADDR(CompareNilIC_Miss)); |
106 descriptor->SetMissHandler( | 111 descriptor->SetMissHandler( |
107 ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate())); | 112 ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate())); |
108 } | 113 } |
109 | 114 |
110 | 115 |
111 const Register InterfaceDescriptor::ContextRegister() { return cp; } | 116 const Register InterfaceDescriptor::ContextRegister() { return cp; } |
112 | 117 |
113 | 118 |
114 static void InitializeArrayConstructorDescriptor( | 119 static void InitializeArrayConstructorDescriptor( |
115 CodeStubInterfaceDescriptor* descriptor, | 120 CodeStubInterfaceDescriptor* descriptor, |
116 int constant_stack_parameter_count) { | 121 int constant_stack_parameter_count) { |
117 // register state | 122 // register state |
118 // cp -- context | 123 // cp -- context |
119 // r0 -- number of arguments | 124 // r3 -- number of arguments |
120 // r1 -- function | 125 // r4 -- function |
121 // r2 -- allocation site with elements kind | 126 // r5 -- allocation site with elements kind |
122 Address deopt_handler = Runtime::FunctionForId( | 127 Address deopt_handler = Runtime::FunctionForId( |
123 Runtime::kArrayConstructor)->entry; | 128 Runtime::kArrayConstructor)->entry; |
124 | 129 |
125 if (constant_stack_parameter_count == 0) { | 130 if (constant_stack_parameter_count == 0) { |
126 Register registers[] = { cp, r1, r2 }; | 131 Register registers[] = { cp, r4, r5 }; |
127 descriptor->Initialize(ARRAY_SIZE(registers), registers, | 132 descriptor->Initialize(ARRAY_SIZE(registers), registers, |
128 deopt_handler, | 133 deopt_handler, |
129 NULL, | 134 NULL, |
130 constant_stack_parameter_count, | 135 constant_stack_parameter_count, |
131 JS_FUNCTION_STUB_MODE); | 136 JS_FUNCTION_STUB_MODE); |
132 } else { | 137 } else { |
133 // stack param count needs (constructor pointer, and single argument) | 138 // stack param count needs (constructor pointer, and single argument) |
134 Register registers[] = { cp, r1, r2, r0 }; | 139 Register registers[] = { cp, r4, r5, r3 }; |
135 Representation representations[] = { | 140 Representation representations[] = { |
136 Representation::Tagged(), | 141 Representation::Tagged(), |
137 Representation::Tagged(), | 142 Representation::Tagged(), |
138 Representation::Tagged(), | 143 Representation::Tagged(), |
139 Representation::Integer32() }; | 144 Representation::Integer32() }; |
140 descriptor->Initialize(ARRAY_SIZE(registers), registers, | 145 descriptor->Initialize(ARRAY_SIZE(registers), registers, |
141 r0, | 146 r3, |
142 deopt_handler, | 147 deopt_handler, |
143 representations, | 148 representations, |
144 constant_stack_parameter_count, | 149 constant_stack_parameter_count, |
145 JS_FUNCTION_STUB_MODE, | 150 JS_FUNCTION_STUB_MODE, |
146 PASS_ARGUMENTS); | 151 PASS_ARGUMENTS); |
147 } | 152 } |
148 } | 153 } |
149 | 154 |
150 | 155 |
151 static void InitializeInternalArrayConstructorDescriptor( | 156 static void InitializeInternalArrayConstructorDescriptor( |
152 CodeStubInterfaceDescriptor* descriptor, | 157 CodeStubInterfaceDescriptor* descriptor, |
153 int constant_stack_parameter_count) { | 158 int constant_stack_parameter_count) { |
154 // register state | 159 // register state |
155 // cp -- context | 160 // cp -- context |
156 // r0 -- number of arguments | 161 // r3 -- number of arguments |
157 // r1 -- constructor function | 162 // r4 -- constructor function |
158 Address deopt_handler = Runtime::FunctionForId( | 163 Address deopt_handler = Runtime::FunctionForId( |
159 Runtime::kInternalArrayConstructor)->entry; | 164 Runtime::kInternalArrayConstructor)->entry; |
160 | 165 |
161 if (constant_stack_parameter_count == 0) { | 166 if (constant_stack_parameter_count == 0) { |
162 Register registers[] = { cp, r1 }; | 167 Register registers[] = { cp, r4 }; |
163 descriptor->Initialize(ARRAY_SIZE(registers), registers, | 168 descriptor->Initialize(ARRAY_SIZE(registers), registers, |
164 deopt_handler, | 169 deopt_handler, |
165 NULL, | 170 NULL, |
166 constant_stack_parameter_count, | 171 constant_stack_parameter_count, |
167 JS_FUNCTION_STUB_MODE); | 172 JS_FUNCTION_STUB_MODE); |
168 } else { | 173 } else { |
169 // stack param count needs (constructor pointer, and single argument) | 174 // stack param count needs (constructor pointer, and single argument) |
170 Register registers[] = { cp, r1, r0 }; | 175 Register registers[] = { cp, r4, r3 }; |
171 Representation representations[] = { | 176 Representation representations[] = { |
172 Representation::Tagged(), | 177 Representation::Tagged(), |
173 Representation::Tagged(), | 178 Representation::Tagged(), |
174 Representation::Integer32() }; | 179 Representation::Integer32() }; |
175 descriptor->Initialize(ARRAY_SIZE(registers), registers, | 180 descriptor->Initialize(ARRAY_SIZE(registers), registers, |
176 r0, | 181 r3, |
177 deopt_handler, | 182 deopt_handler, |
178 representations, | 183 representations, |
179 constant_stack_parameter_count, | 184 constant_stack_parameter_count, |
180 JS_FUNCTION_STUB_MODE, | 185 JS_FUNCTION_STUB_MODE, |
181 PASS_ARGUMENTS); | 186 PASS_ARGUMENTS); |
182 } | 187 } |
183 } | 188 } |
184 | 189 |
185 | 190 |
186 void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor( | 191 void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor( |
187 CodeStubInterfaceDescriptor* descriptor) { | 192 CodeStubInterfaceDescriptor* descriptor) { |
188 InitializeArrayConstructorDescriptor(descriptor, 0); | 193 InitializeArrayConstructorDescriptor(descriptor, 0); |
189 } | 194 } |
190 | 195 |
191 | 196 |
192 void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor( | 197 void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor( |
193 CodeStubInterfaceDescriptor* descriptor) { | 198 CodeStubInterfaceDescriptor* descriptor) { |
194 InitializeArrayConstructorDescriptor(descriptor, 1); | 199 InitializeArrayConstructorDescriptor(descriptor, 1); |
195 } | 200 } |
196 | 201 |
197 | 202 |
198 void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor( | 203 void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor( |
199 CodeStubInterfaceDescriptor* descriptor) { | 204 CodeStubInterfaceDescriptor* descriptor) { |
200 InitializeArrayConstructorDescriptor(descriptor, -1); | 205 InitializeArrayConstructorDescriptor(descriptor, -1); |
201 } | 206 } |
202 | 207 |
203 | 208 |
204 void ToBooleanStub::InitializeInterfaceDescriptor( | 209 void ToBooleanStub::InitializeInterfaceDescriptor( |
205 CodeStubInterfaceDescriptor* descriptor) { | 210 CodeStubInterfaceDescriptor* descriptor) { |
206 Register registers[] = { cp, r0 }; | 211 Register registers[] = { cp, r3 }; |
207 descriptor->Initialize(ARRAY_SIZE(registers), registers, | 212 descriptor->Initialize(ARRAY_SIZE(registers), registers, |
208 FUNCTION_ADDR(ToBooleanIC_Miss)); | 213 FUNCTION_ADDR(ToBooleanIC_Miss)); |
209 descriptor->SetMissHandler( | 214 descriptor->SetMissHandler( |
210 ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate())); | 215 ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate())); |
211 } | 216 } |
212 | 217 |
213 | 218 |
214 void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor( | 219 void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor( |
215 CodeStubInterfaceDescriptor* descriptor) { | 220 CodeStubInterfaceDescriptor* descriptor) { |
216 InitializeInternalArrayConstructorDescriptor(descriptor, 0); | 221 InitializeInternalArrayConstructorDescriptor(descriptor, 0); |
217 } | 222 } |
218 | 223 |
219 | 224 |
220 void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor( | 225 void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor( |
221 CodeStubInterfaceDescriptor* descriptor) { | 226 CodeStubInterfaceDescriptor* descriptor) { |
222 InitializeInternalArrayConstructorDescriptor(descriptor, 1); | 227 InitializeInternalArrayConstructorDescriptor(descriptor, 1); |
223 } | 228 } |
224 | 229 |
225 | 230 |
226 void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor( | 231 void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor( |
227 CodeStubInterfaceDescriptor* descriptor) { | 232 CodeStubInterfaceDescriptor* descriptor) { |
228 InitializeInternalArrayConstructorDescriptor(descriptor, -1); | 233 InitializeInternalArrayConstructorDescriptor(descriptor, -1); |
229 } | 234 } |
230 | 235 |
231 | 236 |
232 void BinaryOpICStub::InitializeInterfaceDescriptor( | 237 void BinaryOpICStub::InitializeInterfaceDescriptor( |
233 CodeStubInterfaceDescriptor* descriptor) { | 238 CodeStubInterfaceDescriptor* descriptor) { |
234 Register registers[] = { cp, r1, r0 }; | 239 Register registers[] = { cp, r4, r3 }; |
235 descriptor->Initialize(ARRAY_SIZE(registers), registers, | 240 descriptor->Initialize(ARRAY_SIZE(registers), registers, |
236 FUNCTION_ADDR(BinaryOpIC_Miss)); | 241 FUNCTION_ADDR(BinaryOpIC_Miss)); |
237 descriptor->SetMissHandler( | 242 descriptor->SetMissHandler( |
238 ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate())); | 243 ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate())); |
239 } | 244 } |
240 | 245 |
241 | 246 |
242 void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor( | 247 void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor( |
243 CodeStubInterfaceDescriptor* descriptor) { | 248 CodeStubInterfaceDescriptor* descriptor) { |
244 Register registers[] = { cp, r2, r1, r0 }; | 249 Register registers[] = { cp, r5, r4, r3 }; |
245 descriptor->Initialize(ARRAY_SIZE(registers), registers, | 250 descriptor->Initialize(ARRAY_SIZE(registers), registers, |
246 FUNCTION_ADDR(BinaryOpIC_MissWithAllocationSite)); | 251 FUNCTION_ADDR(BinaryOpIC_MissWithAllocationSite)); |
247 } | 252 } |
248 | 253 |
249 | 254 |
250 void StringAddStub::InitializeInterfaceDescriptor( | 255 void StringAddStub::InitializeInterfaceDescriptor( |
251 CodeStubInterfaceDescriptor* descriptor) { | 256 CodeStubInterfaceDescriptor* descriptor) { |
252 Register registers[] = { cp, r1, r0 }; | 257 Register registers[] = { cp, r4, r3 }; |
253 descriptor->Initialize( | 258 descriptor->Initialize( |
254 ARRAY_SIZE(registers), registers, | 259 ARRAY_SIZE(registers), registers, |
255 Runtime::FunctionForId(Runtime::kStringAdd)->entry); | 260 Runtime::FunctionForId(Runtime::kStringAdd)->entry); |
256 } | 261 } |
257 | 262 |
258 | 263 |
259 void CallDescriptors::InitializeForIsolate(Isolate* isolate) { | 264 void CallDescriptors::InitializeForIsolate(Isolate* isolate) { |
260 static PlatformInterfaceDescriptor default_descriptor = | |
261 PlatformInterfaceDescriptor(CAN_INLINE_TARGET_ADDRESS); | |
262 | |
263 static PlatformInterfaceDescriptor noInlineDescriptor = | |
264 PlatformInterfaceDescriptor(NEVER_INLINE_TARGET_ADDRESS); | |
265 | |
266 { | 265 { |
267 CallInterfaceDescriptor* descriptor = | 266 CallInterfaceDescriptor* descriptor = |
268 isolate->call_descriptor(Isolate::ArgumentAdaptorCall); | 267 isolate->call_descriptor(Isolate::ArgumentAdaptorCall); |
269 Register registers[] = { cp, // context | 268 Register registers[] = { cp, // context |
270 r1, // JSFunction | 269 r4, // JSFunction |
271 r0, // actual number of arguments | 270 r3, // actual number of arguments |
272 r2, // expected number of arguments | 271 r5, // expected number of arguments |
273 }; | 272 }; |
274 Representation representations[] = { | 273 Representation representations[] = { |
275 Representation::Tagged(), // context | 274 Representation::Tagged(), // context |
276 Representation::Tagged(), // JSFunction | 275 Representation::Tagged(), // JSFunction |
277 Representation::Integer32(), // actual number of arguments | 276 Representation::Integer32(), // actual number of arguments |
278 Representation::Integer32(), // expected number of arguments | 277 Representation::Integer32(), // expected number of arguments |
279 }; | 278 }; |
280 descriptor->Initialize(ARRAY_SIZE(registers), registers, | 279 descriptor->Initialize(ARRAY_SIZE(registers), registers, representations); |
281 representations, &default_descriptor); | |
282 } | 280 } |
283 { | 281 { |
284 CallInterfaceDescriptor* descriptor = | 282 CallInterfaceDescriptor* descriptor = |
285 isolate->call_descriptor(Isolate::KeyedCall); | 283 isolate->call_descriptor(Isolate::KeyedCall); |
286 Register registers[] = { cp, // context | 284 Register registers[] = { cp, // context |
287 r2, // key | 285 r5, // key |
288 }; | 286 }; |
289 Representation representations[] = { | 287 Representation representations[] = { |
290 Representation::Tagged(), // context | 288 Representation::Tagged(), // context |
291 Representation::Tagged(), // key | 289 Representation::Tagged(), // key |
292 }; | 290 }; |
293 descriptor->Initialize(ARRAY_SIZE(registers), registers, | 291 descriptor->Initialize(ARRAY_SIZE(registers), registers, representations); |
294 representations, &noInlineDescriptor); | |
295 } | 292 } |
296 { | 293 { |
297 CallInterfaceDescriptor* descriptor = | 294 CallInterfaceDescriptor* descriptor = |
298 isolate->call_descriptor(Isolate::NamedCall); | 295 isolate->call_descriptor(Isolate::NamedCall); |
299 Register registers[] = { cp, // context | 296 Register registers[] = { cp, // context |
300 r2, // name | 297 r5, // name |
301 }; | 298 }; |
302 Representation representations[] = { | 299 Representation representations[] = { |
303 Representation::Tagged(), // context | 300 Representation::Tagged(), // context |
304 Representation::Tagged(), // name | 301 Representation::Tagged(), // name |
305 }; | 302 }; |
306 descriptor->Initialize(ARRAY_SIZE(registers), registers, | 303 descriptor->Initialize(ARRAY_SIZE(registers), registers, representations); |
307 representations, &noInlineDescriptor); | |
308 } | 304 } |
309 { | 305 { |
310 CallInterfaceDescriptor* descriptor = | 306 CallInterfaceDescriptor* descriptor = |
311 isolate->call_descriptor(Isolate::CallHandler); | 307 isolate->call_descriptor(Isolate::CallHandler); |
312 Register registers[] = { cp, // context | 308 Register registers[] = { cp, // context |
313 r0, // receiver | 309 r3, // receiver |
314 }; | 310 }; |
315 Representation representations[] = { | 311 Representation representations[] = { |
316 Representation::Tagged(), // context | 312 Representation::Tagged(), // context |
317 Representation::Tagged(), // receiver | 313 Representation::Tagged(), // receiver |
318 }; | 314 }; |
319 descriptor->Initialize(ARRAY_SIZE(registers), registers, | 315 descriptor->Initialize(ARRAY_SIZE(registers), registers, representations); |
320 representations, &default_descriptor); | |
321 } | 316 } |
322 { | 317 { |
323 CallInterfaceDescriptor* descriptor = | 318 CallInterfaceDescriptor* descriptor = |
324 isolate->call_descriptor(Isolate::ApiFunctionCall); | 319 isolate->call_descriptor(Isolate::ApiFunctionCall); |
325 Register registers[] = { cp, // context | 320 Register registers[] = { cp, // context |
326 r0, // callee | 321 r3, // callee |
327 r4, // call_data | 322 r7, // call_data |
328 r2, // holder | 323 r5, // holder |
329 r1, // api_function_address | 324 r4, // api_function_address |
330 }; | 325 }; |
331 Representation representations[] = { | 326 Representation representations[] = { |
332 Representation::Tagged(), // context | 327 Representation::Tagged(), // context |
333 Representation::Tagged(), // callee | 328 Representation::Tagged(), // callee |
334 Representation::Tagged(), // call_data | 329 Representation::Tagged(), // call_data |
335 Representation::Tagged(), // holder | 330 Representation::Tagged(), // holder |
336 Representation::External(), // api_function_address | 331 Representation::External(), // api_function_address |
337 }; | 332 }; |
338 descriptor->Initialize(ARRAY_SIZE(registers), registers, | 333 descriptor->Initialize(ARRAY_SIZE(registers), registers, representations); |
339 representations, &default_descriptor); | |
340 } | 334 } |
341 } | 335 } |
342 | 336 |
343 | 337 |
344 #define __ ACCESS_MASM(masm) | 338 #define __ ACCESS_MASM(masm) |
345 | 339 |
346 | 340 |
347 static void EmitIdenticalObjectComparison(MacroAssembler* masm, | 341 static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
348 Label* slow, | 342 Label* slow, |
349 Condition cond); | 343 Condition cond); |
(...skipping 11 matching lines...) Expand all Loading... |
361 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) { | 355 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) { |
362 // Update the static counter each time a new code stub is generated. | 356 // Update the static counter each time a new code stub is generated. |
363 isolate()->counters()->code_stubs()->Increment(); | 357 isolate()->counters()->code_stubs()->Increment(); |
364 | 358 |
365 CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor(); | 359 CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor(); |
366 int param_count = descriptor->GetEnvironmentParameterCount(); | 360 int param_count = descriptor->GetEnvironmentParameterCount(); |
367 { | 361 { |
368 // Call the runtime system in a fresh internal frame. | 362 // Call the runtime system in a fresh internal frame. |
369 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); | 363 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
370 ASSERT(param_count == 0 || | 364 ASSERT(param_count == 0 || |
371 r0.is(descriptor->GetEnvironmentParameterRegister( | 365 r3.is(descriptor->GetEnvironmentParameterRegister( |
372 param_count - 1))); | 366 param_count - 1))); |
373 // Push arguments | 367 // Push arguments |
374 for (int i = 0; i < param_count; ++i) { | 368 for (int i = 0; i < param_count; ++i) { |
375 __ push(descriptor->GetEnvironmentParameterRegister(i)); | 369 __ push(descriptor->GetEnvironmentParameterRegister(i)); |
376 } | 370 } |
377 ExternalReference miss = descriptor->miss_handler(); | 371 ExternalReference miss = descriptor->miss_handler(); |
378 __ CallExternalReference(miss, param_count); | 372 __ CallExternalReference(miss, param_count); |
379 } | 373 } |
380 | 374 |
381 __ Ret(); | 375 __ Ret(); |
382 } | 376 } |
383 | 377 |
384 | 378 |
| 379 #if 0 // roohack unused? |
385 // Takes a Smi and converts to an IEEE 64 bit floating point value in two | 380 // Takes a Smi and converts to an IEEE 64 bit floating point value in two |
386 // registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and | 381 // registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and |
387 // 52 fraction bits (20 in the first word, 32 in the second). Zeros is a | 382 // 52 fraction bits (20 in the first word, 32 in the second). Zeros is a |
388 // scratch register. Destroys the source register. No GC occurs during this | 383 // scratch register. Destroys the source register. No GC occurs during this |
389 // stub so you don't have to set up the frame. | 384 // stub so you don't have to set up the frame. |
390 class ConvertToDoubleStub : public PlatformCodeStub { | 385 class ConvertToDoubleStub : public PlatformCodeStub { |
391 public: | 386 public: |
392 ConvertToDoubleStub(Isolate* isolate, | 387 ConvertToDoubleStub(Isolate* isolate, |
393 Register result_reg_1, | 388 Register result_reg_1, |
394 Register result_reg_2, | 389 Register result_reg_2, |
(...skipping 73 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
468 // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0. | 463 // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0. |
469 __ mov(source_, Operand(source_, LSL, zeros_)); | 464 __ mov(source_, Operand(source_, LSL, zeros_)); |
470 // Compute lower part of fraction (last 12 bits). | 465 // Compute lower part of fraction (last 12 bits). |
471 __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord)); | 466 __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord)); |
472 // And the top (top 20 bits). | 467 // And the top (top 20 bits). |
473 __ orr(exponent, | 468 __ orr(exponent, |
474 exponent, | 469 exponent, |
475 Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord)); | 470 Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord)); |
476 __ Ret(); | 471 __ Ret(); |
477 } | 472 } |
| 473 #endif // roohack |
478 | 474 |
479 | 475 |
480 void DoubleToIStub::Generate(MacroAssembler* masm) { | 476 void DoubleToIStub::Generate(MacroAssembler* masm) { |
481 Label out_of_range, only_low, negate, done; | 477 Label out_of_range, only_low, negate, done, fastpath_done; |
482 Register input_reg = source(); | 478 Register input_reg = source(); |
483 Register result_reg = destination(); | 479 Register result_reg = destination(); |
484 ASSERT(is_truncating()); | 480 ASSERT(is_truncating()); |
485 | 481 |
486 int double_offset = offset(); | 482 int double_offset = offset(); |
487 // Account for saved regs if input is sp. | |
488 if (input_reg.is(sp)) double_offset += 3 * kPointerSize; | |
489 | 483 |
| 484 // Immediate values for this stub fit in instructions, so it's safe to use ip. |
490 Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg); | 485 Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg); |
491 Register scratch_low = | 486 Register scratch_low = |
492 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch); | 487 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch); |
493 Register scratch_high = | 488 Register scratch_high = |
494 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low); | 489 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low); |
495 LowDwVfpRegister double_scratch = kScratchDoubleReg; | 490 DoubleRegister double_scratch = kScratchDoubleReg; |
496 | 491 |
497 __ Push(scratch_high, scratch_low, scratch); | 492 __ push(scratch); |
| 493 // Account for saved regs if input is sp. |
| 494 if (input_reg.is(sp)) double_offset += kPointerSize; |
498 | 495 |
499 if (!skip_fastpath()) { | 496 if (!skip_fastpath()) { |
500 // Load double input. | 497 // Load double input. |
501 __ vldr(double_scratch, MemOperand(input_reg, double_offset)); | 498 __ lfd(double_scratch, MemOperand(input_reg, double_offset)); |
502 __ vmov(scratch_low, scratch_high, double_scratch); | |
503 | 499 |
504 // Do fast-path convert from double to int. | 500 // Do fast-path convert from double to int. |
505 __ vcvt_s32_f64(double_scratch.low(), double_scratch); | 501 __ ConvertDoubleToInt64(double_scratch, result_reg, |
506 __ vmov(result_reg, double_scratch.low()); | 502 #if !V8_TARGET_ARCH_PPC64 |
| 503 scratch, |
| 504 #endif |
| 505 d0); |
507 | 506 |
508 // If result is not saturated (0x7fffffff or 0x80000000), we are done. | 507 // Test for overflow |
509 __ sub(scratch, result_reg, Operand(1)); | 508 #if V8_TARGET_ARCH_PPC64 |
510 __ cmp(scratch, Operand(0x7ffffffe)); | 509 __ TestIfInt32(result_reg, scratch, r0); |
511 __ b(lt, &done); | 510 #else |
512 } else { | 511 __ TestIfInt32(scratch, result_reg, r0); |
513 // We've already done MacroAssembler::TryFastTruncatedDoubleToILoad, so we | 512 #endif |
514 // know exponent > 31, so we can skip the vcvt_s32_f64 which will saturate. | 513 __ beq(&fastpath_done); |
515 if (double_offset == 0) { | |
516 __ ldm(ia, input_reg, scratch_low.bit() | scratch_high.bit()); | |
517 } else { | |
518 __ ldr(scratch_low, MemOperand(input_reg, double_offset)); | |
519 __ ldr(scratch_high, MemOperand(input_reg, double_offset + kIntSize)); | |
520 } | |
521 } | 514 } |
522 | 515 |
523 __ Ubfx(scratch, scratch_high, | 516 __ Push(scratch_high, scratch_low); |
524 HeapNumber::kExponentShift, HeapNumber::kExponentBits); | 517 // Account for saved regs if input is sp. |
| 518 if (input_reg.is(sp)) double_offset += 2 * kPointerSize; |
| 519 |
| 520 __ lwz(scratch_high, MemOperand(input_reg, double_offset + |
| 521 Register::kExponentOffset)); |
| 522 __ lwz(scratch_low, MemOperand(input_reg, double_offset + |
| 523 Register::kMantissaOffset)); |
| 524 |
| 525 __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask); |
525 // Load scratch with exponent - 1. This is faster than loading | 526 // Load scratch with exponent - 1. This is faster than loading |
526 // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value. | 527 // with exponent because Bias + 1 = 1024 which is a *PPC* immediate value. |
527 STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024); | 528 STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024); |
528 __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); | 529 __ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); |
529 // If exponent is greater than or equal to 84, the 32 less significant | 530 // If exponent is greater than or equal to 84, the 32 less significant |
530 // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), | 531 // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), |
531 // the result is 0. | 532 // the result is 0. |
532 // Compare exponent with 84 (compare exponent - 1 with 83). | 533 // Compare exponent with 84 (compare exponent - 1 with 83). |
533 __ cmp(scratch, Operand(83)); | 534 __ cmpi(scratch, Operand(83)); |
534 __ b(ge, &out_of_range); | 535 __ bge(&out_of_range); |
535 | 536 |
536 // If we reach this code, 31 <= exponent <= 83. | 537 // If we reach this code, 31 <= exponent <= 83. |
537 // So, we don't have to handle cases where 0 <= exponent <= 20 for | 538 // So, we don't have to handle cases where 0 <= exponent <= 20 for |
538 // which we would need to shift right the high part of the mantissa. | 539 // which we would need to shift right the high part of the mantissa. |
539 // Scratch contains exponent - 1. | 540 // Scratch contains exponent - 1. |
540 // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). | 541 // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). |
541 __ rsb(scratch, scratch, Operand(51), SetCC); | 542 __ subfic(scratch, scratch, Operand(51)); |
542 __ b(ls, &only_low); | 543 __ cmpi(scratch, Operand::Zero()); |
| 544 __ ble(&only_low); |
543 // 21 <= exponent <= 51, shift scratch_low and scratch_high | 545 // 21 <= exponent <= 51, shift scratch_low and scratch_high |
544 // to generate the result. | 546 // to generate the result. |
545 __ mov(scratch_low, Operand(scratch_low, LSR, scratch)); | 547 __ srw(scratch_low, scratch_low, scratch); |
546 // Scratch contains: 52 - exponent. | 548 // Scratch contains: 52 - exponent. |
547 // We needs: exponent - 20. | 549 // We needs: exponent - 20. |
548 // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. | 550 // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. |
549 __ rsb(scratch, scratch, Operand(32)); | 551 __ subfic(scratch, scratch, Operand(32)); |
550 __ Ubfx(result_reg, scratch_high, | 552 __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask); |
551 0, HeapNumber::kMantissaBitsInTopWord); | |
552 // Set the implicit 1 before the mantissa part in scratch_high. | 553 // Set the implicit 1 before the mantissa part in scratch_high. |
553 __ orr(result_reg, result_reg, | 554 STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16); |
554 Operand(1 << HeapNumber::kMantissaBitsInTopWord)); | 555 __ oris(result_reg, result_reg, |
555 __ orr(result_reg, scratch_low, Operand(result_reg, LSL, scratch)); | 556 Operand(1 << ((HeapNumber::kMantissaBitsInTopWord) - 16))); |
| 557 __ slw(r0, result_reg, scratch); |
| 558 __ orx(result_reg, scratch_low, r0); |
556 __ b(&negate); | 559 __ b(&negate); |
557 | 560 |
558 __ bind(&out_of_range); | 561 __ bind(&out_of_range); |
559 __ mov(result_reg, Operand::Zero()); | 562 __ mov(result_reg, Operand::Zero()); |
560 __ b(&done); | 563 __ b(&done); |
561 | 564 |
562 __ bind(&only_low); | 565 __ bind(&only_low); |
563 // 52 <= exponent <= 83, shift only scratch_low. | 566 // 52 <= exponent <= 83, shift only scratch_low. |
564 // On entry, scratch contains: 52 - exponent. | 567 // On entry, scratch contains: 52 - exponent. |
565 __ rsb(scratch, scratch, Operand::Zero()); | 568 __ neg(scratch, scratch); |
566 __ mov(result_reg, Operand(scratch_low, LSL, scratch)); | 569 __ slw(result_reg, scratch_low, scratch); |
567 | 570 |
568 __ bind(&negate); | 571 __ bind(&negate); |
569 // If input was positive, scratch_high ASR 31 equals 0 and | 572 // If input was positive, scratch_high ASR 31 equals 0 and |
570 // scratch_high LSR 31 equals zero. | 573 // scratch_high LSR 31 equals zero. |
571 // New result = (result eor 0) + 0 = result. | 574 // New result = (result eor 0) + 0 = result. |
572 // If the input was negative, we have to negate the result. | 575 // If the input was negative, we have to negate the result. |
573 // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1. | 576 // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1. |
574 // New result = (result eor 0xffffffff) + 1 = 0 - result. | 577 // New result = (result eor 0xffffffff) + 1 = 0 - result. |
575 __ eor(result_reg, result_reg, Operand(scratch_high, ASR, 31)); | 578 __ srawi(r0, scratch_high, 31); |
576 __ add(result_reg, result_reg, Operand(scratch_high, LSR, 31)); | 579 #if V8_TARGET_ARCH_PPC64 |
| 580 __ srdi(r0, r0, Operand(32)); |
| 581 #endif |
| 582 __ xor_(result_reg, result_reg, r0); |
| 583 __ srwi(r0, scratch_high, Operand(31)); |
| 584 __ add(result_reg, result_reg, r0); |
577 | 585 |
578 __ bind(&done); | 586 __ bind(&done); |
| 587 __ Pop(scratch_high, scratch_low); |
579 | 588 |
580 __ Pop(scratch_high, scratch_low, scratch); | 589 __ bind(&fastpath_done); |
| 590 __ pop(scratch); |
| 591 |
581 __ Ret(); | 592 __ Ret(); |
582 } | 593 } |
583 | 594 |
584 | 595 |
| 596 #if 0 // roohack unused? |
585 void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime( | 597 void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime( |
586 Isolate* isolate) { | 598 Isolate* isolate) { |
587 WriteInt32ToHeapNumberStub stub1(isolate, r1, r0, r2); | 599 WriteInt32ToHeapNumberStub stub1(isolate, r4, r3, r5); |
588 WriteInt32ToHeapNumberStub stub2(isolate, r2, r0, r3); | 600 WriteInt32ToHeapNumberStub stub2(isolate, r5, r3, r6); |
589 stub1.GetCode(); | 601 stub1.GetCode(); |
590 stub2.GetCode(); | 602 stub2.GetCode(); |
591 } | 603 } |
592 | 604 |
593 | 605 |
594 // See comment for class. | 606 // See comment for class. |
595 void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) { | 607 void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) { |
596 Label max_negative_int; | 608 Label max_negative_int; |
597 // the_int_ has the answer which is a signed int32 but not a Smi. | 609 // the_int_ has the answer which is a signed int32 but not a Smi. |
598 // We test for the special value that has a different exponent. This test | 610 // We test for the special value that has a different exponent. This test |
(...skipping 29 matching lines...) Expand all Loading... |
628 // a double because it uses a sign bit instead of using two's complement. | 640 // a double because it uses a sign bit instead of using two's complement. |
629 // The actual mantissa bits stored are all 0 because the implicit most | 641 // The actual mantissa bits stored are all 0 because the implicit most |
630 // significant 1 bit is not stored. | 642 // significant 1 bit is not stored. |
631 non_smi_exponent += 1 << HeapNumber::kExponentShift; | 643 non_smi_exponent += 1 << HeapNumber::kExponentShift; |
632 __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent)); | 644 __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent)); |
633 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset)); | 645 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset)); |
634 __ mov(ip, Operand::Zero()); | 646 __ mov(ip, Operand::Zero()); |
635 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset)); | 647 __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset)); |
636 __ Ret(); | 648 __ Ret(); |
637 } | 649 } |
638 | 650 #endif // roohack |
639 | 651 |
640 // Handle the case where the lhs and rhs are the same object. | 652 // Handle the case where the lhs and rhs are the same object. |
641 // Equality is almost reflexive (everything but NaN), so this is a test | 653 // Equality is almost reflexive (everything but NaN), so this is a test |
642 // for "identity and not NaN". | 654 // for "identity and not NaN". |
643 static void EmitIdenticalObjectComparison(MacroAssembler* masm, | 655 static void EmitIdenticalObjectComparison(MacroAssembler* masm, |
644 Label* slow, | 656 Label* slow, |
645 Condition cond) { | 657 Condition cond) { |
646 Label not_identical; | 658 Label not_identical; |
647 Label heap_number, return_equal; | 659 Label heap_number, return_equal; |
648 __ cmp(r0, r1); | 660 __ cmp(r3, r4); |
649 __ b(ne, ¬_identical); | 661 __ bne(¬_identical); |
650 | 662 |
651 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), | 663 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), |
652 // so we do the second best thing - test it ourselves. | 664 // so we do the second best thing - test it ourselves. |
653 // They are both equal and they are not both Smis so both of them are not | 665 // They are both equal and they are not both Smis so both of them are not |
654 // Smis. If it's not a heap number, then return equal. | 666 // Smis. If it's not a heap number, then return equal. |
655 if (cond == lt || cond == gt) { | 667 if (cond == lt || cond == gt) { |
656 __ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE); | 668 __ CompareObjectType(r3, r7, r7, FIRST_SPEC_OBJECT_TYPE); |
657 __ b(ge, slow); | 669 __ bge(slow); |
658 } else { | 670 } else { |
659 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); | 671 __ CompareObjectType(r3, r7, r7, HEAP_NUMBER_TYPE); |
660 __ b(eq, &heap_number); | 672 __ beq(&heap_number); |
661 // Comparing JS objects with <=, >= is complicated. | 673 // Comparing JS objects with <=, >= is complicated. |
662 if (cond != eq) { | 674 if (cond != eq) { |
663 __ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE)); | 675 __ cmpi(r7, Operand(FIRST_SPEC_OBJECT_TYPE)); |
664 __ b(ge, slow); | 676 __ bge(slow); |
665 // Normally here we fall through to return_equal, but undefined is | 677 // Normally here we fall through to return_equal, but undefined is |
666 // special: (undefined == undefined) == true, but | 678 // special: (undefined == undefined) == true, but |
667 // (undefined <= undefined) == false! See ECMAScript 11.8.5. | 679 // (undefined <= undefined) == false! See ECMAScript 11.8.5. |
668 if (cond == le || cond == ge) { | 680 if (cond == le || cond == ge) { |
669 __ cmp(r4, Operand(ODDBALL_TYPE)); | 681 __ cmpi(r7, Operand(ODDBALL_TYPE)); |
670 __ b(ne, &return_equal); | 682 __ bne(&return_equal); |
671 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); | 683 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); |
672 __ cmp(r0, r2); | 684 __ cmp(r3, r5); |
673 __ b(ne, &return_equal); | 685 __ bne(&return_equal); |
674 if (cond == le) { | 686 if (cond == le) { |
675 // undefined <= undefined should fail. | 687 // undefined <= undefined should fail. |
676 __ mov(r0, Operand(GREATER)); | 688 __ li(r3, Operand(GREATER)); |
677 } else { | 689 } else { |
678 // undefined >= undefined should fail. | 690 // undefined >= undefined should fail. |
679 __ mov(r0, Operand(LESS)); | 691 __ li(r3, Operand(LESS)); |
680 } | 692 } |
681 __ Ret(); | 693 __ Ret(); |
682 } | 694 } |
683 } | 695 } |
684 } | 696 } |
685 | 697 |
686 __ bind(&return_equal); | 698 __ bind(&return_equal); |
687 if (cond == lt) { | 699 if (cond == lt) { |
688 __ mov(r0, Operand(GREATER)); // Things aren't less than themselves. | 700 __ li(r3, Operand(GREATER)); // Things aren't less than themselves. |
689 } else if (cond == gt) { | 701 } else if (cond == gt) { |
690 __ mov(r0, Operand(LESS)); // Things aren't greater than themselves. | 702 __ li(r3, Operand(LESS)); // Things aren't greater than themselves. |
691 } else { | 703 } else { |
692 __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves. | 704 __ li(r3, Operand(EQUAL)); // Things are <=, >=, ==, === themselves. |
693 } | 705 } |
694 __ Ret(); | 706 __ Ret(); |
695 | 707 |
696 // For less and greater we don't have to check for NaN since the result of | 708 // For less and greater we don't have to check for NaN since the result of |
697 // x < x is false regardless. For the others here is some code to check | 709 // x < x is false regardless. For the others here is some code to check |
698 // for NaN. | 710 // for NaN. |
699 if (cond != lt && cond != gt) { | 711 if (cond != lt && cond != gt) { |
700 __ bind(&heap_number); | 712 __ bind(&heap_number); |
701 // It is a heap number, so return non-equal if it's NaN and equal if it's | 713 // It is a heap number, so return non-equal if it's NaN and equal if it's |
702 // not NaN. | 714 // not NaN. |
703 | 715 |
704 // The representation of NaN values has all exponent bits (52..62) set, | 716 // The representation of NaN values has all exponent bits (52..62) set, |
705 // and not all mantissa bits (0..51) clear. | 717 // and not all mantissa bits (0..51) clear. |
706 // Read top bits of double representation (second word of value). | 718 // Read top bits of double representation (second word of value). |
707 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); | 719 __ lwz(r5, FieldMemOperand(r3, HeapNumber::kExponentOffset)); |
708 // Test that exponent bits are all set. | 720 // Test that exponent bits are all set. |
709 __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits); | 721 STATIC_ASSERT(HeapNumber::kExponentMask == 0x7ff00000u); |
710 // NaNs have all-one exponents so they sign extend to -1. | 722 __ ExtractBitMask(r6, r5, HeapNumber::kExponentMask); |
711 __ cmp(r3, Operand(-1)); | 723 __ cmpli(r6, Operand(0x7ff)); |
712 __ b(ne, &return_equal); | 724 __ bne(&return_equal); |
713 | 725 |
714 // Shift out flag and all exponent bits, retaining only mantissa. | 726 // Shift out flag and all exponent bits, retaining only mantissa. |
715 __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord)); | 727 __ slwi(r5, r5, Operand(HeapNumber::kNonMantissaBitsInTopWord)); |
716 // Or with all low-bits of mantissa. | 728 // Or with all low-bits of mantissa. |
717 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); | 729 __ lwz(r6, FieldMemOperand(r3, HeapNumber::kMantissaOffset)); |
718 __ orr(r0, r3, Operand(r2), SetCC); | 730 __ orx(r3, r6, r5); |
719 // For equal we already have the right value in r0: Return zero (equal) | 731 __ cmpi(r3, Operand::Zero()); |
| 732 // For equal we already have the right value in r3: Return zero (equal) |
720 // if all bits in mantissa are zero (it's an Infinity) and non-zero if | 733 // if all bits in mantissa are zero (it's an Infinity) and non-zero if |
721 // not (it's a NaN). For <= and >= we need to load r0 with the failing | 734 // not (it's a NaN). For <= and >= we need to load r0 with the failing |
722 // value if it's a NaN. | 735 // value if it's a NaN. |
723 if (cond != eq) { | 736 if (cond != eq) { |
| 737 Label not_equal; |
| 738 __ bne(¬_equal); |
724 // All-zero means Infinity means equal. | 739 // All-zero means Infinity means equal. |
725 __ Ret(eq); | 740 __ Ret(); |
| 741 __ bind(¬_equal); |
726 if (cond == le) { | 742 if (cond == le) { |
727 __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail. | 743 __ li(r3, Operand(GREATER)); // NaN <= NaN should fail. |
728 } else { | 744 } else { |
729 __ mov(r0, Operand(LESS)); // NaN >= NaN should fail. | 745 __ li(r3, Operand(LESS)); // NaN >= NaN should fail. |
730 } | 746 } |
731 } | 747 } |
732 __ Ret(); | 748 __ Ret(); |
733 } | 749 } |
734 // No fall through here. | 750 // No fall through here. |
735 | 751 |
736 __ bind(¬_identical); | 752 __ bind(¬_identical); |
737 } | 753 } |
738 | 754 |
739 | 755 |
740 // See comment at call site. | 756 // See comment at call site. |
741 static void EmitSmiNonsmiComparison(MacroAssembler* masm, | 757 static void EmitSmiNonsmiComparison(MacroAssembler* masm, |
742 Register lhs, | 758 Register lhs, |
743 Register rhs, | 759 Register rhs, |
744 Label* lhs_not_nan, | 760 Label* lhs_not_nan, |
745 Label* slow, | 761 Label* slow, |
746 bool strict) { | 762 bool strict) { |
747 ASSERT((lhs.is(r0) && rhs.is(r1)) || | 763 ASSERT((lhs.is(r3) && rhs.is(r4)) || |
748 (lhs.is(r1) && rhs.is(r0))); | 764 (lhs.is(r4) && rhs.is(r3))); |
749 | 765 |
750 Label rhs_is_smi; | 766 Label rhs_is_smi; |
751 __ JumpIfSmi(rhs, &rhs_is_smi); | 767 __ JumpIfSmi(rhs, &rhs_is_smi); |
752 | 768 |
753 // Lhs is a Smi. Check whether the rhs is a heap number. | 769 // Lhs is a Smi. Check whether the rhs is a heap number. |
754 __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE); | 770 __ CompareObjectType(rhs, r6, r7, HEAP_NUMBER_TYPE); |
755 if (strict) { | 771 if (strict) { |
756 // If rhs is not a number and lhs is a Smi then strict equality cannot | 772 // If rhs is not a number and lhs is a Smi then strict equality cannot |
757 // succeed. Return non-equal | 773 // succeed. Return non-equal |
758 // If rhs is r0 then there is already a non zero value in it. | 774 // If rhs is r3 then there is already a non zero value in it. |
759 if (!rhs.is(r0)) { | 775 Label skip; |
760 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); | 776 __ beq(&skip); |
| 777 if (!rhs.is(r3)) { |
| 778 __ mov(r3, Operand(NOT_EQUAL)); |
761 } | 779 } |
762 __ Ret(ne); | 780 __ Ret(); |
| 781 __ bind(&skip); |
763 } else { | 782 } else { |
764 // Smi compared non-strictly with a non-Smi non-heap-number. Call | 783 // Smi compared non-strictly with a non-Smi non-heap-number. Call |
765 // the runtime. | 784 // the runtime. |
766 __ b(ne, slow); | 785 __ bne(slow); |
767 } | 786 } |
768 | 787 |
769 // Lhs is a smi, rhs is a number. | 788 // Lhs is a smi, rhs is a number. |
770 // Convert lhs to a double in d7. | 789 // Convert lhs to a double in d7. |
771 __ SmiToDouble(d7, lhs); | 790 __ SmiToDouble(d7, lhs); |
772 // Load the double from rhs, tagged HeapNumber r0, to d6. | 791 // Load the double from rhs, tagged HeapNumber r3, to d6. |
773 __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag); | 792 __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
774 | 793 |
775 // We now have both loaded as doubles but we can skip the lhs nan check | 794 // We now have both loaded as doubles but we can skip the lhs nan check |
776 // since it's a smi. | 795 // since it's a smi. |
777 __ jmp(lhs_not_nan); | 796 __ b(lhs_not_nan); |
778 | 797 |
779 __ bind(&rhs_is_smi); | 798 __ bind(&rhs_is_smi); |
780 // Rhs is a smi. Check whether the non-smi lhs is a heap number. | 799 // Rhs is a smi. Check whether the non-smi lhs is a heap number. |
781 __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE); | 800 __ CompareObjectType(lhs, r7, r7, HEAP_NUMBER_TYPE); |
782 if (strict) { | 801 if (strict) { |
783 // If lhs is not a number and rhs is a smi then strict equality cannot | 802 // If lhs is not a number and rhs is a smi then strict equality cannot |
784 // succeed. Return non-equal. | 803 // succeed. Return non-equal. |
785 // If lhs is r0 then there is already a non zero value in it. | 804 // If lhs is r3 then there is already a non zero value in it. |
786 if (!lhs.is(r0)) { | 805 Label skip; |
787 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); | 806 __ beq(&skip); |
| 807 if (!lhs.is(r3)) { |
| 808 __ mov(r3, Operand(NOT_EQUAL)); |
788 } | 809 } |
789 __ Ret(ne); | 810 __ Ret(); |
| 811 __ bind(&skip); |
790 } else { | 812 } else { |
791 // Smi compared non-strictly with a non-smi non-heap-number. Call | 813 // Smi compared non-strictly with a non-smi non-heap-number. Call |
792 // the runtime. | 814 // the runtime. |
793 __ b(ne, slow); | 815 __ bne(slow); |
794 } | 816 } |
795 | 817 |
796 // Rhs is a smi, lhs is a heap number. | 818 // Rhs is a smi, lhs is a heap number. |
797 // Load the double from lhs, tagged HeapNumber r1, to d7. | 819 // Load the double from lhs, tagged HeapNumber r4, to d7. |
798 __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag); | 820 __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
799 // Convert rhs to a double in d6 . | 821 // Convert rhs to a double in d6. |
800 __ SmiToDouble(d6, rhs); | 822 __ SmiToDouble(d6, rhs); |
801 // Fall through to both_loaded_as_doubles. | 823 // Fall through to both_loaded_as_doubles. |
802 } | 824 } |
803 | 825 |
804 | 826 |
805 // See comment at call site. | 827 // See comment at call site. |
806 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, | 828 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, |
807 Register lhs, | 829 Register lhs, |
808 Register rhs) { | 830 Register rhs) { |
809 ASSERT((lhs.is(r0) && rhs.is(r1)) || | 831 ASSERT((lhs.is(r3) && rhs.is(r4)) || |
810 (lhs.is(r1) && rhs.is(r0))); | 832 (lhs.is(r4) && rhs.is(r3))); |
811 | 833 |
812 // If either operand is a JS object or an oddball value, then they are | 834 // If either operand is a JS object or an oddball value, then they are |
813 // not equal since their pointers are different. | 835 // not equal since their pointers are different. |
814 // There is no test for undetectability in strict equality. | 836 // There is no test for undetectability in strict equality. |
815 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); | 837 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); |
816 Label first_non_object; | 838 Label first_non_object; |
817 // Get the type of the first operand into r2 and compare it with | 839 // Get the type of the first operand into r5 and compare it with |
818 // FIRST_SPEC_OBJECT_TYPE. | 840 // FIRST_SPEC_OBJECT_TYPE. |
819 __ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE); | 841 __ CompareObjectType(rhs, r5, r5, FIRST_SPEC_OBJECT_TYPE); |
820 __ b(lt, &first_non_object); | 842 __ blt(&first_non_object); |
821 | 843 |
822 // Return non-zero (r0 is not zero) | 844 // Return non-zero (r3 is not zero) |
823 Label return_not_equal; | 845 Label return_not_equal; |
824 __ bind(&return_not_equal); | 846 __ bind(&return_not_equal); |
825 __ Ret(); | 847 __ Ret(); |
826 | 848 |
827 __ bind(&first_non_object); | 849 __ bind(&first_non_object); |
828 // Check for oddballs: true, false, null, undefined. | 850 // Check for oddballs: true, false, null, undefined. |
829 __ cmp(r2, Operand(ODDBALL_TYPE)); | 851 __ cmpi(r5, Operand(ODDBALL_TYPE)); |
830 __ b(eq, &return_not_equal); | 852 __ beq(&return_not_equal); |
831 | 853 |
832 __ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE); | 854 __ CompareObjectType(lhs, r6, r6, FIRST_SPEC_OBJECT_TYPE); |
833 __ b(ge, &return_not_equal); | 855 __ bge(&return_not_equal); |
834 | 856 |
835 // Check for oddballs: true, false, null, undefined. | 857 // Check for oddballs: true, false, null, undefined. |
