Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(37)

Unified Diff: content/browser/media/capture/video_capture_oracle_unittest.cc

Issue 418283003: "Buttery Smooth" Tab Capture. (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: Fixed SmoothEventSamplerTest breakage. Created 6 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: content/browser/media/capture/video_capture_oracle_unittest.cc
diff --git a/content/browser/media/capture/video_capture_oracle_unittest.cc b/content/browser/media/capture/video_capture_oracle_unittest.cc
index dff8e97de7fec39c7f3e0f56f2c33c7f50ab5e1b..ec797ca3ff3ef291638925e74ca1251b24e599fd 100644
--- a/content/browser/media/capture/video_capture_oracle_unittest.cc
+++ b/content/browser/media/capture/video_capture_oracle_unittest.cc
@@ -4,9 +4,15 @@
#include "content/browser/media/capture/video_capture_oracle.h"
+#include <cstdlib>
+#include <utility>
+#include <vector>
+
+#include "base/logging.h"
#include "base/strings/stringprintf.h"
#include "base/time/time.h"
#include "testing/gtest/include/gtest/gtest.h"
+#include "ui/gfx/geometry/rect.h"
namespace content {
namespace {
@@ -33,10 +39,10 @@ void SteadyStateNoSampleAndAdvance(base::TimeDelta vsync,
ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t));
}
-void TimeTicksFromString(const char* string, base::TimeTicks* t) {
+base::TimeTicks InitialTestTimeTicks() {
base::Time time;
- ASSERT_TRUE(base::Time::FromString(string, &time));
- *t = base::TimeTicks::UnixEpoch() + (time - base::Time::UnixEpoch());
+ CHECK(base::Time::FromString("Sat, 23 Mar 2013 1:21:08 GMT", &time));
+ return base::TimeTicks::UnixEpoch() + (time - base::Time::UnixEpoch());
}
void TestRedundantCaptureStrategy(base::TimeDelta capture_period,
@@ -53,10 +59,10 @@ void TestRedundantCaptureStrategy(base::TimeDelta capture_period,
sampler->RecordSample();
ASSERT_FALSE(sampler->HasUnrecordedEvent());
- // After more than one capture period has passed without considering an event,
- // we should repeatedly be overdue for sampling. However, once the redundant
- // capture goal is achieved, we should no longer be overdue for sampling.
- *t += capture_period * 4;
+ // After more than 250 ms has passed without considering an event, we should
+ // repeatedly be overdue for sampling. However, once the redundant capture
+ // goal is achieved, we should no longer be overdue for sampling.
+ *t += base::TimeDelta::FromMilliseconds(250);
for (int i = 0; i < redundant_capture_goal; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
ASSERT_FALSE(sampler->HasUnrecordedEvent());
@@ -77,8 +83,7 @@ TEST(SmoothEventSamplerTest, Sample60HertzAt30Hertz) {
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 60;
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
- base::TimeTicks t;
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
+ base::TimeTicks t = InitialTestTimeTicks();
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
@@ -92,9 +97,10 @@ TEST(SmoothEventSamplerTest, Sample60HertzAt30Hertz) {
// Now pretend we're limited by backpressure in the pipeline. In this scenario
// case we are adding events but not sampling them.
+ const base::TimeTicks overdue_at = t + base::TimeDelta::FromMilliseconds(250);
for (int i = 0; i < 20; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
- ASSERT_EQ(i >= 7, sampler.IsOverdueForSamplingAt(t));
+ ASSERT_EQ(t >= overdue_at, sampler.IsOverdueForSamplingAt(t));
ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
ASSERT_TRUE(sampler.HasUnrecordedEvent());
t += vsync;
@@ -117,8 +123,7 @@ TEST(SmoothEventSamplerTest, Sample50HertzAt30Hertz) {
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 50;
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
- base::TimeTicks t;
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
+ base::TimeTicks t = InitialTestTimeTicks();
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
@@ -136,9 +141,10 @@ TEST(SmoothEventSamplerTest, Sample50HertzAt30Hertz) {
// Now pretend we're limited by backpressure in the pipeline. In this scenario
// case we are adding events but not sampling them.