836 __ cmp(r3, Operand(ODDBALL_TYPE)); | 858 __ cmpi(r6, Operand(ODDBALL_TYPE)); |
837 __ b(eq, &return_not_equal); | 859 __ beq(&return_not_equal); |
838 | 860 |
839 // Now that we have the types we might as well check for | 861 // Now that we have the types we might as well check for |
840 // internalized-internalized. | 862 // internalized-internalized. |
841 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); | 863 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); |
842 __ orr(r2, r2, Operand(r3)); | 864 __ orx(r5, r5, r6); |
843 __ tst(r2, Operand(kIsNotStringMask | kIsNotInternalizedMask)); | 865 __ andi(r0, r5, Operand(kIsNotStringMask | kIsNotInternalizedMask)); |
844 __ b(eq, &return_not_equal); | 866 __ beq(&return_not_equal, cr0); |
845 } | 867 } |
846 | 868 |
847 | 869 |
848 // See comment at call site. | 870 // See comment at call site. |
849 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, | 871 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, |
850 Register lhs, | 872 Register lhs, |
851 Register rhs, | 873 Register rhs, |
852 Label* both_loaded_as_doubles, | 874 Label* both_loaded_as_doubles, |
853 Label* not_heap_numbers, | 875 Label* not_heap_numbers, |
854 Label* slow) { | 876 Label* slow) { |
855 ASSERT((lhs.is(r0) && rhs.is(r1)) || | 877 ASSERT((lhs.is(r3) && rhs.is(r4)) || |
856 (lhs.is(r1) && rhs.is(r0))); | 878 (lhs.is(r4) && rhs.is(r3))); |
857 | 879 |
858 __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE); | 880 __ CompareObjectType(rhs, r6, r5, HEAP_NUMBER_TYPE); |
859 __ b(ne, not_heap_numbers); | 881 __ bne(not_heap_numbers); |
860 __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset)); | 882 __ LoadP(r5, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
861 __ cmp(r2, r3); | 883 __ cmp(r5, r6); |
862 __ b(ne, slow); // First was a heap number, second wasn't. Go slow case. | 884 __ bne(slow); // First was a heap number, second wasn't. Go slow case. |
863 | 885 |
864 // Both are heap numbers. Load them up then jump to the code we have | 886 // Both are heap numbers. Load them up then jump to the code we have |
865 // for that. | 887 // for that. |
866 __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag); | 888 __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
867 __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag); | 889 __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
868 __ jmp(both_loaded_as_doubles); | 890 |
| 891 __ b(both_loaded_as_doubles); |
869 } | 892 } |
870 | 893 |
871 | 894 |
872 // Fast negative check for internalized-to-internalized equality. | 895 // Fast negative check for internalized-to-internalized equality. |
873 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm, | 896 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm, |
874 Register lhs, | 897 Register lhs, |
875 Register rhs, | 898 Register rhs, |
876 Label* possible_strings, | 899 Label* possible_strings, |
877 Label* not_both_strings) { | 900 Label* not_both_strings) { |
878 ASSERT((lhs.is(r0) && rhs.is(r1)) || | 901 ASSERT((lhs.is(r3) && rhs.is(r4)) || |
879 (lhs.is(r1) && rhs.is(r0))); | 902 (lhs.is(r4) && rhs.is(r3))); |
880 | 903 |
881 // r2 is object type of rhs. | 904 // r5 is object type of rhs. |
882 Label object_test; | 905 Label object_test; |
883 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); | 906 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); |
884 __ tst(r2, Operand(kIsNotStringMask)); | 907 __ andi(r0, r5, Operand(kIsNotStringMask)); |
885 __ b(ne, &object_test); | 908 __ bne(&object_test, cr0); |
886 __ tst(r2, Operand(kIsNotInternalizedMask)); | 909 __ andi(r0, r5, Operand(kIsNotInternalizedMask)); |
887 __ b(ne, possible_strings); | 910 __ bne(possible_strings, cr0); |
888 __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE); | 911 __ CompareObjectType(lhs, r6, r6, FIRST_NONSTRING_TYPE); |
889 __ b(ge, not_both_strings); | 912 __ bge(not_both_strings); |
890 __ tst(r3, Operand(kIsNotInternalizedMask)); | 913 __ andi(r0, r6, Operand(kIsNotInternalizedMask)); |
891 __ b(ne, possible_strings); | 914 __ bne(possible_strings, cr0); |
892 | 915 |
893 // Both are internalized. We already checked they weren't the same pointer | 916 // Both are internalized. We already checked they weren't the same pointer |
894 // so they are not equal. | 917 // so they are not equal. |
895 __ mov(r0, Operand(NOT_EQUAL)); | 918 __ li(r3, Operand(NOT_EQUAL)); |
896 __ Ret(); | 919 __ Ret(); |
897 | 920 |
898 __ bind(&object_test); | 921 __ bind(&object_test); |
899 __ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE)); | 922 __ cmpi(r5, Operand(FIRST_SPEC_OBJECT_TYPE)); |
900 __ b(lt, not_both_strings); | 923 __ blt(not_both_strings); |
901 __ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE); | 924 __ CompareObjectType(lhs, r5, r6, FIRST_SPEC_OBJECT_TYPE); |
902 __ b(lt, not_both_strings); | 925 __ blt(not_both_strings); |
903 // If both objects are undetectable, they are equal. Otherwise, they | 926 // If both objects are undetectable, they are equal. Otherwise, they |
904 // are not equal, since they are different objects and an object is not | 927 // are not equal, since they are different objects and an object is not |
905 // equal to undefined. | 928 // equal to undefined. |
906 __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset)); | 929 __ LoadP(r6, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
907 __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset)); | 930 __ lbz(r5, FieldMemOperand(r5, Map::kBitFieldOffset)); |
908 __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset)); | 931 __ lbz(r6, FieldMemOperand(r6, Map::kBitFieldOffset)); |
909 __ and_(r0, r2, Operand(r3)); | 932 __ and_(r3, r5, r6); |
910 __ and_(r0, r0, Operand(1 << Map::kIsUndetectable)); | 933 __ andi(r3, r3, Operand(1 << Map::kIsUndetectable)); |
911 __ eor(r0, r0, Operand(1 << Map::kIsUndetectable)); | 934 __ xori(r3, r3, Operand(1 << Map::kIsUndetectable)); |
912 __ Ret(); | 935 __ Ret(); |
913 } | 936 } |
914 | 937 |
915 | 938 |
916 static void ICCompareStub_CheckInputType(MacroAssembler* masm, | 939 static void ICCompareStub_CheckInputType(MacroAssembler* masm, |
917 Register input, | 940 Register input, |
918 Register scratch, | 941 Register scratch, |
919 CompareIC::State expected, | 942 CompareIC::State expected, |
920 Label* fail) { | 943 Label* fail) { |
921 Label ok; | 944 Label ok; |
922 if (expected == CompareIC::SMI) { | 945 if (expected == CompareIC::SMI) { |
923 __ JumpIfNotSmi(input, fail); | 946 __ JumpIfNotSmi(input, fail); |
924 } else if (expected == CompareIC::NUMBER) { | 947 } else if (expected == CompareIC::NUMBER) { |
925 __ JumpIfSmi(input, &ok); | 948 __ JumpIfSmi(input, &ok); |
926 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail, | 949 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail, |
927 DONT_DO_SMI_CHECK); | 950 DONT_DO_SMI_CHECK); |
928 } | 951 } |
929 // We could be strict about internalized/non-internalized here, but as long as | 952 // We could be strict about internalized/non-internalized here, but as long as |
930 // hydrogen doesn't care, the stub doesn't have to care either. | 953 // hydrogen doesn't care, the stub doesn't have to care either. |
931 __ bind(&ok); | 954 __ bind(&ok); |
932 } | 955 } |
933 | 956 |
934 | 957 |
935 // On entry r1 and r2 are the values to be compared. | 958 // On entry r4 and r5 are the values to be compared. |
936 // On exit r0 is 0, positive or negative to indicate the result of | 959 // On exit r3 is 0, positive or negative to indicate the result of |
937 // the comparison. | 960 // the comparison. |
938 void ICCompareStub::GenerateGeneric(MacroAssembler* masm) { | 961 void ICCompareStub::GenerateGeneric(MacroAssembler* masm) { |
939 Register lhs = r1; | 962 Register lhs = r4; |
940 Register rhs = r0; | 963 Register rhs = r3; |
941 Condition cc = GetCondition(); | 964 Condition cc = GetCondition(); |
942 | 965 |
943 Label miss; | 966 Label miss; |
944 ICCompareStub_CheckInputType(masm, lhs, r2, left_, &miss); | 967 ICCompareStub_CheckInputType(masm, lhs, r5, left_, &miss); |
945 ICCompareStub_CheckInputType(masm, rhs, r3, right_, &miss); | 968 ICCompareStub_CheckInputType(masm, rhs, r6, right_, &miss); |
946 | 969 |
947 Label slow; // Call builtin. | 970 Label slow; // Call builtin. |
948 Label not_smis, both_loaded_as_doubles, lhs_not_nan; | 971 Label not_smis, both_loaded_as_doubles, lhs_not_nan; |
949 | 972 |
950 Label not_two_smis, smi_done; | 973 Label not_two_smis, smi_done; |
951 __ orr(r2, r1, r0); | 974 __ orx(r5, r4, r3); |
952 __ JumpIfNotSmi(r2, ¬_two_smis); | 975 __ JumpIfNotSmi(r5, ¬_two_smis); |
953 __ mov(r1, Operand(r1, ASR, 1)); | 976 __ SmiUntag(r4); |
954 __ sub(r0, r1, Operand(r0, ASR, 1)); | 977 __ SmiUntag(r3); |
| 978 __ sub(r3, r4, r3); |
955 __ Ret(); | 979 __ Ret(); |
956 __ bind(¬_two_smis); | 980 __ bind(¬_two_smis); |
957 | 981 |
958 // NOTICE! This code is only reached after a smi-fast-case check, so | 982 // NOTICE! This code is only reached after a smi-fast-case check, so |
959 // it is certain that at least one operand isn't a smi. | 983 // it is certain that at least one operand isn't a smi. |
960 | 984 |
961 // Handle the case where the objects are identical. Either returns the answer | 985 // Handle the case where the objects are identical. Either returns the answer |
962 // or goes to slow. Only falls through if the objects were not identical. | 986 // or goes to slow. Only falls through if the objects were not identical. |
963 EmitIdenticalObjectComparison(masm, &slow, cc); | 987 EmitIdenticalObjectComparison(masm, &slow, cc); |
964 | 988 |
965 // If either is a Smi (we know that not both are), then they can only | 989 // If either is a Smi (we know that not both are), then they can only |
966 // be strictly equal if the other is a HeapNumber. | 990 // be strictly equal if the other is a HeapNumber. |
967 STATIC_ASSERT(kSmiTag == 0); | 991 STATIC_ASSERT(kSmiTag == 0); |
968 ASSERT_EQ(0, Smi::FromInt(0)); | 992 ASSERT_EQ(0, Smi::FromInt(0)); |
969 __ and_(r2, lhs, Operand(rhs)); | 993 __ and_(r5, lhs, rhs); |
970 __ JumpIfNotSmi(r2, ¬_smis); | 994 __ JumpIfNotSmi(r5, ¬_smis); |
971 // One operand is a smi. EmitSmiNonsmiComparison generates code that can: | 995 // One operand is a smi. EmitSmiNonsmiComparison generates code that can: |
972 // 1) Return the answer. | 996 // 1) Return the answer. |
973 // 2) Go to slow. | 997 // 2) Go to slow. |
974 // 3) Fall through to both_loaded_as_doubles. | 998 // 3) Fall through to both_loaded_as_doubles. |
975 // 4) Jump to lhs_not_nan. | 999 // 4) Jump to lhs_not_nan. |
976 // In cases 3 and 4 we have found out we were dealing with a number-number | 1000 // In cases 3 and 4 we have found out we were dealing with a number-number |
977 // comparison. If VFP3 is supported the double values of the numbers have | 1001 // comparison. The double values of the numbers have been loaded |
978 // been loaded into d7 and d6. Otherwise, the double values have been loaded | 1002 // into d7 and d6. |
979 // into r0, r1, r2, and r3. | |
980 EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict()); | 1003 EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict()); |
981 | 1004 |
982 __ bind(&both_loaded_as_doubles); | 1005 __ bind(&both_loaded_as_doubles); |
983 // The arguments have been converted to doubles and stored in d6 and d7, if | 1006 // The arguments have been converted to doubles and stored in d6 and d7 |
984 // VFP3 is supported, or in r0, r1, r2, and r3. | |
985 __ bind(&lhs_not_nan); | 1007 __ bind(&lhs_not_nan); |
986 Label no_nan; | 1008 Label no_nan; |
987 // ARMv7 VFP3 instructions to implement double precision comparison. | 1009 __ fcmpu(d7, d6); |
988 __ VFPCompareAndSetFlags(d7, d6); | 1010 |
989 Label nan; | 1011 Label nan, equal, less_than; |
990 __ b(vs, &nan); | 1012 __ bunordered(&nan); |
991 __ mov(r0, Operand(EQUAL), LeaveCC, eq); | 1013 __ beq(&equal); |
992 __ mov(r0, Operand(LESS), LeaveCC, lt); | 1014 __ blt(&less_than); |
993 __ mov(r0, Operand(GREATER), LeaveCC, gt); | 1015 __ li(r3, Operand(GREATER)); |
| 1016 __ Ret(); |
| 1017 __ bind(&equal); |
| 1018 __ li(r3, Operand(EQUAL)); |
| 1019 __ Ret(); |
| 1020 __ bind(&less_than); |
| 1021 __ li(r3, Operand(LESS)); |
994 __ Ret(); | 1022 __ Ret(); |
995 | 1023 |
996 __ bind(&nan); | 1024 __ bind(&nan); |
997 // If one of the sides was a NaN then the v flag is set. Load r0 with | 1025 // If one of the sides was a NaN then the v flag is set. Load r3 with |
998 // whatever it takes to make the comparison fail, since comparisons with NaN | 1026 // whatever it takes to make the comparison fail, since comparisons with NaN |
999 // always fail. | 1027 // always fail. |
1000 if (cc == lt || cc == le) { | 1028 if (cc == lt || cc == le) { |
1001 __ mov(r0, Operand(GREATER)); | 1029 __ li(r3, Operand(GREATER)); |
1002 } else { | 1030 } else { |
1003 __ mov(r0, Operand(LESS)); | 1031 __ li(r3, Operand(LESS)); |
1004 } | 1032 } |
1005 __ Ret(); | 1033 __ Ret(); |
1006 | 1034 |
1007 __ bind(¬_smis); | 1035 __ bind(¬_smis); |
1008 // At this point we know we are dealing with two different objects, | 1036 // At this point we know we are dealing with two different objects, |
1009 // and neither of them is a Smi. The objects are in rhs_ and lhs_. | 1037 // and neither of them is a Smi. The objects are in rhs_ and lhs_. |
1010 if (strict()) { | 1038 if (strict()) { |
1011 // This returns non-equal for some object types, or falls through if it | 1039 // This returns non-equal for some object types, or falls through if it |
1012 // was not lucky. | 1040 // was not lucky. |
1013 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs); | 1041 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs); |
1014 } | 1042 } |
1015 | 1043 |
1016 Label check_for_internalized_strings; | 1044 Label check_for_internalized_strings; |
1017 Label flat_string_check; | 1045 Label flat_string_check; |
1018 // Check for heap-number-heap-number comparison. Can jump to slow case, | 1046 // Check for heap-number-heap-number comparison. Can jump to slow case, |
1019 // or load both doubles into r0, r1, r2, r3 and jump to the code that handles | 1047 // or load both doubles into r3, r4, r5, r6 and jump to the code that handles |
1020 // that case. If the inputs are not doubles then jumps to | 1048 // that case. If the inputs are not doubles then jumps to |
1021 // check_for_internalized_strings. | 1049 // check_for_internalized_strings. |
1022 // In this case r2 will contain the type of rhs_. Never falls through. | 1050 // In this case r5 will contain the type of rhs_. Never falls through. |
1023 EmitCheckForTwoHeapNumbers(masm, | 1051 EmitCheckForTwoHeapNumbers(masm, |
1024 lhs, | 1052 lhs, |
1025 rhs, | 1053 rhs, |
1026 &both_loaded_as_doubles, | 1054 &both_loaded_as_doubles, |
1027 &check_for_internalized_strings, | 1055 &check_for_internalized_strings, |
1028 &flat_string_check); | 1056 &flat_string_check); |
1029 | 1057 |
1030 __ bind(&check_for_internalized_strings); | 1058 __ bind(&check_for_internalized_strings); |
1031 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of | 1059 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of |
1032 // internalized strings. | 1060 // internalized strings. |
1033 if (cc == eq && !strict()) { | 1061 if (cc == eq && !strict()) { |
1034 // Returns an answer for two internalized strings or two detectable objects. | 1062 // Returns an answer for two internalized strings or two detectable objects. |
1035 // Otherwise jumps to string case or not both strings case. | 1063 // Otherwise jumps to string case or not both strings case. |
1036 // Assumes that r2 is the type of rhs_ on entry. | 1064 // Assumes that r5 is the type of rhs_ on entry. |
1037 EmitCheckForInternalizedStringsOrObjects( | 1065 EmitCheckForInternalizedStringsOrObjects( |
1038 masm, lhs, rhs, &flat_string_check, &slow); | 1066 masm, lhs, rhs, &flat_string_check, &slow); |
1039 } | 1067 } |
1040 | 1068 |
1041 // Check for both being sequential ASCII strings, and inline if that is the | 1069 // Check for both being sequential ASCII strings, and inline if that is the |
1042 // case. | 1070 // case. |
1043 __ bind(&flat_string_check); | 1071 __ bind(&flat_string_check); |
1044 | 1072 |
1045 __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs, rhs, r2, r3, &slow); | 1073 __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs, rhs, r5, r6, &slow); |
1046 | 1074 |
1047 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r2, | 1075 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r5, |
1048 r3); | 1076 r6); |
1049 if (cc == eq) { | 1077 if (cc == eq) { |
1050 StringCompareStub::GenerateFlatAsciiStringEquals(masm, | 1078 StringCompareStub::GenerateFlatAsciiStringEquals(masm, |
1051 lhs, | 1079 lhs, |
1052 rhs, | 1080 rhs, |
1053 r2, | 1081 r5, |
1054 r3, | 1082 r6); |
1055 r4); | |
1056 } else { | 1083 } else { |
1057 StringCompareStub::GenerateCompareFlatAsciiStrings(masm, | 1084 StringCompareStub::GenerateCompareFlatAsciiStrings(masm, |
1058 lhs, | 1085 lhs, |
1059 rhs, | 1086 rhs, |
1060 r2, | 1087 r5, |
1061 r3, | 1088 r6, |
1062 r4, | 1089 r7); |
1063 r5); | |
1064 } | 1090 } |
1065 // Never falls through to here. | 1091 // Never falls through to here. |
1066 | 1092 |
1067 __ bind(&slow); | 1093 __ bind(&slow); |
1068 | 1094 |
1069 __ Push(lhs, rhs); | 1095 __ Push(lhs, rhs); |
1070 // Figure out which native to call and setup the arguments. | 1096 // Figure out which native to call and setup the arguments. |
1071 Builtins::JavaScript native; | 1097 Builtins::JavaScript native; |
1072 if (cc == eq) { | 1098 if (cc == eq) { |
1073 native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS; | 1099 native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
1074 } else { | 1100 } else { |
1075 native = Builtins::COMPARE; | 1101 native = Builtins::COMPARE; |
1076 int ncr; // NaN compare result | 1102 int ncr; // NaN compare result |
1077 if (cc == lt || cc == le) { | 1103 if (cc == lt || cc == le) { |
1078 ncr = GREATER; | 1104 ncr = GREATER; |
1079 } else { | 1105 } else { |
1080 ASSERT(cc == gt || cc == ge); // remaining cases | 1106 ASSERT(cc == gt || cc == ge); // remaining cases |
1081 ncr = LESS; | 1107 ncr = LESS; |
1082 } | 1108 } |
1083 __ mov(r0, Operand(Smi::FromInt(ncr))); | 1109 __ LoadSmiLiteral(r3, Smi::FromInt(ncr)); |
1084 __ push(r0); | 1110 __ push(r3); |
1085 } | 1111 } |
1086 | 1112 |
1087 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) | 1113 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
1088 // tagged as a small integer. | 1114 // tagged as a small integer. |
1089 __ InvokeBuiltin(native, JUMP_FUNCTION); | 1115 __ InvokeBuiltin(native, JUMP_FUNCTION); |
1090 | 1116 |
1091 __ bind(&miss); | 1117 __ bind(&miss); |
1092 GenerateMiss(masm); | 1118 GenerateMiss(masm); |
1093 } | 1119 } |
1094 | 1120 |
1095 | 1121 |
1096 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { | 1122 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { |
1097 // We don't allow a GC during a store buffer overflow so there is no need to | 1123 // We don't allow a GC during a store buffer overflow so there is no need to |
1098 // store the registers in any particular way, but we do have to store and | 1124 // store the registers in any particular way, but we do have to store and |
1099 // restore them. | 1125 // restore them. |
1100 __ stm(db_w, sp, kCallerSaved | lr.bit()); | 1126 __ mflr(r0); |
1101 | 1127 __ MultiPush(kJSCallerSaved | r0.bit()); |
1102 const Register scratch = r1; | |
1103 | |
1104 if (save_doubles_ == kSaveFPRegs) { | 1128 if (save_doubles_ == kSaveFPRegs) { |
1105 __ SaveFPRegs(sp, scratch); | 1129 __ SaveFPRegs(sp, 0, DoubleRegister::kNumVolatileRegisters); |
1106 } | 1130 } |
1107 const int argument_count = 1; | 1131 const int argument_count = 1; |
1108 const int fp_argument_count = 0; | 1132 const int fp_argument_count = 0; |
| 1133 const Register scratch = r4; |
1109 | 1134 |
1110 AllowExternalCallThatCantCauseGC scope(masm); | 1135 AllowExternalCallThatCantCauseGC scope(masm); |
1111 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch); | 1136 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch); |
1112 __ mov(r0, Operand(ExternalReference::isolate_address(isolate()))); | 1137 __ mov(r3, Operand(ExternalReference::isolate_address(isolate()))); |
1113 __ CallCFunction( | 1138 __ CallCFunction( |
1114 ExternalReference::store_buffer_overflow_function(isolate()), | 1139 ExternalReference::store_buffer_overflow_function(isolate()), |
1115 argument_count); | 1140 argument_count); |
1116 if (save_doubles_ == kSaveFPRegs) { | 1141 if (save_doubles_ == kSaveFPRegs) { |
1117 __ RestoreFPRegs(sp, scratch); | 1142 __ RestoreFPRegs(sp, 0, DoubleRegister::kNumVolatileRegisters); |
1118 } | 1143 } |
1119 __ ldm(ia_w, sp, kCallerSaved | pc.bit()); // Also pop pc to get Ret(0). | 1144 __ MultiPop(kJSCallerSaved | r0.bit()); |
| 1145 __ mtlr(r0); |
| 1146 __ Ret(); |
1120 } | 1147 } |
1121 | 1148 |
1122 | 1149 |
1123 void MathPowStub::Generate(MacroAssembler* masm) { | 1150 void MathPowStub::Generate(MacroAssembler* masm) { |
1124 const Register base = r1; | 1151 const Register base = r4; |
1125 const Register exponent = r2; | 1152 const Register exponent = r5; |
1126 const Register heapnumbermap = r5; | 1153 const Register heapnumbermap = r8; |
1127 const Register heapnumber = r0; | 1154 const Register heapnumber = r3; |
1128 const DwVfpRegister double_base = d0; | 1155 const DoubleRegister double_base = d1; |
1129 const DwVfpRegister double_exponent = d1; | 1156 const DoubleRegister double_exponent = d2; |
1130 const DwVfpRegister double_result = d2; | 1157 const DoubleRegister double_result = d3; |
1131 const DwVfpRegister double_scratch = d3; | 1158 const DoubleRegister double_scratch = d0; |
1132 const SwVfpRegister single_scratch = s6; | 1159 const Register scratch = r11; |
1133 const Register scratch = r9; | 1160 const Register scratch2 = r10; |
1134 const Register scratch2 = r4; | |
1135 | 1161 |
1136 Label call_runtime, done, int_exponent; | 1162 Label call_runtime, done, int_exponent; |
1137 if (exponent_type_ == ON_STACK) { | 1163 if (exponent_type_ == ON_STACK) { |
1138 Label base_is_smi, unpack_exponent; | 1164 Label base_is_smi, unpack_exponent; |
1139 // The exponent and base are supplied as arguments on the stack. | 1165 // The exponent and base are supplied as arguments on the stack. |
1140 // This can only happen if the stub is called from non-optimized code. | 1166 // This can only happen if the stub is called from non-optimized code. |
1141 // Load input parameters from stack to double registers. | 1167 // Load input parameters from stack to double registers. |
1142 __ ldr(base, MemOperand(sp, 1 * kPointerSize)); | 1168 __ LoadP(base, MemOperand(sp, 1 * kPointerSize)); |
1143 __ ldr(exponent, MemOperand(sp, 0 * kPointerSize)); | 1169 __ LoadP(exponent, MemOperand(sp, 0 * kPointerSize)); |
1144 | 1170 |
1145 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex); | 1171 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex); |
1146 | 1172 |
1147 __ UntagAndJumpIfSmi(scratch, base, &base_is_smi); | 1173 __ UntagAndJumpIfSmi(scratch, base, &base_is_smi); |
1148 __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset)); | 1174 __ LoadP(scratch, FieldMemOperand(base, JSObject::kMapOffset)); |
1149 __ cmp(scratch, heapnumbermap); | 1175 __ cmp(scratch, heapnumbermap); |
1150 __ b(ne, &call_runtime); | 1176 __ bne(&call_runtime); |
1151 | 1177 |
1152 __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset)); | 1178 __ lfd(double_base, FieldMemOperand(base, HeapNumber::kValueOffset)); |
1153 __ jmp(&unpack_exponent); | 1179 __ b(&unpack_exponent); |
1154 | 1180 |
1155 __ bind(&base_is_smi); | 1181 __ bind(&base_is_smi); |
1156 __ vmov(single_scratch, scratch); | 1182 __ ConvertIntToDouble(scratch, double_base); |
1157 __ vcvt_f64_s32(double_base, single_scratch); | |
1158 __ bind(&unpack_exponent); | 1183 __ bind(&unpack_exponent); |
1159 | 1184 |
1160 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); | 1185 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); |
| 1186 __ LoadP(scratch, FieldMemOperand(exponent, JSObject::kMapOffset)); |
| 1187 __ cmp(scratch, heapnumbermap); |
| 1188 __ bne(&call_runtime); |
1161 | 1189 |
1162 __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset)); | 1190 __ lfd(double_exponent, |
1163 __ cmp(scratch, heapnumbermap); | 1191 FieldMemOperand(exponent, HeapNumber::kValueOffset)); |
1164 __ b(ne, &call_runtime); | |
1165 __ vldr(double_exponent, | |
1166 FieldMemOperand(exponent, HeapNumber::kValueOffset)); | |
1167 } else if (exponent_type_ == TAGGED) { | 1192 } else if (exponent_type_ == TAGGED) { |
1168 // Base is already in double_base. | 1193 // Base is already in double_base. |
1169 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); | 1194 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); |
1170 | 1195 |
1171 __ vldr(double_exponent, | 1196 __ lfd(double_exponent, |
1172 FieldMemOperand(exponent, HeapNumber::kValueOffset)); | 1197 FieldMemOperand(exponent, HeapNumber::kValueOffset)); |
1173 } | 1198 } |
1174 | 1199 |
1175 if (exponent_type_ != INTEGER) { | 1200 if (exponent_type_ != INTEGER) { |
1176 Label int_exponent_convert; | |
1177 // Detect integer exponents stored as double. | 1201 // Detect integer exponents stored as double. |
1178 __ vcvt_u32_f64(single_scratch, double_exponent); | 1202 __ TryDoubleToInt32Exact(scratch, double_exponent, |
1179 // We do not check for NaN or Infinity here because comparing numbers on | 1203 scratch2, double_scratch); |
1180 // ARM correctly distinguishes NaNs. We end up calling the built-in. | 1204 __ beq(&int_exponent); |
1181 __ vcvt_f64_u32(double_scratch, single_scratch); | |
1182 __ VFPCompareAndSetFlags(double_scratch, double_exponent); | |
1183 __ b(eq, &int_exponent_convert); | |
1184 | 1205 |
1185 if (exponent_type_ == ON_STACK) { | 1206 if (exponent_type_ == ON_STACK) { |
1186 // Detect square root case. Crankshaft detects constant +/-0.5 at | 1207 // Detect square root case. Crankshaft detects constant +/-0.5 at |
1187 // compile time and uses DoMathPowHalf instead. We then skip this check | 1208 // compile time and uses DoMathPowHalf instead. We then skip this check |
1188 // for non-constant cases of +/-0.5 as these hardly occur. | 1209 // for non-constant cases of +/-0.5 as these hardly occur. |
1189 Label not_plus_half; | 1210 Label not_plus_half, not_minus_inf1, not_minus_inf2; |
1190 | 1211 |
1191 // Test for 0.5. | 1212 // Test for 0.5. |
1192 __ vmov(double_scratch, 0.5, scratch); | 1213 __ LoadDoubleLiteral(double_scratch, 0.5, scratch); |
1193 __ VFPCompareAndSetFlags(double_exponent, double_scratch); | 1214 __ fcmpu(double_exponent, double_scratch); |
1194 __ b(ne, ¬_plus_half); | 1215 __ bne(¬_plus_half); |
1195 | 1216 |
1196 // Calculates square root of base. Check for the special case of | 1217 // Calculates square root of base. Check for the special case of |
1197 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). | 1218 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). |
1198 __ vmov(double_scratch, -V8_INFINITY, scratch); | 1219 __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch); |
1199 __ VFPCompareAndSetFlags(double_base, double_scratch); | 1220 __ fcmpu(double_base, double_scratch); |
1200 __ vneg(double_result, double_scratch, eq); | 1221 __ bne(¬_minus_inf1); |
1201 __ b(eq, &done); | 1222 __ fneg(double_result, double_scratch); |
| 1223 __ b(&done); |
| 1224 __ bind(¬_minus_inf1); |
1202 | 1225 |
1203 // Add +0 to convert -0 to +0. | 1226 // Add +0 to convert -0 to +0. |
1204 __ vadd(double_scratch, double_base, kDoubleRegZero); | 1227 __ fadd(double_scratch, double_base, kDoubleRegZero); |
1205 __ vsqrt(double_result, double_scratch); | 1228 __ fsqrt(double_result, double_scratch); |
1206 __ jmp(&done); | 1229 __ b(&done); |
1207 | 1230 |
1208 __ bind(¬_plus_half); | 1231 __ bind(¬_plus_half); |
1209 __ vmov(double_scratch, -0.5, scratch); | 1232 __ LoadDoubleLiteral(double_scratch, -0.5, scratch); |
1210 __ VFPCompareAndSetFlags(double_exponent, double_scratch); | 1233 __ fcmpu(double_exponent, double_scratch); |
1211 __ b(ne, &call_runtime); | 1234 __ bne(&call_runtime); |
1212 | 1235 |
1213 // Calculates square root of base. Check for the special case of | 1236 // Calculates square root of base. Check for the special case of |
1214 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). | 1237 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). |
1215 __ vmov(double_scratch, -V8_INFINITY, scratch); | 1238 __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch); |
1216 __ VFPCompareAndSetFlags(double_base, double_scratch); | 1239 __ fcmpu(double_base, double_scratch); |
1217 __ vmov(double_result, kDoubleRegZero, eq); | 1240 __ bne(¬_minus_inf2); |
1218 __ b(eq, &done); | 1241 __ fmr(double_result, kDoubleRegZero); |
| 1242 __ b(&done); |
| 1243 __ bind(¬_minus_inf2); |
1219 | 1244 |
1220 // Add +0 to convert -0 to +0. | 1245 // Add +0 to convert -0 to +0. |
1221 __ vadd(double_scratch, double_base, kDoubleRegZero); | 1246 __ fadd(double_scratch, double_base, kDoubleRegZero); |
1222 __ vmov(double_result, 1.0, scratch); | 1247 __ LoadDoubleLiteral(double_result, 1.0, scratch); |
1223 __ vsqrt(double_scratch, double_scratch); | 1248 __ fsqrt(double_scratch, double_scratch); |
1224 __ vdiv(double_result, double_result, double_scratch); | 1249 __ fdiv(double_result, double_result, double_scratch); |
1225 __ jmp(&done); | 1250 __ b(&done); |
1226 } | 1251 } |
1227 | 1252 |
1228 __ push(lr); | 1253 __ mflr(r0); |
| 1254 __ push(r0); |
1229 { | 1255 { |
1230 AllowExternalCallThatCantCauseGC scope(masm); | 1256 AllowExternalCallThatCantCauseGC scope(masm); |
1231 __ PrepareCallCFunction(0, 2, scratch); | 1257 __ PrepareCallCFunction(0, 2, scratch); |
1232 __ MovToFloatParameters(double_base, double_exponent); | 1258 __ MovToFloatParameters(double_base, double_exponent); |
1233 __ CallCFunction( | 1259 __ CallCFunction( |
1234 ExternalReference::power_double_double_function(isolate()), | 1260 ExternalReference::power_double_double_function(isolate()), |
1235 0, 2); | 1261 0, 2); |
1236 } | 1262 } |
1237 __ pop(lr); | 1263 __ pop(r0); |
| 1264 __ mtlr(r0); |
1238 __ MovFromFloatResult(double_result); | 1265 __ MovFromFloatResult(double_result); |
1239 __ jmp(&done); | 1266 __ b(&done); |
1240 | |
1241 __ bind(&int_exponent_convert); | |
1242 __ vcvt_u32_f64(single_scratch, double_exponent); | |
1243 __ vmov(scratch, single_scratch); | |
1244 } | 1267 } |
1245 | 1268 |
1246 // Calculate power with integer exponent. | 1269 // Calculate power with integer exponent. |
1247 __ bind(&int_exponent); | 1270 __ bind(&int_exponent); |
1248 | 1271 |
1249 // Get two copies of exponent in the registers scratch and exponent. | 1272 // Get two copies of exponent in the registers scratch and exponent. |
1250 if (exponent_type_ == INTEGER) { | 1273 if (exponent_type_ == INTEGER) { |
1251 __ mov(scratch, exponent); | 1274 __ mr(scratch, exponent); |
1252 } else { | 1275 } else { |
1253 // Exponent has previously been stored into scratch as untagged integer. | 1276 // Exponent has previously been stored into scratch as untagged integer. |
1254 __ mov(exponent, scratch); | 1277 __ mr(exponent, scratch); |
1255 } | 1278 } |
1256 __ vmov(double_scratch, double_base); // Back up base. | 1279 __ fmr(double_scratch, double_base); // Back up base. |
1257 __ vmov(double_result, 1.0, scratch2); | 1280 __ li(scratch2, Operand(1)); |
| 1281 __ ConvertIntToDouble(scratch2, double_result); |
1258 | 1282 |
1259 // Get absolute value of exponent. | 1283 // Get absolute value of exponent. |
1260 __ cmp(scratch, Operand::Zero()); | 1284 Label positive_exponent; |
1261 __ mov(scratch2, Operand::Zero(), LeaveCC, mi); | 1285 __ cmpi(scratch, Operand::Zero()); |
1262 __ sub(scratch, scratch2, scratch, LeaveCC, mi); | 1286 __ bge(&positive_exponent); |
| 1287 __ neg(scratch, scratch); |
| 1288 __ bind(&positive_exponent); |
1263 | 1289 |
1264 Label while_true; | 1290 Label while_true, no_carry, loop_end; |
1265 __ bind(&while_true); | 1291 __ bind(&while_true); |
1266 __ mov(scratch, Operand(scratch, ASR, 1), SetCC); | 1292 __ andi(scratch2, scratch, Operand(1)); |
1267 __ vmul(double_result, double_result, double_scratch, cs); | 1293 __ beq(&no_carry, cr0); |
1268 __ vmul(double_scratch, double_scratch, double_scratch, ne); | 1294 __ fmul(double_result, double_result, double_scratch); |
1269 __ b(ne, &while_true); | 1295 __ bind(&no_carry); |
| 1296 __ ShiftRightArithImm(scratch, scratch, 1, SetRC); |
| 1297 __ beq(&loop_end, cr0); |
| 1298 __ fmul(double_scratch, double_scratch, double_scratch); |
| 1299 __ b(&while_true); |
| 1300 __ bind(&loop_end); |
1270 | 1301 |
1271 __ cmp(exponent, Operand::Zero()); | 1302 __ cmpi(exponent, Operand::Zero()); |
1272 __ b(ge, &done); | 1303 __ bge(&done); |
1273 __ vmov(double_scratch, 1.0, scratch); | 1304 |
1274 __ vdiv(double_result, double_scratch, double_result); | 1305 __ li(scratch2, Operand(1)); |
| 1306 __ ConvertIntToDouble(scratch2, double_scratch); |
| 1307 __ fdiv(double_result, double_scratch, double_result); |
1275 // Test whether result is zero. Bail out to check for subnormal result. | 1308 // Test whether result is zero. Bail out to check for subnormal result. |
1276 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. | 1309 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. |
1277 __ VFPCompareAndSetFlags(double_result, 0.0); | 1310 __ fcmpu(double_result, kDoubleRegZero); |
1278 __ b(ne, &done); | 1311 __ bne(&done); |
1279 // double_exponent may not containe the exponent value if the input was a | 1312 // double_exponent may not containe the exponent value if the input was a |
1280 // smi. We set it with exponent value before bailing out. | 1313 // smi. We set it with exponent value before bailing out. |
1281 __ vmov(single_scratch, exponent); | 1314 __ ConvertIntToDouble(exponent, double_exponent); |
1282 __ vcvt_f64_s32(double_exponent, single_scratch); | |
1283 | 1315 |
1284 // Returning or bailing out. | 1316 // Returning or bailing out. |
1285 Counters* counters = isolate()->counters(); | 1317 Counters* counters = isolate()->counters(); |
1286 if (exponent_type_ == ON_STACK) { | 1318 if (exponent_type_ == ON_STACK) { |
1287 // The arguments are still on the stack. | 1319 // The arguments are still on the stack. |
1288 __ bind(&call_runtime); | 1320 __ bind(&call_runtime); |
1289 __ TailCallRuntime(Runtime::kMathPowRT, 2, 1); | 1321 __ TailCallRuntime(Runtime::kMathPowRT, 2, 1); |
1290 | 1322 |
1291 // The stub is called from non-optimized code, which expects the result | 1323 // The stub is called from non-optimized code, which expects the result |
1292 // as heap number in exponent. | 1324 // as heap number in exponent. |
1293 __ bind(&done); | 1325 __ bind(&done); |
1294 __ AllocateHeapNumber( | 1326 __ AllocateHeapNumber( |
1295 heapnumber, scratch, scratch2, heapnumbermap, &call_runtime); | 1327 heapnumber, scratch, scratch2, heapnumbermap, &call_runtime); |
1296 __ vstr(double_result, | 1328 __ stfd(double_result, |
1297 FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); | 1329 FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); |
1298 ASSERT(heapnumber.is(r0)); | 1330 ASSERT(heapnumber.is(r3)); |
1299 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); | 1331 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); |
1300 __ Ret(2); | 1332 __ Ret(2); |
1301 } else { | 1333 } else { |
1302 __ push(lr); | 1334 __ mflr(r0); |
| 1335 __ push(r0); |
1303 { | 1336 { |
1304 AllowExternalCallThatCantCauseGC scope(masm); | 1337 AllowExternalCallThatCantCauseGC scope(masm); |
1305 __ PrepareCallCFunction(0, 2, scratch); | 1338 __ PrepareCallCFunction(0, 2, scratch); |
1306 __ MovToFloatParameters(double_base, double_exponent); | 1339 __ MovToFloatParameters(double_base, double_exponent); |
1307 __ CallCFunction( | 1340 __ CallCFunction( |
1308 ExternalReference::power_double_double_function(isolate()), | 1341 ExternalReference::power_double_double_function(isolate()), |
1309 0, 2); | 1342 0, 2); |
1310 } | 1343 } |
1311 __ pop(lr); | 1344 __ pop(r0); |
| 1345 __ mtlr(r0); |
1312 __ MovFromFloatResult(double_result); | 1346 __ MovFromFloatResult(double_result); |
1313 | 1347 |
1314 __ bind(&done); | 1348 __ bind(&done); |
1315 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); | 1349 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); |
1316 __ Ret(); | 1350 __ Ret(); |
1317 } | 1351 } |
1318 } | 1352 } |
1319 | 1353 |
1320 | 1354 |
1321 bool CEntryStub::NeedsImmovableCode() { | 1355 bool CEntryStub::NeedsImmovableCode() { |
1322 return true; | 1356 return true; |
1323 } | 1357 } |
1324 | 1358 |
1325 | 1359 |
1326 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { | 1360 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { |
1327 CEntryStub::GenerateAheadOfTime(isolate); | 1361 CEntryStub::GenerateAheadOfTime(isolate); |
1328 WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate); | 1362 // WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate); |
1329 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); | 1363 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); |
1330 StubFailureTrampolineStub::GenerateAheadOfTime(isolate); | 1364 StubFailureTrampolineStub::GenerateAheadOfTime(isolate); |
1331 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate); | 1365 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate); |
1332 CreateAllocationSiteStub::GenerateAheadOfTime(isolate); | 1366 CreateAllocationSiteStub::GenerateAheadOfTime(isolate); |
1333 BinaryOpICStub::GenerateAheadOfTime(isolate); | 1367 BinaryOpICStub::GenerateAheadOfTime(isolate); |
1334 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); | 1368 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); |
1335 } | 1369 } |
1336 | 1370 |
1337 | 1371 |
1338 void CodeStub::GenerateFPStubs(Isolate* isolate) { | 1372 void CodeStub::GenerateFPStubs(Isolate* isolate) { |
(...skipping 16 matching lines...) Expand all Loading... |
1355 | 1389 |
1356 | 1390 |
1357 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { | 1391 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { |
1358 CEntryStub stub(isolate, 1, kDontSaveFPRegs); | 1392 CEntryStub stub(isolate, 1, kDontSaveFPRegs); |
1359 stub.GetCode(); | 1393 stub.GetCode(); |
1360 } | 1394 } |
1361 | 1395 |
1362 | 1396 |
1363 void CEntryStub::Generate(MacroAssembler* masm) { | 1397 void CEntryStub::Generate(MacroAssembler* masm) { |
1364 // Called from JavaScript; parameters are on stack as if calling JS function. | 1398 // Called from JavaScript; parameters are on stack as if calling JS function. |
1365 // r0: number of arguments including receiver | 1399 // r3: number of arguments including receiver |
1366 // r1: pointer to builtin function | 1400 // r4: pointer to builtin function |
1367 // fp: frame pointer (restored after C call) | 1401 // fp: frame pointer (restored after C call) |
1368 // sp: stack pointer (restored as callee's sp after C call) | 1402 // sp: stack pointer (restored as callee's sp after C call) |
1369 // cp: current context (C callee-saved) | 1403 // cp: current context (C callee-saved) |
1370 | 1404 |
1371 ProfileEntryHookStub::MaybeCallEntryHook(masm); | 1405 ProfileEntryHookStub::MaybeCallEntryHook(masm); |
1372 | 1406 |
1373 __ mov(r5, Operand(r1)); | 1407 __ mr(r15, r4); |
1374 | 1408 |
1375 // Compute the argv pointer in a callee-saved register. | 1409 // Compute the argv pointer. |
1376 __ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2)); | 1410 __ ShiftLeftImm(r4, r3, Operand(kPointerSizeLog2)); |
1377 __ sub(r1, r1, Operand(kPointerSize)); | 1411 __ add(r4, r4, sp); |
| 1412 __ subi(r4, r4, Operand(kPointerSize)); |
1378 | 1413 |
1379 // Enter the exit frame that transitions from JavaScript to C++. | 1414 // Enter the exit frame that transitions from JavaScript to C++. |
1380 FrameScope scope(masm, StackFrame::MANUAL); | 1415 FrameScope scope(masm, StackFrame::MANUAL); |
1381 __ EnterExitFrame(save_doubles_); | 1416 |
| 1417 // Need at least one extra slot for return address location. |
| 1418 int arg_stack_space = 1; |
| 1419 |
| 1420 // PPC LINUX ABI: |
| 1421 #if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS |
| 1422 // Pass buffer for return value on stack if necessary |
| 1423 if (result_size_ > 1) { |
| 1424 ASSERT_EQ(2, result_size_); |
| 1425 arg_stack_space += 2; |
| 1426 } |
| 1427 #endif |
| 1428 |
| 1429 __ EnterExitFrame(save_doubles_, arg_stack_space); |
1382 | 1430 |
1383 // Store a copy of argc in callee-saved registers for later. | 1431 // Store a copy of argc in callee-saved registers for later. |
1384 __ mov(r4, Operand(r0)); | 1432 __ mr(r14, r3); |
1385 | 1433 |
1386 // r0, r4: number of arguments including receiver (C callee-saved) | 1434 // r3, r14: number of arguments including receiver (C callee-saved) |
1387 // r1: pointer to the first argument (C callee-saved) | 1435 // r4: pointer to the first argument |
1388 // r5: pointer to builtin function (C callee-saved) | 1436 // r15: pointer to builtin function (C callee-saved) |
1389 | 1437 |
1390 // Result returned in r0 or r0+r1 by default. | 1438 // Result returned in registers or stack, depending on result size and ABI. |
1391 | 1439 |
1392 #if V8_HOST_ARCH_ARM | 1440 Register isolate_reg = r5; |
1393 int frame_alignment = MacroAssembler::ActivationFrameAlignment(); | 1441 #if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS |
1394 int frame_alignment_mask = frame_alignment - 1; | 1442 if (result_size_ > 1) { |
1395 if (FLAG_debug_code) { | 1443 // The return value is 16-byte non-scalar value. |
1396 if (frame_alignment > kPointerSize) { | 1444 // Use frame storage reserved by calling function to pass return |
1397 Label alignment_as_expected; | 1445 // buffer as implicit first argument. |
1398 ASSERT(IsPowerOf2(frame_alignment)); | 1446 __ mr(r5, r4); |
1399 __ tst(sp, Operand(frame_alignment_mask)); | 1447 __ mr(r4, r3); |
1400 __ b(eq, &alignment_as_expected); | 1448 __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize)); |
1401 // Don't use Check here, as it will call Runtime_Abort re-entering here. | 1449 isolate_reg = r6; |
1402 __ stop("Unexpected alignment"); | |
1403 __ bind(&alignment_as_expected); | |
1404 } | |
1405 } | 1450 } |
1406 #endif | 1451 #endif |
1407 | 1452 |
1408 // Call C built-in. | 1453 // Call C built-in. |
1409 // r0 = argc, r1 = argv | 1454 __ mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate()))); |
1410 __ mov(r2, Operand(ExternalReference::isolate_address(isolate()))); | 1455 |
| 1456 #if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR) |
| 1457 // Native AIX/PPC64 Linux use a function descriptor. |
| 1458 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(r15, kPointerSize)); |
| 1459 __ LoadP(ip, MemOperand(r15, 0)); // Instruction address |
| 1460 Register target = ip; |
| 1461 #elif ABI_TOC_ADDRESSABILITY_VIA_IP |
| 1462 __ Move(ip, r15); |
| 1463 Register target = ip; |
| 1464 #else |
| 1465 Register target = r15; |
| 1466 #endif |
1411 | 1467 |
1412 // To let the GC traverse the return address of the exit frames, we need to | 1468 // To let the GC traverse the return address of the exit frames, we need to |
1413 // know where the return address is. The CEntryStub is unmovable, so | 1469 // know where the return address is. The CEntryStub is unmovable, so |
1414 // we can store the address on the stack to be able to find it again and | 1470 // we can store the address on the stack to be able to find it again and |
1415 // we never have to restore it, because it will not change. | 1471 // we never have to restore it, because it will not change. |
1416 // Compute the return address in lr to return to after the jump below. Pc is | 1472 // Compute the return address in lr to return to after the jump below. Pc is |
1417 // already at '+ 8' from the current instruction but return is after three | 1473 // already at '+ 8' from the current instruction but return is after three |
1418 // instructions so add another 4 to pc to get the return address. | 1474 // instructions so add another 4 to pc to get the return address. |
1419 { | 1475 { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm); |
1420 // Prevent literal pool emission before return address. | 1476 Label here; |
1421 Assembler::BlockConstPoolScope block_const_pool(masm); | 1477 __ b(&here, SetLK); |
1422 __ add(lr, pc, Operand(4)); | 1478 __ bind(&here); |
1423 __ str(lr, MemOperand(sp, 0)); | 1479 __ mflr(r8); |
1424 __ Call(r5); | 1480 |
| 1481 // Constant used below is dependent on size of Call() macro instructions |
| 1482 __ addi(r0, r8, Operand(20)); |
| 1483 |
| 1484 __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize)); |
| 1485 __ Call(target); |
1425 } | 1486 } |
1426 | 1487 |
1427 __ VFPEnsureFPSCRState(r2); | 1488 // roohack - do we need to (re)set FPU state? |
| 1489 |
| 1490 #if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS |
| 1491 // If return value is on the stack, pop it to registers. |
| 1492 if (result_size_ > 1) { |
| 1493 __ LoadP(r4, MemOperand(r3, kPointerSize)); |
| 1494 __ LoadP(r3, MemOperand(r3)); |
| 1495 } |
| 1496 #endif |
1428 | 1497 |
1429 // Runtime functions should not return 'the hole'. Allowing it to escape may | 1498 // Runtime functions should not return 'the hole'. Allowing it to escape may |
1430 // lead to crashes in the IC code later. | 1499 // lead to crashes in the IC code later. |
1431 if (FLAG_debug_code) { | 1500 if (FLAG_debug_code) { |
1432 Label okay; | 1501 Label okay; |
1433 __ CompareRoot(r0, Heap::kTheHoleValueRootIndex); | 1502 __ CompareRoot(r3, Heap::kTheHoleValueRootIndex); |
1434 __ b(ne, &okay); | 1503 __ bne(&okay); |
1435 __ stop("The hole escaped"); | 1504 __ stop("The hole escaped"); |
1436 __ bind(&okay); | 1505 __ bind(&okay); |
1437 } | 1506 } |
1438 | 1507 |
1439 // Check result for exception sentinel. | 1508 // Check result for exception sentinel. |
1440 Label exception_returned; | 1509 Label exception_returned; |
1441 __ CompareRoot(r0, Heap::kExceptionRootIndex); | 1510 __ CompareRoot(r3, Heap::kExceptionRootIndex); |
1442 __ b(eq, &exception_returned); | 1511 __ beq(&exception_returned); |
1443 | 1512 |
1444 ExternalReference pending_exception_address( | 1513 ExternalReference pending_exception_address( |
1445 Isolate::kPendingExceptionAddress, isolate()); | 1514 Isolate::kPendingExceptionAddress, isolate()); |
1446 | 1515 |
1447 // Check that there is no pending exception, otherwise we | 1516 // Check that there is no pending exception, otherwise we |
1448 // should have returned the exception sentinel. | 1517 // should have returned the exception sentinel. |
1449 if (FLAG_debug_code) { | 1518 if (FLAG_debug_code) { |
1450 Label okay; | 1519 Label okay; |
1451 __ mov(r2, Operand(pending_exception_address)); | 1520 __ mov(r5, Operand(pending_exception_address)); |
1452 __ ldr(r2, MemOperand(r2)); | 1521 __ LoadP(r5, MemOperand(r5)); |
1453 __ CompareRoot(r2, Heap::kTheHoleValueRootIndex); | 1522 __ CompareRoot(r5, Heap::kTheHoleValueRootIndex); |
1454 // Cannot use check here as it attempts to generate call into runtime. | 1523 // Cannot use check here as it attempts to generate call into runtime. |
1455 __ b(eq, &okay); | 1524 __ beq(&okay); |
1456 __ stop("Unexpected pending exception"); | 1525 __ stop("Unexpected pending exception"); |
1457 __ bind(&okay); | 1526 __ bind(&okay); |
1458 } | 1527 } |
1459 | 1528 |
1460 // Exit C frame and return. | 1529 // Exit C frame and return. |
1461 // r0:r1: result | 1530 // r3:r4: result |
1462 // sp: stack pointer | 1531 // sp: stack pointer |
1463 // fp: frame pointer | 1532 // fp: frame pointer |
1464 // Callee-saved register r4 still holds argc. | 1533 // r14: still holds argc (callee-saved). |
1465 __ LeaveExitFrame(save_doubles_, r4, true); | 1534 __ LeaveExitFrame(save_doubles_, r14, true); |
1466 __ mov(pc, lr); | 1535 __ blr(); |
1467 | 1536 |
1468 // Handling of exception. | 1537 // Handling of exception. |
1469 __ bind(&exception_returned); | 1538 __ bind(&exception_returned); |
1470 | 1539 |
1471 // Retrieve the pending exception. | 1540 // Retrieve the pending exception. |
1472 __ mov(r2, Operand(pending_exception_address)); | 1541 __ mov(r5, Operand(pending_exception_address)); |
1473 __ ldr(r0, MemOperand(r2)); | 1542 __ LoadP(r3, MemOperand(r5)); |
1474 | 1543 |
1475 // Clear the pending exception. | 1544 // Clear the pending exception. |
1476 __ LoadRoot(r3, Heap::kTheHoleValueRootIndex); | 1545 __ LoadRoot(r6, Heap::kTheHoleValueRootIndex); |
1477 __ str(r3, MemOperand(r2)); | 1546 __ StoreP(r6, MemOperand(r5)); |
1478 | 1547 |
1479 // Special handling of termination exceptions which are uncatchable | 1548 // Special handling of termination exceptions which are uncatchable |
1480 // by javascript code. | 1549 // by javascript code. |
1481 Label throw_termination_exception; | 1550 Label throw_termination_exception; |
1482 __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex); | 1551 __ CompareRoot(r3, Heap::kTerminationExceptionRootIndex); |
1483 __ b(eq, &throw_termination_exception); | 1552 __ beq(&throw_termination_exception); |
1484 | 1553 |
1485 // Handle normal exception. | 1554 // Handle normal exception. |
1486 __ Throw(r0); | 1555 __ Throw(r3); |
1487 | 1556 |
1488 __ bind(&throw_termination_exception); | 1557 __ bind(&throw_termination_exception); |
1489 __ ThrowUncatchable(r0); | 1558 __ ThrowUncatchable(r3); |
1490 } | 1559 } |
1491 | 1560 |
1492 | 1561 |
1493 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { | 1562 void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { |
1494 // r0: code entry | 1563 // r3: code entry |
1495 // r1: function | 1564 // r4: function |
1496 // r2: receiver | 1565 // r5: receiver |
1497 // r3: argc | 1566 // r6: argc |
1498 // [sp+0]: argv | 1567 // [sp+0]: argv |
1499 | 1568 |
1500 Label invoke, handler_entry, exit; | 1569 Label invoke, handler_entry, exit; |
1501 | 1570 |
| 1571 // Called from C |
| 1572 #if ABI_USES_FUNCTION_DESCRIPTORS |
| 1573 __ function_descriptor(); |
| 1574 #endif |
| 1575 |
1502 ProfileEntryHookStub::MaybeCallEntryHook(masm); | 1576 ProfileEntryHookStub::MaybeCallEntryHook(masm); |
1503 | 1577 |
1504 // Called from C, so do not pop argc and args on exit (preserve sp) | 1578 // PPC LINUX ABI: |
1505 // No need to save register-passed args | 1579 // preserve LR in pre-reserved slot in caller's frame |
1506 // Save callee-saved registers (incl. cp and fp), sp, and lr | 1580 __ mflr(r0); |
1507 __ stm(db_w, sp, kCalleeSaved | lr.bit()); | 1581 __ StoreP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize)); |
1508 | 1582 |
1509 // Save callee-saved vfp registers. | 1583 // Save callee saved registers on the stack. |
1510 __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg); | 1584 __ MultiPush(kCalleeSaved); |
1511 // Set up the reserved register for 0.0. | |
1512 __ vmov(kDoubleRegZero, 0.0); | |
1513 __ VFPEnsureFPSCRState(r4); | |
1514 | 1585 |
1515 // Get address of argv, see stm above. | 1586 // Floating point regs FPR0 - FRP13 are volatile |
1516 // r0: code entry | 1587 // FPR14-FPR31 are non-volatile, but sub-calls will save them for us |
1517 // r1: function | |
1518 // r2: receiver | |
1519 // r3: argc | |
1520 | 1588 |
1521 // Set up argv in r4. | 1589 // int offset_to_argv = kPointerSize * 22; // matches (22*4) above |
1522 int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize; | 1590 // __ lwz(r7, MemOperand(sp, offset_to_argv)); |
1523 offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize; | |
1524 __ ldr(r4, MemOperand(sp, offset_to_argv)); | |
1525 | 1591 |
1526 // Push a frame with special values setup to mark it as an entry frame. | 1592 // Push a frame with special values setup to mark it as an entry frame. |
1527 // r0: code entry | 1593 // r3: code entry |
1528 // r1: function | 1594 // r4: function |
1529 // r2: receiver | 1595 // r5: receiver |
1530 // r3: argc | 1596 // r6: argc |
1531 // r4: argv | 1597 // r7: argv |
| 1598 __ li(r0, Operand(-1)); // Push a bad frame pointer to fail if it is used. |
| 1599 __ push(r0); |
| 1600 #if V8_OOL_CONSTANT_POOL |
| 1601 __ mov(kConstantPoolRegister, |
| 1602 Operand(isolate()->factory()->empty_constant_pool_array())); |
| 1603 __ push(kConstantPoolRegister); |
| 1604 #endif |
1532 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; | 1605 int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; |
1533 if (FLAG_enable_ool_constant_pool) { | 1606 __ LoadSmiLiteral(r0, Smi::FromInt(marker)); |
1534 __ mov(r8, Operand(isolate()->factory()->empty_constant_pool_array())); | 1607 __ push(r0); |
1535 } | 1608 __ push(r0); |
1536 __ mov(r7, Operand(Smi::FromInt(marker))); | 1609 // Save copies of the top frame descriptor on the stack. |
1537 __ mov(r6, Operand(Smi::FromInt(marker))); | 1610 __ mov(r8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); |
1538 __ mov(r5, | 1611 __ LoadP(r0, MemOperand(r8)); |
1539 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); | 1612 __ push(r0); |
1540 __ ldr(r5, MemOperand(r5)); | |
1541 __ mov(ip, Operand(-1)); // Push a bad frame pointer to fail if it is used. | |
1542 __ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | | |
1543 (FLAG_enable_ool_constant_pool ? r8.bit() : 0) | | |
1544 ip.bit()); | |
1545 | 1613 |
1546 // Set up frame pointer for the frame to be pushed. | 1614 // Set up frame pointer for the frame to be pushed. |
1547 __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); | 1615 __ addi(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
1548 | 1616 |
1549 // If this is the outermost JS call, set js_entry_sp value. | 1617 // If this is the outermost JS call, set js_entry_sp value. |
1550 Label non_outermost_js; | 1618 Label non_outermost_js; |
1551 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate()); | 1619 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate()); |
1552 __ mov(r5, Operand(ExternalReference(js_entry_sp))); | 1620 __ mov(r8, Operand(ExternalReference(js_entry_sp))); |
1553 __ ldr(r6, MemOperand(r5)); | 1621 __ LoadP(r9, MemOperand(r8)); |
1554 __ cmp(r6, Operand::Zero()); | 1622 __ cmpi(r9, Operand::Zero()); |
1555 __ b(ne, &non_outermost_js); | 1623 __ bne(&non_outermost_js); |
1556 __ str(fp, MemOperand(r5)); | 1624 __ StoreP(fp, MemOperand(r8)); |
1557 __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); | 1625 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
1558 Label cont; | 1626 Label cont; |
1559 __ b(&cont); | 1627 __ b(&cont); |
1560 __ bind(&non_outermost_js); | 1628 __ bind(&non_outermost_js); |
1561 __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME))); | 1629 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)); |
1562 __ bind(&cont); | 1630 __ bind(&cont); |
1563 __ push(ip); | 1631 __ push(ip); // frame-type |
1564 | 1632 |
1565 // Jump to a faked try block that does the invoke, with a faked catch | 1633 // Jump to a faked try block that does the invoke, with a faked catch |
1566 // block that sets the pending exception. | 1634 // block that sets the pending exception. |
1567 __ jmp(&invoke); | 1635 __ b(&invoke); |
1568 | 1636 |
1569 // Block literal pool emission whilst taking the position of the handler | 1637 __ bind(&handler_entry); |
1570 // entry. This avoids making the assumption that literal pools are always | 1638 handler_offset_ = handler_entry.pos(); |
1571 // emitted after an instruction is emitted, rather than before. | 1639 // Caught exception: Store result (exception) in the pending exception |
1572 { | 1640 // field in the JSEnv and return a failure sentinel. Coming in here the |
1573 Assembler::BlockConstPoolScope block_const_pool(masm); | 1641 // fp will be invalid because the PushTryHandler below sets it to 0 to |
1574 __ bind(&handler_entry); | 1642 // signal the existence of the JSEntry frame. |
1575 handler_offset_ = handler_entry.pos(); | 1643 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
1576 // Caught exception: Store result (exception) in the pending exception | 1644 isolate()))); |
1577 // field in the JSEnv and return a failure sentinel. Coming in here the | 1645 |
1578 // fp will be invalid because the PushTryHandler below sets it to 0 to | 1646 __ StoreP(r3, MemOperand(ip)); |
1579 // signal the existence of the JSEntry frame. | 1647 __ LoadRoot(r3, Heap::kExceptionRootIndex); |
1580 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress, | |
1581 isolate()))); | |
1582 } | |
1583 __ str(r0, MemOperand(ip)); | |
1584 __ LoadRoot(r0, Heap::kExceptionRootIndex); | |
1585 __ b(&exit); | 1648 __ b(&exit); |
1586 | 1649 |
1587 // Invoke: Link this frame into the handler chain. There's only one | 1650 // Invoke: Link this frame into the handler chain. There's only one |
1588 // handler block in this code object, so its index is 0. | 1651 // handler block in this code object, so its index is 0. |
1589 __ bind(&invoke); | 1652 __ bind(&invoke); |
1590 // Must preserve r0-r4, r5-r6 are available. | 1653 // Must preserve r0-r4, r5-r7 are available. (needs update for PPC) |
1591 __ PushTryHandler(StackHandler::JS_ENTRY, 0); | 1654 __ PushTryHandler(StackHandler::JS_ENTRY, 0); |
1592 // If an exception not caught by another handler occurs, this handler | 1655 // If an exception not caught by another handler occurs, this handler |
1593 // returns control to the code after the bl(&invoke) above, which | 1656 // returns control to the code after the b(&invoke) above, which |
1594 // restores all kCalleeSaved registers (including cp and fp) to their | 1657 // restores all kCalleeSaved registers (including cp and fp) to their |
1595 // saved values before returning a failure to C. | 1658 // saved values before returning a failure to C. |
1596 | 1659 |
1597 // Clear any pending exceptions. | 1660 // Clear any pending exceptions. |
1598 __ mov(r5, Operand(isolate()->factory()->the_hole_value())); | 1661 __ mov(r8, Operand(isolate()->factory()->the_hole_value())); |
1599 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress, | 1662 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
1600 isolate()))); | 1663 isolate()))); |
1601 __ str(r5, MemOperand(ip)); | 1664 __ StoreP(r8, MemOperand(ip)); |
1602 | 1665 |
1603 // Invoke the function by calling through JS entry trampoline builtin. | 1666 // Invoke the function by calling through JS entry trampoline builtin. |
1604 // Notice that we cannot store a reference to the trampoline code directly in | 1667 // Notice that we cannot store a reference to the trampoline code directly in |
1605 // this stub, because runtime stubs are not traversed when doing GC. | 1668 // this stub, because runtime stubs are not traversed when doing GC. |
1606 | 1669 |
1607 // Expected registers by Builtins::JSEntryTrampoline | 1670 // Expected registers by Builtins::JSEntryTrampoline |
1608 // r0: code entry | 1671 // r3: code entry |
1609 // r1: function | 1672 // r4: function |
1610 // r2: receiver | 1673 // r5: receiver |
1611 // r3: argc | 1674 // r6: argc |
1612 // r4: argv | 1675 // r7: argv |
1613 if (is_construct) { | 1676 if (is_construct) { |
1614 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, | 1677 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, |
1615 isolate()); | 1678 isolate()); |
1616 __ mov(ip, Operand(construct_entry)); | 1679 __ mov(ip, Operand(construct_entry)); |
1617 } else { | 1680 } else { |
1618 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate()); | 1681 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate()); |
1619 __ mov(ip, Operand(entry)); | 1682 __ mov(ip, Operand(entry)); |
1620 } | 1683 } |
1621 __ ldr(ip, MemOperand(ip)); // deref address | 1684 __ LoadP(ip, MemOperand(ip)); // deref address |
1622 __ add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); | |
1623 | 1685 |
1624 // Branch and link to JSEntryTrampoline. | 1686 // Branch and link to JSEntryTrampoline. |
1625 __ Call(ip); | 1687 // the address points to the start of the code object, skip the header |
| 1688 __ addi(r0, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| 1689 __ mtlr(r0); |
| 1690 __ bclr(BA, SetLK); // make the call |
1626 | 1691 |
1627 // Unlink this frame from the handler chain. | 1692 // Unlink this frame from the handler chain. |
1628 __ PopTryHandler(); | 1693 __ PopTryHandler(); |
1629 | 1694 |
1630 __ bind(&exit); // r0 holds result | 1695 __ bind(&exit); // r3 holds result |
1631 // Check if the current stack frame is marked as the outermost JS frame. | 1696 // Check if the current stack frame is marked as the outermost JS frame. |
1632 Label non_outermost_js_2; | 1697 Label non_outermost_js_2; |
1633 __ pop(r5); | 1698 __ pop(r8); |
1634 __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); | 1699 __ CmpSmiLiteral(r8, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME), r0); |
1635 __ b(ne, &non_outermost_js_2); | 1700 __ bne(&non_outermost_js_2); |
1636 __ mov(r6, Operand::Zero()); | 1701 __ mov(r9, Operand::Zero()); |
1637 __ mov(r5, Operand(ExternalReference(js_entry_sp))); | 1702 __ mov(r8, Operand(ExternalReference(js_entry_sp))); |
1638 __ str(r6, MemOperand(r5)); | 1703 __ StoreP(r9, MemOperand(r8)); |
1639 __ bind(&non_outermost_js_2); | 1704 __ bind(&non_outermost_js_2); |
1640 | 1705 |
1641 // Restore the top frame descriptors from the stack. | 1706 // Restore the top frame descriptors from the stack. |
1642 __ pop(r3); | 1707 __ pop(r6); |
1643 __ mov(ip, | 1708 __ mov(ip, |
1644 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); | 1709 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); |
1645 __ str(r3, MemOperand(ip)); | 1710 __ StoreP(r6, MemOperand(ip)); |
1646 | 1711 |
1647 // Reset the stack to the callee saved registers. | 1712 // Reset the stack to the callee saved registers. |
1648 __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); | 1713 __ addi(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
1649 | 1714 |
1650 // Restore callee-saved registers and return. | 1715 // Restore callee-saved registers and return. |
1651 #ifdef DEBUG | 1716 #ifdef DEBUG |
1652 if (FLAG_debug_code) { | 1717 if (FLAG_debug_code) { |
1653 __ mov(lr, Operand(pc)); | 1718 Label here; |
| 1719 __ b(&here, SetLK); |
| 1720 __ bind(&here); |
1654 } | 1721 } |
1655 #endif | 1722 #endif |
1656 | 1723 |
1657 // Restore callee-saved vfp registers. | 1724 __ MultiPop(kCalleeSaved); |
1658 __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg); | |
1659 | 1725 |
1660 __ ldm(ia_w, sp, kCalleeSaved | pc.bit()); | 1726 __ LoadP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize)); |
| 1727 __ mtctr(r0); |
| 1728 __ bctr(); |
1661 } | 1729 } |
1662 | 1730 |
1663 | 1731 |
1664 // Uses registers r0 to r4. | 1732 // Uses registers r3 to r7. |
1665 // Expected input (depending on whether args are in registers or on the stack): | 1733 // Expected input (depending on whether args are in registers or on the stack): |
1666 // * object: r0 or at sp + 1 * kPointerSize. | 1734 // * object: r3 or at sp + 1 * kPointerSize. |
1667 // * function: r1 or at sp. | 1735 // * function: r4 or at sp. |
1668 // | 1736 // |
1669 // An inlined call site may have been generated before calling this stub. | 1737 // An inlined call site may have been generated before calling this stub. |
1670 // In this case the offset to the inline sites to patch are passed in r5 and r6. | 1738 // In this case the offset to the inline site to patch is passed in r8. |
1671 // (See LCodeGen::DoInstanceOfKnownGlobal) | 1739 // (See LCodeGen::DoInstanceOfKnownGlobal) |
1672 void InstanceofStub::Generate(MacroAssembler* masm) { | 1740 void InstanceofStub::Generate(MacroAssembler* masm) { |
1673 // Call site inlining and patching implies arguments in registers. | 1741 // Call site inlining and patching implies arguments in registers. |
1674 ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck()); | 1742 ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck()); |
1675 // ReturnTrueFalse is only implemented for inlined call sites. | 1743 // ReturnTrueFalse is only implemented for inlined call sites. |
1676 ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck()); | 1744 ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck()); |
1677 | 1745 |
1678 // Fixed register usage throughout the stub: | 1746 // Fixed register usage throughout the stub: |
1679 const Register object = r0; // Object (lhs). | 1747 const Register object = r3; // Object (lhs). |
1680 Register map = r3; // Map of the object. | 1748 Register map = r6; // Map of the object. |
1681 const Register function = r1; // Function (rhs). | 1749 const Register function = r4; // Function (rhs). |
1682 const Register prototype = r4; // Prototype of the function. | 1750 const Register prototype = r7; // Prototype of the function. |
1683 const Register scratch = r2; | 1751 const Register inline_site = r9; |
| 1752 const Register scratch = r5; |
| 1753 Register scratch3 = no_reg; |
| 1754 |
| 1755 // delta = mov + unaligned LoadP + cmp + bne |
| 1756 #if V8_TARGET_ARCH_PPC64 |
| 1757 const int32_t kDeltaToLoadBoolResult = |
| 1758 (Assembler::kMovInstructions + 4) * Assembler::kInstrSize; |
| 1759 #else |
| 1760 const int32_t kDeltaToLoadBoolResult = |
| 1761 (Assembler::kMovInstructions + 3) * Assembler::kInstrSize; |
| 1762 #endif |
1684 | 1763 |
1685 Label slow, loop, is_instance, is_not_instance, not_js_object; | 1764 Label slow, loop, is_instance, is_not_instance, not_js_object; |
1686 | 1765 |
1687 if (!HasArgsInRegisters()) { | 1766 if (!HasArgsInRegisters()) { |
1688 __ ldr(object, MemOperand(sp, 1 * kPointerSize)); | 1767 __ LoadP(object, MemOperand(sp, 1 * kPointerSize)); |
1689 __ ldr(function, MemOperand(sp, 0)); | 1768 __ LoadP(function, MemOperand(sp, 0)); |
1690 } | 1769 } |
1691 | 1770 |
1692 // Check that the left hand is a JS object and load map. | 1771 // Check that the left hand is a JS object and load map. |
1693 __ JumpIfSmi(object, ¬_js_object); | 1772 __ JumpIfSmi(object, ¬_js_object); |
1694 __ IsObjectJSObjectType(object, map, scratch, ¬_js_object); | 1773 __ IsObjectJSObjectType(object, map, scratch, ¬_js_object); |
1695 | 1774 |
1696 // If there is a call site cache don't look in the global cache, but do the | 1775 // If there is a call site cache don't look in the global cache, but do the |
1697 // real lookup and update the call site cache. | 1776 // real lookup and update the call site cache. |
1698 if (!HasCallSiteInlineCheck()) { | 1777 if (!HasCallSiteInlineCheck()) { |
1699 Label miss; | 1778 Label miss; |
1700 __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex); | 1779 __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex); |
1701 __ b(ne, &miss); | 1780 __ bne(&miss); |
1702 __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex); | 1781 __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex); |
1703 __ b(ne, &miss); | 1782 __ bne(&miss); |
1704 __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); | 1783 __ LoadRoot(r3, Heap::kInstanceofCacheAnswerRootIndex); |
1705 __ Ret(HasArgsInRegisters() ? 0 : 2); | 1784 __ Ret(HasArgsInRegisters() ? 0 : 2); |
1706 | 1785 |
1707 __ bind(&miss); | 1786 __ bind(&miss); |
1708 } | 1787 } |
1709 | 1788 |
1710 // Get the prototype of the function. | 1789 // Get the prototype of the function. |
1711 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true); | 1790 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true); |
1712 | 1791 |
1713 // Check that the function prototype is a JS object. | 1792 // Check that the function prototype is a JS object. |
1714 __ JumpIfSmi(prototype, &slow); | 1793 __ JumpIfSmi(prototype, &slow); |
1715 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow); | 1794 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow); |
1716 | 1795 |
1717 // Update the global instanceof or call site inlined cache with the current | 1796 // Update the global instanceof or call site inlined cache with the current |
1718 // map and function. The cached answer will be set when it is known below. | 1797 // map and function. The cached answer will be set when it is known below. |
1719 if (!HasCallSiteInlineCheck()) { | 1798 if (!HasCallSiteInlineCheck()) { |
1720 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); | 1799 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); |
1721 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); | 1800 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); |
1722 } else { | 1801 } else { |
1723 ASSERT(HasArgsInRegisters()); | 1802 ASSERT(HasArgsInRegisters()); |
1724 // Patch the (relocated) inlined map check. | 1803 // Patch the (relocated) inlined map check. |
1725 | 1804 |
1726 // The map_load_offset was stored in r5 | 1805 // The offset was stored in r8 |
1727 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal). | 1806 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal). |
1728 const Register map_load_offset = r5; | 1807 const Register offset = r8; |
1729 __ sub(r9, lr, map_load_offset); | 1808 __ mflr(inline_site); |
1730 // Get the map location in r5 and patch it. | 1809 __ sub(inline_site, inline_site, offset); |
1731 __ GetRelocatedValueLocation(r9, map_load_offset, scratch); | 1810 // Get the map location in r8 and patch it. |
1732 __ ldr(map_load_offset, MemOperand(map_load_offset)); | 1811 __ GetRelocatedValue(inline_site, offset, scratch); |
1733 __ str(map, FieldMemOperand(map_load_offset, Cell::kValueOffset)); | 1812 __ StoreP(map, FieldMemOperand(offset, Cell::kValueOffset), r0); |
1734 } | 1813 } |
1735 | 1814 |
1736 // Register mapping: r3 is object map and r4 is function prototype. | 1815 // Register mapping: r6 is object map and r7 is function prototype. |
1737 // Get prototype of object into r2. | 1816 // Get prototype of object into r5. |
1738 __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset)); | 1817 __ LoadP(scratch, FieldMemOperand(map, Map::kPrototypeOffset)); |
1739 | 1818 |
1740 // We don't need map any more. Use it as a scratch register. | 1819 // We don't need map any more. Use it as a scratch register. |
1741 Register scratch2 = map; | 1820 scratch3 = map; |
1742 map = no_reg; | 1821 map = no_reg; |
1743 | 1822 |
1744 // Loop through the prototype chain looking for the function prototype. | 1823 // Loop through the prototype chain looking for the function prototype. |
1745 __ LoadRoot(scratch2, Heap::kNullValueRootIndex); | 1824 __ LoadRoot(scratch3, Heap::kNullValueRootIndex); |
1746 __ bind(&loop); | 1825 __ bind(&loop); |
1747 __ cmp(scratch, Operand(prototype)); | 1826 __ cmp(scratch, prototype); |
1748 __ b(eq, &is_instance); | 1827 __ beq(&is_instance); |
1749 __ cmp(scratch, scratch2); | 1828 __ cmp(scratch, scratch3); |
1750 __ b(eq, &is_not_instance); | 1829 __ beq(&is_not_instance); |
1751 __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset)); | 1830 __ LoadP(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset)); |
1752 __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset)); | 1831 __ LoadP(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset)); |
1753 __ jmp(&loop); | 1832 __ b(&loop); |
1754 | 1833 |
1755 __ bind(&is_instance); | 1834 __ bind(&is_instance); |
1756 if (!HasCallSiteInlineCheck()) { | 1835 if (!HasCallSiteInlineCheck()) { |
1757 __ mov(r0, Operand(Smi::FromInt(0))); | 1836 __ LoadSmiLiteral(r3, Smi::FromInt(0)); |
1758 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); | 1837 __ StoreRoot(r3, Heap::kInstanceofCacheAnswerRootIndex); |
1759 } else { | 1838 } else { |
1760 // Patch the call site to return true. | 1839 // Patch the call site to return true. |
1761 __ LoadRoot(r0, Heap::kTrueValueRootIndex); | 1840 __ LoadRoot(r3, Heap::kTrueValueRootIndex); |
1762 // The bool_load_offset was stored in r6 | 1841 __ addi(inline_site, inline_site, Operand(kDeltaToLoadBoolResult)); |
1763 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal). | |
1764 const Register bool_load_offset = r6; | |
1765 __ sub(r9, lr, bool_load_offset); | |
1766 // Get the boolean result location in scratch and patch it. | 1842 // Get the boolean result location in scratch and patch it. |
1767 __ GetRelocatedValueLocation(r9, scratch, scratch2); | 1843 __ SetRelocatedValue(inline_site, scratch, r3); |
1768 __ str(r0, MemOperand(scratch)); | |
1769 | 1844 |
1770 if (!ReturnTrueFalseObject()) { | 1845 if (!ReturnTrueFalseObject()) { |
1771 __ mov(r0, Operand(Smi::FromInt(0))); | 1846 __ LoadSmiLiteral(r3, Smi::FromInt(0)); |
1772 } | 1847 } |
1773 } | 1848 } |
1774 __ Ret(HasArgsInRegisters() ? 0 : 2); | 1849 __ Ret(HasArgsInRegisters() ? 0 : 2); |
1775 | 1850 |
1776 __ bind(&is_not_instance); | 1851 __ bind(&is_not_instance); |
1777 if (!HasCallSiteInlineCheck()) { | 1852 if (!HasCallSiteInlineCheck()) { |
1778 __ mov(r0, Operand(Smi::FromInt(1))); | 1853 __ LoadSmiLiteral(r3, Smi::FromInt(1)); |
1779 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); | 1854 __ StoreRoot(r3, Heap::kInstanceofCacheAnswerRootIndex); |
1780 } else { | 1855 } else { |
1781 // Patch the call site to return false. | 1856 // Patch the call site to return false. |
1782 __ LoadRoot(r0, Heap::kFalseValueRootIndex); | 1857 __ LoadRoot(r3, Heap::kFalseValueRootIndex); |
1783 // The bool_load_offset was stored in r6 | 1858 __ addi(inline_site, inline_site, Operand(kDeltaToLoadBoolResult)); |
1784 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal). | |
1785 const Register bool_load_offset = r6; | |
1786 __ sub(r9, lr, bool_load_offset); | |
1787 ; | |
1788 // Get the boolean result location in scratch and patch it. | 1859 // Get the boolean result location in scratch and patch it. |
1789 __ GetRelocatedValueLocation(r9, scratch, scratch2); | 1860 __ SetRelocatedValue(inline_site, scratch, r3); |
1790 __ str(r0, MemOperand(scratch)); | |
1791 | 1861 |
1792 if (!ReturnTrueFalseObject()) { | 1862 if (!ReturnTrueFalseObject()) { |
1793 __ mov(r0, Operand(Smi::FromInt(1))); | 1863 __ LoadSmiLiteral(r3, Smi::FromInt(1)); |
1794 } | 1864 } |
1795 } | 1865 } |
1796 __ Ret(HasArgsInRegisters() ? 0 : 2); | 1866 __ Ret(HasArgsInRegisters() ? 0 : 2); |
1797 | 1867 |
1798 Label object_not_null, object_not_null_or_smi; | 1868 Label object_not_null, object_not_null_or_smi; |
1799 __ bind(¬_js_object); | 1869 __ bind(¬_js_object); |
1800 // Before null, smi and string value checks, check that the rhs is a function | 1870 // Before null, smi and string value checks, check that the rhs is a function |
1801 // as for a non-function rhs an exception needs to be thrown. | 1871 // as for a non-function rhs an exception needs to be thrown. |
1802 __ JumpIfSmi(function, &slow); | 1872 __ JumpIfSmi(function, &slow); |
1803 __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE); | 1873 __ CompareObjectType(function, scratch3, scratch, JS_FUNCTION_TYPE); |
1804 __ b(ne, &slow); | 1874 __ bne(&slow); |
1805 | 1875 |
1806 // Null is not instance of anything. | 1876 // Null is not instance of anything. |
1807 __ cmp(scratch, Operand(isolate()->factory()->null_value())); | 1877 __ Cmpi(scratch, Operand(isolate()->factory()->null_value()), r0); |
1808 __ b(ne, &object_not_null); | 1878 __ bne(&object_not_null); |
1809 __ mov(r0, Operand(Smi::FromInt(1))); | 1879 __ LoadSmiLiteral(r3, Smi::FromInt(1)); |
1810 __ Ret(HasArgsInRegisters() ? 0 : 2); | 1880 __ Ret(HasArgsInRegisters() ? 0 : 2); |
1811 | 1881 |
1812 __ bind(&object_not_null); | 1882 __ bind(&object_not_null); |
1813 // Smi values are not instances of anything. | 1883 // Smi values are not instances of anything. |
1814 __ JumpIfNotSmi(object, &object_not_null_or_smi); | 1884 __ JumpIfNotSmi(object, &object_not_null_or_smi); |
1815 __ mov(r0, Operand(Smi::FromInt(1))); | 1885 __ LoadSmiLiteral(r3, Smi::FromInt(1)); |
1816 __ Ret(HasArgsInRegisters() ? 0 : 2); | 1886 __ Ret(HasArgsInRegisters() ? 0 : 2); |
1817 | 1887 |
1818 __ bind(&object_not_null_or_smi); | 1888 __ bind(&object_not_null_or_smi); |
1819 // String values are not instances of anything. | 1889 // String values are not instances of anything. |
1820 __ IsObjectJSStringType(object, scratch, &slow); | 1890 __ IsObjectJSStringType(object, scratch, &slow); |
1821 __ mov(r0, Operand(Smi::FromInt(1))); | 1891 __ LoadSmiLiteral(r3, Smi::FromInt(1)); |
1822 __ Ret(HasArgsInRegisters() ? 0 : 2); | 1892 __ Ret(HasArgsInRegisters() ? 0 : 2); |
1823 | 1893 |
1824 // Slow-case. Tail call builtin. | 1894 // Slow-case. Tail call builtin. |
1825 __ bind(&slow); | 1895 __ bind(&slow); |
1826 if (!ReturnTrueFalseObject()) { | 1896 if (!ReturnTrueFalseObject()) { |
1827 if (HasArgsInRegisters()) { | 1897 if (HasArgsInRegisters()) { |
1828 __ Push(r0, r1); | 1898 __ Push(r3, r4); |
1829 } | 1899 } |
1830 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); | 1900 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); |
1831 } else { | 1901 } else { |
1832 { | 1902 { |
1833 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); | 1903 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
1834 __ Push(r0, r1); | 1904 __ Push(r3, r4); |
1835 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); | 1905 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); |
1836 } | 1906 } |
1837 __ cmp(r0, Operand::Zero()); | 1907 Label true_value, done; |
1838 __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq); | 1908 __ cmpi(r3, Operand::Zero()); |
1839 __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne); | 1909 __ beq(&true_value); |
| 1910 |
| 1911 __ LoadRoot(r3, Heap::kFalseValueRootIndex); |
| 1912 __ b(&done); |
| 1913 |
| 1914 __ bind(&true_value); |
| 1915 __ LoadRoot(r3, Heap::kTrueValueRootIndex); |
| 1916 |
| 1917 __ bind(&done); |
1840 __ Ret(HasArgsInRegisters() ? 0 : 2); | 1918 __ Ret(HasArgsInRegisters() ? 0 : 2); |
1841 } | 1919 } |
1842 } | 1920 } |
1843 | 1921 |
1844 | 1922 |
1845 void FunctionPrototypeStub::Generate(MacroAssembler* masm) { | 1923 void FunctionPrototypeStub::Generate(MacroAssembler* masm) { |
1846 Label miss; | 1924 Label miss; |
1847 Register receiver = LoadIC::ReceiverRegister(); | 1925 Register receiver = LoadIC::ReceiverRegister(); |
1848 | 1926 |
1849 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r3, | 1927 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r6, |
1850 r4, &miss); | 1928 r7, &miss); |
1851 __ bind(&miss); | 1929 __ bind(&miss); |
1852 PropertyAccessCompiler::TailCallBuiltin( | 1930 PropertyAccessCompiler::TailCallBuiltin( |
1853 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC)); | 1931 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC)); |
1854 } | 1932 } |
1855 | 1933 |
1856 | 1934 |
1857 Register InstanceofStub::left() { return r0; } | 1935 Register InstanceofStub::left() { return r3; } |
1858 | 1936 |
1859 | 1937 |
1860 Register InstanceofStub::right() { return r1; } | 1938 Register InstanceofStub::right() { return r4; } |
1861 | 1939 |
1862 | 1940 |
1863 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { | 1941 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
1864 // The displacement is the offset of the last parameter (if any) | 1942 // The displacement is the offset of the last parameter (if any) |
1865 // relative to the frame pointer. | 1943 // relative to the frame pointer. |
1866 const int kDisplacement = | 1944 const int kDisplacement = |
1867 StandardFrameConstants::kCallerSPOffset - kPointerSize; | 1945 StandardFrameConstants::kCallerSPOffset - kPointerSize; |
1868 | 1946 |
1869 // Check that the key is a smi. | 1947 // Check that the key is a smi. |
1870 Label slow; | 1948 Label slow; |
1871 __ JumpIfNotSmi(r1, &slow); | 1949 __ JumpIfNotSmi(r4, &slow); |
1872 | 1950 |
1873 // Check if the calling frame is an arguments adaptor frame. | 1951 // Check if the calling frame is an arguments adaptor frame. |
1874 Label adaptor; | 1952 Label adaptor; |
1875 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | 1953 __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
1876 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); | 1954 __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset)); |
1877 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | 1955 STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu); |
1878 __ b(eq, &adaptor); | 1956 __ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0); |
| 1957 __ beq(&adaptor); |
1879 | 1958 |
1880 // Check index against formal parameters count limit passed in | 1959 // Check index against formal parameters count limit passed in |
1881 // through register r0. Use unsigned comparison to get negative | 1960 // through register r3. Use unsigned comparison to get negative |
1882 // check for free. | 1961 // check for free. |
1883 __ cmp(r1, r0); | 1962 __ cmpl(r4, r3); |
1884 __ b(hs, &slow); | 1963 __ bge(&slow); |
1885 | 1964 |
1886 // Read the argument from the stack and return it. | 1965 // Read the argument from the stack and return it. |
1887 __ sub(r3, r0, r1); | 1966 __ sub(r6, r3, r4); |
1888 __ add(r3, fp, Operand::PointerOffsetFromSmiKey(r3)); | 1967 __ SmiToPtrArrayOffset(r6, r6); |
1889 __ ldr(r0, MemOperand(r3, kDisplacement)); | 1968 __ add(r6, fp, r6); |
1890 __ Jump(lr); | 1969 __ LoadP(r3, MemOperand(r6, kDisplacement)); |
| 1970 __ blr(); |
1891 | 1971 |
1892 // Arguments adaptor case: Check index against actual arguments | 1972 // Arguments adaptor case: Check index against actual arguments |
1893 // limit found in the arguments adaptor frame. Use unsigned | 1973 // limit found in the arguments adaptor frame. Use unsigned |
1894 // comparison to get negative check for free. | 1974 // comparison to get negative check for free. |
1895 __ bind(&adaptor); | 1975 __ bind(&adaptor); |
1896 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); | 1976 __ LoadP(r3, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
1897 __ cmp(r1, r0); | 1977 __ cmpl(r4, r3); |
1898 __ b(cs, &slow); | 1978 __ bge(&slow); |
1899 | 1979 |
1900 // Read the argument from the adaptor frame and return it. | 1980 // Read the argument from the adaptor frame and return it. |
1901 __ sub(r3, r0, r1); | 1981 __ sub(r6, r3, r4); |
1902 __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r3)); | 1982 __ SmiToPtrArrayOffset(r6, r6); |
1903 __ ldr(r0, MemOperand(r3, kDisplacement)); | 1983 __ add(r6, r5, r6); |
1904 __ Jump(lr); | 1984 __ LoadP(r3, MemOperand(r6, kDisplacement)); |
| 1985 __ blr(); |
1905 | 1986 |
1906 // Slow-case: Handle non-smi or out-of-bounds access to arguments | 1987 // Slow-case: Handle non-smi or out-of-bounds access to arguments |
1907 // by calling the runtime system. | 1988 // by calling the runtime system. |
1908 __ bind(&slow); | 1989 __ bind(&slow); |
1909 __ push(r1); | 1990 __ push(r4); |
1910 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); | 1991 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
1911 } | 1992 } |
1912 | 1993 |
1913 | 1994 |
1914 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) { | 1995 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) { |
1915 // sp[0] : number of parameters | 1996 // sp[0] : number of parameters |
1916 // sp[4] : receiver displacement | 1997 // sp[1] : receiver displacement |
1917 // sp[8] : function | 1998 // sp[2] : function |
1918 | 1999 |
1919 // Check if the calling frame is an arguments adaptor frame. | 2000 // Check if the calling frame is an arguments adaptor frame. |
1920 Label runtime; | 2001 Label runtime; |
1921 __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | 2002 __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
1922 __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset)); | 2003 __ LoadP(r5, MemOperand(r6, StandardFrameConstants::kContextOffset)); |
1923 __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | 2004 STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu); |
1924 __ b(ne, &runtime); | 2005 __ CmpSmiLiteral(r5, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0); |
| 2006 __ bne(&runtime); |
1925 | 2007 |
1926 // Patch the arguments.length and the parameters pointer in the current frame. | 2008 // Patch the arguments.length and the parameters pointer in the current frame. |
1927 __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset)); | 2009 __ LoadP(r5, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
1928 __ str(r2, MemOperand(sp, 0 * kPointerSize)); | 2010 __ StoreP(r5, MemOperand(sp, 0 * kPointerSize)); |
1929 __ add(r3, r3, Operand(r2, LSL, 1)); | 2011 __ SmiToPtrArrayOffset(r5, r5); |
1930 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); | 2012 __ add(r6, r6, r5); |
1931 __ str(r3, MemOperand(sp, 1 * kPointerSize)); | 2013 __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset)); |
| 2014 __ StoreP(r6, MemOperand(sp, 1 * kPointerSize)); |
1932 | 2015 |
1933 __ bind(&runtime); | 2016 __ bind(&runtime); |
1934 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1); | 2017 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1); |
1935 } | 2018 } |
1936 | 2019 |
1937 | 2020 |
1938 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) { | 2021 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) { |
1939 // Stack layout: | 2022 // Stack layout: |
1940 // sp[0] : number of parameters (tagged) | 2023 // sp[0] : number of parameters (tagged) |
1941 // sp[4] : address of receiver argument | 2024 // sp[1] : address of receiver argument |
1942 // sp[8] : function | 2025 // sp[2] : function |
1943 // Registers used over whole function: | 2026 // Registers used over whole function: |
1944 // r6 : allocated object (tagged) | 2027 // r9 : allocated object (tagged) |
1945 // r9 : mapped parameter count (tagged) | 2028 // r11 : mapped parameter count (tagged) |
1946 | 2029 |
1947 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); | 2030 __ LoadP(r4, MemOperand(sp, 0 * kPointerSize)); |
1948 // r1 = parameter count (tagged) | 2031 // r4 = parameter count (tagged) |
1949 | 2032 |
1950 // Check if the calling frame is an arguments adaptor frame. | 2033 // Check if the calling frame is an arguments adaptor frame. |
1951 Label runtime; | 2034 Label runtime; |
1952 Label adaptor_frame, try_allocate; | 2035 Label adaptor_frame, try_allocate; |
1953 __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | 2036 __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
1954 __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset)); | 2037 __ LoadP(r5, MemOperand(r6, StandardFrameConstants::kContextOffset)); |
1955 __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | 2038 STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu); |
1956 __ b(eq, &adaptor_frame); | 2039 __ CmpSmiLiteral(r5, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0); |
| 2040 __ beq(&adaptor_frame); |
1957 | 2041 |
1958 // No adaptor, parameter count = argument count. | 2042 // No adaptor, parameter count = argument count. |
1959 __ mov(r2, r1); | 2043 __ mr(r5, r4); |
1960 __ b(&try_allocate); | 2044 __ b(&try_allocate); |
1961 | 2045 |
1962 // We have an adaptor frame. Patch the parameters pointer. | 2046 // We have an adaptor frame. Patch the parameters pointer. |
1963 __ bind(&adaptor_frame); | 2047 __ bind(&adaptor_frame); |
1964 __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset)); | 2048 __ LoadP(r5, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
1965 __ add(r3, r3, Operand(r2, LSL, 1)); | 2049 __ SmiToPtrArrayOffset(r7, r5); |
1966 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); | 2050 __ add(r6, r6, r7); |
1967 __ str(r3, MemOperand(sp, 1 * kPointerSize)); | 2051 __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset)); |
| 2052 __ StoreP(r6, MemOperand(sp, 1 * kPointerSize)); |
1968 | 2053 |
1969 // r1 = parameter count (tagged) | 2054 // r4 = parameter count (tagged) |
1970 // r2 = argument count (tagged) | 2055 // r5 = argument count (tagged) |
1971 // Compute the mapped parameter count = min(r1, r2) in r1. | 2056 // Compute the mapped parameter count = min(r4, r5) in r4. |
1972 __ cmp(r1, Operand(r2)); | 2057 Label skip; |
1973 __ mov(r1, Operand(r2), LeaveCC, gt); | 2058 __ cmp(r4, r5); |
| 2059 __ blt(&skip); |
| 2060 __ mr(r4, r5); |
| 2061 __ bind(&skip); |
1974 | 2062 |
1975 __ bind(&try_allocate); | 2063 __ bind(&try_allocate); |
1976 | 2064 |
1977 // Compute the sizes of backing store, parameter map, and arguments object. | 2065 // Compute the sizes of backing store, parameter map, and arguments object. |
1978 // 1. Parameter map, has 2 extra words containing context and backing store. | 2066 // 1. Parameter map, has 2 extra words containing context and backing store. |
1979 const int kParameterMapHeaderSize = | 2067 const int kParameterMapHeaderSize = |
1980 FixedArray::kHeaderSize + 2 * kPointerSize; | 2068 FixedArray::kHeaderSize + 2 * kPointerSize; |
1981 // If there are no mapped parameters, we do not need the parameter_map. | 2069 // If there are no mapped parameters, we do not need the parameter_map. |
1982 __ cmp(r1, Operand(Smi::FromInt(0))); | 2070 Label skip2, skip3; |
1983 __ mov(r9, Operand::Zero(), LeaveCC, eq); | 2071 __ CmpSmiLiteral(r4, Smi::FromInt(0), r0); |
1984 __ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne); | 2072 __ bne(&skip2); |
1985 __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne); | 2073 __ li(r11, Operand::Zero()); |
| 2074 __ b(&skip3); |
| 2075 __ bind(&skip2); |
| 2076 __ SmiToPtrArrayOffset(r11, r4); |
| 2077 __ addi(r11, r11, Operand(kParameterMapHeaderSize)); |
| 2078 __ bind(&skip3); |
1986 | 2079 |
1987 // 2. Backing store. | 2080 // 2. Backing store. |
1988 __ add(r9, r9, Operand(r2, LSL, 1)); | 2081 __ SmiToPtrArrayOffset(r7, r5); |
1989 __ add(r9, r9, Operand(FixedArray::kHeaderSize)); | 2082 __ add(r11, r11, r7); |
| 2083 __ addi(r11, r11, Operand(FixedArray::kHeaderSize)); |
1990 | 2084 |
1991 // 3. Arguments object. | 2085 // 3. Arguments object. |
1992 __ add(r9, r9, Operand(Heap::kSloppyArgumentsObjectSize)); | 2086 __ addi(r11, r11, Operand(Heap::kSloppyArgumentsObjectSize)); |
1993 | 2087 |
1994 // Do the allocation of all three objects in one go. | 2088 // Do the allocation of all three objects in one go. |
1995 __ Allocate(r9, r0, r3, r4, &runtime, TAG_OBJECT); | 2089 __ Allocate(r11, r3, r6, r7, &runtime, TAG_OBJECT); |
1996 | 2090 |
1997 // r0 = address of new object(s) (tagged) | 2091 // r3 = address of new object(s) (tagged) |
1998 // r2 = argument count (smi-tagged) | 2092 // r5 = argument count (smi-tagged) |
1999 // Get the arguments boilerplate from the current native context into r4. | 2093 // Get the arguments boilerplate from the current native context into r4. |
2000 const int kNormalOffset = | 2094 const int kNormalOffset = |
2001 Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX); | 2095 Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX); |
2002 const int kAliasedOffset = | 2096 const int kAliasedOffset = |
2003 Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX); | 2097 Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX); |
2004 | 2098 |
2005 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); | 2099 __ LoadP(r7, MemOperand(cp, |
2006 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset)); | 2100 Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); |
2007 __ cmp(r1, Operand::Zero()); | 2101 __ LoadP(r7, FieldMemOperand(r7, GlobalObject::kNativeContextOffset)); |
2008 __ ldr(r4, MemOperand(r4, kNormalOffset), eq); | 2102 Label skip4, skip5; |
2009 __ ldr(r4, MemOperand(r4, kAliasedOffset), ne); | 2103 __ cmpi(r4, Operand::Zero()); |
| 2104 __ bne(&skip4); |
| 2105 __ LoadP(r7, MemOperand(r7, kNormalOffset)); |
| 2106 __ b(&skip5); |
| 2107 __ bind(&skip4); |
| 2108 __ LoadP(r7, MemOperand(r7, kAliasedOffset)); |
| 2109 __ bind(&skip5); |
2010 | 2110 |
2011 // r0 = address of new object (tagged) | 2111 // r3 = address of new object (tagged) |
2012 // r1 = mapped parameter count (tagged) | 2112 // r4 = mapped parameter count (tagged) |
2013 // r2 = argument count (smi-tagged) | 2113 // r5 = argument count (smi-tagged) |
2014 // r4 = address of arguments map (tagged) | 2114 // r7 = address of arguments map (tagged) |
2015 __ str(r4, FieldMemOperand(r0, JSObject::kMapOffset)); | 2115 __ StoreP(r7, FieldMemOperand(r3, JSObject::kMapOffset), r0); |
2016 __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex); | 2116 __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex); |
2017 __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset)); | 2117 __ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0); |
2018 __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset)); | 2118 __ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0); |
2019 | 2119 |