- for (int i = 0; i < 12; i++) {
+ const base::TimeTicks overdue_at = t + base::TimeDelta::FromMilliseconds(250);
+ for (int i = 0; i < 13; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
- ASSERT_EQ(i >= 5, sampler.IsOverdueForSamplingAt(t));
+ ASSERT_EQ(t >= overdue_at, sampler.IsOverdueForSamplingAt(t));
ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
t += vsync;
}
@@ -163,8 +169,7 @@ TEST(SmoothEventSamplerTest, Sample75HertzAt30Hertz) {
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 75;
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
- base::TimeTicks t;
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
+ base::TimeTicks t = InitialTestTimeTicks();
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
@@ -184,9 +189,10 @@ TEST(SmoothEventSamplerTest, Sample75HertzAt30Hertz) {
// Now pretend we're limited by backpressure in the pipeline. In this scenario
// case we are adding events but not sampling them.
+ const base::TimeTicks overdue_at = t + base::TimeDelta::FromMilliseconds(250);
for (int i = 0; i < 20; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
- ASSERT_EQ(i >= 8, sampler.IsOverdueForSamplingAt(t));
+ ASSERT_EQ(t >= overdue_at, sampler.IsOverdueForSamplingAt(t));
ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
t += vsync;
}
@@ -213,8 +219,7 @@ TEST(SmoothEventSamplerTest, Sample30HertzAt30Hertz) {
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 30;
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
- base::TimeTicks t;
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
+ base::TimeTicks t = InitialTestTimeTicks();
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
@@ -227,9 +232,10 @@ TEST(SmoothEventSamplerTest, Sample30HertzAt30Hertz) {
// Now pretend we're limited by backpressure in the pipeline. In this scenario
// case we are adding events but not sampling them.
- for (int i = 0; i < 7; i++) {
+ const base::TimeTicks overdue_at = t + base::TimeDelta::FromMilliseconds(250);
+ for (int i = 0; i < 8; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
- ASSERT_EQ(i >= 3, sampler.IsOverdueForSamplingAt(t));
+ ASSERT_EQ(t >= overdue_at, sampler.IsOverdueForSamplingAt(t));
ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
t += vsync;
}
@@ -249,8 +255,7 @@ TEST(SmoothEventSamplerTest, Sample24HertzAt30Hertz) {
const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 24;
SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
- base::TimeTicks t;
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
+ base::TimeTicks t = InitialTestTimeTicks();
TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
&sampler, &t);
@@ -263,9 +268,10 @@ TEST(SmoothEventSamplerTest, Sample24HertzAt30Hertz) {
// Now pretend we're limited by backpressure in the pipeline. In this scenario
// case we are adding events but not sampling them.
+ const base::TimeTicks overdue_at = t + base::TimeDelta::FromMilliseconds(250);
for (int i = 0; i < 7; i++) {
SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
- ASSERT_EQ(i >= 3, sampler.IsOverdueForSamplingAt(t));
+ ASSERT_EQ(t >= overdue_at, sampler.IsOverdueForSamplingAt(t));
ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
t += vsync;
}
@@ -283,8 +289,7 @@ TEST(SmoothEventSamplerTest, DoubleDrawAtOneTimeStillDirties) {
const base::TimeDelta overdue_period = base::TimeDelta::FromSeconds(1);
SmoothEventSampler sampler(capture_period, true, 1);
- base::TimeTicks t;
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
+ base::TimeTicks t = InitialTestTimeTicks();
ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
sampler.RecordSample();
@@ -308,8 +313,7 @@ TEST(SmoothEventSamplerTest, FallbackToPollingIfUpdatesUnreliable) {
SmoothEventSampler should_not_poll(timer_interval, true, 1);
SmoothEventSampler should_poll(timer_interval, false, 1);
- base::TimeTicks t;
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
+ base::TimeTicks t = InitialTestTimeTicks();
// Do one round of the "happy case" where an event was received and
// RecordSample() was called by the client.
@@ -318,8 +322,11 @@ TEST(SmoothEventSamplerTest, FallbackToPollingIfUpdatesUnreliable) {
should_not_poll.RecordSample();
should_poll.RecordSample();
- // One time period ahead, neither sampler says we're overdue.
- for (int i = 0; i < 3; i++) {
+ // For the following time period, before 250 ms has elapsed, neither sampler
+ // says we're overdue.
+ const int non_overdue_intervals = static_cast<int>(
+ base::TimeDelta::FromMilliseconds(250) / timer_interval);
+ for (int i = 0; i < non_overdue_intervals; i++) {
t += timer_interval;
ASSERT_FALSE(should_not_poll.IsOverdueForSamplingAt(t))
<< "Sampled last event; should not be dirty.";
@@ -330,7 +337,7 @@ TEST(SmoothEventSamplerTest, FallbackToPollingIfUpdatesUnreliable) {
// Next time period ahead, both samplers say we're overdue. The non-polling
// sampler is returning true here because it has been configured to allow one
// redundant capture.
- t += timer_interval;
+ t += timer_interval; // Step past the 250 ms threshold.
ASSERT_TRUE(should_not_poll.IsOverdueForSamplingAt(t))
<< "Sampled last event; is dirty one time only to meet redundancy goal.";
ASSERT_TRUE(should_poll.IsOverdueForSamplingAt(t))
@@ -364,8 +371,7 @@ struct DataPoint {
void ReplayCheckingSamplerDecisions(const DataPoint* data_points,
size_t num_data_points,
SmoothEventSampler* sampler) {
- base::TimeTicks t;
- TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
+ base::TimeTicks t = InitialTestTimeTicks();
for (size_t i = 0; i < num_data_points; ++i) {
t += base::TimeDelta::FromMicroseconds(
static_cast<int64>(data_points[i].increment_ms * 1000));
@@ -483,5 +489,380 @@ TEST(SmoothEventSamplerTest, DrawingAt60FpsWith60HzVsyncSampledAt30Hertz) {
ReplayCheckingSamplerDecisions(data_points, arraysize(data_points), &sampler);
}
+// A test scenario for AnimatedContentSamplerTest.
+struct Scenario {
+ base::TimeDelta vsync_interval; // Compositor's update rate.
+ base::TimeDelta min_capture_period; // Maximum capture rate.
+ base::TimeDelta content_period; // Animating content frame rate.
+
+ Scenario(base::TimeDelta v, base::TimeDelta m, base::TimeDelta c)
+ : vsync_interval(v), min_capture_period(m), content_period(c) {}
+};
+
+// Value printer for Scenario.
+::std::ostream& operator<<(::std::ostream& os, const Scenario& s) {
+ return os << "{ vsync_interval=" << s.vsync_interval.InMicroseconds()
+ << ", min_capture_period=" << s.min_capture_period.InMicroseconds()
+ << ", content_period=" << s.content_period.InMicroseconds()
+ << " }";
+}
+
+class AnimatedContentSamplerTest : public ::testing::TestWithParam<Scenario> {
+ public:
+ AnimatedContentSamplerTest()
+ : count_dropped_frames_(0), count_sampled_frames_(0) {}
+
+ virtual void SetUp() OVERRIDE {
+ const base::TimeDelta since_epoch =
+ InitialTestTimeTicks() - base::TimeTicks::UnixEpoch();
+ srand(static_cast<unsigned int>(since_epoch.InMicroseconds()));
+ sampler_.reset(new AnimatedContentSampler(GetParam().min_capture_period));
+ }
+
+ protected:
+ typedef std::pair<gfx::Rect, base::TimeTicks> Event;
+
+ AnimatedContentSampler* sampler() const {
+ return sampler_.get();
+ }
+
+ std::vector<Event> GenerateEventSequence(base::TimeTicks begin,
+ base::TimeTicks end,
+ bool include_content_frame_events,
+ bool include_random_events) {
+ DCHECK(GetParam().content_period >= GetParam().vsync_interval);
+ base::TimeTicks next_content_time = begin - GetParam().content_period;
+ std::vector<Event> events;
+ for (base::TimeTicks compositor_time = begin; compositor_time < end;
+ compositor_time += GetParam().vsync_interval) {
+ if (include_content_frame_events && next_content_time < compositor_time) {
+ events.push_back(Event(GetContentDamageRect(), compositor_time));
+ next_content_time += GetParam().content_period;
+ } else if (include_random_events && GetRandomInRange(0, 5) == 0) {
+ events.push_back(Event(GetRandomDamageRect(), compositor_time));
+ }
+ }
+
+ return events;
+ }
+
+ void ResetFrameCounters() {
+ count_dropped_frames_ = 0;
+ count_sampled_frames_ = 0;
+ }
+
+ // Keep track what the sampler is proposing, and call RecordSample() if it
+ // proposes sampling |event|.