2020 // Set up the callee in-object property. | 2120 // Set up the callee in-object property. |
2021 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); | 2121 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); |
2022 __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); | 2122 __ LoadP(r6, MemOperand(sp, 2 * kPointerSize)); |
2023 __ AssertNotSmi(r3); | 2123 __ AssertNotSmi(r6); |
2024 const int kCalleeOffset = JSObject::kHeaderSize + | 2124 const int kCalleeOffset = JSObject::kHeaderSize + |
2025 Heap::kArgumentsCalleeIndex * kPointerSize; | 2125 Heap::kArgumentsCalleeIndex * kPointerSize; |
2026 __ str(r3, FieldMemOperand(r0, kCalleeOffset)); | 2126 __ StoreP(r6, FieldMemOperand(r3, kCalleeOffset), r0); |
2027 | 2127 |
2028 // Use the length (smi tagged) and set that as an in-object property too. | 2128 // Use the length (smi tagged) and set that as an in-object property too. |
2029 __ AssertSmi(r2); | 2129 __ AssertSmi(r5); |
2030 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); | 2130 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); |
2031 const int kLengthOffset = JSObject::kHeaderSize + | 2131 const int kLengthOffset = JSObject::kHeaderSize + |
2032 Heap::kArgumentsLengthIndex * kPointerSize; | 2132 Heap::kArgumentsLengthIndex * kPointerSize; |
2033 __ str(r2, FieldMemOperand(r0, kLengthOffset)); | 2133 __ StoreP(r5, FieldMemOperand(r3, kLengthOffset), r0); |
2034 | 2134 |
2035 // Set up the elements pointer in the allocated arguments object. | 2135 // Set up the elements pointer in the allocated arguments object. |
2036 // If we allocated a parameter map, r4 will point there, otherwise | 2136 // If we allocated a parameter map, r7 will point there, otherwise |
2037 // it will point to the backing store. | 2137 // it will point to the backing store. |
2038 __ add(r4, r0, Operand(Heap::kSloppyArgumentsObjectSize)); | 2138 __ addi(r7, r3, Operand(Heap::kSloppyArgumentsObjectSize)); |
2039 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); | 2139 __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0); |
2040 | 2140 |
2041 // r0 = address of new object (tagged) | 2141 // r3 = address of new object (tagged) |
2042 // r1 = mapped parameter count (tagged) | 2142 // r4 = mapped parameter count (tagged) |
2043 // r2 = argument count (tagged) | 2143 // r5 = argument count (tagged) |
2044 // r4 = address of parameter map or backing store (tagged) | 2144 // r7 = address of parameter map or backing store (tagged) |
2045 // Initialize parameter map. If there are no mapped arguments, we're done. | 2145 // Initialize parameter map. If there are no mapped arguments, we're done. |
2046 Label skip_parameter_map; | 2146 Label skip_parameter_map, skip6; |
2047 __ cmp(r1, Operand(Smi::FromInt(0))); | 2147 __ CmpSmiLiteral(r4, Smi::FromInt(0), r0); |
2048 // Move backing store address to r3, because it is | 2148 __ bne(&skip6); |
| 2149 // Move backing store address to r6, because it is |
2049 // expected there when filling in the unmapped arguments. | 2150 // expected there when filling in the unmapped arguments. |
2050 __ mov(r3, r4, LeaveCC, eq); | 2151 __ mr(r6, r7); |
2051 __ b(eq, &skip_parameter_map); | 2152 __ b(&skip_parameter_map); |
| 2153 __ bind(&skip6); |
2052 | 2154 |
2053 __ LoadRoot(r6, Heap::kSloppyArgumentsElementsMapRootIndex); | 2155 __ LoadRoot(r9, Heap::kSloppyArgumentsElementsMapRootIndex); |
2054 __ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset)); | 2156 __ StoreP(r9, FieldMemOperand(r7, FixedArray::kMapOffset), r0); |
2055 __ add(r6, r1, Operand(Smi::FromInt(2))); | 2157 __ AddSmiLiteral(r9, r4, Smi::FromInt(2), r0); |
2056 __ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset)); | 2158 __ StoreP(r9, FieldMemOperand(r7, FixedArray::kLengthOffset), r0); |
2057 __ str(cp, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize)); | 2159 __ StoreP(cp, FieldMemOperand(r7, |
2058 __ add(r6, r4, Operand(r1, LSL, 1)); | 2160 FixedArray::kHeaderSize + 0 * kPointerSize), |
2059 __ add(r6, r6, Operand(kParameterMapHeaderSize)); | 2161 r0); |
2060 __ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize)); | 2162 __ SmiToPtrArrayOffset(r9, r4); |
| 2163 __ add(r9, r7, r9); |
| 2164 __ addi(r9, r9, Operand(kParameterMapHeaderSize)); |
| 2165 __ StoreP(r9, FieldMemOperand(r7, |
| 2166 FixedArray::kHeaderSize + 1 * kPointerSize), |
| 2167 r0); |
2061 | 2168 |
2062 // Copy the parameter slots and the holes in the arguments. | 2169 // Copy the parameter slots and the holes in the arguments. |
2063 // We need to fill in mapped_parameter_count slots. They index the context, | 2170 // We need to fill in mapped_parameter_count slots. They index the context, |
2064 // where parameters are stored in reverse order, at | 2171 // where parameters are stored in reverse order, at |
2065 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 | 2172 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 |
2066 // The mapped parameter thus need to get indices | 2173 // The mapped parameter thus need to get indices |
2067 // MIN_CONTEXT_SLOTS+parameter_count-1 .. | 2174 // MIN_CONTEXT_SLOTS+parameter_count-1 .. |
2068 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count | 2175 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count |
2069 // We loop from right to left. | 2176 // We loop from right to left. |
2070 Label parameters_loop, parameters_test; | 2177 Label parameters_loop, parameters_test; |
2071 __ mov(r6, r1); | 2178 __ mr(r9, r4); |
2072 __ ldr(r9, MemOperand(sp, 0 * kPointerSize)); | 2179 __ LoadP(r11, MemOperand(sp, 0 * kPointerSize)); |
2073 __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS))); | 2180 __ AddSmiLiteral(r11, r11, Smi::FromInt(Context::MIN_CONTEXT_SLOTS), r0); |
2074 __ sub(r9, r9, Operand(r1)); | 2181 __ sub(r11, r11, r4); |
2075 __ LoadRoot(r5, Heap::kTheHoleValueRootIndex); | 2182 __ LoadRoot(r10, Heap::kTheHoleValueRootIndex); |
2076 __ add(r3, r4, Operand(r6, LSL, 1)); | 2183 __ SmiToPtrArrayOffset(r6, r9); |
2077 __ add(r3, r3, Operand(kParameterMapHeaderSize)); | 2184 __ add(r6, r7, r6); |
| 2185 __ addi(r6, r6, Operand(kParameterMapHeaderSize)); |
2078 | 2186 |
2079 // r6 = loop variable (tagged) | 2187 // r9 = loop variable (tagged) |
2080 // r1 = mapping index (tagged) | 2188 // r4 = mapping index (tagged) |
2081 // r3 = address of backing store (tagged) | 2189 // r6 = address of backing store (tagged) |
2082 // r4 = address of parameter map (tagged), which is also the address of new | 2190 // r7 = address of parameter map (tagged) |
2083 // object + Heap::kSloppyArgumentsObjectSize (tagged) | 2191 // r8 = temporary scratch (a.o., for address calculation) |
2084 // r0 = temporary scratch (a.o., for address calculation) | 2192 // r10 = the hole value |
2085 // r5 = the hole value | 2193 __ b(¶meters_test); |
2086 __ jmp(¶meters_test); | |
2087 | 2194 |
2088 __ bind(¶meters_loop); | 2195 __ bind(¶meters_loop); |
2089 __ sub(r6, r6, Operand(Smi::FromInt(1))); | 2196 __ SubSmiLiteral(r9, r9, Smi::FromInt(1), r0); |
2090 __ mov(r0, Operand(r6, LSL, 1)); | 2197 __ SmiToPtrArrayOffset(r8, r9); |
2091 __ add(r0, r0, Operand(kParameterMapHeaderSize - kHeapObjectTag)); | 2198 __ addi(r8, r8, Operand(kParameterMapHeaderSize - kHeapObjectTag)); |
2092 __ str(r9, MemOperand(r4, r0)); | 2199 __ StorePX(r11, MemOperand(r8, r7)); |
2093 __ sub(r0, r0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize)); | 2200 __ subi(r8, r8, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize)); |
2094 __ str(r5, MemOperand(r3, r0)); | 2201 __ StorePX(r10, MemOperand(r8, r6)); |
2095 __ add(r9, r9, Operand(Smi::FromInt(1))); | 2202 __ AddSmiLiteral(r11, r11, Smi::FromInt(1), r0); |
2096 __ bind(¶meters_test); | 2203 __ bind(¶meters_test); |
2097 __ cmp(r6, Operand(Smi::FromInt(0))); | 2204 __ CmpSmiLiteral(r9, Smi::FromInt(0), r0); |
2098 __ b(ne, ¶meters_loop); | 2205 __ bne(¶meters_loop); |
2099 | |
2100 // Restore r0 = new object (tagged) | |
2101 __ sub(r0, r4, Operand(Heap::kSloppyArgumentsObjectSize)); | |
2102 | 2206 |
2103 __ bind(&skip_parameter_map); | 2207 __ bind(&skip_parameter_map); |
2104 // r0 = address of new object (tagged) | 2208 // r5 = argument count (tagged) |
2105 // r2 = argument count (tagged) | 2209 // r6 = address of backing store (tagged) |
2106 // r3 = address of backing store (tagged) | 2210 // r8 = scratch |
2107 // r5 = scratch | |
2108 // Copy arguments header and remaining slots (if there are any). | 2211 // Copy arguments header and remaining slots (if there are any). |
2109 __ LoadRoot(r5, Heap::kFixedArrayMapRootIndex); | 2212 __ LoadRoot(r8, Heap::kFixedArrayMapRootIndex); |
2110 __ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset)); | 2213 __ StoreP(r8, FieldMemOperand(r6, FixedArray::kMapOffset), r0); |
2111 __ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset)); | 2214 __ StoreP(r5, FieldMemOperand(r6, FixedArray::kLengthOffset), r0); |
2112 | 2215 |
2113 Label arguments_loop, arguments_test; | 2216 Label arguments_loop, arguments_test; |
2114 __ mov(r9, r1); | 2217 __ mr(r11, r4); |
2115 __ ldr(r4, MemOperand(sp, 1 * kPointerSize)); | 2218 __ LoadP(r7, MemOperand(sp, 1 * kPointerSize)); |
2116 __ sub(r4, r4, Operand(r9, LSL, 1)); | 2219 __ SmiToPtrArrayOffset(r8, r11); |
2117 __ jmp(&arguments_test); | 2220 __ sub(r7, r7, r8); |
| 2221 __ b(&arguments_test); |
2118 | 2222 |
2119 __ bind(&arguments_loop); | 2223 __ bind(&arguments_loop); |
2120 __ sub(r4, r4, Operand(kPointerSize)); | 2224 __ subi(r7, r7, Operand(kPointerSize)); |
2121 __ ldr(r6, MemOperand(r4, 0)); | 2225 __ LoadP(r9, MemOperand(r7, 0)); |
2122 __ add(r5, r3, Operand(r9, LSL, 1)); | 2226 __ SmiToPtrArrayOffset(r8, r11); |
2123 __ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize)); | 2227 __ add(r8, r6, r8); |
2124 __ add(r9, r9, Operand(Smi::FromInt(1))); | 2228 __ StoreP(r9, FieldMemOperand(r8, FixedArray::kHeaderSize), r0); |
| 2229 __ AddSmiLiteral(r11, r11, Smi::FromInt(1), r0); |
2125 | 2230 |
2126 __ bind(&arguments_test); | 2231 __ bind(&arguments_test); |
2127 __ cmp(r9, Operand(r2)); | 2232 __ cmp(r11, r5); |
2128 __ b(lt, &arguments_loop); | 2233 __ blt(&arguments_loop); |
2129 | 2234 |
2130 // Return and remove the on-stack parameters. | 2235 // Return and remove the on-stack parameters. |
2131 __ add(sp, sp, Operand(3 * kPointerSize)); | 2236 __ addi(sp, sp, Operand(3 * kPointerSize)); |
2132 __ Ret(); | 2237 __ Ret(); |
2133 | 2238 |
2134 // Do the runtime call to allocate the arguments object. | 2239 // Do the runtime call to allocate the arguments object. |
2135 // r0 = address of new object (tagged) | 2240 // r5 = argument count (tagged) |
2136 // r2 = argument count (tagged) | |
2137 __ bind(&runtime); | 2241 __ bind(&runtime); |
2138 __ str(r2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count. | 2242 __ StoreP(r5, MemOperand(sp, 0 * kPointerSize)); // Patch argument count. |
2139 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1); | 2243 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1); |
2140 } | 2244 } |
2141 | 2245 |
2142 | 2246 |
2143 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { | 2247 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { |
2144 // sp[0] : number of parameters | 2248 // sp[0] : number of parameters |
2145 // sp[4] : receiver displacement | 2249 // sp[4] : receiver displacement |
2146 // sp[8] : function | 2250 // sp[8] : function |
2147 // Check if the calling frame is an arguments adaptor frame. | 2251 // Check if the calling frame is an arguments adaptor frame. |
2148 Label adaptor_frame, try_allocate, runtime; | 2252 Label adaptor_frame, try_allocate, runtime; |
2149 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | 2253 __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
2150 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); | 2254 __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset)); |
2151 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | 2255 STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu); |
2152 __ b(eq, &adaptor_frame); | 2256 __ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0); |
| 2257 __ beq(&adaptor_frame); |
2153 | 2258 |
2154 // Get the length from the frame. | 2259 // Get the length from the frame. |
2155 __ ldr(r1, MemOperand(sp, 0)); | 2260 __ LoadP(r4, MemOperand(sp, 0)); |
2156 __ b(&try_allocate); | 2261 __ b(&try_allocate); |
2157 | 2262 |
2158 // Patch the arguments.length and the parameters pointer. | 2263 // Patch the arguments.length and the parameters pointer. |
2159 __ bind(&adaptor_frame); | 2264 __ bind(&adaptor_frame); |
2160 __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); | 2265 __ LoadP(r4, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
2161 __ str(r1, MemOperand(sp, 0)); | 2266 __ StoreP(r4, MemOperand(sp, 0)); |
2162 __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r1)); | 2267 __ SmiToPtrArrayOffset(r6, r4); |
2163 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); | 2268 __ add(r6, r5, r6); |
2164 __ str(r3, MemOperand(sp, 1 * kPointerSize)); | 2269 __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset)); |
| 2270 __ StoreP(r6, MemOperand(sp, 1 * kPointerSize)); |
2165 | 2271 |
2166 // Try the new space allocation. Start out with computing the size | 2272 // Try the new space allocation. Start out with computing the size |
2167 // of the arguments object and the elements array in words. | 2273 // of the arguments object and the elements array in words. |
2168 Label add_arguments_object; | 2274 Label add_arguments_object; |
2169 __ bind(&try_allocate); | 2275 __ bind(&try_allocate); |
2170 __ SmiUntag(r1, SetCC); | 2276 __ cmpi(r4, Operand::Zero()); |
2171 __ b(eq, &add_arguments_object); | 2277 __ beq(&add_arguments_object); |
2172 __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize)); | 2278 __ SmiUntag(r4); |
| 2279 __ addi(r4, r4, Operand(FixedArray::kHeaderSize / kPointerSize)); |
2173 __ bind(&add_arguments_object); | 2280 __ bind(&add_arguments_object); |
2174 __ add(r1, r1, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize)); | 2281 __ addi(r4, r4, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize)); |
2175 | 2282 |
2176 // Do the allocation of both objects in one go. | 2283 // Do the allocation of both objects in one go. |
2177 __ Allocate(r1, r0, r2, r3, &runtime, | 2284 __ Allocate(r4, r3, r5, r6, &runtime, |
2178 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); | 2285 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); |
2179 | 2286 |
2180 // Get the arguments boilerplate from the current native context. | 2287 // Get the arguments boilerplate from the current native context. |
2181 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); | 2288 __ LoadP(r7, |
2182 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset)); | 2289 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); |
2183 __ ldr(r4, MemOperand( | 2290 __ LoadP(r7, FieldMemOperand(r7, GlobalObject::kNativeContextOffset)); |
2184 r4, Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX))); | 2291 __ LoadP(r7, MemOperand(r7, Context::SlotOffset( |
| 2292 Context::STRICT_ARGUMENTS_MAP_INDEX))); |
2185 | 2293 |
2186 __ str(r4, FieldMemOperand(r0, JSObject::kMapOffset)); | 2294 __ StoreP(r7, FieldMemOperand(r3, JSObject::kMapOffset), r0); |
2187 __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex); | 2295 __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex); |
2188 __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset)); | 2296 __ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0); |
2189 __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset)); | 2297 __ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0); |
2190 | 2298 |
2191 // Get the length (smi tagged) and set that as an in-object property too. | 2299 // Get the length (smi tagged) and set that as an in-object property too. |
2192 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); | 2300 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); |
2193 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); | 2301 __ LoadP(r4, MemOperand(sp, 0 * kPointerSize)); |
2194 __ AssertSmi(r1); | 2302 __ AssertSmi(r4); |
2195 __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + | 2303 __ StoreP(r4, FieldMemOperand(r3, JSObject::kHeaderSize + |
2196 Heap::kArgumentsLengthIndex * kPointerSize)); | 2304 Heap::kArgumentsLengthIndex * kPointerSize), |
| 2305 r0); |
2197 | 2306 |
2198 // If there are no actual arguments, we're done. | 2307 // If there are no actual arguments, we're done. |
2199 Label done; | 2308 Label done; |
2200 __ cmp(r1, Operand::Zero()); | 2309 __ cmpi(r4, Operand::Zero()); |
2201 __ b(eq, &done); | 2310 __ beq(&done); |
2202 | 2311 |
2203 // Get the parameters pointer from the stack. | 2312 // Get the parameters pointer from the stack. |
2204 __ ldr(r2, MemOperand(sp, 1 * kPointerSize)); | 2313 __ LoadP(r5, MemOperand(sp, 1 * kPointerSize)); |
2205 | 2314 |
2206 // Set up the elements pointer in the allocated arguments object and | 2315 // Set up the elements pointer in the allocated arguments object and |
2207 // initialize the header in the elements fixed array. | 2316 // initialize the header in the elements fixed array. |
2208 __ add(r4, r0, Operand(Heap::kStrictArgumentsObjectSize)); | 2317 __ addi(r7, r3, Operand(Heap::kStrictArgumentsObjectSize)); |
2209 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); | 2318 __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0); |
2210 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex); | 2319 __ LoadRoot(r6, Heap::kFixedArrayMapRootIndex); |
2211 __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset)); | 2320 __ StoreP(r6, FieldMemOperand(r7, FixedArray::kMapOffset), r0); |
2212 __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset)); | 2321 __ StoreP(r4, FieldMemOperand(r7, FixedArray::kLengthOffset), r0); |
2213 __ SmiUntag(r1); | 2322 // Untag the length for the loop. |
| 2323 __ SmiUntag(r4); |
2214 | 2324 |
2215 // Copy the fixed array slots. | 2325 // Copy the fixed array slots. |
2216 Label loop; | 2326 Label loop; |
2217 // Set up r4 to point to the first array slot. | 2327 // Set up r7 to point to the first array slot. |
2218 __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); | 2328 __ addi(r7, r7, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
2219 __ bind(&loop); | 2329 __ bind(&loop); |
2220 // Pre-decrement r2 with kPointerSize on each iteration. | 2330 // Pre-decrement r5 with kPointerSize on each iteration. |
2221 // Pre-decrement in order to skip receiver. | 2331 // Pre-decrement in order to skip receiver. |
2222 __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex)); | 2332 __ LoadPU(r6, MemOperand(r5, -kPointerSize)); |
2223 // Post-increment r4 with kPointerSize on each iteration. | 2333 // Post-increment r7 with kPointerSize on each iteration. |
2224 __ str(r3, MemOperand(r4, kPointerSize, PostIndex)); | 2334 __ StoreP(r6, MemOperand(r7)); |
2225 __ sub(r1, r1, Operand(1)); | 2335 __ addi(r7, r7, Operand(kPointerSize)); |
2226 __ cmp(r1, Operand::Zero()); | 2336 __ subi(r4, r4, Operand(1)); |
2227 __ b(ne, &loop); | 2337 __ cmpi(r4, Operand::Zero()); |
| 2338 __ bne(&loop); |
2228 | 2339 |
2229 // Return and remove the on-stack parameters. | 2340 // Return and remove the on-stack parameters. |
2230 __ bind(&done); | 2341 __ bind(&done); |
2231 __ add(sp, sp, Operand(3 * kPointerSize)); | 2342 __ addi(sp, sp, Operand(3 * kPointerSize)); |
2232 __ Ret(); | 2343 __ Ret(); |
2233 | 2344 |
2234 // Do the runtime call to allocate the arguments object. | 2345 // Do the runtime call to allocate the arguments object. |
2235 __ bind(&runtime); | 2346 __ bind(&runtime); |
2236 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1); | 2347 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1); |
2237 } | 2348 } |
2238 | 2349 |
2239 | 2350 |
2240 void RegExpExecStub::Generate(MacroAssembler* masm) { | 2351 void RegExpExecStub::Generate(MacroAssembler* masm) { |
2241 // Just jump directly to runtime if native RegExp is not selected at compile | 2352 // Just jump directly to runtime if native RegExp is not selected at compile |
2242 // time or if regexp entry in generated code is turned off runtime switch or | 2353 // time or if regexp entry in generated code is turned off runtime switch or |
2243 // at compilation. | 2354 // at compilation. |
2244 #ifdef V8_INTERPRETED_REGEXP | 2355 #ifdef V8_INTERPRETED_REGEXP |
2245 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1); | 2356 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1); |
2246 #else // V8_INTERPRETED_REGEXP | 2357 #else // V8_INTERPRETED_REGEXP |
2247 | 2358 |
2248 // Stack frame on entry. | 2359 // Stack frame on entry. |
2249 // sp[0]: last_match_info (expected JSArray) | 2360 // sp[0]: last_match_info (expected JSArray) |
2250 // sp[4]: previous index | 2361 // sp[4]: previous index |
2251 // sp[8]: subject string | 2362 // sp[8]: subject string |
2252 // sp[12]: JSRegExp object | 2363 // sp[12]: JSRegExp object |
2253 | 2364 |
2254 const int kLastMatchInfoOffset = 0 * kPointerSize; | 2365 const int kLastMatchInfoOffset = 0 * kPointerSize; |
2255 const int kPreviousIndexOffset = 1 * kPointerSize; | 2366 const int kPreviousIndexOffset = 1 * kPointerSize; |
2256 const int kSubjectOffset = 2 * kPointerSize; | 2367 const int kSubjectOffset = 2 * kPointerSize; |
2257 const int kJSRegExpOffset = 3 * kPointerSize; | 2368 const int kJSRegExpOffset = 3 * kPointerSize; |
2258 | 2369 |
2259 Label runtime; | 2370 Label runtime, br_over, encoding_type_UC16; |
| 2371 |
2260 // Allocation of registers for this function. These are in callee save | 2372 // Allocation of registers for this function. These are in callee save |
2261 // registers and will be preserved by the call to the native RegExp code, as | 2373 // registers and will be preserved by the call to the native RegExp code, as |
2262 // this code is called using the normal C calling convention. When calling | 2374 // this code is called using the normal C calling convention. When calling |
2263 // directly from generated code the native RegExp code will not do a GC and | 2375 // directly from generated code the native RegExp code will not do a GC and |
2264 // therefore the content of these registers are safe to use after the call. | 2376 // therefore the content of these registers are safe to use after the call. |
2265 Register subject = r4; | 2377 Register subject = r14; |
2266 Register regexp_data = r5; | 2378 Register regexp_data = r15; |
2267 Register last_match_info_elements = no_reg; // will be r6; | 2379 Register last_match_info_elements = r16; |
| 2380 Register code = r17; |
| 2381 |
| 2382 // Ensure register assigments are consistent with callee save masks |
| 2383 ASSERT(subject.bit() & kCalleeSaved); |
| 2384 ASSERT(regexp_data.bit() & kCalleeSaved); |
| 2385 ASSERT(last_match_info_elements.bit() & kCalleeSaved); |
| 2386 ASSERT(code.bit() & kCalleeSaved); |
2268 | 2387 |
2269 // Ensure that a RegExp stack is allocated. | 2388 // Ensure that a RegExp stack is allocated. |
2270 ExternalReference address_of_regexp_stack_memory_address = | 2389 ExternalReference address_of_regexp_stack_memory_address = |
2271 ExternalReference::address_of_regexp_stack_memory_address(isolate()); | 2390 ExternalReference::address_of_regexp_stack_memory_address(isolate()); |
2272 ExternalReference address_of_regexp_stack_memory_size = | 2391 ExternalReference address_of_regexp_stack_memory_size = |
2273 ExternalReference::address_of_regexp_stack_memory_size(isolate()); | 2392 ExternalReference::address_of_regexp_stack_memory_size(isolate()); |
2274 __ mov(r0, Operand(address_of_regexp_stack_memory_size)); | 2393 __ mov(r3, Operand(address_of_regexp_stack_memory_size)); |
2275 __ ldr(r0, MemOperand(r0, 0)); | 2394 __ LoadP(r3, MemOperand(r3, 0)); |
2276 __ cmp(r0, Operand::Zero()); | 2395 __ cmpi(r3, Operand::Zero()); |
2277 __ b(eq, &runtime); | 2396 __ beq(&runtime); |
2278 | 2397 |
2279 // Check that the first argument is a JSRegExp object. | 2398 // Check that the first argument is a JSRegExp object. |
2280 __ ldr(r0, MemOperand(sp, kJSRegExpOffset)); | 2399 __ LoadP(r3, MemOperand(sp, kJSRegExpOffset)); |
2281 __ JumpIfSmi(r0, &runtime); | 2400 __ JumpIfSmi(r3, &runtime); |
2282 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE); | 2401 __ CompareObjectType(r3, r4, r4, JS_REGEXP_TYPE); |
2283 __ b(ne, &runtime); | 2402 __ bne(&runtime); |
2284 | 2403 |
2285 // Check that the RegExp has been compiled (data contains a fixed array). | 2404 // Check that the RegExp has been compiled (data contains a fixed array). |
2286 __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset)); | 2405 __ LoadP(regexp_data, FieldMemOperand(r3, JSRegExp::kDataOffset)); |
2287 if (FLAG_debug_code) { | 2406 if (FLAG_debug_code) { |
2288 __ SmiTst(regexp_data); | 2407 __ TestIfSmi(regexp_data, r0); |
2289 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected); | 2408 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected, cr0); |
2290 __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE); | 2409 __ CompareObjectType(regexp_data, r3, r3, FIXED_ARRAY_TYPE); |
2291 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected); | 2410 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected); |
2292 } | 2411 } |
2293 | 2412 |
2294 // regexp_data: RegExp data (FixedArray) | 2413 // regexp_data: RegExp data (FixedArray) |
2295 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. | 2414 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
2296 __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); | 2415 __ LoadP(r3, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); |
2297 __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); | 2416 // ASSERT(Smi::FromInt(JSRegExp::IRREGEXP) < (char *)0xffffu); |
2298 __ b(ne, &runtime); | 2417 __ CmpSmiLiteral(r3, Smi::FromInt(JSRegExp::IRREGEXP), r0); |
| 2418 __ bne(&runtime); |
2299 | 2419 |
2300 // regexp_data: RegExp data (FixedArray) | 2420 // regexp_data: RegExp data (FixedArray) |
2301 // Check that the number of captures fit in the static offsets vector buffer. | 2421 // Check that the number of captures fit in the static offsets vector buffer. |
2302 __ ldr(r2, | 2422 __ LoadP(r5, |
2303 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); | 2423 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); |
2304 // Check (number_of_captures + 1) * 2 <= offsets vector size | 2424 // Check (number_of_captures + 1) * 2 <= offsets vector size |
2305 // Or number_of_captures * 2 <= offsets vector size - 2 | 2425 // Or number_of_captures * 2 <= offsets vector size - 2 |
2306 // Multiplying by 2 comes for free since r2 is smi-tagged. | 2426 // SmiToShortArrayOffset accomplishes the multiplication by 2 and |
2307 STATIC_ASSERT(kSmiTag == 0); | 2427 // SmiUntag (which is a nop for 32-bit). |
2308 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); | 2428 __ SmiToShortArrayOffset(r5, r5); |
2309 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); | 2429 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); |
2310 __ cmp(r2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2)); | 2430 __ cmpli(r5, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2)); |
2311 __ b(hi, &runtime); | 2431 __ bgt(&runtime); |
2312 | 2432 |
2313 // Reset offset for possibly sliced string. | 2433 // Reset offset for possibly sliced string. |
2314 __ mov(r9, Operand::Zero()); | 2434 __ li(r11, Operand::Zero()); |
2315 __ ldr(subject, MemOperand(sp, kSubjectOffset)); | 2435 __ LoadP(subject, MemOperand(sp, kSubjectOffset)); |
2316 __ JumpIfSmi(subject, &runtime); | 2436 __ JumpIfSmi(subject, &runtime); |
2317 __ mov(r3, subject); // Make a copy of the original subject string. | 2437 __ mr(r6, subject); // Make a copy of the original subject string. |
2318 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); | 2438 __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset)); |
2319 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); | 2439 __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset)); |
2320 // subject: subject string | 2440 // subject: subject string |
2321 // r3: subject string | 2441 // r6: subject string |
2322 // r0: subject string instance type | 2442 // r3: subject string instance type |
2323 // regexp_data: RegExp data (FixedArray) | 2443 // regexp_data: RegExp data (FixedArray) |
2324 // Handle subject string according to its encoding and representation: | 2444 // Handle subject string according to its encoding and representation: |
2325 // (1) Sequential string? If yes, go to (5). | 2445 // (1) Sequential string? If yes, go to (5). |
2326 // (2) Anything but sequential or cons? If yes, go to (6). | 2446 // (2) Anything but sequential or cons? If yes, go to (6). |
2327 // (3) Cons string. If the string is flat, replace subject with first string. | 2447 // (3) Cons string. If the string is flat, replace subject with first string. |
2328 // Otherwise bailout. | 2448 // Otherwise bailout. |
2329 // (4) Is subject external? If yes, go to (7). | 2449 // (4) Is subject external? If yes, go to (7). |
2330 // (5) Sequential string. Load regexp code according to encoding. | 2450 // (5) Sequential string. Load regexp code according to encoding. |
2331 // (E) Carry on. | 2451 // (E) Carry on. |
2332 /// [...] | 2452 /// [...] |
2333 | 2453 |
2334 // Deferred code at the end of the stub: | 2454 // Deferred code at the end of the stub: |
2335 // (6) Not a long external string? If yes, go to (8). | 2455 // (6) Not a long external string? If yes, go to (8). |
2336 // (7) External string. Make it, offset-wise, look like a sequential string. | 2456 // (7) External string. Make it, offset-wise, look like a sequential string. |
2337 // Go to (5). | 2457 // Go to (5). |
2338 // (8) Short external string or not a string? If yes, bail out to runtime. | 2458 // (8) Short external string or not a string? If yes, bail out to runtime. |
2339 // (9) Sliced string. Replace subject with parent. Go to (4). | 2459 // (9) Sliced string. Replace subject with parent. Go to (4). |
2340 | 2460 |
2341 Label seq_string /* 5 */, external_string /* 7 */, | 2461 Label seq_string /* 5 */, external_string /* 7 */, |
2342 check_underlying /* 4 */, not_seq_nor_cons /* 6 */, | 2462 check_underlying /* 4 */, not_seq_nor_cons /* 6 */, |
2343 not_long_external /* 8 */; | 2463 not_long_external /* 8 */; |
2344 | 2464 |
2345 // (1) Sequential string? If yes, go to (5). | 2465 // (1) Sequential string? If yes, go to (5). |
2346 __ and_(r1, | 2466 STATIC_ASSERT((kIsNotStringMask | |
2347 r0, | 2467 kStringRepresentationMask | |
| 2468 kShortExternalStringMask) == 0x93); |
| 2469 __ andi(r4, |
| 2470 r3, |
2348 Operand(kIsNotStringMask | | 2471 Operand(kIsNotStringMask | |
2349 kStringRepresentationMask | | 2472 kStringRepresentationMask | |
2350 kShortExternalStringMask), | 2473 kShortExternalStringMask)); |
2351 SetCC); | |
2352 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); | 2474 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); |
2353 __ b(eq, &seq_string); // Go to (5). | 2475 __ beq(&seq_string, cr0); // Go to (5). |
2354 | 2476 |
2355 // (2) Anything but sequential or cons? If yes, go to (6). | 2477 // (2) Anything but sequential or cons? If yes, go to (6). |
2356 STATIC_ASSERT(kConsStringTag < kExternalStringTag); | 2478 STATIC_ASSERT(kConsStringTag < kExternalStringTag); |
2357 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); | 2479 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); |
2358 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); | 2480 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); |
2359 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); | 2481 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); |
2360 __ cmp(r1, Operand(kExternalStringTag)); | 2482 STATIC_ASSERT(kExternalStringTag < 0xffffu); |
2361 __ b(ge, ¬_seq_nor_cons); // Go to (6). | 2483 __ cmpi(r4, Operand(kExternalStringTag)); |
| 2484 __ bge(¬_seq_nor_cons); // Go to (6). |
2362 | 2485 |
2363 // (3) Cons string. Check that it's flat. | 2486 // (3) Cons string. Check that it's flat. |
2364 // Replace subject with first string and reload instance type. | 2487 // Replace subject with first string and reload instance type. |
2365 __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset)); | 2488 __ LoadP(r3, FieldMemOperand(subject, ConsString::kSecondOffset)); |
2366 __ CompareRoot(r0, Heap::kempty_stringRootIndex); | 2489 __ CompareRoot(r3, Heap::kempty_stringRootIndex); |
2367 __ b(ne, &runtime); | 2490 __ bne(&runtime); |
2368 __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); | 2491 __ LoadP(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); |
2369 | 2492 |
2370 // (4) Is subject external? If yes, go to (7). | 2493 // (4) Is subject external? If yes, go to (7). |
2371 __ bind(&check_underlying); | 2494 __ bind(&check_underlying); |
2372 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); | 2495 __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset)); |
2373 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); | 2496 __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset)); |
2374 STATIC_ASSERT(kSeqStringTag == 0); | 2497 STATIC_ASSERT(kSeqStringTag == 0); |
2375 __ tst(r0, Operand(kStringRepresentationMask)); | 2498 STATIC_ASSERT(kStringRepresentationMask == 3); |
| 2499 __ andi(r0, r3, Operand(kStringRepresentationMask)); |
2376 // The underlying external string is never a short external string. | 2500 // The underlying external string is never a short external string. |
2377 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength); | 2501 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength); |
2378 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength); | 2502 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength); |
2379 __ b(ne, &external_string); // Go to (7). | 2503 __ bne(&external_string, cr0); // Go to (7). |
2380 | 2504 |
2381 // (5) Sequential string. Load regexp code according to encoding. | 2505 // (5) Sequential string. Load regexp code according to encoding. |
2382 __ bind(&seq_string); | 2506 __ bind(&seq_string); |
2383 // subject: sequential subject string (or look-alike, external string) | 2507 // subject: sequential subject string (or look-alike, external string) |
2384 // r3: original subject string | 2508 // r6: original subject string |
2385 // Load previous index and check range before r3 is overwritten. We have to | 2509 // Load previous index and check range before r6 is overwritten. We have to |
2386 // use r3 instead of subject here because subject might have been only made | 2510 // use r6 instead of subject here because subject might have been only made |
2387 // to look like a sequential string when it actually is an external string. | 2511 // to look like a sequential string when it actually is an external string. |
2388 __ ldr(r1, MemOperand(sp, kPreviousIndexOffset)); | 2512 __ LoadP(r4, MemOperand(sp, kPreviousIndexOffset)); |
2389 __ JumpIfNotSmi(r1, &runtime); | 2513 __ JumpIfNotSmi(r4, &runtime); |
2390 __ ldr(r3, FieldMemOperand(r3, String::kLengthOffset)); | 2514 __ LoadP(r6, FieldMemOperand(r6, String::kLengthOffset)); |
2391 __ cmp(r3, Operand(r1)); | 2515 __ cmpl(r6, r4); |
2392 __ b(ls, &runtime); | 2516 __ ble(&runtime); |
2393 __ SmiUntag(r1); | 2517 __ SmiUntag(r4); |
2394 | 2518 |
2395 STATIC_ASSERT(4 == kOneByteStringTag); | 2519 STATIC_ASSERT(4 == kOneByteStringTag); |
2396 STATIC_ASSERT(kTwoByteStringTag == 0); | 2520 STATIC_ASSERT(kTwoByteStringTag == 0); |
2397 __ and_(r0, r0, Operand(kStringEncodingMask)); | 2521 STATIC_ASSERT(kStringEncodingMask == 4); |
2398 __ mov(r3, Operand(r0, ASR, 2), SetCC); | 2522 __ ExtractBitMask(r6, r3, kStringEncodingMask, SetRC); |
2399 __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne); | 2523 __ beq(&encoding_type_UC16, cr0); |
2400 __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq); | 2524 __ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset)); |
| 2525 __ b(&br_over); |
| 2526 __ bind(&encoding_type_UC16); |
| 2527 __ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset)); |
| 2528 __ bind(&br_over); |
2401 | 2529 |
2402 // (E) Carry on. String handling is done. | 2530 // (E) Carry on. String handling is done. |
2403 // r6: irregexp code | 2531 // code: irregexp code |
2404 // Check that the irregexp code has been generated for the actual string | 2532 // Check that the irregexp code has been generated for the actual string |
2405 // encoding. If it has, the field contains a code object otherwise it contains | 2533 // encoding. If it has, the field contains a code object otherwise it contains |
2406 // a smi (code flushing support). | 2534 // a smi (code flushing support). |
2407 __ JumpIfSmi(r6, &runtime); | 2535 __ JumpIfSmi(code, &runtime); |
2408 | 2536 |
2409 // r1: previous index | 2537 // r4: previous index |
2410 // r3: encoding of subject string (1 if ASCII, 0 if two_byte); | 2538 // r6: encoding of subject string (1 if ASCII, 0 if two_byte); |
2411 // r6: code | 2539 // code: Address of generated regexp code |
2412 // subject: Subject string | 2540 // subject: Subject string |
2413 // regexp_data: RegExp data (FixedArray) | 2541 // regexp_data: RegExp data (FixedArray) |
2414 // All checks done. Now push arguments for native regexp code. | 2542 // All checks done. Now push arguments for native regexp code. |
2415 __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r0, r2); | 2543 __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r3, r5); |
2416 | 2544 |
2417 // Isolates: note we add an additional parameter here (isolate pointer). | 2545 // Isolates: note we add an additional parameter here (isolate pointer). |
2418 const int kRegExpExecuteArguments = 9; | 2546 const int kRegExpExecuteArguments = 10; |
2419 const int kParameterRegisters = 4; | 2547 const int kParameterRegisters = 8; |
2420 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters); | 2548 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters); |
2421 | 2549 |
2422 // Stack pointer now points to cell where return address is to be written. | 2550 // Stack pointer now points to cell where return address is to be written. |
2423 // Arguments are before that on the stack or in registers. | 2551 // Arguments are before that on the stack or in registers. |
2424 | 2552 |
2425 // Argument 9 (sp[20]): Pass current isolate address. | 2553 // Argument 10 (in stack parameter area): Pass current isolate address. |
2426 __ mov(r0, Operand(ExternalReference::isolate_address(isolate()))); | 2554 __ mov(r3, Operand(ExternalReference::isolate_address(isolate()))); |
2427 __ str(r0, MemOperand(sp, 5 * kPointerSize)); | 2555 __ StoreP(r3, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize)); |
2428 | 2556 |
2429 // Argument 8 (sp[16]): Indicate that this is a direct call from JavaScript. | 2557 // Argument 9 is a dummy that reserves the space used for |
2430 __ mov(r0, Operand(1)); | 2558 // the return address added by the ExitFrame in native calls. |
2431 __ str(r0, MemOperand(sp, 4 * kPointerSize)); | 2559 |
2432 | 2560 // Argument 8 (r10): Indicate that this is a direct call from JavaScript. |
2433 // Argument 7 (sp[12]): Start (high end) of backtracking stack memory area. | 2561 __ li(r10, Operand(1)); |
2434 __ mov(r0, Operand(address_of_regexp_stack_memory_address)); | 2562 |
2435 __ ldr(r0, MemOperand(r0, 0)); | 2563 // Argument 7 (r9): Start (high end) of backtracking stack memory area. |
2436 __ mov(r2, Operand(address_of_regexp_stack_memory_size)); | 2564 __ mov(r3, Operand(address_of_regexp_stack_memory_address)); |
2437 __ ldr(r2, MemOperand(r2, 0)); | 2565 __ LoadP(r3, MemOperand(r3, 0)); |
2438 __ add(r0, r0, Operand(r2)); | 2566 __ mov(r5, Operand(address_of_regexp_stack_memory_size)); |
2439 __ str(r0, MemOperand(sp, 3 * kPointerSize)); | 2567 __ LoadP(r5, MemOperand(r5, 0)); |
2440 | 2568 __ add(r9, r3, r5); |
2441 // Argument 6: Set the number of capture registers to zero to force global | 2569 |
2442 // regexps to behave as non-global. This does not affect non-global regexps. | 2570 // Argument 6 (r8): Set the number of capture registers to zero to force |
2443 __ mov(r0, Operand::Zero()); | 2571 // global egexps to behave as non-global. This does not affect non-global |
2444 __ str(r0, MemOperand(sp, 2 * kPointerSize)); | 2572 // regexps. |
2445 | 2573 __ li(r8, Operand::Zero()); |
2446 // Argument 5 (sp[4]): static offsets vector buffer. | 2574 |
2447 __ mov(r0, | 2575 // Argument 5 (r7): static offsets vector buffer. |
| 2576 __ mov(r7, |
2448 Operand(ExternalReference::address_of_static_offsets_vector( | 2577 Operand(ExternalReference::address_of_static_offsets_vector( |
2449 isolate()))); | 2578 isolate()))); |
2450 __ str(r0, MemOperand(sp, 1 * kPointerSize)); | 2579 |
2451 | 2580 // For arguments 4 (r6) and 3 (r5) get string length, calculate start of |
2452 // For arguments 4 and 3 get string length, calculate start of string data and | 2581 // string data and calculate the shift of the index (0 for ASCII and 1 for |
2453 // calculate the shift of the index (0 for ASCII and 1 for two byte). | 2582 // two byte). |
2454 __ add(r7, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag)); | 2583 __ addi(r18, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag)); |
2455 __ eor(r3, r3, Operand(1)); | 2584 __ xori(r6, r6, Operand(1)); |
2456 // Load the length from the original subject string from the previous stack | 2585 // Load the length from the original subject string from the previous stack |
2457 // frame. Therefore we have to use fp, which points exactly to two pointer | 2586 // frame. Therefore we have to use fp, which points exactly to two pointer |
2458 // sizes below the previous sp. (Because creating a new stack frame pushes | 2587 // sizes below the previous sp. (Because creating a new stack frame pushes |
2459 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.) | 2588 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.) |
2460 __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); | 2589 __ LoadP(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); |
2461 // If slice offset is not 0, load the length from the original sliced string. | 2590 // If slice offset is not 0, load the length from the original sliced string. |
2462 // Argument 4, r3: End of string data | 2591 // Argument 4, r6: End of string data |
2463 // Argument 3, r2: Start of string data | 2592 // Argument 3, r5: Start of string data |
2464 // Prepare start and end index of the input. | 2593 // Prepare start and end index of the input. |
2465 __ add(r9, r7, Operand(r9, LSL, r3)); | 2594 __ ShiftLeft(r11, r11, r6); |
2466 __ add(r2, r9, Operand(r1, LSL, r3)); | 2595 __ add(r11, r18, r11); |
2467 | 2596 __ ShiftLeft(r5, r4, r6); |
2468 __ ldr(r7, FieldMemOperand(subject, String::kLengthOffset)); | 2597 __ add(r5, r11, r5); |
2469 __ SmiUntag(r7); | 2598 |
2470 __ add(r3, r9, Operand(r7, LSL, r3)); | 2599 __ LoadP(r18, FieldMemOperand(subject, String::kLengthOffset)); |
2471 | 2600 __ SmiUntag(r18); |
2472 // Argument 2 (r1): Previous index. | 2601 __ ShiftLeft(r6, r18, r6); |
| 2602 __ add(r6, r11, r6); |
| 2603 |
| 2604 // Argument 2 (r4): Previous index. |
2473 // Already there | 2605 // Already there |
2474 | 2606 |
2475 // Argument 1 (r0): Subject string. | 2607 // Argument 1 (r3): Subject string. |
2476 __ mov(r0, subject); | 2608 __ mr(r3, subject); |
2477 | 2609 |
2478 // Locate the code entry and call it. | 2610 // Locate the code entry and call it. |
2479 __ add(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag)); | 2611 __ addi(code, code, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| 2612 |
| 2613 |
| 2614 #if ABI_USES_FUNCTION_DESCRIPTORS && defined(USE_SIMULATOR) |
| 2615 // Even Simulated AIX/PPC64 Linux uses a function descriptor for the |
| 2616 // RegExp routine. Extract the instruction address here since |
| 2617 // DirectCEntryStub::GenerateCall will not do it for calls out to |
| 2618 // what it thinks is C code compiled for the simulator/host |
| 2619 // platform. |
| 2620 __ LoadP(code, MemOperand(code, 0)); // Instruction address |
| 2621 #endif |
| 2622 |
2480 DirectCEntryStub stub(isolate()); | 2623 DirectCEntryStub stub(isolate()); |
2481 stub.GenerateCall(masm, r6); | 2624 stub.GenerateCall(masm, code); |
2482 | 2625 |
2483 __ LeaveExitFrame(false, no_reg, true); | 2626 __ LeaveExitFrame(false, no_reg, true); |
2484 | 2627 |
2485 last_match_info_elements = r6; | 2628 // r3: result |
2486 | |
2487 // r0: result | |
2488 // subject: subject string (callee saved) | 2629 // subject: subject string (callee saved) |
2489 // regexp_data: RegExp data (callee saved) | 2630 // regexp_data: RegExp data (callee saved) |
2490 // last_match_info_elements: Last match info elements (callee saved) | 2631 // last_match_info_elements: Last match info elements (callee saved) |
2491 // Check the result. | 2632 // Check the result. |
2492 Label success; | 2633 Label success; |
2493 __ cmp(r0, Operand(1)); | 2634 __ cmpi(r3, Operand(1)); |
2494 // We expect exactly one result since we force the called regexp to behave | 2635 // We expect exactly one result since we force the called regexp to behave |
2495 // as non-global. | 2636 // as non-global. |
2496 __ b(eq, &success); | 2637 __ beq(&success); |
2497 Label failure; | 2638 Label failure; |
2498 __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE)); | 2639 __ cmpi(r3, Operand(NativeRegExpMacroAssembler::FAILURE)); |
2499 __ b(eq, &failure); | 2640 __ beq(&failure); |
2500 __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION)); | 2641 __ cmpi(r3, Operand(NativeRegExpMacroAssembler::EXCEPTION)); |
2501 // If not exception it can only be retry. Handle that in the runtime system. | 2642 // If not exception it can only be retry. Handle that in the runtime system. |
2502 __ b(ne, &runtime); | 2643 __ bne(&runtime); |
2503 // Result must now be exception. If there is no pending exception already a | 2644 // Result must now be exception. If there is no pending exception already a |
2504 // stack overflow (on the backtrack stack) was detected in RegExp code but | 2645 // stack overflow (on the backtrack stack) was detected in RegExp code but |