+ void ClientDoesWhatSamplerProposes(const Event& event) {
+ if (sampler_->next_frame_timestamp().is_null()) {
+ if (event.first == GetContentDamageRect())
+ ++count_dropped_frames_;
+ } else {
+ EXPECT_EQ(GetContentDamageRect(), event.first);
+ sampler_->RecordSample(sampler_->next_frame_timestamp());
+ ++count_sampled_frames_;
+ }
+ }
+
+ // RecordSample() is not called, but for testing, keep track of what the
+ // sampler is proposing for |event|.
+ void ClientCannotSampleFrame(const Event& event) {
+ if (sampler_->next_frame_timestamp().is_null()) {
+ if (event.first == GetContentDamageRect())
+ ++count_dropped_frames_;
+ } else {
+ EXPECT_EQ(GetContentDamageRect(), event.first);
+ ++count_sampled_frames_;
+ }
+ }
+
+ void ExpectFrameDropRatioIsCorrect() {
+ const double content_framerate =
+ 1000000.0 / GetParam().content_period.InMicroseconds();
+ const double capture_framerate =
+ 1000000.0 / GetParam().min_capture_period.InMicroseconds();
+ const double expected_drop_rate = std::max(
+ 0.0, (content_framerate - capture_framerate) / capture_framerate);
+ const double actual_drop_rate =
+ static_cast<double>(count_dropped_frames_) / count_sampled_frames_;
+ EXPECT_NEAR(expected_drop_rate, actual_drop_rate, 0.01);
+ }
+
+ static int GetRandomInRange(int begin, int end) {
+ const int len = end - begin;
+ const int rand_offset = (len == 0) ? 0 : (rand() % (end - begin));
+ return begin + rand_offset;
+ }
+
+ static gfx::Rect GetRandomDamageRect() {
+ return gfx::Rect(0, 0, GetRandomInRange(1, 600), GetRandomInRange(1, 600));
+ }
+
+ static gfx::Rect GetContentDamageRect() {
+ // This must be distinct from anything GetRandomDamageRect() could return.
+ return gfx::Rect(0, 0, 1280, 720);
+ }
+
+ private:
+ scoped_ptr<AnimatedContentSampler> sampler_;
+
+ // These counters only include the frames with the desired content.
+ int count_dropped_frames_;
+ int count_sampled_frames_;
+};
+
+// Tests that the implementation locks in/out of frames containing stable
+// animated content, whether or not random events are also simultaneously
+// present.
+TEST_P(AnimatedContentSamplerTest, LocksIntoMajorityAnimatedContent) {
+ // |begin| refers to the start of an event sequence in terms of the
+ // Compositor's clock.
+ base::TimeTicks begin = InitialTestTimeTicks();
+
+ // Provide three minutes of random events and expect no lock-in.
+ EXPECT_TRUE(sampler()->next_frame_timestamp().is_null());
+ base::TimeTicks end = begin + base::TimeDelta::FromMinutes(3);
+ std::vector<Event> events = GenerateEventSequence(begin, end, false, true);
+ for (std::vector<Event>::const_iterator i = events.begin(); i != events.end();
+ ++i) {
+ EXPECT_FALSE(sampler()->ConsiderPresentationEvent(i->first, i->second));
+ EXPECT_TRUE(sampler()->next_frame_timestamp().is_null());
+ sampler()->RecordSample(i->second);
+ }
+ begin = end;
+
+ // Provide content frame events with some random events mixed-in, and expect
+ // the sampler to lock-in once 1000 ms has elapsed, and also to remain in a
+ // continuous lock-in 1250 ms after that.
+ end = begin + base::TimeDelta::FromSeconds(10);
+ events = GenerateEventSequence(begin, end, true, true);
+ bool is_locked_in = false;
+ ResetFrameCounters();
+ for (std::vector<Event>::const_iterator i = events.begin(); i != events.end();
+ ++i) {
+ const base::TimeDelta elapsed = i->second - events.begin()->second;
+ if (elapsed < base::TimeDelta::FromMilliseconds(1000)) {
+ EXPECT_FALSE(sampler()->ConsiderPresentationEvent(i->first, i->second));
+ sampler()->RecordSample(i->second);
+ } else {
+ if (sampler()->ConsiderPresentationEvent(i->first, i->second)) {
+ is_locked_in = true;
+ ClientDoesWhatSamplerProposes(*i);
+ } else {
+ if (elapsed > base::TimeDelta::FromMilliseconds(1250))
+ EXPECT_FALSE(is_locked_in);
+ EXPECT_TRUE(sampler()->next_frame_timestamp().is_null());
+ sampler()->RecordSample(i->second);
+ }
+ }
+ }
+ EXPECT_TRUE(is_locked_in);
+ ExpectFrameDropRatioIsCorrect();
+ begin = end;
+
+ // Continue providing content frame events without random events mixed-in and
+ // expect the lock-in to hold.