2505 // haven't created the exception yet. Handle that in the runtime system. | 2646 // haven't created the exception yet. Handle that in the runtime system. |
2506 // TODO(592): Rerunning the RegExp to get the stack overflow exception. | 2647 // TODO(592): Rerunning the RegExp to get the stack overflow exception. |
2507 __ mov(r1, Operand(isolate()->factory()->the_hole_value())); | 2648 __ mov(r4, Operand(isolate()->factory()->the_hole_value())); |
2508 __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress, | 2649 __ mov(r5, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
2509 isolate()))); | 2650 isolate()))); |
2510 __ ldr(r0, MemOperand(r2, 0)); | 2651 __ LoadP(r3, MemOperand(r5, 0)); |
2511 __ cmp(r0, r1); | 2652 __ cmp(r3, r4); |
2512 __ b(eq, &runtime); | 2653 __ beq(&runtime); |
2513 | 2654 |
2514 __ str(r1, MemOperand(r2, 0)); // Clear pending exception. | 2655 __ StoreP(r4, MemOperand(r5, 0)); // Clear pending exception. |
2515 | 2656 |
2516 // Check if the exception is a termination. If so, throw as uncatchable. | 2657 // Check if the exception is a termination. If so, throw as uncatchable. |
2517 __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex); | 2658 __ CompareRoot(r3, Heap::kTerminationExceptionRootIndex); |
2518 | 2659 |
2519 Label termination_exception; | 2660 Label termination_exception; |
2520 __ b(eq, &termination_exception); | 2661 __ beq(&termination_exception); |
2521 | 2662 |
2522 __ Throw(r0); | 2663 __ Throw(r3); |
2523 | 2664 |
2524 __ bind(&termination_exception); | 2665 __ bind(&termination_exception); |
2525 __ ThrowUncatchable(r0); | 2666 __ ThrowUncatchable(r3); |
2526 | 2667 |
2527 __ bind(&failure); | 2668 __ bind(&failure); |
2528 // For failure and exception return null. | 2669 // For failure and exception return null. |
2529 __ mov(r0, Operand(isolate()->factory()->null_value())); | 2670 __ mov(r3, Operand(isolate()->factory()->null_value())); |
2530 __ add(sp, sp, Operand(4 * kPointerSize)); | 2671 __ addi(sp, sp, Operand(4 * kPointerSize)); |
2531 __ Ret(); | 2672 __ Ret(); |
2532 | 2673 |
2533 // Process the result from the native regexp code. | 2674 // Process the result from the native regexp code. |
2534 __ bind(&success); | 2675 __ bind(&success); |
2535 __ ldr(r1, | 2676 __ LoadP(r4, |
2536 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); | 2677 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); |
2537 // Calculate number of capture registers (number_of_captures + 1) * 2. | 2678 // Calculate number of capture registers (number_of_captures + 1) * 2. |
2538 // Multiplying by 2 comes for free since r1 is smi-tagged. | 2679 // SmiToShortArrayOffset accomplishes the multiplication by 2 and |
2539 STATIC_ASSERT(kSmiTag == 0); | 2680 // SmiUntag (which is a nop for 32-bit). |
2540 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); | 2681 __ SmiToShortArrayOffset(r4, r4); |
2541 __ add(r1, r1, Operand(2)); // r1 was a smi. | 2682 __ addi(r4, r4, Operand(2)); |
2542 | 2683 |
2543 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); | 2684 __ LoadP(r3, MemOperand(sp, kLastMatchInfoOffset)); |
2544 __ JumpIfSmi(r0, &runtime); | 2685 __ JumpIfSmi(r3, &runtime); |
2545 __ CompareObjectType(r0, r2, r2, JS_ARRAY_TYPE); | 2686 __ CompareObjectType(r3, r5, r5, JS_ARRAY_TYPE); |
2546 __ b(ne, &runtime); | 2687 __ bne(&runtime); |
2547 // Check that the JSArray is in fast case. | 2688 // Check that the JSArray is in fast case. |
2548 __ ldr(last_match_info_elements, | 2689 __ LoadP(last_match_info_elements, |
2549 FieldMemOperand(r0, JSArray::kElementsOffset)); | 2690 FieldMemOperand(r3, JSArray::kElementsOffset)); |
2550 __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); | 2691 __ LoadP(r3, |
2551 __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex); | 2692 FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); |
2552 __ b(ne, &runtime); | 2693 __ CompareRoot(r3, Heap::kFixedArrayMapRootIndex); |
| 2694 __ bne(&runtime); |
2553 // Check that the last match info has space for the capture registers and the | 2695 // Check that the last match info has space for the capture registers and the |
2554 // additional information. | 2696 // additional information. |
2555 __ ldr(r0, | 2697 __ LoadP(r3, |
2556 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); | 2698 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); |
2557 __ add(r2, r1, Operand(RegExpImpl::kLastMatchOverhead)); | 2699 __ addi(r5, r4, Operand(RegExpImpl::kLastMatchOverhead)); |
2558 __ cmp(r2, Operand::SmiUntag(r0)); | 2700 __ SmiUntag(r0, r3); |
2559 __ b(gt, &runtime); | 2701 __ cmp(r5, r0); |
2560 | 2702 __ bgt(&runtime); |
2561 // r1: number of capture registers | 2703 |
2562 // r4: subject string | 2704 // r4: number of capture registers |
| 2705 // subject: subject string |
2563 // Store the capture count. | 2706 // Store the capture count. |
2564 __ SmiTag(r2, r1); | 2707 __ SmiTag(r5, r4); |
2565 __ str(r2, FieldMemOperand(last_match_info_elements, | 2708 __ StoreP(r5, FieldMemOperand(last_match_info_elements, |
2566 RegExpImpl::kLastCaptureCountOffset)); | 2709 RegExpImpl::kLastCaptureCountOffset), r0); |
2567 // Store last subject and last input. | 2710 // Store last subject and last input. |
2568 __ str(subject, | 2711 __ StoreP(subject, |
2569 FieldMemOperand(last_match_info_elements, | 2712 FieldMemOperand(last_match_info_elements, |
2570 RegExpImpl::kLastSubjectOffset)); | 2713 RegExpImpl::kLastSubjectOffset), r0); |
2571 __ mov(r2, subject); | 2714 __ mr(r5, subject); |
2572 __ RecordWriteField(last_match_info_elements, | 2715 __ RecordWriteField(last_match_info_elements, |
2573 RegExpImpl::kLastSubjectOffset, | 2716 RegExpImpl::kLastSubjectOffset, |
2574 subject, | 2717 subject, |
2575 r3, | 2718 r10, |
2576 kLRHasNotBeenSaved, | 2719 kLRHasNotBeenSaved, |
2577 kDontSaveFPRegs); | 2720 kDontSaveFPRegs); |
2578 __ mov(subject, r2); | 2721 __ mr(subject, r5); |
2579 __ str(subject, | 2722 __ StoreP(subject, |
2580 FieldMemOperand(last_match_info_elements, | 2723 FieldMemOperand(last_match_info_elements, |
2581 RegExpImpl::kLastInputOffset)); | 2724 RegExpImpl::kLastInputOffset), r0); |
2582 __ RecordWriteField(last_match_info_elements, | 2725 __ RecordWriteField(last_match_info_elements, |
2583 RegExpImpl::kLastInputOffset, | 2726 RegExpImpl::kLastInputOffset, |
2584 subject, | 2727 subject, |
2585 r3, | 2728 r10, |
2586 kLRHasNotBeenSaved, | 2729 kLRHasNotBeenSaved, |
2587 kDontSaveFPRegs); | 2730 kDontSaveFPRegs); |
2588 | 2731 |
2589 // Get the static offsets vector filled by the native regexp code. | 2732 // Get the static offsets vector filled by the native regexp code. |
2590 ExternalReference address_of_static_offsets_vector = | 2733 ExternalReference address_of_static_offsets_vector = |
2591 ExternalReference::address_of_static_offsets_vector(isolate()); | 2734 ExternalReference::address_of_static_offsets_vector(isolate()); |
2592 __ mov(r2, Operand(address_of_static_offsets_vector)); | 2735 __ mov(r5, Operand(address_of_static_offsets_vector)); |
2593 | 2736 |
2594 // r1: number of capture registers | 2737 // r4: number of capture registers |
2595 // r2: offsets vector | 2738 // r5: offsets vector |
2596 Label next_capture, done; | 2739 Label next_capture; |
2597 // Capture register counter starts from number of capture registers and | 2740 // Capture register counter starts from number of capture registers and |
2598 // counts down until wraping after zero. | 2741 // counts down until wraping after zero. |
2599 __ add(r0, | 2742 __ addi(r3, |
2600 last_match_info_elements, | 2743 last_match_info_elements, |
2601 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag)); | 2744 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag - |
| 2745 kPointerSize)); |
| 2746 __ addi(r5, r5, Operand(-kIntSize)); // bias down for lwzu |
| 2747 __ mtctr(r4); |
2602 __ bind(&next_capture); | 2748 __ bind(&next_capture); |
2603 __ sub(r1, r1, Operand(1), SetCC); | |
2604 __ b(mi, &done); | |
2605 // Read the value from the static offsets vector buffer. | 2749 // Read the value from the static offsets vector buffer. |
2606 __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex)); | 2750 __ lwzu(r6, MemOperand(r5, kIntSize)); |
2607 // Store the smi value in the last match info. | 2751 // Store the smi value in the last match info. |
2608 __ SmiTag(r3); | 2752 __ SmiTag(r6); |
2609 __ str(r3, MemOperand(r0, kPointerSize, PostIndex)); | 2753 __ StorePU(r6, MemOperand(r3, kPointerSize)); |
2610 __ jmp(&next_capture); | 2754 __ bdnz(&next_capture); |
2611 __ bind(&done); | |
2612 | 2755 |
2613 // Return last match info. | 2756 // Return last match info. |
2614 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); | 2757 __ LoadP(r3, MemOperand(sp, kLastMatchInfoOffset)); |
2615 __ add(sp, sp, Operand(4 * kPointerSize)); | 2758 __ addi(sp, sp, Operand(4 * kPointerSize)); |
2616 __ Ret(); | 2759 __ Ret(); |
2617 | 2760 |
2618 // Do the runtime call to execute the regexp. | 2761 // Do the runtime call to execute the regexp. |
2619 __ bind(&runtime); | 2762 __ bind(&runtime); |
2620 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1); | 2763 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1); |
2621 | 2764 |
2622 // Deferred code for string handling. | 2765 // Deferred code for string handling. |
2623 // (6) Not a long external string? If yes, go to (8). | 2766 // (6) Not a long external string? If yes, go to (8). |
2624 __ bind(¬_seq_nor_cons); | 2767 __ bind(¬_seq_nor_cons); |
2625 // Compare flags are still set. | 2768 // Compare flags are still set. |
2626 __ b(gt, ¬_long_external); // Go to (8). | 2769 __ bgt(¬_long_external); // Go to (8). |
2627 | 2770 |
2628 // (7) External string. Make it, offset-wise, look like a sequential string. | 2771 // (7) External string. Make it, offset-wise, look like a sequential string. |
2629 __ bind(&external_string); | 2772 __ bind(&external_string); |
2630 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); | 2773 __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset)); |
2631 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); | 2774 __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset)); |
2632 if (FLAG_debug_code) { | 2775 if (FLAG_debug_code) { |
2633 // Assert that we do not have a cons or slice (indirect strings) here. | 2776 // Assert that we do not have a cons or slice (indirect strings) here. |
2634 // Sequential strings have already been ruled out. | 2777 // Sequential strings have already been ruled out. |
2635 __ tst(r0, Operand(kIsIndirectStringMask)); | 2778 STATIC_ASSERT(kIsIndirectStringMask == 1); |
2636 __ Assert(eq, kExternalStringExpectedButNotFound); | 2779 __ andi(r0, r3, Operand(kIsIndirectStringMask)); |
| 2780 __ Assert(eq, kExternalStringExpectedButNotFound, cr0); |
2637 } | 2781 } |
2638 __ ldr(subject, | 2782 __ LoadP(subject, |
2639 FieldMemOperand(subject, ExternalString::kResourceDataOffset)); | 2783 FieldMemOperand(subject, ExternalString::kResourceDataOffset)); |
2640 // Move the pointer so that offset-wise, it looks like a sequential string. | 2784 // Move the pointer so that offset-wise, it looks like a sequential string. |
2641 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); | 2785 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); |
2642 __ sub(subject, | 2786 __ subi(subject, |
2643 subject, | 2787 subject, |
2644 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); | 2788 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
2645 __ jmp(&seq_string); // Go to (5). | 2789 __ b(&seq_string); // Go to (5). |
2646 | 2790 |
2647 // (8) Short external string or not a string? If yes, bail out to runtime. | 2791 // (8) Short external string or not a string? If yes, bail out to runtime. |
2648 __ bind(¬_long_external); | 2792 __ bind(¬_long_external); |
2649 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); | 2793 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); |
2650 __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask)); | 2794 __ andi(r0, r4, Operand(kIsNotStringMask | kShortExternalStringMask)); |
2651 __ b(ne, &runtime); | 2795 __ bne(&runtime, cr0); |
2652 | 2796 |
2653 // (9) Sliced string. Replace subject with parent. Go to (4). | 2797 // (9) Sliced string. Replace subject with parent. Go to (4). |
2654 // Load offset into r9 and replace subject string with parent. | 2798 // Load offset into r11 and replace subject string with parent. |
2655 __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset)); | 2799 __ LoadP(r11, FieldMemOperand(subject, SlicedString::kOffsetOffset)); |
2656 __ SmiUntag(r9); | 2800 __ SmiUntag(r11); |
2657 __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); | 2801 __ LoadP(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); |
2658 __ jmp(&check_underlying); // Go to (4). | 2802 __ b(&check_underlying); // Go to (4). |
2659 #endif // V8_INTERPRETED_REGEXP | 2803 #endif // V8_INTERPRETED_REGEXP |
2660 } | 2804 } |
2661 | 2805 |
2662 | 2806 |
2663 static void GenerateRecordCallTarget(MacroAssembler* masm) { | 2807 static void GenerateRecordCallTarget(MacroAssembler* masm) { |
2664 // Cache the called function in a feedback vector slot. Cache states | 2808 // Cache the called function in a feedback vector slot. Cache states |
2665 // are uninitialized, monomorphic (indicated by a JSFunction), and | 2809 // are uninitialized, monomorphic (indicated by a JSFunction), and |
2666 // megamorphic. | 2810 // megamorphic. |
2667 // r0 : number of arguments to the construct function | 2811 // r3 : number of arguments to the construct function |
2668 // r1 : the function to call | 2812 // r4 : the function to call |
2669 // r2 : Feedback vector | 2813 // r5 : Feedback vector |
2670 // r3 : slot in feedback vector (Smi) | 2814 // r6 : slot in feedback vector (Smi) |
2671 Label initialize, done, miss, megamorphic, not_array_function; | 2815 Label initialize, done, miss, megamorphic, not_array_function; |
2672 | 2816 |
2673 ASSERT_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()), | 2817 ASSERT_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()), |
2674 masm->isolate()->heap()->megamorphic_symbol()); | 2818 masm->isolate()->heap()->megamorphic_symbol()); |
2675 ASSERT_EQ(*TypeFeedbackInfo::UninitializedSentinel(masm->isolate()), | 2819 ASSERT_EQ(*TypeFeedbackInfo::UninitializedSentinel(masm->isolate()), |
2676 masm->isolate()->heap()->uninitialized_symbol()); | 2820 masm->isolate()->heap()->uninitialized_symbol()); |
2677 | 2821 |
2678 // Load the cache state into r4. | 2822 // Load the cache state into r7. |
2679 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); | 2823 __ SmiToPtrArrayOffset(r7, r6); |
2680 __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize)); | 2824 __ add(r7, r5, r7); |
| 2825 __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize)); |
2681 | 2826 |
2682 // A monomorphic cache hit or an already megamorphic state: invoke the | 2827 // A monomorphic cache hit or an already megamorphic state: invoke the |
2683 // function without changing the state. | 2828 // function without changing the state. |
2684 __ cmp(r4, r1); | 2829 __ cmp(r7, r4); |
2685 __ b(eq, &done); | 2830 __ b(eq, &done); |
2686 | 2831 |
2687 if (!FLAG_pretenuring_call_new) { | 2832 if (!FLAG_pretenuring_call_new) { |
2688 // If we came here, we need to see if we are the array function. | 2833 // If we came here, we need to see if we are the array function. |
2689 // If we didn't have a matching function, and we didn't find the megamorph | 2834 // If we didn't have a matching function, and we didn't find the megamorph |
2690 // sentinel, then we have in the slot either some other function or an | 2835 // sentinel, then we have in the slot either some other function or an |
2691 // AllocationSite. Do a map check on the object in ecx. | 2836 // AllocationSite. Do a map check on the object in ecx. |
2692 __ ldr(r5, FieldMemOperand(r4, 0)); | 2837 __ LoadP(r8, FieldMemOperand(r7, 0)); |
2693 __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex); | 2838 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex); |
2694 __ b(ne, &miss); | 2839 __ bne(&miss); |
2695 | 2840 |
2696 // Make sure the function is the Array() function | 2841 // Make sure the function is the Array() function |
2697 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4); | 2842 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7); |
2698 __ cmp(r1, r4); | 2843 __ cmp(r4, r7); |
2699 __ b(ne, &megamorphic); | 2844 __ bne(&megamorphic); |
2700 __ jmp(&done); | 2845 __ b(&done); |
2701 } | 2846 } |
2702 | 2847 |
2703 __ bind(&miss); | 2848 __ bind(&miss); |
2704 | 2849 |
2705 // A monomorphic miss (i.e, here the cache is not uninitialized) goes | 2850 // A monomorphic miss (i.e, here the cache is not uninitialized) goes |
2706 // megamorphic. | 2851 // megamorphic. |
2707 __ CompareRoot(r4, Heap::kUninitializedSymbolRootIndex); | 2852 __ CompareRoot(r7, Heap::kUninitializedSymbolRootIndex); |
2708 __ b(eq, &initialize); | 2853 __ beq(&initialize); |
2709 // MegamorphicSentinel is an immortal immovable object (undefined) so no | 2854 // MegamorphicSentinel is an immortal immovable object (undefined) so no |
2710 // write-barrier is needed. | 2855 // write-barrier is needed. |
2711 __ bind(&megamorphic); | 2856 __ bind(&megamorphic); |
2712 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); | 2857 __ SmiToPtrArrayOffset(r7, r6); |
| 2858 __ add(r7, r5, r7); |
2713 __ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex); | 2859 __ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex); |
2714 __ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize)); | 2860 __ StoreP(ip, FieldMemOperand(r7, FixedArray::kHeaderSize), r0); |
2715 __ jmp(&done); | 2861 __ jmp(&done); |
2716 | 2862 |
2717 // An uninitialized cache is patched with the function | 2863 // An uninitialized cache is patched with the function |
2718 __ bind(&initialize); | 2864 __ bind(&initialize); |
2719 | 2865 |
2720 if (!FLAG_pretenuring_call_new) { | 2866 if (!FLAG_pretenuring_call_new) { |
2721 // Make sure the function is the Array() function | 2867 // Make sure the function is the Array() function. |
2722 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4); | 2868 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7); |
2723 __ cmp(r1, r4); | 2869 __ cmp(r4, r7); |
2724 __ b(ne, ¬_array_function); | 2870 __ bne(¬_array_function); |
2725 | 2871 |
2726 // The target function is the Array constructor, | 2872 // The target function is the Array constructor, |
2727 // Create an AllocationSite if we don't already have it, store it in the | 2873 // Create an AllocationSite if we don't already have it, store it in the |
2728 // slot. | 2874 // slot. |
2729 { | 2875 { |
2730 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); | 2876 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
2731 | 2877 |
2732 // Arguments register must be smi-tagged to call out. | 2878 // Arguments register must be smi-tagged to call out. |
2733 __ SmiTag(r0); | 2879 __ SmiTag(r3); |
2734 __ Push(r3, r2, r1, r0); | 2880 __ Push(r6, r5, r4, r3); |
2735 | 2881 |
2736 CreateAllocationSiteStub create_stub(masm->isolate()); | 2882 CreateAllocationSiteStub create_stub(masm->isolate()); |
2737 __ CallStub(&create_stub); | 2883 __ CallStub(&create_stub); |
2738 | 2884 |
2739 __ Pop(r3, r2, r1, r0); | 2885 __ Pop(r6, r5, r4, r3); |
2740 __ SmiUntag(r0); | 2886 __ SmiUntag(r3); |
2741 } | 2887 } |
2742 __ b(&done); | 2888 __ b(&done); |
2743 | 2889 |
2744 __ bind(¬_array_function); | 2890 __ bind(¬_array_function); |
2745 } | 2891 } |
2746 | 2892 |
2747 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); | 2893 __ SmiToPtrArrayOffset(r7, r6); |
2748 __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); | 2894 __ add(r7, r5, r7); |
2749 __ str(r1, MemOperand(r4, 0)); | 2895 __ addi(r7, r7, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| 2896 __ StoreP(r4, MemOperand(r7, 0)); |
2750 | 2897 |
2751 __ Push(r4, r2, r1); | 2898 __ Push(r7, r5, r4); |
2752 __ RecordWrite(r2, r4, r1, kLRHasNotBeenSaved, kDontSaveFPRegs, | 2899 __ RecordWrite(r5, r7, r4, kLRHasNotBeenSaved, kDontSaveFPRegs, |
2753 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); | 2900 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
2754 __ Pop(r4, r2, r1); | 2901 __ Pop(r7, r5, r4); |
2755 | 2902 |
2756 __ bind(&done); | 2903 __ bind(&done); |
2757 } | 2904 } |
2758 | 2905 |
2759 | 2906 |
2760 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) { | 2907 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) { |
2761 // Do not transform the receiver for strict mode functions. | 2908 // Do not transform the receiver for strict mode functions and natives. |
2762 __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); | 2909 __ LoadP(r6, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); |
2763 __ ldr(r4, FieldMemOperand(r3, SharedFunctionInfo::kCompilerHintsOffset)); | 2910 __ lwz(r7, FieldMemOperand(r6, SharedFunctionInfo::kCompilerHintsOffset)); |
2764 __ tst(r4, Operand(1 << (SharedFunctionInfo::kStrictModeFunction + | 2911 __ TestBit(r7, |
2765 kSmiTagSize))); | 2912 #if V8_TARGET_ARCH_PPC64 |
2766 __ b(ne, cont); | 2913 SharedFunctionInfo::kStrictModeFunction, |
| 2914 #else |
| 2915 SharedFunctionInfo::kStrictModeFunction + kSmiTagSize, |
| 2916 #endif |
| 2917 r0); |
| 2918 __ bne(cont, cr0); |
2767 | 2919 |
2768 // Do not transform the receiver for native (Compilerhints already in r3). | 2920 // Do not transform the receiver for native. |
2769 __ tst(r4, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize))); | 2921 __ TestBit(r7, |
2770 __ b(ne, cont); | 2922 #if V8_TARGET_ARCH_PPC64 |
| 2923 SharedFunctionInfo::kNative, |
| 2924 #else |
| 2925 SharedFunctionInfo::kNative + kSmiTagSize, |
| 2926 #endif |
| 2927 r0); |
| 2928 __ bne(cont, cr0); |
2771 } | 2929 } |
2772 | 2930 |
2773 | 2931 |
2774 static void EmitSlowCase(MacroAssembler* masm, | 2932 static void EmitSlowCase(MacroAssembler* masm, |
2775 int argc, | 2933 int argc, |
2776 Label* non_function) { | 2934 Label* non_function) { |
2777 // Check for function proxy. | 2935 // Check for function proxy. |
2778 __ cmp(r4, Operand(JS_FUNCTION_PROXY_TYPE)); | 2936 STATIC_ASSERT(JS_FUNCTION_PROXY_TYPE < 0xffffu); |
2779 __ b(ne, non_function); | 2937 __ cmpi(r7, Operand(JS_FUNCTION_PROXY_TYPE)); |
2780 __ push(r1); // put proxy as additional argument | 2938 __ bne(non_function); |
2781 __ mov(r0, Operand(argc + 1, RelocInfo::NONE32)); | 2939 __ push(r4); // put proxy as additional argument |
2782 __ mov(r2, Operand::Zero()); | 2940 __ li(r3, Operand(argc + 1)); |
2783 __ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY); | 2941 __ li(r5, Operand::Zero()); |
| 2942 __ GetBuiltinFunction(r4, Builtins::CALL_FUNCTION_PROXY); |
2784 { | 2943 { |
2785 Handle<Code> adaptor = | 2944 Handle<Code> adaptor = |
2786 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); | 2945 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); |
2787 __ Jump(adaptor, RelocInfo::CODE_TARGET); | 2946 __ Jump(adaptor, RelocInfo::CODE_TARGET); |
2788 } | 2947 } |
2789 | 2948 |
2790 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead | 2949 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
2791 // of the original receiver from the call site). | 2950 // of the original receiver from the call site). |
2792 __ bind(non_function); | 2951 __ bind(non_function); |
2793 __ str(r1, MemOperand(sp, argc * kPointerSize)); | 2952 __ StoreP(r4, MemOperand(sp, argc * kPointerSize), r0); |
2794 __ mov(r0, Operand(argc)); // Set up the number of arguments. | 2953 __ li(r3, Operand(argc)); // Set up the number of arguments. |
2795 __ mov(r2, Operand::Zero()); | 2954 __ li(r5, Operand::Zero()); |
2796 __ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION); | 2955 __ GetBuiltinFunction(r4, Builtins::CALL_NON_FUNCTION); |
2797 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), | 2956 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
2798 RelocInfo::CODE_TARGET); | 2957 RelocInfo::CODE_TARGET); |
2799 } | 2958 } |
2800 | 2959 |
2801 | 2960 |
2802 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) { | 2961 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) { |
2803 // Wrap the receiver and patch it back onto the stack. | 2962 // Wrap the receiver and patch it back onto the stack. |
2804 { FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL); | 2963 { FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL); |
2805 __ Push(r1, r3); | 2964 __ Push(r4, r6); |
2806 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); | 2965 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
2807 __ pop(r1); | 2966 __ pop(r4); |
2808 } | 2967 } |
2809 __ str(r0, MemOperand(sp, argc * kPointerSize)); | 2968 __ StoreP(r3, MemOperand(sp, argc * kPointerSize), r0); |
2810 __ jmp(cont); | 2969 __ b(cont); |
2811 } | 2970 } |
2812 | 2971 |
2813 | 2972 |
2814 static void CallFunctionNoFeedback(MacroAssembler* masm, | 2973 static void CallFunctionNoFeedback(MacroAssembler* masm, |
2815 int argc, bool needs_checks, | 2974 int argc, bool needs_checks, |
2816 bool call_as_method) { | 2975 bool call_as_method) { |
2817 // r1 : the function to call | 2976 // r4 : the function to call |
2818 Label slow, non_function, wrap, cont; | 2977 Label slow, non_function, wrap, cont; |
2819 | 2978 |
2820 if (needs_checks) { | 2979 if (needs_checks) { |
2821 // Check that the function is really a JavaScript function. | 2980 // Check that the function is really a JavaScript function. |
2822 // r1: pushed function (to be verified) | 2981 // r4: pushed function (to be verified) |
2823 __ JumpIfSmi(r1, &non_function); | 2982 __ JumpIfSmi(r4, &non_function); |
2824 | 2983 |
2825 // Goto slow case if we do not have a function. | 2984 // Goto slow case if we do not have a function. |
2826 __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE); | 2985 __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE); |
2827 __ b(ne, &slow); | 2986 __ bne(&slow); |
2828 } | 2987 } |
2829 | 2988 |
2830 // Fast-case: Invoke the function now. | 2989 // Fast-case: Invoke the function now. |
2831 // r1: pushed function | 2990 // r4: pushed function |
2832 ParameterCount actual(argc); | 2991 ParameterCount actual(argc); |
2833 | 2992 |
2834 if (call_as_method) { | 2993 if (call_as_method) { |
2835 if (needs_checks) { | 2994 if (needs_checks) { |
2836 EmitContinueIfStrictOrNative(masm, &cont); | 2995 EmitContinueIfStrictOrNative(masm, &cont); |
2837 } | 2996 } |
2838 | 2997 |
2839 // Compute the receiver in sloppy mode. | 2998 // Compute the receiver in sloppy mode. |
2840 __ ldr(r3, MemOperand(sp, argc * kPointerSize)); | 2999 __ LoadP(r6, MemOperand(sp, argc * kPointerSize), r0); |
2841 | 3000 |
2842 if (needs_checks) { | 3001 if (needs_checks) { |
2843 __ JumpIfSmi(r3, &wrap); | 3002 __ JumpIfSmi(r6, &wrap); |
2844 __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE); | 3003 __ CompareObjectType(r6, r7, r7, FIRST_SPEC_OBJECT_TYPE); |
2845 __ b(lt, &wrap); | 3004 __ blt(&wrap); |
2846 } else { | 3005 } else { |
2847 __ jmp(&wrap); | 3006 __ b(&wrap); |
2848 } | 3007 } |
2849 | 3008 |
2850 __ bind(&cont); | 3009 __ bind(&cont); |
2851 } | 3010 } |
2852 | 3011 |
2853 __ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper()); | 3012 __ InvokeFunction(r4, actual, JUMP_FUNCTION, NullCallWrapper()); |
2854 | 3013 |
2855 if (needs_checks) { | 3014 if (needs_checks) { |
2856 // Slow-case: Non-function called. | 3015 // Slow-case: Non-function called. |
2857 __ bind(&slow); | 3016 __ bind(&slow); |
2858 EmitSlowCase(masm, argc, &non_function); | 3017 EmitSlowCase(masm, argc, &non_function); |
2859 } | 3018 } |
2860 | 3019 |
2861 if (call_as_method) { | 3020 if (call_as_method) { |
2862 __ bind(&wrap); | 3021 __ bind(&wrap); |
2863 EmitWrapCase(masm, argc, &cont); | 3022 EmitWrapCase(masm, argc, &cont); |
2864 } | 3023 } |
2865 } | 3024 } |
2866 | 3025 |
2867 | 3026 |
2868 void CallFunctionStub::Generate(MacroAssembler* masm) { | 3027 void CallFunctionStub::Generate(MacroAssembler* masm) { |
2869 CallFunctionNoFeedback(masm, argc_, NeedsChecks(), CallAsMethod()); | 3028 CallFunctionNoFeedback(masm, argc_, NeedsChecks(), CallAsMethod()); |
2870 } | 3029 } |
2871 | 3030 |
2872 | 3031 |
2873 void CallConstructStub::Generate(MacroAssembler* masm) { | 3032 void CallConstructStub::Generate(MacroAssembler* masm) { |
2874 // r0 : number of arguments | 3033 // r3 : number of arguments |
2875 // r1 : the function to call | 3034 // r4 : the function to call |
2876 // r2 : feedback vector | 3035 // r5 : feedback vector |
2877 // r3 : (only if r2 is not the megamorphic symbol) slot in feedback | 3036 // r6 : (only if r5 is not the megamorphic symbol) slot in feedback |
2878 // vector (Smi) | 3037 // vector (Smi) |
2879 Label slow, non_function_call; | 3038 Label slow, non_function_call; |
2880 | 3039 |
2881 // Check that the function is not a smi. | 3040 // Check that the function is not a smi. |
2882 __ JumpIfSmi(r1, &non_function_call); | 3041 __ JumpIfSmi(r4, &non_function_call); |
2883 // Check that the function is a JSFunction. | 3042 // Check that the function is a JSFunction. |
2884 __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE); | 3043 __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE); |
2885 __ b(ne, &slow); | 3044 __ bne(&slow); |
2886 | 3045 |
2887 if (RecordCallTarget()) { | 3046 if (RecordCallTarget()) { |
2888 GenerateRecordCallTarget(masm); | 3047 GenerateRecordCallTarget(masm); |
2889 | 3048 |
2890 __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3)); | 3049 __ SmiToPtrArrayOffset(r8, r6); |
| 3050 __ add(r8, r5, r8); |
2891 if (FLAG_pretenuring_call_new) { | 3051 if (FLAG_pretenuring_call_new) { |
2892 // Put the AllocationSite from the feedback vector into r2. | 3052 // Put the AllocationSite from the feedback vector into r5. |
2893 // By adding kPointerSize we encode that we know the AllocationSite | 3053 // By adding kPointerSize we encode that we know the AllocationSite |
2894 // entry is at the feedback vector slot given by r3 + 1. | 3054 // entry is at the feedback vector slot given by r6 + 1. |
2895 __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize + kPointerSize)); | 3055 __ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize + kPointerSize)); |
2896 } else { | 3056 } else { |
2897 Label feedback_register_initialized; | 3057 Label feedback_register_initialized; |
2898 // Put the AllocationSite from the feedback vector into r2, or undefined. | 3058 // Put the AllocationSite from the feedback vector into r5, or undefined. |
2899 __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize)); | 3059 __ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize)); |
2900 __ ldr(r5, FieldMemOperand(r2, AllocationSite::kMapOffset)); | 3060 __ LoadP(r8, FieldMemOperand(r5, AllocationSite::kMapOffset)); |
2901 __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex); | 3061 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex); |
2902 __ b(eq, &feedback_register_initialized); | 3062 __ beq(&feedback_register_initialized); |
2903 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); | 3063 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); |
2904 __ bind(&feedback_register_initialized); | 3064 __ bind(&feedback_register_initialized); |
2905 } | 3065 } |
2906 | 3066 |
2907 __ AssertUndefinedOrAllocationSite(r2, r5); | 3067 __ AssertUndefinedOrAllocationSite(r5, r8); |
2908 } | 3068 } |
2909 | 3069 |
2910 // Jump to the function-specific construct stub. | 3070 // Jump to the function-specific construct stub. |
2911 Register jmp_reg = r4; | 3071 Register jmp_reg = r7; |
2912 __ ldr(jmp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); | 3072 __ LoadP(jmp_reg, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); |
2913 __ ldr(jmp_reg, FieldMemOperand(jmp_reg, | 3073 __ LoadP(jmp_reg, FieldMemOperand(jmp_reg, |
2914 SharedFunctionInfo::kConstructStubOffset)); | 3074 SharedFunctionInfo::kConstructStubOffset)); |
2915 __ add(pc, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag)); | 3075 __ addi(r0, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| 3076 __ Jump(r0); |
2916 | 3077 |
2917 // r0: number of arguments | 3078 // r3: number of arguments |
2918 // r1: called object | 3079 // r4: called object |
2919 // r4: object type | 3080 // r7: object type |
2920 Label do_call; | 3081 Label do_call; |
2921 __ bind(&slow); | 3082 __ bind(&slow); |
2922 __ cmp(r4, Operand(JS_FUNCTION_PROXY_TYPE)); | 3083 STATIC_ASSERT(JS_FUNCTION_PROXY_TYPE < 0xffffu); |
2923 __ b(ne, &non_function_call); | 3084 __ cmpi(r7, Operand(JS_FUNCTION_PROXY_TYPE)); |
2924 __ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); | 3085 __ bne(&non_function_call); |
2925 __ jmp(&do_call); | 3086 __ GetBuiltinFunction(r4, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); |
| 3087 __ b(&do_call); |
2926 | 3088 |
2927 __ bind(&non_function_call); | 3089 __ bind(&non_function_call); |
2928 __ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); | 3090 __ GetBuiltinFunction(r4, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); |
2929 __ bind(&do_call); | 3091 __ bind(&do_call); |
2930 // Set expected number of arguments to zero (not changing r0). | 3092 // Set expected number of arguments to zero (not changing r3). |
2931 __ mov(r2, Operand::Zero()); | 3093 __ li(r5, Operand::Zero()); |
2932 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), | 3094 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
2933 RelocInfo::CODE_TARGET); | 3095 RelocInfo::CODE_TARGET); |
2934 } | 3096 } |
2935 | 3097 |
2936 | 3098 |
2937 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) { | 3099 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) { |
2938 __ ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); | 3100 __ LoadP(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
2939 __ ldr(vector, FieldMemOperand(vector, | 3101 __ LoadP(vector, FieldMemOperand(vector, |
2940 JSFunction::kSharedFunctionInfoOffset)); | 3102 JSFunction::kSharedFunctionInfoOffset)); |
2941 __ ldr(vector, FieldMemOperand(vector, | 3103 __ LoadP(vector, FieldMemOperand(vector, |
2942 SharedFunctionInfo::kFeedbackVectorOffset)); | 3104 SharedFunctionInfo::kFeedbackVectorOffset)); |
2943 } | 3105 } |
2944 | 3106 |
2945 | 3107 |
2946 void CallIC_ArrayStub::Generate(MacroAssembler* masm) { | 3108 void CallIC_ArrayStub::Generate(MacroAssembler* masm) { |
2947 // r1 - function | 3109 // r4 - function |
2948 // r3 - slot id | 3110 // r6 - slot id |
2949 Label miss; | 3111 Label miss; |
2950 int argc = state_.arg_count(); | 3112 int argc = state_.arg_count(); |
2951 ParameterCount actual(argc); | 3113 ParameterCount actual(argc); |
2952 | 3114 |
2953 EmitLoadTypeFeedbackVector(masm, r2); | 3115 EmitLoadTypeFeedbackVector(masm, r5); |
2954 | 3116 |
2955 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4); | 3117 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7); |
2956 __ cmp(r1, r4); | 3118 __ cmp(r4, r7); |
2957 __ b(ne, &miss); | 3119 __ bne(&miss); |
2958 | 3120 |
2959 __ mov(r0, Operand(arg_count())); | 3121 __ mov(r3, Operand(arg_count())); |
2960 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); | 3122 __ SmiToPtrArrayOffset(r7, r6); |
2961 __ ldr(r2, FieldMemOperand(r4, FixedArray::kHeaderSize)); | 3123 __ add(r7, r5, r7); |
2962 // Verify that r2 contains an AllocationSite | 3124 __ LoadP(r5, FieldMemOperand(r7, FixedArray::kHeaderSize)); |
2963 __ AssertUndefinedOrAllocationSite(r2, r4); | 3125 // Verify that r5 contains an AllocationSite |
| 3126 __ AssertUndefinedOrAllocationSite(r5, r7); |
2964 ArrayConstructorStub stub(masm->isolate(), arg_count()); | 3127 ArrayConstructorStub stub(masm->isolate(), arg_count()); |
2965 __ TailCallStub(&stub); | 3128 __ TailCallStub(&stub); |
2966 | 3129 |
2967 __ bind(&miss); | 3130 __ bind(&miss); |
2968 GenerateMiss(masm, IC::kCallIC_Customization_Miss); | 3131 GenerateMiss(masm, IC::kCallIC_Customization_Miss); |
2969 | 3132 |
2970 // The slow case, we need this no matter what to complete a call after a miss. | 3133 // The slow case, we need this no matter what to complete a call after a miss. |
2971 CallFunctionNoFeedback(masm, | 3134 CallFunctionNoFeedback(masm, |
2972 arg_count(), | 3135 arg_count(), |
2973 true, | 3136 true, |
2974 CallAsMethod()); | 3137 CallAsMethod()); |
2975 | 3138 |
2976 // Unreachable. | 3139 // Unreachable. |
2977 __ stop("Unexpected code address"); | 3140 __ stop("Unexpected code address"); |
2978 } | 3141 } |
2979 | 3142 |
2980 | 3143 |
2981 void CallICStub::Generate(MacroAssembler* masm) { | 3144 void CallICStub::Generate(MacroAssembler* masm) { |
2982 // r1 - function | 3145 // r4 - function |
2983 // r3 - slot id (Smi) | 3146 // r6 - slot id (Smi) |
2984 Label extra_checks_or_miss, slow_start; | 3147 Label extra_checks_or_miss, slow_start; |
2985 Label slow, non_function, wrap, cont; | 3148 Label slow, non_function, wrap, cont; |
2986 Label have_js_function; | 3149 Label have_js_function; |
2987 int argc = state_.arg_count(); | 3150 int argc = state_.arg_count(); |
2988 ParameterCount actual(argc); | 3151 ParameterCount actual(argc); |
2989 | 3152 |
2990 EmitLoadTypeFeedbackVector(masm, r2); | 3153 EmitLoadTypeFeedbackVector(masm, r5); |
2991 | 3154 |
2992 // The checks. First, does r1 match the recorded monomorphic target? | 3155 // The checks. First, does r4 match the recorded monomorphic target? |
2993 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); | 3156 __ SmiToPtrArrayOffset(r7, r6); |
2994 __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize)); | 3157 __ add(r7, r5, r7); |
2995 __ cmp(r1, r4); | 3158 __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize)); |
2996 __ b(ne, &extra_checks_or_miss); | 3159 __ cmp(r4, r7); |
| 3160 __ bne(&extra_checks_or_miss); |
2997 | 3161 |
2998 __ bind(&have_js_function); | 3162 __ bind(&have_js_function); |
2999 if (state_.CallAsMethod()) { | 3163 if (state_.CallAsMethod()) { |
3000 EmitContinueIfStrictOrNative(masm, &cont); | 3164 EmitContinueIfStrictOrNative(masm, &cont); |
3001 // Compute the receiver in sloppy mode. | 3165 // Compute the receiver in sloppy mode. |
3002 __ ldr(r3, MemOperand(sp, argc * kPointerSize)); | 3166 __ LoadP(r6, MemOperand(sp, argc * kPointerSize), r0); |
3003 | 3167 |
3004 __ JumpIfSmi(r3, &wrap); | 3168 __ JumpIfSmi(r6, &wrap); |
3005 __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE); | 3169 __ CompareObjectType(r6, r7, r7, FIRST_SPEC_OBJECT_TYPE); |
3006 __ b(lt, &wrap); | 3170 __ blt(&wrap); |
3007 | 3171 |
3008 __ bind(&cont); | 3172 __ bind(&cont); |
3009 } | 3173 } |
3010 | 3174 |
3011 __ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper()); | 3175 __ InvokeFunction(r4, actual, JUMP_FUNCTION, NullCallWrapper()); |
3012 | 3176 |
3013 __ bind(&slow); | 3177 __ bind(&slow); |
3014 EmitSlowCase(masm, argc, &non_function); | 3178 EmitSlowCase(masm, argc, &non_function); |
3015 | 3179 |
3016 if (state_.CallAsMethod()) { | 3180 if (state_.CallAsMethod()) { |
3017 __ bind(&wrap); | 3181 __ bind(&wrap); |
3018 EmitWrapCase(masm, argc, &cont); | 3182 EmitWrapCase(masm, argc, &cont); |
3019 } | 3183 } |
3020 | 3184 |
3021 __ bind(&extra_checks_or_miss); | 3185 __ bind(&extra_checks_or_miss); |
3022 Label miss; | 3186 Label miss; |
3023 | 3187 |
3024 __ CompareRoot(r4, Heap::kMegamorphicSymbolRootIndex); | 3188 __ CompareRoot(r7, Heap::kMegamorphicSymbolRootIndex); |
3025 __ b(eq, &slow_start); | 3189 __ beq(&slow_start); |
3026 __ CompareRoot(r4, Heap::kUninitializedSymbolRootIndex); | 3190 __ CompareRoot(r7, Heap::kUninitializedSymbolRootIndex); |
3027 __ b(eq, &miss); | 3191 __ beq(&miss); |
3028 | 3192 |
3029 if (!FLAG_trace_ic) { | 3193 if (!FLAG_trace_ic) { |
3030 // We are going megamorphic, and we don't want to visit the runtime. | 3194 // We are going megamorphic, and we don't want to visit the runtime. |
3031 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); | 3195 __ SmiToPtrArrayOffset(r7, r6); |
| 3196 __ add(r7, r5, r7); |
3032 __ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex); | 3197 __ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex); |
3033 __ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize)); | 3198 __ StoreP(ip, FieldMemOperand(r7, FixedArray::kHeaderSize), r0); |
3034 __ jmp(&slow_start); | 3199 __ jmp(&slow_start); |
3035 } | 3200 } |
3036 | 3201 |
3037 // We are here because tracing is on or we are going monomorphic. | 3202 // We are here because tracing is on or we are going monomorphic. |
3038 __ bind(&miss); | 3203 __ bind(&miss); |
3039 GenerateMiss(masm, IC::kCallIC_Miss); | 3204 GenerateMiss(masm, IC::kCallIC_Miss); |
3040 | 3205 |
3041 // the slow case | 3206 // the slow case |
3042 __ bind(&slow_start); | 3207 __ bind(&slow_start); |
3043 // Check that the function is really a JavaScript function. | 3208 // Check that the function is really a JavaScript function. |
3044 // r1: pushed function (to be verified) | 3209 // r4: pushed function (to be verified) |
3045 __ JumpIfSmi(r1, &non_function); | 3210 __ JumpIfSmi(r4, &non_function); |
3046 | 3211 |
3047 // Goto slow case if we do not have a function. | 3212 // Goto slow case if we do not have a function. |
3048 __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE); | 3213 __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE); |
3049 __ b(ne, &slow); | 3214 __ bne(&slow); |
3050 __ jmp(&have_js_function); | 3215 __ b(&have_js_function); |
3051 } | 3216 } |
3052 | 3217 |
3053 | 3218 |
3054 void CallICStub::GenerateMiss(MacroAssembler* masm, IC::UtilityId id) { | 3219 void CallICStub::GenerateMiss(MacroAssembler* masm, IC::UtilityId id) { |
3055 // Get the receiver of the function from the stack; 1 ~ return address. | 3220 // Get the receiver of the function from the stack; 1 ~ return address. |
3056 __ ldr(r4, MemOperand(sp, (state_.arg_count() + 1) * kPointerSize)); | 3221 __ LoadP(r7, MemOperand(sp, (state_.arg_count() + 1) * kPointerSize), r0); |
3057 | 3222 |
3058 { | 3223 { |
3059 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); | 3224 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
3060 | 3225 |
3061 // Push the receiver and the function and feedback info. | 3226 // Push the receiver and the function and feedback info. |
3062 __ Push(r4, r1, r2, r3); | 3227 __ Push(r7, r4, r5, r6); |
3063 | 3228 |
3064 // Call the entry. | 3229 // Call the entry. |
3065 ExternalReference miss = ExternalReference(IC_Utility(id), | 3230 ExternalReference miss = ExternalReference(IC_Utility(id), |
3066 masm->isolate()); | 3231 masm->isolate()); |
3067 __ CallExternalReference(miss, 4); | 3232 __ CallExternalReference(miss, 4); |
3068 | 3233 |
3069 // Move result to edi and exit the internal frame. | 3234 // Move result to r4 and exit the internal frame. |
3070 __ mov(r1, r0); | 3235 __ mr(r4, r3); |
3071 } | 3236 } |
3072 } | 3237 } |
3073 | 3238 |
3074 | 3239 |
3075 // StringCharCodeAtGenerator | 3240 // StringCharCodeAtGenerator |
3076 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { | 3241 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
3077 Label flat_string; | 3242 Label flat_string; |
3078 Label ascii_string; | 3243 Label ascii_string; |
3079 Label got_char_code; | 3244 Label got_char_code; |
3080 Label sliced_string; | 3245 Label sliced_string; |
3081 | 3246 |
3082 // If the receiver is a smi trigger the non-string case. | 3247 // If the receiver is a smi trigger the non-string case. |
3083 __ JumpIfSmi(object_, receiver_not_string_); | 3248 __ JumpIfSmi(object_, receiver_not_string_); |
3084 | 3249 |
3085 // Fetch the instance type of the receiver into result register. | 3250 // Fetch the instance type of the receiver into result register. |
3086 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); | 3251 __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
3087 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); | 3252 __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
3088 // If the receiver is not a string trigger the non-string case. | 3253 // If the receiver is not a string trigger the non-string case. |
3089 __ tst(result_, Operand(kIsNotStringMask)); | 3254 __ andi(r0, result_, Operand(kIsNotStringMask)); |
3090 __ b(ne, receiver_not_string_); | 3255 __ bne(receiver_not_string_, cr0); |
3091 | 3256 |
3092 // If the index is non-smi trigger the non-smi case. | 3257 // If the index is non-smi trigger the non-smi case. |
3093 __ JumpIfNotSmi(index_, &index_not_smi_); | 3258 __ JumpIfNotSmi(index_, &index_not_smi_); |
3094 __ bind(&got_smi_index_); | 3259 __ bind(&got_smi_index_); |
3095 | 3260 |
3096 // Check for index out of range. | 3261 // Check for index out of range. |
3097 __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset)); | 3262 __ LoadP(ip, FieldMemOperand(object_, String::kLengthOffset)); |
3098 __ cmp(ip, Operand(index_)); | 3263 __ cmpl(ip, index_); |
3099 __ b(ls, index_out_of_range_); | 3264 __ ble(index_out_of_range_); |
3100 | 3265 |
3101 __ SmiUntag(index_); | 3266 __ SmiUntag(index_); |
3102 | 3267 |
3103 StringCharLoadGenerator::Generate(masm, | 3268 StringCharLoadGenerator::Generate(masm, |
3104 object_, | 3269 object_, |
3105 index_, | 3270 index_, |
3106 result_, | 3271 result_, |
3107 &call_runtime_); | 3272 &call_runtime_); |
3108 | 3273 |
3109 __ SmiTag(result_); | 3274 __ SmiTag(result_); |
(...skipping 19 matching lines...) Expand all Loading... |
3129 __ push(index_); // Consumed by runtime conversion function. | 3294 __ push(index_); // Consumed by runtime conversion function. |
3130 if (index_flags_ == STRING_INDEX_IS_NUMBER) { | 3295 if (index_flags_ == STRING_INDEX_IS_NUMBER) { |
3131 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); | 3296 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); |
3132 } else { | 3297 } else { |
3133 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); | 3298 ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); |
3134 // NumberToSmi discards numbers that are not exact integers. | 3299 // NumberToSmi discards numbers that are not exact integers. |
3135 __ CallRuntime(Runtime::kNumberToSmi, 1); | 3300 __ CallRuntime(Runtime::kNumberToSmi, 1); |
3136 } | 3301 } |
3137 // Save the conversion result before the pop instructions below | 3302 // Save the conversion result before the pop instructions below |
3138 // have a chance to overwrite it. | 3303 // have a chance to overwrite it. |
3139 __ Move(index_, r0); | 3304 __ Move(index_, r3); |
3140 __ pop(object_); | 3305 __ pop(object_); |
3141 // Reload the instance type. | 3306 // Reload the instance type. |
3142 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); | 3307 __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
3143 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); | 3308 __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
3144 call_helper.AfterCall(masm); | 3309 call_helper.AfterCall(masm); |
3145 // If index is still not a smi, it must be out of range. | 3310 // If index is still not a smi, it must be out of range. |
3146 __ JumpIfNotSmi(index_, index_out_of_range_); | 3311 __ JumpIfNotSmi(index_, index_out_of_range_); |
3147 // Otherwise, return to the fast path. | 3312 // Otherwise, return to the fast path. |
3148 __ jmp(&got_smi_index_); | 3313 __ b(&got_smi_index_); |
3149 | 3314 |
3150 // Call runtime. We get here when the receiver is a string and the | 3315 // Call runtime. We get here when the receiver is a string and the |
3151 // index is a number, but the code of getting the actual character | 3316 // index is a number, but the code of getting the actual character |
3152 // is too complex (e.g., when the string needs to be flattened). | 3317 // is too complex (e.g., when the string needs to be flattened). |
3153 __ bind(&call_runtime_); | 3318 __ bind(&call_runtime_); |
3154 call_helper.BeforeCall(masm); | 3319 call_helper.BeforeCall(masm); |
3155 __ SmiTag(index_); | 3320 __ SmiTag(index_); |
3156 __ Push(object_, index_); | 3321 __ Push(object_, index_); |
3157 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2); | 3322 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2); |
3158 __ Move(result_, r0); | 3323 __ Move(result_, r3); |
3159 call_helper.AfterCall(masm); | 3324 call_helper.AfterCall(masm); |
3160 __ jmp(&exit_); | 3325 __ b(&exit_); |
3161 | 3326 |
3162 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); | 3327 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); |
3163 } | 3328 } |
3164 | 3329 |
3165 | 3330 |
3166 // ------------------------------------------------------------------------- | 3331 // ------------------------------------------------------------------------- |
3167 // StringCharFromCodeGenerator | 3332 // StringCharFromCodeGenerator |
3168 | 3333 |
3169 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { | 3334 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { |
3170 // Fast case of Heap::LookupSingleCharacterStringFromCode. | 3335 // Fast case of Heap::LookupSingleCharacterStringFromCode. |
3171 STATIC_ASSERT(kSmiTag == 0); | |
3172 STATIC_ASSERT(kSmiShiftSize == 0); | |
3173 ASSERT(IsPowerOf2(String::kMaxOneByteCharCode + 1)); | 3336 ASSERT(IsPowerOf2(String::kMaxOneByteCharCode + 1)); |
3174 __ tst(code_, | 3337 __ LoadSmiLiteral(r0, Smi::FromInt(~String::kMaxOneByteCharCode)); |
3175 Operand(kSmiTagMask | | 3338 __ ori(r0, r0, Operand(kSmiTagMask)); |
3176 ((~String::kMaxOneByteCharCode) << kSmiTagSize))); | 3339 __ and_(r0, code_, r0); |
3177 __ b(ne, &slow_case_); | 3340 __ cmpi(r0, Operand::Zero()); |
| 3341 __ bne(&slow_case_); |
3178 | 3342 |
3179 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); | 3343 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); |
3180 // At this point code register contains smi tagged ASCII char code. | 3344 // At this point code register contains smi tagged ASCII char code. |
3181 __ add(result_, result_, Operand::PointerOffsetFromSmiKey(code_)); | 3345 __ mr(r0, code_); |
3182 __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); | 3346 __ SmiToPtrArrayOffset(code_, code_); |
| 3347 __ add(result_, result_, code_); |
| 3348 __ mr(code_, r0); |
| 3349 __ LoadP(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); |
3183 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex); | 3350 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex); |
3184 __ b(eq, &slow_case_); | 3351 __ beq(&slow_case_); |
3185 __ bind(&exit_); | 3352 __ bind(&exit_); |
3186 } | 3353 } |
3187 | 3354 |
3188 | 3355 |
3189 void StringCharFromCodeGenerator::GenerateSlow( | 3356 void StringCharFromCodeGenerator::GenerateSlow( |
3190 MacroAssembler* masm, | 3357 MacroAssembler* masm, |
3191 const RuntimeCallHelper& call_helper) { | 3358 const RuntimeCallHelper& call_helper) { |
3192 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase); | 3359 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase); |
3193 | 3360 |
3194 __ bind(&slow_case_); | 3361 __ bind(&slow_case_); |
3195 call_helper.BeforeCall(masm); | 3362 call_helper.BeforeCall(masm); |
3196 __ push(code_); | 3363 __ push(code_); |
3197 __ CallRuntime(Runtime::kCharFromCode, 1); | 3364 __ CallRuntime(Runtime::kCharFromCode, 1); |
3198 __ Move(result_, r0); | 3365 __ Move(result_, r3); |
3199 call_helper.AfterCall(masm); | 3366 call_helper.AfterCall(masm); |
3200 __ jmp(&exit_); | 3367 __ b(&exit_); |
3201 | 3368 |
3202 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase); | 3369 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase); |
3203 } | 3370 } |
3204 | 3371 |
3205 | 3372 |
3206 enum CopyCharactersFlags { | 3373 enum CopyCharactersFlags { |
3207 COPY_ASCII = 1, | 3374 COPY_ASCII = 1, |
3208 DEST_ALWAYS_ALIGNED = 2 | 3375 DEST_ALWAYS_ALIGNED = 2 |
3209 }; | 3376 }; |
3210 | 3377 |
3211 | 3378 |
3212 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, | 3379 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, |
3213 Register dest, | 3380 Register dest, |
3214 Register src, | 3381 Register src, |
3215 Register count, | 3382 Register count, |
3216 Register scratch, | 3383 Register scratch, |
3217 String::Encoding encoding) { | 3384 String::Encoding encoding) { |
3218 if (FLAG_debug_code) { | 3385 if (FLAG_debug_code) { |
3219 // Check that destination is word aligned. | 3386 // Check that destination is word aligned. |
3220 __ tst(dest, Operand(kPointerAlignmentMask)); | 3387 __ andi(r0, dest, Operand(kPointerAlignmentMask)); |
3221 __ Check(eq, kDestinationOfCopyNotAligned); | 3388 __ Check(eq, kDestinationOfCopyNotAligned, cr0); |
3222 } | 3389 } |
3223 | 3390 |
3224 // Assumes word reads and writes are little endian. | |
3225 // Nothing to do for zero characters. | 3391 // Nothing to do for zero characters. |
3226 Label done; | 3392 Label done; |
3227 if (encoding == String::TWO_BYTE_ENCODING) { | 3393 if (encoding == String::TWO_BYTE_ENCODING) { |
3228 __ add(count, count, Operand(count), SetCC); | 3394 // double the length |
| 3395 __ add(count, count, count, LeaveOE, SetRC); |
| 3396 __ beq(&done, cr0); |
| 3397 } else { |
| 3398 __ cmpi(count, Operand::Zero()); |
| 3399 __ beq(&done); |
3229 } | 3400 } |
3230 | 3401 |
3231 Register limit = count; // Read until dest equals this. | 3402 // Copy count bytes from src to dst. |
3232 __ add(limit, dest, Operand(count)); | 3403 Label byte_loop; |
3233 | 3404 __ mtctr(count); |
3234 Label loop_entry, loop; | 3405 __ bind(&byte_loop); |
3235 // Copy bytes from src to dest until dest hits limit. | 3406 __ lbz(scratch, MemOperand(src)); |
3236 __ b(&loop_entry); | 3407 __ addi(src, src, Operand(1)); |
3237 __ bind(&loop); | 3408 __ stb(scratch, MemOperand(dest)); |
3238 __ ldrb(scratch, MemOperand(src, 1, PostIndex), lt); | 3409 __ addi(dest, dest, Operand(1)); |
3239 __ strb(scratch, MemOperand(dest, 1, PostIndex)); | 3410 __ bdnz(&byte_loop); |
3240 __ bind(&loop_entry); | |
3241 __ cmp(dest, Operand(limit)); | |
3242 __ b(lt, &loop); | |
3243 | 3411 |
3244 __ bind(&done); | 3412 __ bind(&done); |
3245 } | 3413 } |
3246 | 3414 |
3247 | 3415 |
3248 void StringHelper::GenerateHashInit(MacroAssembler* masm, | 3416 void StringHelper::GenerateHashInit(MacroAssembler* masm, |
3249 Register hash, | 3417 Register hash, |
3250 Register character) { | 3418 Register character, |
| 3419 Register scratch) { |
3251 // hash = character + (character << 10); | 3420 // hash = character + (character << 10); |
3252 __ LoadRoot(hash, Heap::kHashSeedRootIndex); | 3421 __ LoadRoot(hash, Heap::kHashSeedRootIndex); |
3253 // Untag smi seed and add the character. | 3422 // Untag smi seed and add the character. |
3254 __ add(hash, character, Operand(hash, LSR, kSmiTagSize)); | 3423 __ SmiUntag(scratch, hash); |
| 3424 __ add(hash, character, scratch); |
3255 // hash += hash << 10; | 3425 // hash += hash << 10; |
3256 __ add(hash, hash, Operand(hash, LSL, 10)); | 3426 __ slwi(scratch, hash, Operand(10)); |
| 3427 __ add(hash, hash, scratch); |
3257 // hash ^= hash >> 6; | 3428 // hash ^= hash >> 6; |
3258 __ eor(hash, hash, Operand(hash, LSR, 6)); | 3429 __ srwi(scratch, hash, Operand(6)); |
| 3430 __ xor_(hash, hash, scratch); |
3259 } | 3431 } |
3260 | 3432 |
3261 | 3433 |
3262 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, | 3434 void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, |
3263 Register hash, | 3435 Register hash, |
3264 Register character) { | 3436 Register character, |
| 3437 Register scratch) { |
3265 // hash += character; | 3438 // hash += character; |
3266 __ add(hash, hash, Operand(character)); | 3439 __ add(hash, hash, character); |
3267 // hash += hash << 10; | 3440 // hash += hash << 10; |
3268 __ add(hash, hash, Operand(hash, LSL, 10)); | 3441 __ slwi(scratch, hash, Operand(10)); |
| 3442 __ add(hash, hash, scratch); |
3269 // hash ^= hash >> 6; | 3443 // hash ^= hash >> 6; |
3270 __ eor(hash, hash, Operand(hash, LSR, 6)); | 3444 __ srwi(scratch, hash, Operand(6)); |
| 3445 __ xor_(hash, hash, scratch); |
3271 } | 3446 } |
3272 | 3447 |
3273 | 3448 |
3274 void StringHelper::GenerateHashGetHash(MacroAssembler* masm, | 3449 void StringHelper::GenerateHashGetHash(MacroAssembler* masm, |
3275 Register hash) { | 3450 Register hash, |
| 3451 Register scratch) { |
3276 // hash += hash << 3; | 3452 // hash += hash << 3; |
3277 __ add(hash, hash, Operand(hash, LSL, 3)); | 3453 __ slwi(scratch, hash, Operand(3)); |
| 3454 __ add(hash, hash, scratch); |
3278 // hash ^= hash >> 11; | 3455 // hash ^= hash >> 11; |
3279 __ eor(hash, hash, Operand(hash, LSR, 11)); | 3456 __ srwi(scratch, hash, Operand(11)); |
| 3457 __ xor_(hash, hash, scratch); |
3280 // hash += hash << 15; | 3458 // hash += hash << 15; |
3281 __ add(hash, hash, Operand(hash, LSL, 15)); | 3459 __ slwi(scratch, hash, Operand(15)); |
| 3460 __ add(hash, hash, scratch); |
3282 | 3461 |
3283 __ and_(hash, hash, Operand(String::kHashBitMask), SetCC); | 3462 __ mov(scratch, Operand(String::kHashBitMask)); |
| 3463 __ and_(hash, hash, scratch, SetRC); |
3284 | 3464 |
3285 // if (hash == 0) hash = 27; | 3465 // if (hash == 0) hash = 27; |
3286 __ mov(hash, Operand(StringHasher::kZeroHash), LeaveCC, eq); | 3466 Label done; |
| 3467 __ bne(&done, cr0); |
| 3468 __ li(hash, Operand(StringHasher::kZeroHash)); |
| 3469 __ bind(&done); |
3287 } | 3470 } |
3288 | 3471 |
3289 | 3472 |
3290 void SubStringStub::Generate(MacroAssembler* masm) { | 3473 void SubStringStub::Generate(MacroAssembler* masm) { |
3291 Label runtime; | 3474 Label runtime; |
3292 | 3475 |
3293 // Stack frame on entry. | 3476 // Stack frame on entry. |
3294 // lr: return address | 3477 // lr: return address |
3295 // sp[0]: to | 3478 // sp[0]: to |
3296 // sp[4]: from | 3479 // sp[4]: from |
3297 // sp[8]: string | 3480 // sp[8]: string |
3298 | 3481 |
3299 // This stub is called from the native-call %_SubString(...), so | 3482 // This stub is called from the native-call %_SubString(...), so |
3300 // nothing can be assumed about the arguments. It is tested that: | 3483 // nothing can be assumed about the arguments. It is tested that: |
3301 // "string" is a sequential string, | 3484 // "string" is a sequential string, |
3302 // both "from" and "to" are smis, and | 3485 // both "from" and "to" are smis, and |
3303 // 0 <= from <= to <= string.length. | 3486 // 0 <= from <= to <= string.length. |
3304 // If any of these assumptions fail, we call the runtime system. | 3487 // If any of these assumptions fail, we call the runtime system. |
3305 | 3488 |
3306 const int kToOffset = 0 * kPointerSize; | 3489 const int kToOffset = 0 * kPointerSize; |
3307 const int kFromOffset = 1 * kPointerSize; | 3490 const int kFromOffset = 1 * kPointerSize; |
3308 const int kStringOffset = 2 * kPointerSize; | 3491 const int kStringOffset = 2 * kPointerSize; |
3309 | 3492 |
3310 __ Ldrd(r2, r3, MemOperand(sp, kToOffset)); | 3493 __ LoadP(r5, MemOperand(sp, kToOffset)); |
3311 STATIC_ASSERT(kFromOffset == kToOffset + 4); | 3494 __ LoadP(r6, MemOperand(sp, kFromOffset)); |
3312 STATIC_ASSERT(kSmiTag == 0); | |
3313 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); | |
3314 | 3495 |
3315 // Arithmetic shift right by one un-smi-tags. In this case we rotate right | 3496 // If either to or from had the smi tag bit set, then fail to generic runtime |
3316 // instead because we bail out on non-smi values: ROR and ASR are equivalent | 3497 __ JumpIfNotSmi(r5, &runtime); |
3317 // for smis but they set the flags in a way that's easier to optimize. | 3498 __ JumpIfNotSmi(r6, &runtime); |
3318 __ mov(r2, Operand(r2, ROR, 1), SetCC); | 3499 __ SmiUntag(r5); |
3319 __ mov(r3, Operand(r3, ROR, 1), SetCC, cc); | 3500 __ SmiUntag(r6, SetRC); |
3320 // If either to or from had the smi tag bit set, then C is set now, and N | 3501 // Both r5 and r6 are untagged integers. |
3321 // has the same value: we rotated by 1, so the bottom bit is now the top bit. | 3502 |
3322 // We want to bailout to runtime here if From is negative. In that case, the | 3503 // We want to bailout to runtime here if From is negative. |
3323 // next instruction is not executed and we fall through to bailing out to | 3504 __ blt(&runtime, cr0); // From < 0. |
3324 // runtime. | 3505 |
3325 // Executed if both r2 and r3 are untagged integers. | 3506 __ cmpl(r6, r5); |
3326 __ sub(r2, r2, Operand(r3), SetCC, cc); | 3507 __ bgt(&runtime); // Fail if from > to. |
3327 // One of the above un-smis or the above SUB could have set N==1. | 3508 __ sub(r5, r5, r6); |
3328 __ b(mi, &runtime); // Either "from" or "to" is not an smi, or from > to. | |
3329 | 3509 |
3330 // Make sure first argument is a string. | 3510 // Make sure first argument is a string. |
3331 __ ldr(r0, MemOperand(sp, kStringOffset)); | 3511 __ LoadP(r3, MemOperand(sp, kStringOffset)); |
3332 __ JumpIfSmi(r0, &runtime); | 3512 __ JumpIfSmi(r3, &runtime); |
3333 Condition is_string = masm->IsObjectStringType(r0, r1); | 3513 Condition is_string = masm->IsObjectStringType(r3, r4); |
3334 __ b(NegateCondition(is_string), &runtime); | 3514 __ b(NegateCondition(is_string), &runtime, cr0); |
3335 | 3515 |
3336 Label single_char; | 3516 Label single_char; |
3337 __ cmp(r2, Operand(1)); | 3517 __ cmpi(r5, Operand(1)); |
3338 __ b(eq, &single_char); | 3518 __ b(eq, &single_char); |
3339 | 3519 |
3340 // Short-cut for the case of trivial substring. | 3520 // Short-cut for the case of trivial substring. |
3341 Label return_r0; | 3521 Label return_r3; |
3342 // r0: original string | 3522 // r3: original string |
3343 // r2: result string length | 3523 // r5: result string length |
3344 __ ldr(r4, FieldMemOperand(r0, String::kLengthOffset)); | 3524 __ LoadP(r7, FieldMemOperand(r3, String::kLengthOffset)); |
3345 __ cmp(r2, Operand(r4, ASR, 1)); | 3525 __ SmiUntag(r0, r7); |
| 3526 __ cmpl(r5, r0); |
3346 // Return original string. | 3527 // Return original string. |
3347 __ b(eq, &return_r0); | 3528 __ beq(&return_r3); |
3348 // Longer than original string's length or negative: unsafe arguments. | 3529 // Longer than original string's length or negative: unsafe arguments. |
3349 __ b(hi, &runtime); | 3530 __ bgt(&runtime); |
3350 // Shorter than original string's length: an actual substring. | 3531 // Shorter than original string's length: an actual substring. |
3351 | 3532 |
3352 // Deal with different string types: update the index if necessary | 3533 // Deal with different string types: update the index if necessary |
3353 // and put the underlying string into r5. | 3534 // and put the underlying string into r8. |
3354 // r0: original string | 3535 // r3: original string |
3355 // r1: instance type | 3536 // r4: instance type |
3356 // r2: length | 3537 // r5: length |
3357 // r3: from index (untagged) | 3538 // r6: from index (untagged) |
3358 Label underlying_unpacked, sliced_string, seq_or_external_string; | 3539 Label underlying_unpacked, sliced_string, seq_or_external_string; |
3359 // If the string is not indirect, it can only be sequential or external. | 3540 // If the string is not indirect, it can only be sequential or external. |
3360 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); | 3541 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); |
3361 STATIC_ASSERT(kIsIndirectStringMask != 0); | 3542 STATIC_ASSERT(kIsIndirectStringMask != 0); |
3362 __ tst(r1, Operand(kIsIndirectStringMask)); | 3543 __ andi(r0, r4, Operand(kIsIndirectStringMask)); |
3363 __ b(eq, &seq_or_external_string); | 3544 __ beq(&seq_or_external_string, cr0); |
3364 | 3545 |
3365 __ tst(r1, Operand(kSlicedNotConsMask)); | 3546 __ andi(r0, r4, Operand(kSlicedNotConsMask)); |
3366 __ b(ne, &sliced_string); | 3547 __ bne(&sliced_string, cr0); |
3367 // Cons string. Check whether it is flat, then fetch first part. | 3548 // Cons string. Check whether it is flat, then fetch first part. |
3368 __ ldr(r5, FieldMemOperand(r0, ConsString::kSecondOffset)); | 3549 __ LoadP(r8, FieldMemOperand(r3, ConsString::kSecondOffset)); |
3369 __ CompareRoot(r5, Heap::kempty_stringRootIndex); | 3550 __ CompareRoot(r8, Heap::kempty_stringRootIndex); |
3370 __ b(ne, &runtime); | 3551 __ bne(&runtime); |
3371 __ ldr(r5, FieldMemOperand(r0, ConsString::kFirstOffset)); | 3552 __ LoadP(r8, FieldMemOperand(r3, ConsString::kFirstOffset)); |
3372 // Update instance type. | 3553 // Update instance type. |
3373 __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset)); | 3554 __ LoadP(r4, FieldMemOperand(r8, HeapObject::kMapOffset)); |
3374 __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset)); | 3555 __ lbz(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
3375 __ jmp(&underlying_unpacked); | 3556 __ b(&underlying_unpacked); |
3376 | 3557 |
3377 __ bind(&sliced_string); | 3558 __ bind(&sliced_string); |
3378 // Sliced string. Fetch parent and correct start index by offset. | 3559 // Sliced string. Fetch parent and correct start index by offset. |
3379 __ ldr(r5, FieldMemOperand(r0, SlicedString::kParentOffset)); | 3560 __ LoadP(r8, FieldMemOperand(r3, SlicedString::kParentOffset)); |
3380 __ ldr(r4, FieldMemOperand(r0, SlicedString::kOffsetOffset)); | 3561 __ LoadP(r7, FieldMemOperand(r3, SlicedString::kOffsetOffset)); |
3381 __ add(r3, r3, Operand(r4, ASR, 1)); // Add offset to index. | 3562 __ SmiUntag(r4, r7); |
| 3563 __ add(r6, r6, r4); // Add offset to index. |
3382 // Update instance type. | 3564 // Update instance type. |
3383 __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset)); | 3565 __ LoadP(r4, FieldMemOperand(r8, HeapObject::kMapOffset)); |
3384 __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset)); | 3566 __ lbz(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
3385 __ jmp(&underlying_unpacked); | 3567 __ b(&underlying_unpacked); |
3386 | 3568 |
3387 __ bind(&seq_or_external_string); | 3569 __ bind(&seq_or_external_string); |
3388 // Sequential or external string. Just move string to the expected register. | 3570 // Sequential or external string. Just move string to the expected register. |
3389 __ mov(r5, r0); | 3571 __ mr(r8, r3); |
3390 | 3572 |
3391 __ bind(&underlying_unpacked); | 3573 __ bind(&underlying_unpacked); |
3392 | 3574 |
3393 if (FLAG_string_slices) { | 3575 if (FLAG_string_slices) { |
3394 Label copy_routine; | 3576 Label copy_routine; |
3395 // r5: underlying subject string | 3577 // r8: underlying subject string |
3396 // r1: instance type of underlying subject string | 3578 // r4: instance type of underlying subject string |
3397 // r2: length | 3579 // r5: length |
3398 // r3: adjusted start index (untagged) | 3580 // r6: adjusted start index (untagged) |
3399 __ cmp(r2, Operand(SlicedString::kMinLength)); | 3581 __ cmpi(r5, Operand(SlicedString::kMinLength)); |
3400 // Short slice. Copy instead of slicing. | 3582 // Short slice. Copy instead of slicing. |
3401 __ b(lt, ©_routine); | 3583 __ blt(©_routine); |
3402 // Allocate new sliced string. At this point we do not reload the instance | 3584 // Allocate new sliced string. At this point we do not reload the instance |
3403 // type including the string encoding because we simply rely on the info | 3585 // type including the string encoding because we simply rely on the info |
3404 // provided by the original string. It does not matter if the original | 3586 // provided by the original string. It does not matter if the original |
3405 // string's encoding is wrong because we always have to recheck encoding of | 3587 // string's encoding is wrong because we always have to recheck encoding of |
3406 // the newly created string's parent anyways due to externalized strings. | 3588 // the newly created string's parent anyways due to externalized strings. |
3407 Label two_byte_slice, set_slice_header; | 3589 Label two_byte_slice, set_slice_header; |
3408 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); | 3590 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); |
3409 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); | 3591 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); |
3410 __ tst(r1, Operand(kStringEncodingMask)); | 3592 __ andi(r0, r4, Operand(kStringEncodingMask)); |
3411 __ b(eq, &two_byte_slice); | 3593 __ beq(&two_byte_slice, cr0); |
3412 __ AllocateAsciiSlicedString(r0, r2, r6, r4, &runtime); | 3594 __ AllocateAsciiSlicedString(r3, r5, r9, r10, &runtime); |
3413 __ jmp(&set_slice_header); | 3595 __ b(&set_slice_header); |
3414 __ bind(&two_byte_slice); | 3596 __ bind(&two_byte_slice); |
3415 __ AllocateTwoByteSlicedString(r0, r2, r6, r4, &runtime); | 3597 __ AllocateTwoByteSlicedString(r3, r5, r9, r10, &runtime); |
3416 __ bind(&set_slice_header); | 3598 __ bind(&set_slice_header); |
3417 __ mov(r3, Operand(r3, LSL, 1)); | 3599 __ SmiTag(r6); |
3418 __ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset)); | 3600 __ StoreP(r8, FieldMemOperand(r3, SlicedString::kParentOffset), r0); |
3419 __ str(r3, FieldMemOperand(r0, SlicedString::kOffsetOffset)); | 3601 __ StoreP(r6, FieldMemOperand(r3, SlicedString::kOffsetOffset), r0); |
3420 __ jmp(&return_r0); | 3602 __ b(&return_r3); |
3421 | 3603 |
3422 __ bind(©_routine); | 3604 __ bind(©_routine); |
3423 } | 3605 } |
3424 | 3606 |
3425 // r5: underlying subject string | 3607 // r8: underlying subject string |
3426 // r1: instance type of underlying subject string | 3608 // r4: instance type of underlying subject string |
3427 // r2: length | 3609 // r5: length |
3428 // r3: adjusted start index (untagged) | 3610 // r6: adjusted start index (untagged) |
3429 Label two_byte_sequential, sequential_string, allocate_result; | 3611 Label two_byte_sequential, sequential_string, allocate_result; |
3430 STATIC_ASSERT(kExternalStringTag != 0); | 3612 STATIC_ASSERT(kExternalStringTag != 0); |
3431 STATIC_ASSERT(kSeqStringTag == 0); | 3613 STATIC_ASSERT(kSeqStringTag == 0); |
3432 __ tst(r1, Operand(kExternalStringTag)); | 3614 __ andi(r0, r4, Operand(kExternalStringTag)); |
3433 __ b(eq, &sequential_string); | 3615 __ beq(&sequential_string, cr0); |
3434 | 3616 |
3435 // Handle external string. | 3617 // Handle external string. |
3436 // Rule out short external strings. | 3618 // Rule out short external strings. |
3437 STATIC_ASSERT(kShortExternalStringTag != 0); | 3619 STATIC_ASSERT(kShortExternalStringTag != 0); |
3438 __ tst(r1, Operand(kShortExternalStringTag)); | 3620 __ andi(r0, r4, Operand(kShortExternalStringTag)); |
3439 __ b(ne, &runtime); | 3621 __ bne(&runtime, cr0); |
3440 __ ldr(r5, FieldMemOperand(r5, ExternalString::kResourceDataOffset)); | 3622 __ LoadP(r8, FieldMemOperand(r8, ExternalString::kResourceDataOffset)); |
3441 // r5 already points to the first character of underlying string. | 3623 // r8 already points to the first character of underlying string. |
3442 __ jmp(&allocate_result); | 3624 __ b(&allocate_result); |
3443 | 3625 |
3444 __ bind(&sequential_string); | 3626 __ bind(&sequential_string); |
3445 // Locate first character of underlying subject string. | 3627 // Locate first character of underlying subject string. |
3446 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); | 3628 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); |
3447 __ add(r5, r5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); | 3629 __ addi(r8, r8, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); |
3448 | 3630 |
3449 __ bind(&allocate_result); | 3631 __ bind(&allocate_result); |
3450 // Sequential acii string. Allocate the result. | 3632 // Sequential acii string. Allocate the result. |
3451 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); | 3633 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); |
3452 __ tst(r1, Operand(kStringEncodingMask)); | 3634 __ andi(r0, r4, Operand(kStringEncodingMask)); |
3453 __ b(eq, &two_byte_sequential); | 3635 __ beq(&two_byte_sequential, cr0); |
3454 | 3636 |
3455 // Allocate and copy the resulting ASCII string. | 3637 // Allocate and copy the resulting ASCII string. |
3456 __ AllocateAsciiString(r0, r2, r4, r6, r1, &runtime); | 3638 __ AllocateAsciiString(r3, r5, r7, r9, r10, &runtime); |
3457 | 3639 |
3458 // Locate first character of substring to copy. | 3640 // Locate first character of substring to copy. |
3459 __ add(r5, r5, r3); | 3641 __ add(r8, r8, r6); |
3460 // Locate first character of result. | 3642 // Locate first character of result. |
3461 __ add(r1, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); | 3643 __ addi(r4, r3, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); |
3462 | 3644 |
3463 // r0: result string | 3645 // r3: result string |
3464 // r1: first character of result string | 3646 // r4: first character of result string |
3465 // r2: result string length | 3647 // r5: result string length |
3466 // r5: first character of substring to copy | 3648 // r8: first character of substring to copy |
3467 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); | 3649 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
3468 StringHelper::GenerateCopyCharacters( | 3650 StringHelper::GenerateCopyCharacters( |
3469 masm, r1, r5, r2, r3, String::ONE_BYTE_ENCODING); | 3651 masm, r4, r8, r5, r6, String::ONE_BYTE_ENCODING); |
3470 __ jmp(&return_r0); | 3652 __ b(&return_r3); |
3471 | 3653 |
3472 // Allocate and copy the resulting two-byte string. | 3654 // Allocate and copy the resulting two-byte string. |
3473 __ bind(&two_byte_sequential); | 3655 __ bind(&two_byte_sequential); |
3474 __ AllocateTwoByteString(r0, r2, r4, r6, r1, &runtime); | 3656 __ AllocateTwoByteString(r3, r5, r7, r9, r10, &runtime); |
3475 | 3657 |
3476 // Locate first character of substring to copy. | 3658 // Locate first character of substring to copy. |
3477 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); | 3659 __ ShiftLeftImm(r4, r6, Operand(1)); |
3478 __ add(r5, r5, Operand(r3, LSL, 1)); | 3660 __ add(r8, r8, r4); |
3479 // Locate first character of result. | 3661 // Locate first character of result. |
3480 __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); | 3662 __ addi(r4, r3, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
3481 | 3663 |
3482 // r0: result string. | 3664 // r3: result string. |
3483 // r1: first character of result. | 3665 // r4: first character of result. |
3484 // r2: result length. | 3666 // r5: result length. |
3485 // r5: first character of substring to copy. | 3667 // r8: first character of substring to copy. |
3486 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); | 3668 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
3487 StringHelper::GenerateCopyCharacters( | 3669 StringHelper::GenerateCopyCharacters( |
3488 masm, r1, r5, r2, r3, String::TWO_BYTE_ENCODING); | 3670 masm, r4, r8, r5, r6, String::TWO_BYTE_ENCODING); |
3489 | 3671 |
3490 __ bind(&return_r0); | 3672 __ bind(&return_r3); |
3491 Counters* counters = isolate()->counters(); | 3673 Counters* counters = isolate()->counters(); |
3492 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4); | 3674 __ IncrementCounter(counters->sub_string_native(), 1, r6, r7); |
3493 __ Drop(3); | 3675 __ Drop(3); |
3494 __ Ret(); | 3676 __ Ret(); |
3495 | 3677 |
3496 // Just jump to runtime to create the sub string. | 3678 // Just jump to runtime to create the sub string. |
3497 __ bind(&runtime); | 3679 __ bind(&runtime); |
3498 __ TailCallRuntime(Runtime::kSubString, 3, 1); | 3680 __ TailCallRuntime(Runtime::kSubString, 3, 1); |
3499 | 3681 |
3500 __ bind(&single_char); | 3682 __ bind(&single_char); |
3501 // r0: original string | 3683 // r3: original string |
3502 // r1: instance type | 3684 // r4: instance type |
3503 // r2: length | 3685 // r5: length |
3504 // r3: from index (untagged) | 3686 // r6: from index (untagged) |
3505 __ SmiTag(r3, r3); | 3687 __ SmiTag(r6, r6); |
3506 StringCharAtGenerator generator( | 3688 StringCharAtGenerator generator( |
3507 r0, r3, r2, r0, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER); | 3689 r3, r6, r5, r3, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER); |
3508 generator.GenerateFast(masm); | 3690 generator.GenerateFast(masm); |
3509 __ Drop(3); | 3691 __ Drop(3); |
3510 __ Ret(); | 3692 __ Ret(); |
3511 generator.SkipSlow(masm, &runtime); | 3693 generator.SkipSlow(masm, &runtime); |
3512 } | 3694 } |
3513 | 3695 |
3514 | 3696 |
3515 void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm, | 3697 void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm, |
3516 Register left, | 3698 Register left, |
3517 Register right, | 3699 Register right, |
3518 Register scratch1, | 3700 Register scratch1, |
3519 Register scratch2, | 3701 Register scratch2) { |
3520 Register scratch3) { | |
3521 Register length = scratch1; | 3702 Register length = scratch1; |
3522 | 3703 |
3523 // Compare lengths. | 3704 // Compare lengths. |
3524 Label strings_not_equal, check_zero_length; | 3705 Label strings_not_equal, check_zero_length; |
3525 __ ldr(length, FieldMemOperand(left, String::kLengthOffset)); | 3706 __ LoadP(length, FieldMemOperand(left, String::kLengthOffset)); |
3526 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); | 3707 __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset)); |
3527 __ cmp(length, scratch2); | 3708 __ cmp(length, scratch2); |
3528 __ b(eq, &check_zero_length); | 3709 __ beq(&check_zero_length); |
3529 __ bind(&strings_not_equal); | 3710 __ bind(&strings_not_equal); |
3530 __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL))); | 3711 __ LoadSmiLiteral(r3, Smi::FromInt(NOT_EQUAL)); |
3531 __ Ret(); | 3712 __ Ret(); |
3532 | 3713 |
3533 // Check if the length is zero. | 3714 // Check if the length is zero. |
3534 Label compare_chars; | 3715 Label compare_chars; |
3535 __ bind(&check_zero_length); | 3716 __ bind(&check_zero_length); |
3536 STATIC_ASSERT(kSmiTag == 0); | 3717 STATIC_ASSERT(kSmiTag == 0); |
3537 __ cmp(length, Operand::Zero()); | 3718 __ cmpi(length, Operand::Zero()); |
3538 __ b(ne, &compare_chars); | 3719 __ bne(&compare_chars); |
3539 __ mov(r0, Operand(Smi::FromInt(EQUAL))); | 3720 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); |
3540 __ Ret(); | 3721 __ Ret(); |
3541 | 3722 |
3542 // Compare characters. | 3723 // Compare characters. |
3543 __ bind(&compare_chars); | 3724 __ bind(&compare_chars); |
3544 GenerateAsciiCharsCompareLoop(masm, | 3725 GenerateAsciiCharsCompareLoop(masm, |
3545 left, right, length, scratch2, scratch3, | 3726 left, right, length, scratch2, |
3546 &strings_not_equal); | 3727 &strings_not_equal); |
3547 | 3728 |
3548 // Characters are equal. | 3729 // Characters are equal. |
3549 __ mov(r0, Operand(Smi::FromInt(EQUAL))); | 3730 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); |
3550 __ Ret(); | 3731 __ Ret(); |
3551 } | 3732 } |
3552 | 3733 |
3553 | 3734 |
3554 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, | 3735 void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, |
3555 Register left, | 3736 Register left, |
3556 Register right, | 3737 Register right, |
3557 Register scratch1, | 3738 Register scratch1, |
3558 Register scratch2, | 3739 Register scratch2, |
3559 Register scratch3, | 3740 Register scratch3) { |
3560 Register scratch4) { | 3741 Label skip, result_not_equal, compare_lengths; |
3561 Label result_not_equal, compare_lengths; | |
3562 // Find minimum length and length difference. | 3742 // Find minimum length and length difference. |
3563 __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); | 3743 __ LoadP(scratch1, FieldMemOperand(left, String::kLengthOffset)); |
3564 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); | 3744 __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset)); |
3565 __ sub(scratch3, scratch1, Operand(scratch2), SetCC); | 3745 __ sub(scratch3, scratch1, scratch2, LeaveOE, SetRC); |
3566 Register length_delta = scratch3; | 3746 Register length_delta = scratch3; |
3567 __ mov(scratch1, scratch2, LeaveCC, gt); | 3747 __ ble(&skip, cr0); |
| 3748 __ mr(scratch1, scratch2); |
| 3749 __ bind(&skip); |
3568 Register min_length = scratch1; | 3750 Register min_length = scratch1; |
3569 STATIC_ASSERT(kSmiTag == 0); | 3751 STATIC_ASSERT(kSmiTag == 0); |
3570 __ cmp(min_length, Operand::Zero()); | 3752 __ cmpi(min_length, Operand::Zero()); |
3571 __ b(eq, &compare_lengths); | 3753 __ beq(&compare_lengths); |
3572 | 3754 |
3573 // Compare loop. | 3755 // Compare loop. |
3574 GenerateAsciiCharsCompareLoop(masm, | 3756 GenerateAsciiCharsCompareLoop(masm, |
3575 left, right, min_length, scratch2, scratch4, | 3757 left, right, min_length, scratch2, |
3576 &result_not_equal); | 3758 &result_not_equal); |
3577 | 3759 |
3578 // Compare lengths - strings up to min-length are equal. | 3760 // Compare lengths - strings up to min-length are equal. |
3579 __ bind(&compare_lengths); | 3761 __ bind(&compare_lengths); |
3580 ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); | 3762 ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); |
3581 // Use length_delta as result if it's zero. | 3763 // Use length_delta as result if it's zero. |
3582 __ mov(r0, Operand(length_delta), SetCC); | 3764 __ mr(r3, length_delta); |
| 3765 __ cmpi(r3, Operand::Zero()); |
3583 __ bind(&result_not_equal); | 3766 __ bind(&result_not_equal); |
3584 // Conditionally update the result based either on length_delta or | 3767 // Conditionally update the result based either on length_delta or |
3585 // the last comparion performed in the loop above. | 3768 // the last comparion performed in the loop above. |
3586 __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt); | 3769 Label less_equal, equal; |
3587 __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt); | 3770 __ ble(&less_equal); |
| 3771 __ LoadSmiLiteral(r3, Smi::FromInt(GREATER)); |
| 3772 __ Ret(); |
| 3773 __ bind(&less_equal); |
| 3774 __ beq(&equal); |
| 3775 __ LoadSmiLiteral(r3, Smi::FromInt(LESS)); |
| 3776 __ bind(&equal); |
3588 __ Ret(); | 3777 __ Ret(); |
3589 } | 3778 } |
3590 | 3779 |
3591 | 3780 |
3592 void StringCompareStub::GenerateAsciiCharsCompareLoop( | 3781 void StringCompareStub::GenerateAsciiCharsCompareLoop( |
3593 MacroAssembler* masm, | 3782 MacroAssembler* masm, |
3594 Register left, | 3783 Register left, |
3595 Register right, | 3784 Register right, |
3596 Register length, | 3785 Register length, |
3597 Register scratch1, | 3786 Register scratch1, |
3598 Register scratch2, | |
3599 Label* chars_not_equal) { | 3787 Label* chars_not_equal) { |
3600 // Change index to run from -length to -1 by adding length to string | 3788 // Change index to run from -length to -1 by adding length to string |
3601 // start. This means that loop ends when index reaches zero, which | 3789 // start. This means that loop ends when index reaches zero, which |
3602 // doesn't need an additional compare. | 3790 // doesn't need an additional compare. |
3603 __ SmiUntag(length); | 3791 __ SmiUntag(length); |
3604 __ add(scratch1, length, | 3792 __ addi(scratch1, length, |
3605 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); | 3793 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); |
3606 __ add(left, left, Operand(scratch1)); | 3794 __ add(left, left, scratch1); |
3607 __ add(right, right, Operand(scratch1)); | 3795 __ add(right, right, scratch1); |
3608 __ rsb(length, length, Operand::Zero()); | 3796 __ subfic(length, length, Operand::Zero()); |
3609 Register index = length; // index = -length; | 3797 Register index = length; // index = -length; |
3610 | 3798 |
3611 // Compare loop. | 3799 // Compare loop. |
3612 Label loop; | 3800 Label loop; |
3613 __ bind(&loop); | 3801 __ bind(&loop); |
3614 __ ldrb(scratch1, MemOperand(left, index)); | 3802 __ lbzx(scratch1, MemOperand(left, index)); |
3615 __ ldrb(scratch2, MemOperand(right, index)); | 3803 __ lbzx(r0, MemOperand(right, index)); |
3616 __ cmp(scratch1, scratch2); | 3804 __ cmp(scratch1, r0); |
3617 __ b(ne, chars_not_equal); | 3805 __ bne(chars_not_equal); |
3618 __ add(index, index, Operand(1), SetCC); | 3806 __ addi(index, index, Operand(1)); |
3619 __ b(ne, &loop); | 3807 __ cmpi(index, Operand::Zero()); |
| 3808 __ bne(&loop); |
3620 } | 3809 } |
3621 | 3810 |
3622 | 3811 |
3623 void StringCompareStub::Generate(MacroAssembler* masm) { | 3812 void StringCompareStub::Generate(MacroAssembler* masm) { |
3624 Label runtime; | 3813 Label runtime; |
3625 | 3814 |
3626 Counters* counters = isolate()->counters(); | 3815 Counters* counters = isolate()->counters(); |
3627 | 3816 |
3628 // Stack frame on entry. | 3817 // Stack frame on entry. |
3629 // sp[0]: right string | 3818 // sp[0]: right string |
3630 // sp[4]: left string | 3819 // sp[4]: left string |
3631 __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1. | 3820 __ LoadP(r3, MemOperand(sp)); // Load right in r3, left in r4. |
| 3821 __ LoadP(r4, MemOperand(sp, kPointerSize)); |
3632 | 3822 |
3633 Label not_same; | 3823 Label not_same; |
3634 __ cmp(r0, r1); | 3824 __ cmp(r3, r4); |
3635 __ b(ne, ¬_same); | 3825 __ bne(¬_same); |
3636 STATIC_ASSERT(EQUAL == 0); | 3826 STATIC_ASSERT(EQUAL == 0); |
3637 STATIC_ASSERT(kSmiTag == 0); | 3827 STATIC_ASSERT(kSmiTag == 0); |
3638 __ mov(r0, Operand(Smi::FromInt(EQUAL))); | 3828 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); |
3639 __ IncrementCounter(counters->string_compare_native(), 1, r1, r2); | 3829 __ IncrementCounter(counters->string_compare_native(), 1, r4, r5); |
3640 __ add(sp, sp, Operand(2 * kPointerSize)); | 3830 __ addi(sp, sp, Operand(2 * kPointerSize)); |
3641 __ Ret(); | 3831 __ Ret(); |
3642 | 3832 |
3643 __ bind(¬_same); | 3833 __ bind(¬_same); |
3644 | 3834 |
3645 // Check that both objects are sequential ASCII strings. | 3835 // Check that both objects are sequential ASCII strings. |
3646 __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime); | 3836 __ JumpIfNotBothSequentialAsciiStrings(r4, r3, r5, r6, &runtime); |
3647 | 3837 |
3648 // Compare flat ASCII strings natively. Remove arguments from stack first. | 3838 // Compare flat ASCII strings natively. Remove arguments from stack first. |
3649 __ IncrementCounter(counters->string_compare_native(), 1, r2, r3); | 3839 __ IncrementCounter(counters->string_compare_native(), 1, r5, r6); |
3650 __ add(sp, sp, Operand(2 * kPointerSize)); | 3840 __ addi(sp, sp, Operand(2 * kPointerSize)); |
3651 GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5); | 3841 GenerateCompareFlatAsciiStrings(masm, r4, r3, r5, r6, r7); |
3652 | 3842 |
3653 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) | 3843 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) |
3654 // tagged as a small integer. | 3844 // tagged as a small integer. |
3655 __ bind(&runtime); | 3845 __ bind(&runtime); |
3656 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); | 3846 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
3657 } | 3847 } |
3658 | 3848 |
3659 | 3849 |
3660 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { | 3850 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { |
3661 // ----------- S t a t e ------------- | 3851 // ----------- S t a t e ------------- |
3662 // -- r1 : left | 3852 // -- r4 : left |
3663 // -- r0 : right | 3853 // -- r3 : right |
3664 // -- lr : return address | 3854 // -- lr : return address |
3665 // ----------------------------------- | 3855 // ----------------------------------- |
3666 | 3856 |
3667 // Load r2 with the allocation site. We stick an undefined dummy value here | 3857 // Load r5 with the allocation site. We stick an undefined dummy value here |
3668 // and replace it with the real allocation site later when we instantiate this | 3858 // and replace it with the real allocation site later when we instantiate this |
3669 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). | 3859 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). |
3670 __ Move(r2, handle(isolate()->heap()->undefined_value())); | 3860 __ Move(r5, handle(isolate()->heap()->undefined_value())); |
3671 | 3861 |
3672 // Make sure that we actually patched the allocation site. | 3862 // Make sure that we actually patched the allocation site. |
3673 if (FLAG_debug_code) { | 3863 if (FLAG_debug_code) { |
3674 __ tst(r2, Operand(kSmiTagMask)); | 3864 __ TestIfSmi(r5, r0); |
3675 __ Assert(ne, kExpectedAllocationSite); | 3865 __ Assert(ne, kExpectedAllocationSite, cr0); |
3676 __ push(r2); | 3866 __ push(r5); |
3677 __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset)); | 3867 __ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset)); |
3678 __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex); | 3868 __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex); |
3679 __ cmp(r2, ip); | 3869 __ cmp(r5, ip); |
3680 __ pop(r2); | 3870 __ pop(r5); |
3681 __ Assert(eq, kExpectedAllocationSite); | 3871 __ Assert(eq, kExpectedAllocationSite); |
3682 } | 3872 } |
3683 | 3873 |
3684 // Tail call into the stub that handles binary operations with allocation | 3874 // Tail call into the stub that handles binary operations with allocation |
3685 // sites. | 3875 // sites. |
3686 BinaryOpWithAllocationSiteStub stub(isolate(), state_); | 3876 BinaryOpWithAllocationSiteStub stub(isolate(), state_); |
3687 __ TailCallStub(&stub); | 3877 __ TailCallStub(&stub); |
3688 } | 3878 } |
3689 | 3879 |
3690 | 3880 |
3691 void ICCompareStub::GenerateSmis(MacroAssembler* masm) { | 3881 void ICCompareStub::GenerateSmis(MacroAssembler* masm) { |
3692 ASSERT(state_ == CompareIC::SMI); | 3882 ASSERT(state_ == CompareIC::SMI); |
3693 Label miss; | 3883 Label miss; |
3694 __ orr(r2, r1, r0); | 3884 __ orx(r5, r4, r3); |
3695 __ JumpIfNotSmi(r2, &miss); | 3885 __ JumpIfNotSmi(r5, &miss); |
3696 | 3886 |
3697 if (GetCondition() == eq) { | 3887 if (GetCondition() == eq) { |
3698 // For equality we do not care about the sign of the result. | 3888 // For equality we do not care about the sign of the result. |
3699 __ sub(r0, r0, r1, SetCC); | 3889 // __ sub(r3, r3, r4, SetCC); |
| 3890 __ sub(r3, r3, r4); |
3700 } else { | 3891 } else { |
3701 // Untag before subtracting to avoid handling overflow. | 3892 // Untag before subtracting to avoid handling overflow. |
3702 __ SmiUntag(r1); | 3893 __ SmiUntag(r4); |
3703 __ sub(r0, r1, Operand::SmiUntag(r0)); | 3894 __ SmiUntag(r3); |
| 3895 __ sub(r3, r4, r3); |
3704 } | 3896 } |
3705 __ Ret(); | 3897 __ Ret(); |
3706 | 3898 |
3707 __ bind(&miss); | 3899 __ bind(&miss); |
3708 GenerateMiss(masm); | 3900 GenerateMiss(masm); |
3709 } | 3901 } |
3710 | 3902 |
3711 | 3903 |
3712 void ICCompareStub::GenerateNumbers(MacroAssembler* masm) { | 3904 void ICCompareStub::GenerateNumbers(MacroAssembler* masm) { |
3713 ASSERT(state_ == CompareIC::NUMBER); | 3905 ASSERT(state_ == CompareIC::NUMBER); |
3714 | 3906 |
3715 Label generic_stub; | 3907 Label generic_stub; |
3716 Label unordered, maybe_undefined1, maybe_undefined2; | 3908 Label unordered, maybe_undefined1, maybe_undefined2; |
3717 Label miss; | 3909 Label miss; |
| 3910 Label equal, less_than; |
3718 | 3911 |
3719 if (left_ == CompareIC::SMI) { | 3912 if (left_ == CompareIC::SMI) { |
3720 __ JumpIfNotSmi(r1, &miss); | 3913 __ JumpIfNotSmi(r4, &miss); |
3721 } | 3914 } |
3722 if (right_ == CompareIC::SMI) { | 3915 if (right_ == CompareIC::SMI) { |
3723 __ JumpIfNotSmi(r0, &miss); | 3916 __ JumpIfNotSmi(r3, &miss); |
3724 } | 3917 } |
3725 | 3918 |
3726 // Inlining the double comparison and falling back to the general compare | 3919 // Inlining the double comparison and falling back to the general compare |
3727 // stub if NaN is involved. | 3920 // stub if NaN is involved. |
3728 // Load left and right operand. | 3921 // Load left and right operand. |
3729 Label done, left, left_smi, right_smi; | 3922 Label done, left, left_smi, right_smi; |
3730 __ JumpIfSmi(r0, &right_smi); | 3923 __ JumpIfSmi(r3, &right_smi); |
3731 __ CheckMap(r0, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1, | 3924 __ CheckMap(r3, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined1, |
3732 DONT_DO_SMI_CHECK); | 3925 DONT_DO_SMI_CHECK); |
3733 __ sub(r2, r0, Operand(kHeapObjectTag)); | 3926 __ lfd(d1, FieldMemOperand(r3, HeapNumber::kValueOffset)); |
3734 __ vldr(d1, r2, HeapNumber::kValueOffset); | |
3735 __ b(&left); | 3927 __ b(&left); |
3736 __ bind(&right_smi); | 3928 __ bind(&right_smi); |
3737 __ SmiToDouble(d1, r0); | 3929 __ SmiToDouble(d1, r3); |
3738 | 3930 |
3739 __ bind(&left); | 3931 __ bind(&left); |
3740 __ JumpIfSmi(r1, &left_smi); | 3932 __ JumpIfSmi(r4, &left_smi); |
3741 __ CheckMap(r1, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2, | 3933 __ CheckMap(r4, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined2, |
3742 DONT_DO_SMI_CHECK); | 3934 DONT_DO_SMI_CHECK); |
3743 __ sub(r2, r1, Operand(kHeapObjectTag)); | 3935 __ lfd(d0, FieldMemOperand(r4, HeapNumber::kValueOffset)); |
3744 __ vldr(d0, r2, HeapNumber::kValueOffset); | |
3745 __ b(&done); | 3936 __ b(&done); |
3746 __ bind(&left_smi); | 3937 __ bind(&left_smi); |
3747 __ SmiToDouble(d0, r1); | 3938 __ SmiToDouble(d0, r4); |
3748 | 3939 |
3749 __ bind(&done); | 3940 __ bind(&done); |
3750 // Compare operands. | 3941 |
3751 __ VFPCompareAndSetFlags(d0, d1); | 3942 // Compare operands |
| 3943 __ fcmpu(d0, d1); |
3752 | 3944 |
3753 // Don't base result on status bits when a NaN is involved. | 3945 // Don't base result on status bits when a NaN is involved. |
3754 __ b(vs, &unordered); | 3946 __ bunordered(&unordered); |
3755 | 3947 |
3756 // Return a result of -1, 0, or 1, based on status bits. | 3948 // Return a result of -1, 0, or 1, based on status bits. |
3757 __ mov(r0, Operand(EQUAL), LeaveCC, eq); | 3949 __ beq(&equal); |
3758 __ mov(r0, Operand(LESS), LeaveCC, lt); | 3950 __ blt(&less_than); |
3759 __ mov(r0, Operand(GREATER), LeaveCC, gt); | 3951 // assume greater than |
| 3952 __ li(r3, Operand(GREATER)); |
| 3953 __ Ret(); |
| 3954 __ bind(&equal); |
| 3955 __ li(r3, Operand(EQUAL)); |
| 3956 __ Ret(); |
| 3957 __ bind(&less_than); |
| 3958 __ li(r3, Operand(LESS)); |
3760 __ Ret(); | 3959 __ Ret(); |
3761 | 3960 |
3762 __ bind(&unordered); | 3961 __ bind(&unordered); |
3763 __ bind(&generic_stub); | 3962 __ bind(&generic_stub); |
3764 ICCompareStub stub(isolate(), op_, CompareIC::GENERIC, CompareIC::GENERIC, | 3963 ICCompareStub stub(isolate(), op_, CompareIC::GENERIC, CompareIC::GENERIC, |
3765 CompareIC::GENERIC); | 3964 CompareIC::GENERIC); |
3766 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); | 3965 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
3767 | 3966 |
3768 __ bind(&maybe_undefined1); | 3967 __ bind(&maybe_undefined1); |
3769 if (Token::IsOrderedRelationalCompareOp(op_)) { | 3968 if (Token::IsOrderedRelationalCompareOp(op_)) { |
3770 __ CompareRoot(r0, Heap::kUndefinedValueRootIndex); | 3969 __ CompareRoot(r3, Heap::kUndefinedValueRootIndex); |
3771 __ b(ne, &miss); | 3970 __ bne(&miss); |
3772 __ JumpIfSmi(r1, &unordered); | 3971 __ JumpIfSmi(r4, &unordered); |
3773 __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE); | 3972 __ CompareObjectType(r4, r5, r5, HEAP_NUMBER_TYPE); |
3774 __ b(ne, &maybe_undefined2); | 3973 __ bne(&maybe_undefined2); |
3775 __ jmp(&unordered); | 3974 __ b(&unordered); |
3776 } | 3975 } |
3777 | 3976 |
3778 __ bind(&maybe_undefined2); | 3977 __ bind(&maybe_undefined2); |
3779 if (Token::IsOrderedRelationalCompareOp(op_)) { | 3978 if (Token::IsOrderedRelationalCompareOp(op_)) { |
3780 __ CompareRoot(r1, Heap::kUndefinedValueRootIndex); | 3979 __ CompareRoot(r4, Heap::kUndefinedValueRootIndex); |
3781 __ b(eq, &unordered); | 3980 __ beq(&unordered); |
3782 } | 3981 } |
3783 | 3982 |
3784 __ bind(&miss); | 3983 __ bind(&miss); |
3785 GenerateMiss(masm); | 3984 GenerateMiss(masm); |
3786 } | 3985 } |
3787 | 3986 |
3788 | 3987 |
3789 void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) { | 3988 void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) { |
3790 ASSERT(state_ == CompareIC::INTERNALIZED_STRING); | 3989 ASSERT(state_ == CompareIC::INTERNALIZED_STRING); |
3791 Label miss; | 3990 Label miss, not_equal; |
3792 | 3991 |
3793 // Registers containing left and right operands respectively. | 3992 // Registers containing left and right operands respectively. |
3794 Register left = r1; | 3993 Register left = r4; |
3795 Register right = r0; | 3994 Register right = r3; |
3796 Register tmp1 = r2; | 3995 Register tmp1 = r5; |
3797 Register tmp2 = r3; | 3996 Register tmp2 = r6; |
3798 | 3997 |
3799 // Check that both operands are heap objects. | 3998 // Check that both operands are heap objects. |
3800 __ JumpIfEitherSmi(left, right, &miss); | 3999 __ JumpIfEitherSmi(left, right, &miss); |
3801 | 4000 |
3802 // Check that both operands are internalized strings. | 4001 // Check that both operands are symbols. |
3803 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); | 4002 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); |
3804 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); | 4003 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); |
3805 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); | 4004 __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); |
3806 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); | 4005 __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); |
3807 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); | 4006 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); |
3808 __ orr(tmp1, tmp1, Operand(tmp2)); | 4007 __ orx(tmp1, tmp1, tmp2); |
3809 __ tst(tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask)); | 4008 __ andi(r0, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask)); |
3810 __ b(ne, &miss); | 4009 __ bne(&miss, cr0); |
3811 | 4010 |
3812 // Internalized strings are compared by identity. | 4011 // Internalized strings are compared by identity. |
3813 __ cmp(left, right); | 4012 __ cmp(left, right); |
3814 // Make sure r0 is non-zero. At this point input operands are | 4013 __ bne(¬_equal); |
| 4014 // Make sure r3 is non-zero. At this point input operands are |
3815 // guaranteed to be non-zero. | 4015 // guaranteed to be non-zero. |
3816 ASSERT(right.is(r0)); | 4016 ASSERT(right.is(r3)); |
3817 STATIC_ASSERT(EQUAL == 0); | 4017 STATIC_ASSERT(EQUAL == 0); |
3818 STATIC_ASSERT(kSmiTag == 0); | 4018 STATIC_ASSERT(kSmiTag == 0); |
3819 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq); | 4019 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); |
| 4020 __ bind(¬_equal); |
3820 __ Ret(); | 4021 __ Ret(); |
3821 | 4022 |
3822 __ bind(&miss); | 4023 __ bind(&miss); |
3823 GenerateMiss(masm); | 4024 GenerateMiss(masm); |
3824 } | 4025 } |
3825 | 4026 |
3826 | 4027 |
3827 void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) { | 4028 void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) { |
3828 ASSERT(state_ == CompareIC::UNIQUE_NAME); | 4029 ASSERT(state_ == CompareIC::UNIQUE_NAME); |
3829 ASSERT(GetCondition() == eq); | 4030 ASSERT(GetCondition() == eq); |
3830 Label miss; | 4031 Label miss; |
3831 | 4032 |
3832 // Registers containing left and right operands respectively. | 4033 // Registers containing left and right operands respectively. |
3833 Register left = r1; | 4034 Register left = r4; |
3834 Register right = r0; | 4035 Register right = r3; |
3835 Register tmp1 = r2; | 4036 Register tmp1 = r5; |
3836 Register tmp2 = r3; | 4037 Register tmp2 = r6; |
3837 | 4038 |
3838 // Check that both operands are heap objects. | 4039 // Check that both operands are heap objects. |
3839 __ JumpIfEitherSmi(left, right, &miss); | 4040 __ JumpIfEitherSmi(left, right, &miss); |
3840 | 4041 |
3841 // Check that both operands are unique names. This leaves the instance | 4042 // Check that both operands are unique names. This leaves the instance |
3842 // types loaded in tmp1 and tmp2. | 4043 // types loaded in tmp1 and tmp2. |
3843 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); | 4044 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); |
3844 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); | 4045 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); |
3845 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); | 4046 __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); |
3846 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); | 4047 __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); |
3847 | 4048 |
3848 __ JumpIfNotUniqueName(tmp1, &miss); | 4049 __ JumpIfNotUniqueName(tmp1, &miss); |
3849 __ JumpIfNotUniqueName(tmp2, &miss); | 4050 __ JumpIfNotUniqueName(tmp2, &miss); |
3850 | 4051 |
3851 // Unique names are compared by identity. | 4052 // Unique names are compared by identity. |
3852 __ cmp(left, right); | 4053 __ cmp(left, right); |
3853 // Make sure r0 is non-zero. At this point input operands are | 4054 __ bne(&miss); |
| 4055 // Make sure r3 is non-zero. At this point input operands are |
3854 // guaranteed to be non-zero. | 4056 // guaranteed to be non-zero. |
3855 ASSERT(right.is(r0)); | 4057 ASSERT(right.is(r3)); |
3856 STATIC_ASSERT(EQUAL == 0); | 4058 STATIC_ASSERT(EQUAL == 0); |
3857 STATIC_ASSERT(kSmiTag == 0); | 4059 STATIC_ASSERT(kSmiTag == 0); |
3858 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq); | 4060 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); |
3859 __ Ret(); | 4061 __ Ret(); |
3860 | 4062 |
3861 __ bind(&miss); | 4063 __ bind(&miss); |
3862 GenerateMiss(masm); | 4064 GenerateMiss(masm); |
3863 } | 4065 } |
3864 | 4066 |
3865 | 4067 |
3866 void ICCompareStub::GenerateStrings(MacroAssembler* masm) { | 4068 void ICCompareStub::GenerateStrings(MacroAssembler* masm) { |
3867 ASSERT(state_ == CompareIC::STRING); | 4069 ASSERT(state_ == CompareIC::STRING); |
3868 Label miss; | 4070 Label miss, not_identical, is_symbol; |
3869 | 4071 |
3870 bool equality = Token::IsEqualityOp(op_); | 4072 bool equality = Token::IsEqualityOp(op_); |
3871 | 4073 |
3872 // Registers containing left and right operands respectively. | 4074 // Registers containing left and right operands respectively. |
3873 Register left = r1; | 4075 Register left = r4; |
3874 Register right = r0; | 4076 Register right = r3; |
3875 Register tmp1 = r2; | 4077 Register tmp1 = r5; |
3876 Register tmp2 = r3; | 4078 Register tmp2 = r6; |
3877 Register tmp3 = r4; | 4079 Register tmp3 = r7; |
3878 Register tmp4 = r5; | 4080 Register tmp4 = r8; |
3879 | 4081 |
3880 // Check that both operands are heap objects. | 4082 // Check that both operands are heap objects. |
3881 __ JumpIfEitherSmi(left, right, &miss); | 4083 __ JumpIfEitherSmi(left, right, &miss); |
3882 | 4084 |
3883 // Check that both operands are strings. This leaves the instance | 4085 // Check that both operands are strings. This leaves the instance |
3884 // types loaded in tmp1 and tmp2. | 4086 // types loaded in tmp1 and tmp2. |
3885 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); | 4087 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); |
3886 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); | 4088 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); |
3887 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); | 4089 __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); |
3888 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); | 4090 __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); |
3889 STATIC_ASSERT(kNotStringTag != 0); | 4091 STATIC_ASSERT(kNotStringTag != 0); |
3890 __ orr(tmp3, tmp1, tmp2); | 4092 __ orx(tmp3, tmp1, tmp2); |
3891 __ tst(tmp3, Operand(kIsNotStringMask)); | 4093 __ andi(r0, tmp3, Operand(kIsNotStringMask)); |
3892 __ b(ne, &miss); | 4094 __ bne(&miss, cr0); |
3893 | 4095 |
3894 // Fast check for identical strings. | 4096 // Fast check for identical strings. |
3895 __ cmp(left, right); | 4097 __ cmp(left, right); |
3896 STATIC_ASSERT(EQUAL == 0); | 4098 STATIC_ASSERT(EQUAL == 0); |
3897 STATIC_ASSERT(kSmiTag == 0); | 4099 STATIC_ASSERT(kSmiTag == 0); |
3898 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq); | 4100 __ bne(¬_identical); |
3899 __ Ret(eq); | 4101 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); |
| 4102 __ Ret(); |
| 4103 __ bind(¬_identical); |
3900 | 4104 |
3901 // Handle not identical strings. | 4105 // Handle not identical strings. |
3902 | 4106 |
3903 // Check that both strings are internalized strings. If they are, we're done | 4107 // Check that both strings are internalized strings. If they are, we're done |
3904 // because we already know they are not identical. We know they are both | 4108 // because we already know they are not identical. We know they are both |
3905 // strings. | 4109 // strings. |
3906 if (equality) { | 4110 if (equality) { |
3907 ASSERT(GetCondition() == eq); | 4111 ASSERT(GetCondition() == eq); |
3908 STATIC_ASSERT(kInternalizedTag == 0); | 4112 STATIC_ASSERT(kInternalizedTag == 0); |
3909 __ orr(tmp3, tmp1, Operand(tmp2)); | 4113 __ orx(tmp3, tmp1, tmp2); |
3910 __ tst(tmp3, Operand(kIsNotInternalizedMask)); | 4114 __ andi(r0, tmp3, Operand(kIsNotInternalizedMask)); |
3911 // Make sure r0 is non-zero. At this point input operands are | 4115 __ bne(&is_symbol, cr0); |
| 4116 // Make sure r3 is non-zero. At this point input operands are |
3912 // guaranteed to be non-zero. | 4117 // guaranteed to be non-zero. |
3913 ASSERT(right.is(r0)); | 4118 ASSERT(right.is(r3)); |
3914 __ Ret(eq); | 4119 __ Ret(); |
| 4120 __ bind(&is_symbol); |
3915 } | 4121 } |
3916 | 4122 |
3917 // Check that both strings are sequential ASCII. | 4123 // Check that both strings are sequential ASCII. |
3918 Label runtime; | 4124 Label runtime; |
3919 __ JumpIfBothInstanceTypesAreNotSequentialAscii( | 4125 __ JumpIfBothInstanceTypesAreNotSequentialAscii( |
3920 tmp1, tmp2, tmp3, tmp4, &runtime); | 4126 tmp1, tmp2, tmp3, tmp4, &runtime); |
3921 | 4127 |
3922 // Compare flat ASCII strings. Returns when done. | 4128 // Compare flat ASCII strings. Returns when done. |
3923 if (equality) { | 4129 if (equality) { |
3924 StringCompareStub::GenerateFlatAsciiStringEquals( | 4130 StringCompareStub::GenerateFlatAsciiStringEquals( |
3925 masm, left, right, tmp1, tmp2, tmp3); | 4131 masm, left, right, tmp1, tmp2); |
3926 } else { | 4132 } else { |
3927 StringCompareStub::GenerateCompareFlatAsciiStrings( | 4133 StringCompareStub::GenerateCompareFlatAsciiStrings( |
3928 masm, left, right, tmp1, tmp2, tmp3, tmp4); | 4134 masm, left, right, tmp1, tmp2, tmp3); |
3929 } | 4135 } |
3930 | 4136 |
3931 // Handle more complex cases in runtime. | 4137 // Handle more complex cases in runtime. |
3932 __ bind(&runtime); | 4138 __ bind(&runtime); |
3933 __ Push(left, right); | 4139 __ Push(left, right); |
3934 if (equality) { | 4140 if (equality) { |
3935 __ TailCallRuntime(Runtime::kStringEquals, 2, 1); | 4141 __ TailCallRuntime(Runtime::kStringEquals, 2, 1); |
3936 } else { | 4142 } else { |
3937 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); | 4143 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
3938 } | 4144 } |
3939 | 4145 |
3940 __ bind(&miss); | 4146 __ bind(&miss); |
3941 GenerateMiss(masm); | 4147 GenerateMiss(masm); |
3942 } | 4148 } |
3943 | 4149 |
3944 | 4150 |
3945 void ICCompareStub::GenerateObjects(MacroAssembler* masm) { | 4151 void ICCompareStub::GenerateObjects(MacroAssembler* masm) { |
3946 ASSERT(state_ == CompareIC::OBJECT); | 4152 ASSERT(state_ == CompareIC::OBJECT); |
3947 Label miss; | 4153 Label miss; |
3948 __ and_(r2, r1, Operand(r0)); | 4154 __ and_(r5, r4, r3); |
3949 __ JumpIfSmi(r2, &miss); | 4155 __ JumpIfSmi(r5, &miss); |
3950 | 4156 |
3951 __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE); | 4157 __ CompareObjectType(r3, r5, r5, JS_OBJECT_TYPE); |
3952 __ b(ne, &miss); | 4158 __ bne(&miss); |
3953 __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE); | 4159 __ CompareObjectType(r4, r5, r5, JS_OBJECT_TYPE); |
3954 __ b(ne, &miss); | 4160 __ bne(&miss); |
3955 | 4161 |
3956 ASSERT(GetCondition() == eq); | 4162 ASSERT(GetCondition() == eq); |
3957 __ sub(r0, r0, Operand(r1)); | 4163 __ sub(r3, r3, r4); |
3958 __ Ret(); | 4164 __ Ret(); |
3959 | 4165 |
3960 __ bind(&miss); | 4166 __ bind(&miss); |
3961 GenerateMiss(masm); | 4167 GenerateMiss(masm); |
3962 } | 4168 } |
3963 | 4169 |
3964 | 4170 |
3965 void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) { | 4171 void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) { |
3966 Label miss; | 4172 Label miss; |
3967 __ and_(r2, r1, Operand(r0)); | 4173 __ and_(r5, r4, r3); |
3968 __ JumpIfSmi(r2, &miss); | 4174 __ JumpIfSmi(r5, &miss); |
3969 __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); | 4175 __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset)); |
3970 __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); | 4176 __ LoadP(r6, FieldMemOperand(r4, HeapObject::kMapOffset)); |
3971 __ cmp(r2, Operand(known_map_)); | 4177 __ Cmpi(r5, Operand(known_map_), r0); |
3972 __ b(ne, &miss); | 4178 __ bne(&miss); |
3973 __ cmp(r3, Operand(known_map_)); | 4179 __ Cmpi(r6, Operand(known_map_), r0); |
3974 __ b(ne, &miss); | 4180 __ bne(&miss); |
3975 | 4181 |
3976 __ sub(r0, r0, Operand(r1)); | 4182 __ sub(r3, r3, r4); |
3977 __ Ret(); | 4183 __ Ret(); |
3978 | 4184 |
3979 __ bind(&miss); | 4185 __ bind(&miss); |
3980 GenerateMiss(masm); | 4186 GenerateMiss(masm); |
3981 } | 4187 } |
3982 | 4188 |
3983 | 4189 |
3984 | 4190 |
3985 void ICCompareStub::GenerateMiss(MacroAssembler* masm) { | 4191 void ICCompareStub::GenerateMiss(MacroAssembler* masm) { |
3986 { | 4192 { |
3987 // Call the runtime system in a fresh internal frame. | 4193 // Call the runtime system in a fresh internal frame. |
3988 ExternalReference miss = | 4194 ExternalReference miss = |
3989 ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate()); | 4195 ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate()); |
3990 | 4196 |
3991 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); | 4197 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
3992 __ Push(r1, r0); | 4198 __ Push(r4, r3); |
3993 __ Push(lr, r1, r0); | 4199 __ mflr(r0); |
3994 __ mov(ip, Operand(Smi::FromInt(op_))); | 4200 __ Push(r0, r4, r3); |
| 4201 __ LoadSmiLiteral(ip, Smi::FromInt(op_)); |
3995 __ push(ip); | 4202 __ push(ip); |
3996 __ CallExternalReference(miss, 3); | 4203 __ CallExternalReference(miss, 3); |
3997 // Compute the entry point of the rewritten stub. | 4204 // Compute the entry point of the rewritten stub. |
3998 __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); | 4205 __ addi(r5, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); |
3999 // Restore registers. | 4206 // Restore registers. |
4000 __ pop(lr); | 4207 __ pop(r0); |
4001 __ Pop(r1, r0); | 4208 __ mtlr(r0); |
| 4209 __ Pop(r4, r3); |
4002 } | 4210 } |
4003 | 4211 |
4004 __ Jump(r2); | 4212 __ Jump(r5); |
4005 } | 4213 } |
4006 | 4214 |
4007 | 4215 |
| 4216 // This stub is paired with DirectCEntryStub::GenerateCall |
4008 void DirectCEntryStub::Generate(MacroAssembler* masm) { | 4217 void DirectCEntryStub::Generate(MacroAssembler* masm) { |
4009 // Place the return address on the stack, making the call | 4218 // Place the return address on the stack, making the call |
4010 // GC safe. The RegExp backend also relies on this. | 4219 // GC safe. The RegExp backend also relies on this. |
4011 __ str(lr, MemOperand(sp, 0)); | 4220 __ mflr(r0); |
4012 __ blx(ip); // Call the C++ function. | 4221 __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize)); |
4013 __ VFPEnsureFPSCRState(r2); | 4222 __ Call(ip); // Call the C++ function. |
4014 __ ldr(pc, MemOperand(sp, 0)); | 4223 __ LoadP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize)); |
| 4224 __ mtlr(r0); |
| 4225 __ blr(); |
4015 } | 4226 } |
4016 | 4227 |
4017 | 4228 |
4018 void DirectCEntryStub::GenerateCall(MacroAssembler* masm, | 4229 void DirectCEntryStub::GenerateCall(MacroAssembler* masm, |
4019 Register target) { | 4230 Register target) { |
| 4231 #if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR) |
| 4232 // Native AIX/PPC64 Linux use a function descriptor. |
| 4233 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize)); |
| 4234 __ LoadP(ip, MemOperand(target, 0)); // Instruction address |
| 4235 #else |
| 4236 // ip needs to be set for DirectCEentryStub::Generate, and also |
| 4237 // for ABI_TOC_ADDRESSABILITY_VIA_IP. |
| 4238 __ Move(ip, target); |
| 4239 #endif |
| 4240 |
4020 intptr_t code = | 4241 intptr_t code = |
4021 reinterpret_cast<intptr_t>(GetCode().location()); | 4242 reinterpret_cast<intptr_t>(GetCode().location()); |
4022 __ Move(ip, target); | 4243 __ mov(r0, Operand(code, RelocInfo::CODE_TARGET)); |
4023 __ mov(lr, Operand(code, RelocInfo::CODE_TARGET)); | 4244 __ Call(r0); // Call the stub. |
4024 __ blx(lr); // Call the stub. | |
4025 } | 4245 } |
4026 | 4246 |
4027 | 4247 |
4028 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, | 4248 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, |
4029 Label* miss, | 4249 Label* miss, |
4030 Label* done, | 4250 Label* done, |
4031 Register receiver, | 4251 Register receiver, |
4032 Register properties, | 4252 Register properties, |
4033 Handle<Name> name, | 4253 Handle<Name> name, |
4034 Register scratch0) { | 4254 Register scratch0) { |
4035 ASSERT(name->IsUniqueName()); | 4255 ASSERT(name->IsUniqueName()); |
4036 // If names of slots in range from 1 to kProbes - 1 for the hash value are | 4256 // If names of slots in range from 1 to kProbes - 1 for the hash value are |
4037 // not equal to the name and kProbes-th slot is not used (its name is the | 4257 // not equal to the name and kProbes-th slot is not used (its name is the |
4038 // undefined value), it guarantees the hash table doesn't contain the | 4258 // undefined value), it guarantees the hash table doesn't contain the |
4039 // property. It's true even if some slots represent deleted properties | 4259 // property. It's true even if some slots represent deleted properties |
4040 // (their names are the hole value). | 4260 // (their names are the hole value). |
4041 for (int i = 0; i < kInlinedProbes; i++) { | 4261 for (int i = 0; i < kInlinedProbes; i++) { |
4042 // scratch0 points to properties hash. | 4262 // scratch0 points to properties hash. |
4043 // Compute the masked index: (hash + i + i * i) & mask. | 4263 // Compute the masked index: (hash + i + i * i) & mask. |
4044 Register index = scratch0; | 4264 Register index = scratch0; |
4045 // Capacity is smi 2^n. | 4265 // Capacity is smi 2^n. |
4046 __ ldr(index, FieldMemOperand(properties, kCapacityOffset)); | 4266 __ LoadP(index, FieldMemOperand(properties, kCapacityOffset)); |
4047 __ sub(index, index, Operand(1)); | 4267 __ subi(index, index, Operand(1)); |
4048 __ and_(index, index, Operand( | 4268 __ LoadSmiLiteral(ip, Smi::FromInt(name->Hash() + |
4049 Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)))); | 4269 NameDictionary::GetProbeOffset(i))); |
| 4270 __ and_(index, index, ip); |
4050 | 4271 |
4051 // Scale the index by multiplying by the entry size. | 4272 // Scale the index by multiplying by the entry size. |
4052 ASSERT(NameDictionary::kEntrySize == 3); | 4273 ASSERT(NameDictionary::kEntrySize == 3); |
4053 __ add(index, index, Operand(index, LSL, 1)); // index *= 3. | 4274 __ ShiftLeftImm(ip, index, Operand(1)); |
| 4275 __ add(index, index, ip); // index *= 3. |
4054 | 4276 |
4055 Register entity_name = scratch0; | 4277 Register entity_name = scratch0; |
4056 // Having undefined at this place means the name is not contained. | 4278 // Having undefined at this place means the name is not contained. |
4057 ASSERT_EQ(kSmiTagSize, 1); | |
4058 Register tmp = properties; | 4279 Register tmp = properties; |
4059 __ add(tmp, properties, Operand(index, LSL, 1)); | 4280 __ SmiToPtrArrayOffset(ip, index); |
4060 __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); | 4281 __ add(tmp, properties, ip); |
| 4282 __ LoadP(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); |
4061 | 4283 |
4062 ASSERT(!tmp.is(entity_name)); | 4284 ASSERT(!tmp.is(entity_name)); |
4063 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex); | 4285 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex); |
4064 __ cmp(entity_name, tmp); | 4286 __ cmp(entity_name, tmp); |
4065 __ b(eq, done); | 4287 __ beq(done); |
4066 | 4288 |
4067 // Load the hole ready for use below: | 4289 // Load the hole ready for use below: |
4068 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex); | 4290 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex); |
4069 | 4291 |
4070 // Stop if found the property. | 4292 // Stop if found the property. |
4071 __ cmp(entity_name, Operand(Handle<Name>(name))); | 4293 __ Cmpi(entity_name, Operand(Handle<Name>(name)), r0); |
4072 __ b(eq, miss); | 4294 __ beq(miss); |
4073 | 4295 |
4074 Label good; | 4296 Label good; |
4075 __ cmp(entity_name, tmp); | 4297 __ cmp(entity_name, tmp); |
4076 __ b(eq, &good); | 4298 __ beq(&good); |
4077 | 4299 |
4078 // Check if the entry name is not a unique name. | 4300 // Check if the entry name is not a unique name. |
4079 __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); | 4301 __ LoadP(entity_name, FieldMemOperand(entity_name, |
4080 __ ldrb(entity_name, | 4302 HeapObject::kMapOffset)); |
4081 FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); | 4303 __ lbz(entity_name, |
| 4304 FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); |
4082 __ JumpIfNotUniqueName(entity_name, miss); | 4305 __ JumpIfNotUniqueName(entity_name, miss); |
4083 __ bind(&good); | 4306 __ bind(&good); |
4084 | 4307 |
4085 // Restore the properties. | 4308 // Restore the properties. |
4086 __ ldr(properties, | 4309 __ LoadP(properties, |
4087 FieldMemOperand(receiver, JSObject::kPropertiesOffset)); | 4310 FieldMemOperand(receiver, JSObject::kPropertiesOffset)); |
4088 } | 4311 } |
4089 | 4312 |
4090 const int spill_mask = | 4313 const int spill_mask = |
4091 (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() | | 4314 (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() | |
4092 r2.bit() | r1.bit() | r0.bit()); | 4315 r5.bit() | r4.bit() | r3.bit()); |
4093 | 4316 |
4094 __ stm(db_w, sp, spill_mask); | 4317 __ mflr(r0); |
4095 __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); | 4318 __ MultiPush(spill_mask); |
4096 __ mov(r1, Operand(Handle<Name>(name))); | 4319 |
| 4320 __ LoadP(r3, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); |
| 4321 __ mov(r4, Operand(Handle<Name>(name))); |
4097 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP); | 4322 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP); |
4098 __ CallStub(&stub); | 4323 __ CallStub(&stub); |
4099 __ cmp(r0, Operand::Zero()); | 4324 __ cmpi(r3, Operand::Zero()); |
4100 __ ldm(ia_w, sp, spill_mask); | |
4101 | 4325 |
4102 __ b(eq, done); | 4326 __ MultiPop(spill_mask); // MultiPop does not touch condition flags |
4103 __ b(ne, miss); | 4327 __ mtlr(r0); |
| 4328 |
| 4329 __ beq(done); |
| 4330 __ bne(miss); |
4104 } | 4331 } |
4105 | 4332 |
4106 | 4333 |
4107 // Probe the name dictionary in the |elements| register. Jump to the | 4334 // Probe the name dictionary in the |elements| register. Jump to the |
4108 // |done| label if a property with the given name is found. Jump to | 4335 // |done| label if a property with the given name is found. Jump to |
4109 // the |miss| label otherwise. | 4336 // the |miss| label otherwise. |
4110 // If lookup was successful |scratch2| will be equal to elements + 4 * index. | 4337 // If lookup was successful |scratch2| will be equal to elements + 4 * index. |
4111 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, | 4338 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, |
4112 Label* miss, | 4339 Label* miss, |
4113 Label* done, | 4340 Label* done, |
4114 Register elements, | 4341 Register elements, |
4115 Register name, | 4342 Register name, |
4116 Register scratch1, | 4343 Register scratch1, |
4117 Register scratch2) { | 4344 Register scratch2) { |
4118 ASSERT(!elements.is(scratch1)); | 4345 ASSERT(!elements.is(scratch1)); |
4119 ASSERT(!elements.is(scratch2)); | 4346 ASSERT(!elements.is(scratch2)); |
4120 ASSERT(!name.is(scratch1)); | 4347 ASSERT(!name.is(scratch1)); |
4121 ASSERT(!name.is(scratch2)); | 4348 ASSERT(!name.is(scratch2)); |
4122 | 4349 |
4123 __ AssertName(name); | 4350 __ AssertName(name); |
4124 | 4351 |
4125 // Compute the capacity mask. | 4352 // Compute the capacity mask. |
4126 __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset)); | 4353 __ LoadP(scratch1, FieldMemOperand(elements, kCapacityOffset)); |
4127 __ SmiUntag(scratch1); | 4354 __ SmiUntag(scratch1); // convert smi to int |
4128 __ sub(scratch1, scratch1, Operand(1)); | 4355 __ subi(scratch1, scratch1, Operand(1)); |
4129 | 4356 |
4130 // Generate an unrolled loop that performs a few probes before | 4357 // Generate an unrolled loop that performs a few probes before |
4131 // giving up. Measurements done on Gmail indicate that 2 probes | 4358 // giving up. Measurements done on Gmail indicate that 2 probes |
4132 // cover ~93% of loads from dictionaries. | 4359 // cover ~93% of loads from dictionaries. |
4133 for (int i = 0; i < kInlinedProbes; i++) { | 4360 for (int i = 0; i < kInlinedProbes; i++) { |
4134 // Compute the masked index: (hash + i + i * i) & mask. | 4361 // Compute the masked index: (hash + i + i * i) & mask. |
4135 __ ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset)); | 4362 __ lwz(scratch2, FieldMemOperand(name, Name::kHashFieldOffset)); |
4136 if (i > 0) { | 4363 if (i > 0) { |
4137 // Add the probe offset (i + i * i) left shifted to avoid right shifting | 4364 // Add the probe offset (i + i * i) left shifted to avoid right shifting |
4138 // the hash in a separate instruction. The value hash + i + i * i is right | 4365 // the hash in a separate instruction. The value hash + i + i * i is right |
4139 // shifted in the following and instruction. | 4366 // shifted in the following and instruction. |
4140 ASSERT(NameDictionary::GetProbeOffset(i) < | 4367 ASSERT(NameDictionary::GetProbeOffset(i) < |
4141 1 << (32 - Name::kHashFieldOffset)); | 4368 1 << (32 - Name::kHashFieldOffset)); |
4142 __ add(scratch2, scratch2, Operand( | 4369 __ addi(scratch2, scratch2, Operand( |
4143 NameDictionary::GetProbeOffset(i) << Name::kHashShift)); | 4370 NameDictionary::GetProbeOffset(i) << Name::kHashShift)); |
4144 } | 4371 } |
4145 __ and_(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift)); | 4372 __ srwi(scratch2, scratch2, Operand(Name::kHashShift)); |
| 4373 __ and_(scratch2, scratch1, scratch2); |
4146 | 4374 |
4147 // Scale the index by multiplying by the element size. | 4375 // Scale the index by multiplying by the element size. |
4148 ASSERT(NameDictionary::kEntrySize == 3); | 4376 ASSERT(NameDictionary::kEntrySize == 3); |
4149 // scratch2 = scratch2 * 3. | 4377 // scratch2 = scratch2 * 3. |
4150 __ add(scratch2, scratch2, Operand(scratch2, LSL, 1)); | 4378 __ ShiftLeftImm(ip, scratch2, Operand(1)); |
| 4379 __ add(scratch2, scratch2, ip); |
4151 | 4380 |
4152 // Check if the key is identical to the name. | 4381 // Check if the key is identical to the name. |
4153 __ add(scratch2, elements, Operand(scratch2, LSL, 2)); | 4382 __ ShiftLeftImm(ip, scratch2, Operand(kPointerSizeLog2)); |
4154 __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset)); | 4383 __ add(scratch2, elements, ip); |
4155 __ cmp(name, Operand(ip)); | 4384 __ LoadP(ip, FieldMemOperand(scratch2, kElementsStartOffset)); |
4156 __ b(eq, done); | 4385 __ cmp(name, ip); |
| 4386 __ beq(done); |
4157 } | 4387 } |
4158 | 4388 |
4159 const int spill_mask = | 4389 const int spill_mask = |
4160 (lr.bit() | r6.bit() | r5.bit() | r4.bit() | | 4390 (r0.bit() | r9.bit() | r8.bit() | r7.bit() | |
4161 r3.bit() | r2.bit() | r1.bit() | r0.bit()) & | 4391 r6.bit() | r5.bit() | r4.bit() | r3.bit()) & |
4162 ~(scratch1.bit() | scratch2.bit()); | 4392 ~(scratch1.bit() | scratch2.bit()); |
4163 | 4393 |
4164 __ stm(db_w, sp, spill_mask); | 4394 __ mflr(r0); |
4165 if (name.is(r0)) { | 4395 __ MultiPush(spill_mask); |
4166 ASSERT(!elements.is(r1)); | 4396 if (name.is(r3)) { |
4167 __ Move(r1, name); | 4397 ASSERT(!elements.is(r4)); |
4168 __ Move(r0, elements); | 4398 __ mr(r4, name); |
| 4399 __ mr(r3, elements); |
4169 } else { | 4400 } else { |
4170 __ Move(r0, elements); | 4401 __ mr(r3, elements); |
4171 __ Move(r1, name); | 4402 __ mr(r4, name); |
4172 } | 4403 } |
4173 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP); | 4404 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP); |
4174 __ CallStub(&stub); | 4405 __ CallStub(&stub); |
4175 __ cmp(r0, Operand::Zero()); | 4406 __ cmpi(r3, Operand::Zero()); |
4176 __ mov(scratch2, Operand(r2)); | 4407 __ mr(scratch2, r5); |
4177 __ ldm(ia_w, sp, spill_mask); | 4408 __ MultiPop(spill_mask); |
| 4409 __ mtlr(r0); |
4178 | 4410 |
4179 __ b(ne, done); | 4411 __ bne(done); |
4180 __ b(eq, miss); | 4412 __ beq(miss); |
4181 } | 4413 } |
4182 | 4414 |
4183 | 4415 |
4184 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { | 4416 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { |
4185 // This stub overrides SometimesSetsUpAFrame() to return false. That means | 4417 // This stub overrides SometimesSetsUpAFrame() to return false. That means |
4186 // we cannot call anything that could cause a GC from this stub. | 4418 // we cannot call anything that could cause a GC from this stub. |
4187 // Registers: | 4419 // Registers: |
4188 // result: NameDictionary to probe | 4420 // result: NameDictionary to probe |
4189 // r1: key | 4421 // r4: key |
4190 // dictionary: NameDictionary to probe. | 4422 // dictionary: NameDictionary to probe. |
4191 // index: will hold an index of entry if lookup is successful. | 4423 // index: will hold an index of entry if lookup is successful. |
4192 // might alias with result_. | 4424 // might alias with result_. |
4193 // Returns: | 4425 // Returns: |
4194 // result_ is zero if lookup failed, non zero otherwise. | 4426 // result_ is zero if lookup failed, non zero otherwise. |
4195 | 4427 |
4196 Register result = r0; | 4428 Register result = r3; |
4197 Register dictionary = r0; | 4429 Register dictionary = r3; |
4198 Register key = r1; | 4430 Register key = r4; |
4199 Register index = r2; | 4431 Register index = r5; |
4200 Register mask = r3; | 4432 Register mask = r6; |
4201 Register hash = r4; | 4433 Register hash = r7; |
4202 Register undefined = r5; | 4434 Register undefined = r8; |
4203 Register entry_key = r6; | 4435 Register entry_key = r9; |
| 4436 Register scratch = r9; |
4204 | 4437 |
4205 Label in_dictionary, maybe_in_dictionary, not_in_dictionary; | 4438 Label in_dictionary, maybe_in_dictionary, not_in_dictionary; |
4206 | 4439 |
4207 __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset)); | 4440 __ LoadP(mask, FieldMemOperand(dictionary, kCapacityOffset)); |
4208 __ SmiUntag(mask); | 4441 __ SmiUntag(mask); |
4209 __ sub(mask, mask, Operand(1)); | 4442 __ subi(mask, mask, Operand(1)); |
4210 | 4443 |
4211 __ ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset)); | 4444 __ lwz(hash, FieldMemOperand(key, Name::kHashFieldOffset)); |
4212 | 4445 |
4213 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); | 4446 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); |
4214 | 4447 |
4215 for (int i = kInlinedProbes; i < kTotalProbes; i++) { | 4448 for (int i = kInlinedProbes; i < kTotalProbes; i++) { |
4216 // Compute the masked index: (hash + i + i * i) & mask. | 4449 // Compute the masked index: (hash + i + i * i) & mask. |
4217 // Capacity is smi 2^n. | 4450 // Capacity is smi 2^n. |
4218 if (i > 0) { | 4451 if (i > 0) { |
4219 // Add the probe offset (i + i * i) left shifted to avoid right shifting | 4452 // Add the probe offset (i + i * i) left shifted to avoid right shifting |
4220 // the hash in a separate instruction. The value hash + i + i * i is right | 4453 // the hash in a separate instruction. The value hash + i + i * i is right |
4221 // shifted in the following and instruction. | 4454 // shifted in the following and instruction. |
4222 ASSERT(NameDictionary::GetProbeOffset(i) < | 4455 ASSERT(NameDictionary::GetProbeOffset(i) < |
4223 1 << (32 - Name::kHashFieldOffset)); | 4456 1 << (32 - Name::kHashFieldOffset)); |
4224 __ add(index, hash, Operand( | 4457 __ addi(index, hash, Operand( |
4225 NameDictionary::GetProbeOffset(i) << Name::kHashShift)); | 4458 NameDictionary::GetProbeOffset(i) << Name::kHashShift)); |
4226 } else { | 4459 } else { |
4227 __ mov(index, Operand(hash)); | 4460 __ mr(index, hash); |
4228 } | 4461 } |
4229 __ and_(index, mask, Operand(index, LSR, Name::kHashShift)); | 4462 __ srwi(r0, index, Operand(Name::kHashShift)); |
| 4463 __ and_(index, mask, r0); |
4230 | 4464 |
4231 // Scale the index by multiplying by the entry size. | 4465 // Scale the index by multiplying by the entry size. |
4232 ASSERT(NameDictionary::kEntrySize == 3); | 4466 ASSERT(NameDictionary::kEntrySize == 3); |
4233 __ add(index, index, Operand(index, LSL, 1)); // index *= 3. | 4467 __ ShiftLeftImm(scratch, index, Operand(1)); |
| 4468 __ add(index, index, scratch); // index *= 3. |
4234 | 4469 |
4235 ASSERT_EQ(kSmiTagSize, 1); | 4470 ASSERT_EQ(kSmiTagSize, 1); |
4236 __ add(index, dictionary, Operand(index, LSL, 2)); | 4471 __ ShiftLeftImm(scratch, index, Operand(kPointerSizeLog2)); |
4237 __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset)); | 4472 __ add(index, dictionary, scratch); |
| 4473 __ LoadP(entry_key, FieldMemOperand(index, kElementsStartOffset)); |
4238 | 4474 |
4239 // Having undefined at this place means the name is not contained. | 4475 // Having undefined at this place means the name is not contained. |
4240 __ cmp(entry_key, Operand(undefined)); | 4476 __ cmp(entry_key, undefined); |
4241 __ b(eq, ¬_in_dictionary); | 4477 __ beq(¬_in_dictionary); |
4242 | 4478 |
4243 // Stop if found the property. | 4479 // Stop if found the property. |
4244 __ cmp(entry_key, Operand(key)); | 4480 __ cmp(entry_key, key); |
4245 __ b(eq, &in_dictionary); | 4481 __ beq(&in_dictionary); |
4246 | 4482 |
4247 if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) { | 4483 if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) { |
4248 // Check if the entry name is not a unique name. | 4484 // Check if the entry name is not a unique name. |
4249 __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); | 4485 __ LoadP(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); |
4250 __ ldrb(entry_key, | 4486 __ lbz(entry_key, |
4251 FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); | 4487 FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); |
4252 __ JumpIfNotUniqueName(entry_key, &maybe_in_dictionary); | 4488 __ JumpIfNotUniqueName(entry_key, &maybe_in_dictionary); |
4253 } | 4489 } |
4254 } | 4490 } |
4255 | 4491 |
4256 __ bind(&maybe_in_dictionary); | 4492 __ bind(&maybe_in_dictionary); |
4257 // If we are doing negative lookup then probing failure should be | 4493 // If we are doing negative lookup then probing failure should be |
4258 // treated as a lookup success. For positive lookup probing failure | 4494 // treated as a lookup success. For positive lookup probing failure |
4259 // should be treated as lookup failure. | 4495 // should be treated as lookup failure. |
4260 if (mode_ == POSITIVE_LOOKUP) { | 4496 if (mode_ == POSITIVE_LOOKUP) { |
4261 __ mov(result, Operand::Zero()); | 4497 __ li(result, Operand::Zero()); |
4262 __ Ret(); | 4498 __ Ret(); |
4263 } | 4499 } |
4264 | 4500 |
4265 __ bind(&in_dictionary); | 4501 __ bind(&in_dictionary); |
4266 __ mov(result, Operand(1)); | 4502 __ li(result, Operand(1)); |
4267 __ Ret(); | 4503 __ Ret(); |
4268 | 4504 |
4269 __ bind(¬_in_dictionary); | 4505 __ bind(¬_in_dictionary); |
4270 __ mov(result, Operand::Zero()); | 4506 __ li(result, Operand::Zero()); |
4271 __ Ret(); | 4507 __ Ret(); |
4272 } | 4508 } |
4273 | 4509 |
4274 | 4510 |
4275 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( | 4511 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( |
4276 Isolate* isolate) { | 4512 Isolate* isolate) { |
4277 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs); | 4513 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs); |
4278 stub1.GetCode(); | 4514 stub1.GetCode(); |
4279 // Hydrogen code stubs need stub2 at snapshot time. | 4515 // Hydrogen code stubs need stub2 at snapshot time. |
4280 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs); | 4516 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs); |
4281 stub2.GetCode(); | 4517 stub2.GetCode(); |
4282 } | 4518 } |
4283 | 4519 |
4284 | 4520 |
4285 // Takes the input in 3 registers: address_ value_ and object_. A pointer to | 4521 // Takes the input in 3 registers: address_ value_ and object_. A pointer to |
4286 // the value has just been written into the object, now this stub makes sure | 4522 // the value has just been written into the object, now this stub makes sure |
4287 // we keep the GC informed. The word in the object where the value has been | 4523 // we keep the GC informed. The word in the object where the value has been |
4288 // written is in the address register. | 4524 // written is in the address register. |
4289 void RecordWriteStub::Generate(MacroAssembler* masm) { | 4525 void RecordWriteStub::Generate(MacroAssembler* masm) { |
4290 Label skip_to_incremental_noncompacting; | 4526 Label skip_to_incremental_noncompacting; |
4291 Label skip_to_incremental_compacting; | 4527 Label skip_to_incremental_compacting; |
4292 | 4528 |
4293 // The first two instructions are generated with labels so as to get the | 4529 // The first two branch instructions are generated with labels so as to |
4294 // offset fixed up correctly by the bind(Label*) call. We patch it back and | 4530 // get the offset fixed up correctly by the bind(Label*) call. We patch |
4295 // forth between a compare instructions (a nop in this position) and the | 4531 // it back and forth between branch condition True and False |
4296 // real branch when we start and stop incremental heap marking. | 4532 // when we start and stop incremental heap marking. |
4297 // See RecordWriteStub::Patch for details. | 4533 // See RecordWriteStub::Patch for details. |
4298 { | 4534 |
4299 // Block literal pool emission, as the position of these two instructions | 4535 // Clear the bit, branch on True for NOP action initially |
4300 // is assumed by the patching code. | 4536 __ crclr(Assembler::encode_crbit(cr2, CR_LT)); |
4301 Assembler::BlockConstPoolScope block_const_pool(masm); | 4537 __ blt(&skip_to_incremental_noncompacting, cr2); |
4302 __ b(&skip_to_incremental_noncompacting); | 4538 __ blt(&skip_to_incremental_compacting, cr2); |
4303 __ b(&skip_to_incremental_compacting); | |
4304 } | |
4305 | 4539 |
4306 if (remembered_set_action_ == EMIT_REMEMBERED_SET) { | 4540 if (remembered_set_action_ == EMIT_REMEMBERED_SET) { |
4307 __ RememberedSetHelper(object_, | 4541 __ RememberedSetHelper(object_, |
4308 address_, | 4542 address_, |
4309 value_, | 4543 value_, |
4310 save_fp_regs_mode_, | 4544 save_fp_regs_mode_, |
4311 MacroAssembler::kReturnAtEnd); | 4545 MacroAssembler::kReturnAtEnd); |
4312 } | 4546 } |
4313 __ Ret(); | 4547 __ Ret(); |
4314 | 4548 |
4315 __ bind(&skip_to_incremental_noncompacting); | 4549 __ bind(&skip_to_incremental_noncompacting); |
4316 GenerateIncremental(masm, INCREMENTAL); | 4550 GenerateIncremental(masm, INCREMENTAL); |
4317 | 4551 |
4318 __ bind(&skip_to_incremental_compacting); | 4552 __ bind(&skip_to_incremental_compacting); |
4319 GenerateIncremental(masm, INCREMENTAL_COMPACTION); | 4553 GenerateIncremental(masm, INCREMENTAL_COMPACTION); |
4320 | 4554 |
4321 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. | 4555 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. |
4322 // Will be checked in IncrementalMarking::ActivateGeneratedStub. | 4556 // Will be checked in IncrementalMarking::ActivateGeneratedStub. |
4323 ASSERT(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12)); | 4557 // patching not required on PPC as the initial path is effectively NOP |
4324 ASSERT(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12)); | |
4325 PatchBranchIntoNop(masm, 0); | |
4326 PatchBranchIntoNop(masm, Assembler::kInstrSize); | |
4327 } | 4558 } |
4328 | 4559 |
4329 | 4560 |
4330 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { | 4561 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { |
4331 regs_.Save(masm); | 4562 regs_.Save(masm); |
4332 | 4563 |
4333 if (remembered_set_action_ == EMIT_REMEMBERED_SET) { | 4564 if (remembered_set_action_ == EMIT_REMEMBERED_SET) { |
4334 Label dont_need_remembered_set; | 4565 Label dont_need_remembered_set; |
4335 | 4566 |
4336 __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0)); | 4567 __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0)); |
4337 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value. | 4568 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value. |
4338 regs_.scratch0(), | 4569 regs_.scratch0(), |
4339 &dont_need_remembered_set); | 4570 &dont_need_remembered_set); |
4340 | 4571 |
4341 __ CheckPageFlag(regs_.object(), | 4572 __ CheckPageFlag(regs_.object(), |
4342 regs_.scratch0(), | 4573 regs_.scratch0(), |
4343 1 << MemoryChunk::SCAN_ON_SCAVENGE, | 4574 1 << MemoryChunk::SCAN_ON_SCAVENGE, |
4344 ne, | 4575 ne, |
4345 &dont_need_remembered_set); | 4576 &dont_need_remembered_set); |
4346 | 4577 |
(...skipping 18 matching lines...) Expand all Loading... |
4365 regs_.Restore(masm); | 4596 regs_.Restore(masm); |
4366 __ Ret(); | 4597 __ Ret(); |
4367 } | 4598 } |
4368 | 4599 |
4369 | 4600 |
4370 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { | 4601 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { |
4371 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_); | 4602 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_); |
4372 int argument_count = 3; | 4603 int argument_count = 3; |
4373 __ PrepareCallCFunction(argument_count, regs_.scratch0()); | 4604 __ PrepareCallCFunction(argument_count, regs_.scratch0()); |
4374 Register address = | 4605 Register address = |
4375 r0.is(regs_.address()) ? regs_.scratch0() : regs_.address(); | 4606 r3.is(regs_.address()) ? regs_.scratch0() : regs_.address(); |
4376 ASSERT(!address.is(regs_.object())); | 4607 ASSERT(!address.is(regs_.object())); |
4377 ASSERT(!address.is(r0)); | 4608 ASSERT(!address.is(r3)); |
4378 __ Move(address, regs_.address()); | 4609 __ mr(address, regs_.address()); |
4379 __ Move(r0, regs_.object()); | 4610 __ mr(r3, regs_.object()); |
4380 __ Move(r1, address); | 4611 __ mr(r4, address); |
4381 __ mov(r2, Operand(ExternalReference::isolate_address(isolate()))); | 4612 __ mov(r5, Operand(ExternalReference::isolate_address(isolate()))); |
4382 | 4613 |
4383 AllowExternalCallThatCantCauseGC scope(masm); | 4614 AllowExternalCallThatCantCauseGC scope(masm); |
4384 __ CallCFunction( | 4615 __ CallCFunction( |
4385 ExternalReference::incremental_marking_record_write_function(isolate()), | 4616 ExternalReference::incremental_marking_record_write_function(isolate()), |
4386 argument_count); | 4617 argument_count); |
4387 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_); | 4618 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_); |
4388 } | 4619 } |
4389 | 4620 |
4390 | 4621 |
4391 void RecordWriteStub::CheckNeedsToInformIncrementalMarker( | 4622 void RecordWriteStub::CheckNeedsToInformIncrementalMarker( |
4392 MacroAssembler* masm, | 4623 MacroAssembler* masm, |
4393 OnNoNeedToInformIncrementalMarker on_no_need, | 4624 OnNoNeedToInformIncrementalMarker on_no_need, |
4394 Mode mode) { | 4625 Mode mode) { |
4395 Label on_black; | 4626 Label on_black; |
4396 Label need_incremental; | 4627 Label need_incremental; |
4397 Label need_incremental_pop_scratch; | 4628 Label need_incremental_pop_scratch; |
4398 | 4629 |
4399 __ and_(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask)); | 4630 ASSERT((~Page::kPageAlignmentMask & 0xffff) == 0); |
4400 __ ldr(regs_.scratch1(), | 4631 __ lis(r0, Operand((~Page::kPageAlignmentMask >> 16))); |
| 4632 __ and_(regs_.scratch0(), regs_.object(), r0); |
| 4633 __ LoadP(regs_.scratch1(), |
4401 MemOperand(regs_.scratch0(), | 4634 MemOperand(regs_.scratch0(), |
4402 MemoryChunk::kWriteBarrierCounterOffset)); | 4635 MemoryChunk::kWriteBarrierCounterOffset)); |
4403 __ sub(regs_.scratch1(), regs_.scratch1(), Operand(1), SetCC); | 4636 __ subi(regs_.scratch1(), regs_.scratch1(), Operand(1)); |
4404 __ str(regs_.scratch1(), | 4637 __ StoreP(regs_.scratch1(), |
4405 MemOperand(regs_.scratch0(), | 4638 MemOperand(regs_.scratch0(), |
4406 MemoryChunk::kWriteBarrierCounterOffset)); | 4639 MemoryChunk::kWriteBarrierCounterOffset)); |
4407 __ b(mi, &need_incremental); | 4640 __ cmpi(regs_.scratch1(), Operand::Zero()); // PPC, we could do better here |
| 4641 __ blt(&need_incremental); |
4408 | 4642 |
4409 // Let's look at the color of the object: If it is not black we don't have | 4643 // Let's look at the color of the object: If it is not black we don't have |
4410 // to inform the incremental marker. | 4644 // to inform the incremental marker. |
4411 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); | 4645 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); |
4412 | 4646 |
4413 regs_.Restore(masm); | 4647 regs_.Restore(masm); |
4414 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { | 4648 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { |
4415 __ RememberedSetHelper(object_, | 4649 __ RememberedSetHelper(object_, |
4416 address_, | 4650 address_, |
4417 value_, | 4651 value_, |
4418 save_fp_regs_mode_, | 4652 save_fp_regs_mode_, |
4419 MacroAssembler::kReturnAtEnd); | 4653 MacroAssembler::kReturnAtEnd); |
4420 } else { | 4654 } else { |
4421 __ Ret(); | 4655 __ Ret(); |
4422 } | 4656 } |
4423 | 4657 |
4424 __ bind(&on_black); | 4658 __ bind(&on_black); |
4425 | 4659 |
4426 // Get the value from the slot. | 4660 // Get the value from the slot. |
4427 __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0)); | 4661 __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0)); |
4428 | 4662 |
4429 if (mode == INCREMENTAL_COMPACTION) { | 4663 if (mode == INCREMENTAL_COMPACTION) { |
4430 Label ensure_not_white; | 4664 Label ensure_not_white; |
4431 | 4665 |
4432 __ CheckPageFlag(regs_.scratch0(), // Contains value. | 4666 __ CheckPageFlag(regs_.scratch0(), // Contains value. |
4433 regs_.scratch1(), // Scratch. | 4667 regs_.scratch1(), // Scratch. |
4434 MemoryChunk::kEvacuationCandidateMask, | 4668 MemoryChunk::kEvacuationCandidateMask, |
4435 eq, | 4669 eq, |
4436 &ensure_not_white); | 4670 &ensure_not_white); |
4437 | 4671 |
(...skipping 31 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
4469 __ Pop(regs_.object(), regs_.address()); | 4703 __ Pop(regs_.object(), regs_.address()); |
4470 | 4704 |
4471 __ bind(&need_incremental); | 4705 __ bind(&need_incremental); |
4472 | 4706 |
4473 // Fall through when we need to inform the incremental marker. | 4707 // Fall through when we need to inform the incremental marker. |
4474 } | 4708 } |
4475 | 4709 |
4476 | 4710 |
4477 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { | 4711 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { |
4478 // ----------- S t a t e ------------- | 4712 // ----------- S t a t e ------------- |
4479 // -- r0 : element value to store | 4713 // -- r3 : element value to store |
4480 // -- r3 : element index as smi | 4714 // -- r6 : element index as smi |
4481 // -- sp[0] : array literal index in function as smi | 4715 // -- sp[0] : array literal index in function as smi |
4482 // -- sp[4] : array literal | 4716 // -- sp[4] : array literal |
4483 // clobbers r1, r2, r4 | 4717 // clobbers r3, r5, r7 |
4484 // ----------------------------------- | 4718 // ----------------------------------- |
4485 | 4719 |
4486 Label element_done; | 4720 Label element_done; |
4487 Label double_elements; | 4721 Label double_elements; |
4488 Label smi_element; | 4722 Label smi_element; |
4489 Label slow_elements; | 4723 Label slow_elements; |
4490 Label fast_elements; | 4724 Label fast_elements; |
4491 | 4725 |
4492 // Get array literal index, array literal and its map. | 4726 // Get array literal index, array literal and its map. |
4493 __ ldr(r4, MemOperand(sp, 0 * kPointerSize)); | 4727 __ LoadP(r7, MemOperand(sp, 0 * kPointerSize)); |
4494 __ ldr(r1, MemOperand(sp, 1 * kPointerSize)); | 4728 __ LoadP(r4, MemOperand(sp, 1 * kPointerSize)); |
4495 __ ldr(r2, FieldMemOperand(r1, JSObject::kMapOffset)); | 4729 __ LoadP(r5, FieldMemOperand(r4, JSObject::kMapOffset)); |
4496 | 4730 |
4497 __ CheckFastElements(r2, r5, &double_elements); | 4731 __ CheckFastElements(r5, r8, &double_elements); |
4498 // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS | 4732 // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS |
4499 __ JumpIfSmi(r0, &smi_element); | 4733 __ JumpIfSmi(r3, &smi_element); |
4500 __ CheckFastSmiElements(r2, r5, &fast_elements); | 4734 __ CheckFastSmiElements(r5, r8, &fast_elements); |
4501 | 4735 |
4502 // Store into the array literal requires a elements transition. Call into | 4736 // Store into the array literal requires a elements transition. Call into |
4503 // the runtime. | 4737 // the runtime. |
4504 __ bind(&slow_elements); | 4738 __ bind(&slow_elements); |
4505 // call. | 4739 // call. |
4506 __ Push(r1, r3, r0); | 4740 __ Push(r4, r6, r3); |
4507 __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); | 4741 __ LoadP(r8, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
4508 __ ldr(r5, FieldMemOperand(r5, JSFunction::kLiteralsOffset)); | 4742 __ LoadP(r8, FieldMemOperand(r8, JSFunction::kLiteralsOffset)); |
4509 __ Push(r5, r4); | 4743 __ Push(r8, r7); |
4510 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); | 4744 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); |
4511 | 4745 |
4512 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object. | 4746 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object. |
4513 __ bind(&fast_elements); | 4747 __ bind(&fast_elements); |
4514 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset)); | 4748 __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset)); |
4515 __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3)); | 4749 __ SmiToPtrArrayOffset(r9, r6); |
4516 __ add(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); | 4750 __ add(r9, r8, r9); |
4517 __ str(r0, MemOperand(r6, 0)); | 4751 #if V8_TARGET_ARCH_PPC64 |
| 4752 // add due to offset alignment requirements of StorePU |
| 4753 __ addi(r9, r9, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| 4754 __ StoreP(r3, MemOperand(r9)); |
| 4755 #else |
| 4756 __ StorePU(r3, MemOperand(r9, FixedArray::kHeaderSize - kHeapObjectTag)); |
| 4757 #endif |
4518 // Update the write barrier for the array store. | 4758 // Update the write barrier for the array store. |
4519 __ RecordWrite(r5, r6, r0, kLRHasNotBeenSaved, kDontSaveFPRegs, | 4759 __ RecordWrite(r8, r9, r3, kLRHasNotBeenSaved, kDontSaveFPRegs, |
4520 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); | 4760 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
4521 __ Ret(); | 4761 __ Ret(); |
4522 | 4762 |
4523 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS, | 4763 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS, |
4524 // and value is Smi. | 4764 // and value is Smi. |
4525 __ bind(&smi_element); | 4765 __ bind(&smi_element); |
4526 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset)); | 4766 __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset)); |
4527 __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3)); | 4767 __ SmiToPtrArrayOffset(r9, r6); |
4528 __ str(r0, FieldMemOperand(r6, FixedArray::kHeaderSize)); | 4768 __ add(r9, r8, r9); |
| 4769 __ StoreP(r3, FieldMemOperand(r9, FixedArray::kHeaderSize), r0); |
4529 __ Ret(); | 4770 __ Ret(); |
4530 | 4771 |
4531 // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS. | 4772 // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS. |
4532 __ bind(&double_elements); | 4773 __ bind(&double_elements); |
4533 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset)); | 4774 __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset)); |
4534 __ StoreNumberToDoubleElements(r0, r3, r5, r6, d0, &slow_elements); | 4775 __ StoreNumberToDoubleElements(r3, r6, r8, r9, d0, &slow_elements); |
4535 __ Ret(); | 4776 __ Ret(); |
4536 } | 4777 } |
4537 | 4778 |
4538 | 4779 |
4539 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { | 4780 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { |
4540 CEntryStub ces(isolate(), 1, kSaveFPRegs); | 4781 CEntryStub ces(isolate(), 1, kSaveFPRegs); |
4541 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET); | 4782 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET); |
4542 int parameter_count_offset = | 4783 int parameter_count_offset = |
4543 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset; | 4784 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset; |
4544 __ ldr(r1, MemOperand(fp, parameter_count_offset)); | 4785 __ LoadP(r4, MemOperand(fp, parameter_count_offset)); |
4545 if (function_mode_ == JS_FUNCTION_STUB_MODE) { | 4786 if (function_mode_ == JS_FUNCTION_STUB_MODE) { |
4546 __ add(r1, r1, Operand(1)); | 4787 __ addi(r4, r4, Operand(1)); |
4547 } | 4788 } |
4548 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); | 4789 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); |
4549 __ mov(r1, Operand(r1, LSL, kPointerSizeLog2)); | 4790 __ slwi(r4, r4, Operand(kPointerSizeLog2)); |
4550 __ add(sp, sp, r1); | 4791 __ add(sp, sp, r4); |
4551 __ Ret(); | 4792 __ Ret(); |
4552 } | 4793 } |
4553 | 4794 |
4554 | 4795 |
4555 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { | 4796 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { |
4556 if (masm->isolate()->function_entry_hook() != NULL) { | 4797 if (masm->isolate()->function_entry_hook() != NULL) { |
| 4798 PredictableCodeSizeScope predictable(masm, |
| 4799 #if V8_TARGET_ARCH_PPC64 |
| 4800 12 * Assembler::kInstrSize); |
| 4801 #else |
| 4802 9 * Assembler::kInstrSize); |
| 4803 #endif |
4557 ProfileEntryHookStub stub(masm->isolate()); | 4804 ProfileEntryHookStub stub(masm->isolate()); |
4558 int code_size = masm->CallStubSize(&stub) + 2 * Assembler::kInstrSize; | 4805 __ mflr(r0); |
4559 PredictableCodeSizeScope predictable(masm, code_size); | 4806 __ push(r0); |
4560 __ push(lr); | |
4561 __ CallStub(&stub); | 4807 __ CallStub(&stub); |
4562 __ pop(lr); | 4808 __ pop(r0); |
| 4809 __ mtlr(r0); |
4563 } | 4810 } |
4564 } | 4811 } |
4565 | 4812 |
4566 | 4813 |
4567 void ProfileEntryHookStub::Generate(MacroAssembler* masm) { | 4814 void ProfileEntryHookStub::Generate(MacroAssembler* masm) { |
4568 // The entry hook is a "push lr" instruction, followed by a call. | 4815 // The entry hook is a "push lr" instruction, followed by a call. |
4569 const int32_t kReturnAddressDistanceFromFunctionStart = | 4816 const int32_t kReturnAddressDistanceFromFunctionStart = |
4570 3 * Assembler::kInstrSize; | 4817 Assembler::kCallTargetAddressOffset + 2 * Assembler::kInstrSize; |
4571 | 4818 |
4572 // This should contain all kCallerSaved registers. | 4819 // This should contain all kJSCallerSaved registers. |
4573 const RegList kSavedRegs = | 4820 const RegList kSavedRegs = |
4574 1 << 0 | // r0 | 4821 kJSCallerSaved | // Caller saved registers. |
4575 1 << 1 | // r1 | 4822 r15.bit(); // Saved stack pointer. |
4576 1 << 2 | // r2 | 4823 |
4577 1 << 3 | // r3 | |
4578 1 << 5 | // r5 | |
4579 1 << 9; // r9 | |
4580 // We also save lr, so the count here is one higher than the mask indicates. | 4824 // We also save lr, so the count here is one higher than the mask indicates. |
4581 const int32_t kNumSavedRegs = 7; | 4825 const int32_t kNumSavedRegs = kNumJSCallerSaved + 2; |
4582 | |
4583 ASSERT((kCallerSaved & kSavedRegs) == kCallerSaved); | |
4584 | 4826 |
4585 // Save all caller-save registers as this may be called from anywhere. | 4827 // Save all caller-save registers as this may be called from anywhere. |
4586 __ stm(db_w, sp, kSavedRegs | lr.bit()); | 4828 __ mflr(r0); |
| 4829 __ MultiPush(kSavedRegs | r0.bit()); |
4587 | 4830 |
4588 // Compute the function's address for the first argument. | 4831 // Compute the function's address for the first argument. |
4589 __ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart)); | 4832 __ mr(r3, r0); |
| 4833 __ subi(r3, r3, Operand(kReturnAddressDistanceFromFunctionStart)); |
4590 | 4834 |
4591 // The caller's return address is above the saved temporaries. | 4835 // The caller's return address is above the saved temporaries. |
4592 // Grab that for the second argument to the hook. | 4836 // Grab that for the second argument to the hook. |
4593 __ add(r1, sp, Operand(kNumSavedRegs * kPointerSize)); | 4837 __ addi(r4, sp, Operand(kNumSavedRegs * kPointerSize)); |
4594 | 4838 |
4595 // Align the stack if necessary. | 4839 // Align the stack if necessary. |
4596 int frame_alignment = masm->ActivationFrameAlignment(); | 4840 int frame_alignment = masm->ActivationFrameAlignment(); |
4597 if (frame_alignment > kPointerSize) { | 4841 if (frame_alignment > kPointerSize) { |
4598 __ mov(r5, sp); | 4842 __ mr(r15, sp); |
4599 ASSERT(IsPowerOf2(frame_alignment)); | 4843 ASSERT(IsPowerOf2(frame_alignment)); |
4600 __ and_(sp, sp, Operand(-frame_alignment)); | 4844 __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment))); |
4601 } | 4845 } |
4602 | 4846 |
4603 #if V8_HOST_ARCH_ARM | 4847 #if !defined(USE_SIMULATOR) |
4604 int32_t entry_hook = | 4848 uintptr_t entry_hook = |
4605 reinterpret_cast<int32_t>(isolate()->function_entry_hook()); | 4849 reinterpret_cast<uintptr_t>(isolate()->function_entry_hook()); |
4606 __ mov(ip, Operand(entry_hook)); | 4850 __ mov(ip, Operand(entry_hook)); |
| 4851 |
| 4852 #if ABI_USES_FUNCTION_DESCRIPTORS |
| 4853 // Function descriptor |
| 4854 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize)); |
| 4855 __ LoadP(ip, MemOperand(ip, 0)); |
| 4856 #elif ABI_TOC_ADDRESSABILITY_VIA_IP |
| 4857 // ip set above, so nothing to do. |
| 4858 #endif |
| 4859 |
| 4860 // PPC LINUX ABI: |
| 4861 __ li(r0, Operand::Zero()); |
| 4862 __ StorePU(r0, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize)); |
4607 #else | 4863 #else |
4608 // Under the simulator we need to indirect the entry hook through a | 4864 // Under the simulator we need to indirect the entry hook through a |
4609 // trampoline function at a known address. | 4865 // trampoline function at a known address. |
4610 // It additionally takes an isolate as a third parameter | 4866 // It additionally takes an isolate as a third parameter |
4611 __ mov(r2, Operand(ExternalReference::isolate_address(isolate()))); | 4867 __ mov(r5, Operand(ExternalReference::isolate_address(isolate()))); |
4612 | 4868 |
4613 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); | 4869 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); |
4614 __ mov(ip, Operand(ExternalReference(&dispatcher, | 4870 __ mov(ip, Operand(ExternalReference(&dispatcher, |
4615 ExternalReference::BUILTIN_CALL, | 4871 ExternalReference::BUILTIN_CALL, |
4616 isolate()))); | 4872 isolate()))); |
4617 #endif | 4873 #endif |
4618 __ Call(ip); | 4874 __ Call(ip); |
4619 | 4875 |
| 4876 #if !defined(USE_SIMULATOR) |
| 4877 __ addi(sp, sp, Operand(kNumRequiredStackFrameSlots * kPointerSize)); |
| 4878 #endif |
| 4879 |
4620 // Restore the stack pointer if needed. | 4880 // Restore the stack pointer if needed. |
4621 if (frame_alignment > kPointerSize) { | 4881 if (frame_alignment > kPointerSize) { |
4622 __ mov(sp, r5); | 4882 __ mr(sp, r15); |
4623 } | 4883 } |
4624 | 4884 |
4625 // Also pop pc to get Ret(0). | 4885 // Also pop lr to get Ret(0). |
4626 __ ldm(ia_w, sp, kSavedRegs | pc.bit()); | 4886 __ MultiPop(kSavedRegs | r0.bit()); |
| 4887 __ mtlr(r0); |
| 4888 __ Ret(); |
4627 } | 4889 } |
4628 | 4890 |
4629 | 4891 |
4630 template<class T> | 4892 template<class T> |
4631 static void CreateArrayDispatch(MacroAssembler* masm, | 4893 static void CreateArrayDispatch(MacroAssembler* masm, |
4632 AllocationSiteOverrideMode mode) { | 4894 AllocationSiteOverrideMode mode) { |
4633 if (mode == DISABLE_ALLOCATION_SITES) { | 4895 if (mode == DISABLE_ALLOCATION_SITES) { |
4634 T stub(masm->isolate(), GetInitialFastElementsKind(), mode); | 4896 T stub(masm->isolate(), GetInitialFastElementsKind(), mode); |
4635 __ TailCallStub(&stub); | 4897 __ TailCallStub(&stub); |
4636 } else if (mode == DONT_OVERRIDE) { | 4898 } else if (mode == DONT_OVERRIDE) { |
4637 int last_index = GetSequenceIndexFromFastElementsKind( | 4899 int last_index = GetSequenceIndexFromFastElementsKind( |
4638 TERMINAL_FAST_ELEMENTS_KIND); | 4900 TERMINAL_FAST_ELEMENTS_KIND); |
4639 for (int i = 0; i <= last_index; ++i) { | 4901 for (int i = 0; i <= last_index; ++i) { |
4640 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); | 4902 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); |
4641 __ cmp(r3, Operand(kind)); | 4903 __ Cmpi(r6, Operand(kind), r0); |
4642 T stub(masm->isolate(), kind); | 4904 T stub(masm->isolate(), kind); |
4643 __ TailCallStub(&stub, eq); | 4905 __ TailCallStub(&stub, eq); |
4644 } | 4906 } |
4645 | 4907 |
4646 // If we reached this point there is a problem. | 4908 // If we reached this point there is a problem. |
4647 __ Abort(kUnexpectedElementsKindInArrayConstructor); | 4909 __ Abort(kUnexpectedElementsKindInArrayConstructor); |
4648 } else { | 4910 } else { |
4649 UNREACHABLE(); | 4911 UNREACHABLE(); |
4650 } | 4912 } |
4651 } | 4913 } |
4652 | 4914 |
4653 | 4915 |
4654 static void CreateArrayDispatchOneArgument(MacroAssembler* masm, | 4916 static void CreateArrayDispatchOneArgument(MacroAssembler* masm, |
4655 AllocationSiteOverrideMode mode) { | 4917 AllocationSiteOverrideMode mode) { |
4656 // r2 - allocation site (if mode != DISABLE_ALLOCATION_SITES) | 4918 // r5 - allocation site (if mode != DISABLE_ALLOCATION_SITES) |
4657 // r3 - kind (if mode != DISABLE_ALLOCATION_SITES) | 4919 // r6 - kind (if mode != DISABLE_ALLOCATION_SITES) |
4658 // r0 - number of arguments | 4920 // r3 - number of arguments |
4659 // r1 - constructor? | 4921 // r4 - constructor? |
4660 // sp[0] - last argument | 4922 // sp[0] - last argument |
4661 Label normal_sequence; | 4923 Label normal_sequence; |
4662 if (mode == DONT_OVERRIDE) { | 4924 if (mode == DONT_OVERRIDE) { |
4663 ASSERT(FAST_SMI_ELEMENTS == 0); | 4925 ASSERT(FAST_SMI_ELEMENTS == 0); |
4664 ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); | 4926 ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); |
4665 ASSERT(FAST_ELEMENTS == 2); | 4927 ASSERT(FAST_ELEMENTS == 2); |
4666 ASSERT(FAST_HOLEY_ELEMENTS == 3); | 4928 ASSERT(FAST_HOLEY_ELEMENTS == 3); |
4667 ASSERT(FAST_DOUBLE_ELEMENTS == 4); | 4929 ASSERT(FAST_DOUBLE_ELEMENTS == 4); |
4668 ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5); | 4930 ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5); |
4669 | 4931 |
4670 // is the low bit set? If so, we are holey and that is good. | 4932 // is the low bit set? If so, we are holey and that is good. |
4671 __ tst(r3, Operand(1)); | 4933 __ andi(r0, r6, Operand(1)); |
4672 __ b(ne, &normal_sequence); | 4934 __ bne(&normal_sequence, cr0); |
4673 } | 4935 } |
4674 | 4936 |
4675 // look at the first argument | 4937 // look at the first argument |
4676 __ ldr(r5, MemOperand(sp, 0)); | 4938 __ LoadP(r8, MemOperand(sp, 0)); |
4677 __ cmp(r5, Operand::Zero()); | 4939 __ cmpi(r8, Operand::Zero()); |
4678 __ b(eq, &normal_sequence); | 4940 __ beq(&normal_sequence); |
4679 | 4941 |
4680 if (mode == DISABLE_ALLOCATION_SITES) { | 4942 if (mode == DISABLE_ALLOCATION_SITES) { |
4681 ElementsKind initial = GetInitialFastElementsKind(); | 4943 ElementsKind initial = GetInitialFastElementsKind(); |
4682 ElementsKind holey_initial = GetHoleyElementsKind(initial); | 4944 ElementsKind holey_initial = GetHoleyElementsKind(initial); |
4683 | 4945 |
4684 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), | 4946 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), |
4685 holey_initial, | 4947 holey_initial, |
4686 DISABLE_ALLOCATION_SITES); | 4948 DISABLE_ALLOCATION_SITES); |
4687 __ TailCallStub(&stub_holey); | 4949 __ TailCallStub(&stub_holey); |
4688 | 4950 |
4689 __ bind(&normal_sequence); | 4951 __ bind(&normal_sequence); |
4690 ArraySingleArgumentConstructorStub stub(masm->isolate(), | 4952 ArraySingleArgumentConstructorStub stub(masm->isolate(), |
4691 initial, | 4953 initial, |
4692 DISABLE_ALLOCATION_SITES); | 4954 DISABLE_ALLOCATION_SITES); |
4693 __ TailCallStub(&stub); | 4955 __ TailCallStub(&stub); |
4694 } else if (mode == DONT_OVERRIDE) { | 4956 } else if (mode == DONT_OVERRIDE) { |
4695 // We are going to create a holey array, but our kind is non-holey. | 4957 // We are going to create a holey array, but our kind is non-holey. |
4696 // Fix kind and retry (only if we have an allocation site in the slot). | 4958 // Fix kind and retry (only if we have an allocation site in the slot). |
4697 __ add(r3, r3, Operand(1)); | 4959 __ addi(r6, r6, Operand(1)); |
4698 | 4960 |
4699 if (FLAG_debug_code) { | 4961 if (FLAG_debug_code) { |
4700 __ ldr(r5, FieldMemOperand(r2, 0)); | 4962 __ LoadP(r8, FieldMemOperand(r5, 0)); |
4701 __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex); | 4963 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex); |
4702 __ Assert(eq, kExpectedAllocationSite); | 4964 __ Assert(eq, kExpectedAllocationSite); |
4703 } | 4965 } |
4704 | 4966 |
4705 // Save the resulting elements kind in type info. We can't just store r3 | 4967 // Save the resulting elements kind in type info. We can't just store r6 |
4706 // in the AllocationSite::transition_info field because elements kind is | 4968 // in the AllocationSite::transition_info field because elements kind is |
4707 // restricted to a portion of the field...upper bits need to be left alone. | 4969 // restricted to a portion of the field...upper bits need to be left alone. |
4708 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); | 4970 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); |
4709 __ ldr(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset)); | 4971 __ LoadP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset)); |
4710 __ add(r4, r4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley))); | 4972 __ AddSmiLiteral(r7, r7, Smi::FromInt(kFastElementsKindPackedToHoley), r0); |
4711 __ str(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset)); | 4973 __ StoreP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset), |
| 4974 r0); |
4712 | 4975 |
4713 __ bind(&normal_sequence); | 4976 __ bind(&normal_sequence); |
4714 int last_index = GetSequenceIndexFromFastElementsKind( | 4977 int last_index = GetSequenceIndexFromFastElementsKind( |
4715 TERMINAL_FAST_ELEMENTS_KIND); | 4978 TERMINAL_FAST_ELEMENTS_KIND); |
4716 for (int i = 0; i <= last_index; ++i) { | 4979 for (int i = 0; i <= last_index; ++i) { |
4717 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); | 4980 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); |
4718 __ cmp(r3, Operand(kind)); | 4981 __ mov(r0, Operand(kind)); |
| 4982 __ cmp(r6, r0); |
4719 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); | 4983 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); |
4720 __ TailCallStub(&stub, eq); | 4984 __ TailCallStub(&stub, eq); |
4721 } | 4985 } |
4722 | 4986 |
4723 // If we reached this point there is a problem. | 4987 // If we reached this point there is a problem. |
4724 __ Abort(kUnexpectedElementsKindInArrayConstructor); | 4988 __ Abort(kUnexpectedElementsKindInArrayConstructor); |
4725 } else { | 4989 } else { |
4726 UNREACHABLE(); | 4990 UNREACHABLE(); |
4727 } | 4991 } |
4728 } | 4992 } |
(...skipping 38 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
4767 stubh3.GetCode(); | 5031 stubh3.GetCode(); |
4768 } | 5032 } |
4769 } | 5033 } |
4770 | 5034 |
4771 | 5035 |
4772 void ArrayConstructorStub::GenerateDispatchToArrayStub( | 5036 void ArrayConstructorStub::GenerateDispatchToArrayStub( |
4773 MacroAssembler* masm, | 5037 MacroAssembler* masm, |
4774 AllocationSiteOverrideMode mode) { | 5038 AllocationSiteOverrideMode mode) { |
4775 if (argument_count_ == ANY) { | 5039 if (argument_count_ == ANY) { |
4776 Label not_zero_case, not_one_case; | 5040 Label not_zero_case, not_one_case; |
4777 __ tst(r0, r0); | 5041 __ cmpi(r3, Operand::Zero()); |
4778 __ b(ne, ¬_zero_case); | 5042 __ bne(¬_zero_case); |
4779 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); | 5043 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); |
4780 | 5044 |
4781 __ bind(¬_zero_case); | 5045 __ bind(¬_zero_case); |
4782 __ cmp(r0, Operand(1)); | 5046 __ cmpi(r3, Operand(1)); |
4783 __ b(gt, ¬_one_case); | 5047 __ bgt(¬_one_case); |
4784 CreateArrayDispatchOneArgument(masm, mode); | 5048 CreateArrayDispatchOneArgument(masm, mode); |
4785 | 5049 |
4786 __ bind(¬_one_case); | 5050 __ bind(¬_one_case); |
4787 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); | 5051 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); |
4788 } else if (argument_count_ == NONE) { | 5052 } else if (argument_count_ == NONE) { |
4789 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); | 5053 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); |
4790 } else if (argument_count_ == ONE) { | 5054 } else if (argument_count_ == ONE) { |
4791 CreateArrayDispatchOneArgument(masm, mode); | 5055 CreateArrayDispatchOneArgument(masm, mode); |
4792 } else if (argument_count_ == MORE_THAN_ONE) { | 5056 } else if (argument_count_ == MORE_THAN_ONE) { |
4793 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); | 5057 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); |
4794 } else { | 5058 } else { |
4795 UNREACHABLE(); | 5059 UNREACHABLE(); |
4796 } | 5060 } |
4797 } | 5061 } |
4798 | 5062 |
4799 | 5063 |
4800 void ArrayConstructorStub::Generate(MacroAssembler* masm) { | 5064 void ArrayConstructorStub::Generate(MacroAssembler* masm) { |
4801 // ----------- S t a t e ------------- | 5065 // ----------- S t a t e ------------- |
4802 // -- r0 : argc (only if argument_count_ == ANY) | 5066 // -- r3 : argc (only if argument_count_ == ANY) |
4803 // -- r1 : constructor | 5067 // -- r4 : constructor |
4804 // -- r2 : AllocationSite or undefined | 5068 // -- r5 : AllocationSite or undefined |
4805 // -- sp[0] : return address | 5069 // -- sp[0] : return address |
4806 // -- sp[4] : last argument | 5070 // -- sp[4] : last argument |
4807 // ----------------------------------- | 5071 // ----------------------------------- |
4808 | 5072 |
4809 if (FLAG_debug_code) { | 5073 if (FLAG_debug_code) { |
4810 // The array construct code is only set for the global and natives | 5074 // The array construct code is only set for the global and natives |
4811 // builtin Array functions which always have maps. | 5075 // builtin Array functions which always have maps. |
4812 | 5076 |
4813 // Initial map for the builtin Array function should be a map. | 5077 // Initial map for the builtin Array function should be a map. |
4814 __ ldr(r4, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); | 5078 __ LoadP(r7, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); |
4815 // Will both indicate a NULL and a Smi. | 5079 // Will both indicate a NULL and a Smi. |
4816 __ tst(r4, Operand(kSmiTagMask)); | 5080 __ TestIfSmi(r7, r0); |
4817 __ Assert(ne, kUnexpectedInitialMapForArrayFunction); | 5081 __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0); |
4818 __ CompareObjectType(r4, r4, r5, MAP_TYPE); | 5082 __ CompareObjectType(r7, r7, r8, MAP_TYPE); |
4819 __ Assert(eq, kUnexpectedInitialMapForArrayFunction); | 5083 __ Assert(eq, kUnexpectedInitialMapForArrayFunction); |
4820 | 5084 |
4821 // We should either have undefined in r2 or a valid AllocationSite | 5085 // We should either have undefined in r5 or a valid AllocationSite |
4822 __ AssertUndefinedOrAllocationSite(r2, r4); | 5086 __ AssertUndefinedOrAllocationSite(r5, r7); |
4823 } | 5087 } |
4824 | 5088 |
4825 Label no_info; | 5089 Label no_info; |
4826 // Get the elements kind and case on that. | 5090 // Get the elements kind and case on that. |
4827 __ CompareRoot(r2, Heap::kUndefinedValueRootIndex); | 5091 __ CompareRoot(r5, Heap::kUndefinedValueRootIndex); |
4828 __ b(eq, &no_info); | 5092 __ beq(&no_info); |
4829 | 5093 |
4830 __ ldr(r3, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset)); | 5094 __ LoadP(r6, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset)); |
4831 __ SmiUntag(r3); | 5095 __ SmiUntag(r6); |
4832 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); | 5096 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); |
4833 __ and_(r3, r3, Operand(AllocationSite::ElementsKindBits::kMask)); | 5097 __ And(r6, r6, Operand(AllocationSite::ElementsKindBits::kMask)); |
4834 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); | 5098 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); |
4835 | 5099 |
4836 __ bind(&no_info); | 5100 __ bind(&no_info); |
4837 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); | 5101 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); |
4838 } | 5102 } |
4839 | 5103 |
4840 | 5104 |
4841 void InternalArrayConstructorStub::GenerateCase( | 5105 void InternalArrayConstructorStub::GenerateCase( |
4842 MacroAssembler* masm, ElementsKind kind) { | 5106 MacroAssembler* masm, ElementsKind kind) { |
4843 __ cmp(r0, Operand(1)); | 5107 __ cmpli(r3, Operand(1)); |
4844 | 5108 |
4845 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); | 5109 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); |
4846 __ TailCallStub(&stub0, lo); | 5110 __ TailCallStub(&stub0, lt); |
4847 | 5111 |
4848 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind); | 5112 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind); |
4849 __ TailCallStub(&stubN, hi); | 5113 __ TailCallStub(&stubN, gt); |
4850 | 5114 |
4851 if (IsFastPackedElementsKind(kind)) { | 5115 if (IsFastPackedElementsKind(kind)) { |
4852 // We might need to create a holey array | 5116 // We might need to create a holey array |
4853 // look at the first argument | 5117 // look at the first argument |
4854 __ ldr(r3, MemOperand(sp, 0)); | 5118 __ LoadP(r6, MemOperand(sp, 0)); |
4855 __ cmp(r3, Operand::Zero()); | 5119 __ cmpi(r6, Operand::Zero()); |
4856 | 5120 |
4857 InternalArraySingleArgumentConstructorStub | 5121 InternalArraySingleArgumentConstructorStub |
4858 stub1_holey(isolate(), GetHoleyElementsKind(kind)); | 5122 stub1_holey(isolate(), GetHoleyElementsKind(kind)); |
4859 __ TailCallStub(&stub1_holey, ne); | 5123 __ TailCallStub(&stub1_holey, ne); |
4860 } | 5124 } |
4861 | 5125 |
4862 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); | 5126 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); |
4863 __ TailCallStub(&stub1); | 5127 __ TailCallStub(&stub1); |
4864 } | 5128 } |
4865 | 5129 |
4866 | 5130 |
4867 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { | 5131 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { |
4868 // ----------- S t a t e ------------- | 5132 // ----------- S t a t e ------------- |
4869 // -- r0 : argc | 5133 // -- r3 : argc |
4870 // -- r1 : constructor | 5134 // -- r4 : constructor |
4871 // -- sp[0] : return address | 5135 // -- sp[0] : return address |
4872 // -- sp[4] : last argument | 5136 // -- sp[4] : last argument |
4873 // ----------------------------------- | 5137 // ----------------------------------- |
4874 | 5138 |
4875 if (FLAG_debug_code) { | 5139 if (FLAG_debug_code) { |
4876 // The array construct code is only set for the global and natives | 5140 // The array construct code is only set for the global and natives |
4877 // builtin Array functions which always have maps. | 5141 // builtin Array functions which always have maps. |
4878 | 5142 |
4879 // Initial map for the builtin Array function should be a map. | 5143 // Initial map for the builtin Array function should be a map. |
4880 __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); | 5144 __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); |
4881 // Will both indicate a NULL and a Smi. | 5145 // Will both indicate a NULL and a Smi. |
4882 __ tst(r3, Operand(kSmiTagMask)); | 5146 __ TestIfSmi(r6, r0); |
4883 __ Assert(ne, kUnexpectedInitialMapForArrayFunction); | 5147 __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0); |
4884 __ CompareObjectType(r3, r3, r4, MAP_TYPE); | 5148 __ CompareObjectType(r6, r6, r7, MAP_TYPE); |
4885 __ Assert(eq, kUnexpectedInitialMapForArrayFunction); | 5149 __ Assert(eq, kUnexpectedInitialMapForArrayFunction); |
4886 } | 5150 } |
4887 | 5151 |
4888 // Figure out the right elements kind | 5152 // Figure out the right elements kind |
4889 __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); | 5153 __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); |
4890 // Load the map's "bit field 2" into |result|. We only need the first byte, | 5154 // Load the map's "bit field 2" into |result|. |
4891 // but the following bit field extraction takes care of that anyway. | 5155 __ lbz(r6, FieldMemOperand(r6, Map::kBitField2Offset)); |
4892 __ ldr(r3, FieldMemOperand(r3, Map::kBitField2Offset)); | |
4893 // Retrieve elements_kind from bit field 2. | 5156 // Retrieve elements_kind from bit field 2. |
4894 __ DecodeField<Map::ElementsKindBits>(r3); | 5157 __ DecodeField<Map::ElementsKindBits>(r6); |
4895 | 5158 |
4896 if (FLAG_debug_code) { | 5159 if (FLAG_debug_code) { |
4897 Label done; | 5160 Label done; |
4898 __ cmp(r3, Operand(FAST_ELEMENTS)); | 5161 __ cmpi(r6, Operand(FAST_ELEMENTS)); |
4899 __ b(eq, &done); | 5162 __ beq(&done); |
4900 __ cmp(r3, Operand(FAST_HOLEY_ELEMENTS)); | 5163 __ cmpi(r6, Operand(FAST_HOLEY_ELEMENTS)); |
4901 __ Assert(eq, | 5164 __ Assert(eq, |
4902 kInvalidElementsKindForInternalArrayOrInternalPackedArray); | 5165 kInvalidElementsKindForInternalArrayOrInternalPackedArray); |
4903 __ bind(&done); | 5166 __ bind(&done); |
4904 } | 5167 } |
4905 | 5168 |
4906 Label fast_elements_case; | 5169 Label fast_elements_case; |
4907 __ cmp(r3, Operand(FAST_ELEMENTS)); | 5170 __ cmpi(r6, Operand(FAST_ELEMENTS)); |
4908 __ b(eq, &fast_elements_case); | 5171 __ beq(&fast_elements_case); |
4909 GenerateCase(masm, FAST_HOLEY_ELEMENTS); | 5172 GenerateCase(masm, FAST_HOLEY_ELEMENTS); |
4910 | 5173 |
4911 __ bind(&fast_elements_case); | 5174 __ bind(&fast_elements_case); |
4912 GenerateCase(masm, FAST_ELEMENTS); | 5175 GenerateCase(masm, FAST_ELEMENTS); |
4913 } | 5176 } |
4914 | 5177 |
4915 | 5178 |
4916 void CallApiFunctionStub::Generate(MacroAssembler* masm) { | 5179 void CallApiFunctionStub::Generate(MacroAssembler* masm) { |
4917 // ----------- S t a t e ------------- | 5180 // ----------- S t a t e ------------- |
4918 // -- r0 : callee | 5181 // -- r3 : callee |
4919 // -- r4 : call_data | 5182 // -- r7 : call_data |
4920 // -- r2 : holder | 5183 // -- r5 : holder |
4921 // -- r1 : api_function_address | 5184 // -- r4 : api_function_address |
4922 // -- cp : context | 5185 // -- cp : context |
4923 // -- | 5186 // -- |
4924 // -- sp[0] : last argument | 5187 // -- sp[0] : last argument |
4925 // -- ... | 5188 // -- ... |
4926 // -- sp[(argc - 1)* 4] : first argument | 5189 // -- sp[(argc - 1)* 4] : first argument |
4927 // -- sp[argc * 4] : receiver | 5190 // -- sp[argc * 4] : receiver |
4928 // ----------------------------------- | 5191 // ----------------------------------- |
4929 | 5192 |
4930 Register callee = r0; | 5193 Register callee = r3; |
4931 Register call_data = r4; | 5194 Register call_data = r7; |
4932 Register holder = r2; | 5195 Register holder = r5; |
4933 Register api_function_address = r1; | 5196 Register api_function_address = r4; |
4934 Register context = cp; | 5197 Register context = cp; |
4935 | 5198 |
4936 int argc = ArgumentBits::decode(bit_field_); | 5199 int argc = ArgumentBits::decode(bit_field_); |
4937 bool is_store = IsStoreBits::decode(bit_field_); | 5200 bool is_store = IsStoreBits::decode(bit_field_); |
4938 bool call_data_undefined = CallDataUndefinedBits::decode(bit_field_); | 5201 bool call_data_undefined = CallDataUndefinedBits::decode(bit_field_); |
4939 | 5202 |
4940 typedef FunctionCallbackArguments FCA; | 5203 typedef FunctionCallbackArguments FCA; |
4941 | 5204 |
4942 STATIC_ASSERT(FCA::kContextSaveIndex == 6); | 5205 STATIC_ASSERT(FCA::kContextSaveIndex == 6); |
4943 STATIC_ASSERT(FCA::kCalleeIndex == 5); | 5206 STATIC_ASSERT(FCA::kCalleeIndex == 5); |
4944 STATIC_ASSERT(FCA::kDataIndex == 4); | 5207 STATIC_ASSERT(FCA::kDataIndex == 4); |
4945 STATIC_ASSERT(FCA::kReturnValueOffset == 3); | 5208 STATIC_ASSERT(FCA::kReturnValueOffset == 3); |
4946 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); | 5209 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); |
4947 STATIC_ASSERT(FCA::kIsolateIndex == 1); | 5210 STATIC_ASSERT(FCA::kIsolateIndex == 1); |
4948 STATIC_ASSERT(FCA::kHolderIndex == 0); | 5211 STATIC_ASSERT(FCA::kHolderIndex == 0); |
4949 STATIC_ASSERT(FCA::kArgsLength == 7); | 5212 STATIC_ASSERT(FCA::kArgsLength == 7); |
4950 | 5213 |
4951 // context save | 5214 // context save |
4952 __ push(context); | 5215 __ push(context); |
4953 // load context from callee | 5216 // load context from callee |
4954 __ ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset)); | 5217 __ LoadP(context, FieldMemOperand(callee, JSFunction::kContextOffset)); |
4955 | 5218 |
4956 // callee | 5219 // callee |
4957 __ push(callee); | 5220 __ push(callee); |
4958 | 5221 |
4959 // call data | 5222 // call data |
4960 __ push(call_data); | 5223 __ push(call_data); |
4961 | 5224 |
4962 Register scratch = call_data; | 5225 Register scratch = call_data; |
4963 if (!call_data_undefined) { | 5226 if (!call_data_undefined) { |
4964 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); | 5227 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); |
4965 } | 5228 } |
4966 // return value | 5229 // return value |
4967 __ push(scratch); | 5230 __ push(scratch); |
4968 // return value default | 5231 // return value default |
4969 __ push(scratch); | 5232 __ push(scratch); |
4970 // isolate | 5233 // isolate |
4971 __ mov(scratch, | 5234 __ mov(scratch, |
4972 Operand(ExternalReference::isolate_address(isolate()))); | 5235 Operand(ExternalReference::isolate_address(isolate()))); |
4973 __ push(scratch); | 5236 __ push(scratch); |
4974 // holder | 5237 // holder |
4975 __ push(holder); | 5238 __ push(holder); |
4976 | 5239 |
4977 // Prepare arguments. | 5240 // Prepare arguments. |
4978 __ mov(scratch, sp); | 5241 __ mr(scratch, sp); |
4979 | 5242 |
4980 // Allocate the v8::Arguments structure in the arguments' space since | 5243 // Allocate the v8::Arguments structure in the arguments' space since |
4981 // it's not controlled by GC. | 5244 // it's not controlled by GC. |
4982 const int kApiStackSpace = 4; | 5245 // PPC LINUX ABI: |
| 5246 // |
| 5247 // Create 5 extra slots on stack: |
| 5248 // [0] space for DirectCEntryStub's LR save |
| 5249 // [1-4] FunctionCallbackInfo |
| 5250 const int kApiStackSpace = 5; |
4983 | 5251 |
4984 FrameScope frame_scope(masm, StackFrame::MANUAL); | 5252 FrameScope frame_scope(masm, StackFrame::MANUAL); |
4985 __ EnterExitFrame(false, kApiStackSpace); | 5253 __ EnterExitFrame(false, kApiStackSpace); |
4986 | 5254 |
4987 ASSERT(!api_function_address.is(r0) && !scratch.is(r0)); | 5255 ASSERT(!api_function_address.is(r3) && !scratch.is(r3)); |
4988 // r0 = FunctionCallbackInfo& | 5256 // r3 = FunctionCallbackInfo& |
4989 // Arguments is after the return address. | 5257 // Arguments is after the return address. |
4990 __ add(r0, sp, Operand(1 * kPointerSize)); | 5258 __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize)); |
4991 // FunctionCallbackInfo::implicit_args_ | 5259 // FunctionCallbackInfo::implicit_args_ |
4992 __ str(scratch, MemOperand(r0, 0 * kPointerSize)); | 5260 __ StoreP(scratch, MemOperand(r3, 0 * kPointerSize)); |
4993 // FunctionCallbackInfo::values_ | 5261 // FunctionCallbackInfo::values_ |
4994 __ add(ip, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize)); | 5262 __ addi(ip, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize)); |
4995 __ str(ip, MemOperand(r0, 1 * kPointerSize)); | 5263 __ StoreP(ip, MemOperand(r3, 1 * kPointerSize)); |
4996 // FunctionCallbackInfo::length_ = argc | 5264 // FunctionCallbackInfo::length_ = argc |
4997 __ mov(ip, Operand(argc)); | 5265 __ li(ip, Operand(argc)); |
4998 __ str(ip, MemOperand(r0, 2 * kPointerSize)); | 5266 __ stw(ip, MemOperand(r3, 2 * kPointerSize)); |
4999 // FunctionCallbackInfo::is_construct_call = 0 | 5267 // FunctionCallbackInfo::is_construct_call = 0 |
5000 __ mov(ip, Operand::Zero()); | 5268 __ li(ip, Operand::Zero()); |
5001 __ str(ip, MemOperand(r0, 3 * kPointerSize)); | 5269 __ stw(ip, MemOperand(r3, 2 * kPointerSize + kIntSize)); |
5002 | 5270 |
5003 const int kStackUnwindSpace = argc + FCA::kArgsLength + 1; | 5271 const int kStackUnwindSpace = argc + FCA::kArgsLength + 1; |
5004 ExternalReference thunk_ref = | 5272 ExternalReference thunk_ref = |
5005 ExternalReference::invoke_function_callback(isolate()); | 5273 ExternalReference::invoke_function_callback(isolate()); |
5006 | 5274 |
5007 AllowExternalCallThatCantCauseGC scope(masm); | 5275 AllowExternalCallThatCantCauseGC scope(masm); |
5008 MemOperand context_restore_operand( | 5276 MemOperand context_restore_operand( |
5009 fp, (2 + FCA::kContextSaveIndex) * kPointerSize); | 5277 fp, (2 + FCA::kContextSaveIndex) * kPointerSize); |
5010 // Stores return the first js argument | 5278 // Stores return the first js argument |
5011 int return_value_offset = 0; | 5279 int return_value_offset = 0; |
(...skipping 10 matching lines...) Expand all Loading... |
5022 return_value_operand, | 5290 return_value_operand, |
5023 &context_restore_operand); | 5291 &context_restore_operand); |
5024 } | 5292 } |
5025 | 5293 |
5026 | 5294 |
5027 void CallApiGetterStub::Generate(MacroAssembler* masm) { | 5295 void CallApiGetterStub::Generate(MacroAssembler* masm) { |
5028 // ----------- S t a t e ------------- | 5296 // ----------- S t a t e ------------- |
5029 // -- sp[0] : name | 5297 // -- sp[0] : name |
5030 // -- sp[4 - kArgsLength*4] : PropertyCallbackArguments object | 5298 // -- sp[4 - kArgsLength*4] : PropertyCallbackArguments object |
5031 // -- ... | 5299 // -- ... |
5032 // -- r2 : api_function_address | 5300 // -- r5 : api_function_address |
5033 // ----------------------------------- | 5301 // ----------------------------------- |
5034 | 5302 |
5035 Register api_function_address = r2; | 5303 Register api_function_address = r5; |
5036 | 5304 |
5037 __ mov(r0, sp); // r0 = Handle<Name> | 5305 __ mr(r3, sp); // r0 = Handle<Name> |
5038 __ add(r1, r0, Operand(1 * kPointerSize)); // r1 = PCA | 5306 __ addi(r4, r3, Operand(1 * kPointerSize)); // r4 = PCA |
5039 | 5307 |
5040 const int kApiStackSpace = 1; | 5308 // If ABI passes Handles (pointer-sized struct) in a register: |
| 5309 // |
| 5310 // Create 2 extra slots on stack: |
| 5311 // [0] space for DirectCEntryStub's LR save |
| 5312 // [1] AccessorInfo& |
| 5313 // |
| 5314 // Otherwise: |
| 5315 // |
| 5316 // Create 3 extra slots on stack: |
| 5317 // [0] space for DirectCEntryStub's LR save |
| 5318 // [1] copy of Handle (first arg) |
| 5319 // [2] AccessorInfo& |
| 5320 #if ABI_PASSES_HANDLES_IN_REGS |
| 5321 const int kAccessorInfoSlot = kStackFrameExtraParamSlot + 1; |
| 5322 const int kApiStackSpace = 2; |
| 5323 #else |
| 5324 const int kArg0Slot = kStackFrameExtraParamSlot + 1; |
| 5325 const int kAccessorInfoSlot = kArg0Slot + 1; |
| 5326 const int kApiStackSpace = 3; |
| 5327 #endif |
| 5328 |
5041 FrameScope frame_scope(masm, StackFrame::MANUAL); | 5329 FrameScope frame_scope(masm, StackFrame::MANUAL); |
5042 __ EnterExitFrame(false, kApiStackSpace); | 5330 __ EnterExitFrame(false, kApiStackSpace); |
5043 | 5331 |
| 5332 #if !ABI_PASSES_HANDLES_IN_REGS |
| 5333 // pass 1st arg by reference |
| 5334 __ StoreP(r3, |
| 5335 MemOperand(sp, kArg0Slot * kPointerSize)); |
| 5336 __ addi(r3, sp, Operand(kArg0Slot * kPointerSize)); |
| 5337 #endif |
| 5338 |
5044 // Create PropertyAccessorInfo instance on the stack above the exit frame with | 5339 // Create PropertyAccessorInfo instance on the stack above the exit frame with |
5045 // r1 (internal::Object** args_) as the data. | 5340 // r4 (internal::Object** args_) as the data. |
5046 __ str(r1, MemOperand(sp, 1 * kPointerSize)); | 5341 __ StoreP(r4, MemOperand(sp, kAccessorInfoSlot * kPointerSize)); |
5047 __ add(r1, sp, Operand(1 * kPointerSize)); // r1 = AccessorInfo& | 5342 // r4 = AccessorInfo& |
| 5343 __ addi(r4, sp, Operand(kAccessorInfoSlot * kPointerSize)); |
5048 | 5344 |
5049 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; | 5345 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; |
5050 | 5346 |
5051 ExternalReference thunk_ref = | 5347 ExternalReference thunk_ref = |
5052 ExternalReference::invoke_accessor_getter_callback(isolate()); | 5348 ExternalReference::invoke_accessor_getter_callback(isolate()); |
5053 __ CallApiFunctionAndReturn(api_function_address, | 5349 __ CallApiFunctionAndReturn(api_function_address, |
5054 thunk_ref, | 5350 thunk_ref, |
5055 kStackUnwindSpace, | 5351 kStackUnwindSpace, |
5056 MemOperand(fp, 6 * kPointerSize), | 5352 MemOperand(fp, 6 * kPointerSize), |
5057 NULL); | 5353 NULL); |
5058 } | 5354 } |
5059 | 5355 |
5060 | 5356 |
5061 #undef __ | 5357 #undef __ |
5062 | 5358 |
5063 } } // namespace v8::internal | 5359 } } // namespace v8::internal |
5064 | 5360 |
5065 #endif // V8_TARGET_ARCH_ARM | 5361 #endif // V8_TARGET_ARCH_PPC |
OLD | NEW |