+ end = begin + base::TimeDelta::FromSeconds(30);
+ events = GenerateEventSequence(begin, end, true, false);
+ ResetFrameCounters();
+ for (std::vector<Event>::const_iterator i = events.begin(); i != events.end();
+ ++i) {
+ EXPECT_TRUE(sampler()->ConsiderPresentationEvent(i->first, i->second));
+ ClientDoesWhatSamplerProposes(*i);
+ }
+ ExpectFrameDropRatioIsCorrect();
+ begin = end;
+
+ // Continue providing content frame events and expect the lock-in to hold.
+ // RecordSample() is only sometimes called, which simulates the capture
+ // pipeline experiencing back pressure.
+ end = begin + base::TimeDelta::FromSeconds(30);
+ events = GenerateEventSequence(begin, end, true, false);
+ ResetFrameCounters();
+ for (std::vector<Event>::const_iterator i = events.begin(); i != events.end();
+ ++i) {
+ EXPECT_TRUE(sampler()->ConsiderPresentationEvent(i->first, i->second));
+ if (GetRandomInRange(0, 2) == 0)
+ ClientCannotSampleFrame(*i);
+ else
+ ClientDoesWhatSamplerProposes(*i);
+ }
+ ExpectFrameDropRatioIsCorrect();
+ begin = end;
+
+ // Provide a half-second of random events only, and expect the lock-in to be
+ // broken.
+ end = begin + base::TimeDelta::FromMilliseconds(500);
+ events = GenerateEventSequence(begin, end, false, true);
+ is_locked_in = true;
+ for (std::vector<Event>::const_iterator i = events.begin(); i != events.end();
+ ++i) {
+ if (sampler()->ConsiderPresentationEvent(i->first, i->second)) {
+ EXPECT_TRUE(is_locked_in);
+ ClientDoesWhatSamplerProposes(*i);
+ } else {
+ is_locked_in = false;
+ EXPECT_TRUE(sampler()->next_frame_timestamp().is_null());
+ sampler()->RecordSample(i->second);
+ }
+ }
+ EXPECT_FALSE(is_locked_in);
+ begin = end;
+
+ // Now, go back to providing content frame events, and expect the sampler to
+ // lock-in once again.
+ end = begin + base::TimeDelta::FromSeconds(10);
+ events = GenerateEventSequence(begin, end, true, false);
+ for (std::vector<Event>::const_iterator i = events.begin(); i != events.end();
+ ++i) {
+ const base::TimeDelta elapsed = i->second - events.begin()->second;
+ if (elapsed < base::TimeDelta::FromMilliseconds(1000)) {
+ EXPECT_FALSE(sampler()->ConsiderPresentationEvent(i->first, i->second));
+ sampler()->RecordSample(i->second);
+ } else {
+ if (sampler()->ConsiderPresentationEvent(i->first, i->second)) {
+ is_locked_in = true;
+ ClientDoesWhatSamplerProposes(*i);
+ } else {
+ if (elapsed > base::TimeDelta::FromMilliseconds(1250))
+ EXPECT_FALSE(is_locked_in);
+ EXPECT_TRUE(sampler()->next_frame_timestamp().is_null());
+ sampler()->RecordSample(i->second);
+ }
+ }
+ }
+ EXPECT_TRUE(is_locked_in);
+ begin = end;
+}
+
+// Tests that the frame timestamps are smooth; meaning, that when run through a
+// simulated compositor, each frame is held displayed for the right number of
+// v-sync intervals.
+TEST_P(AnimatedContentSamplerTest, FrameTimestampsAreSmooth) {
+ // Generate 30 seconds of animated content events, run the events through
+ // AnimatedContentSampler, and record all frame timestamps being proposed
+ // once lock-in is continuous.
+ base::TimeTicks begin = InitialTestTimeTicks();
+ std::vector<Event> events = GenerateEventSequence(
+ begin,
+ begin + base::TimeDelta::FromSeconds(30),
+ true,
+ false);
+ typedef std::vector<base::TimeTicks> Timestamps;
+ Timestamps frame_timestamps;
+ for (std::vector<Event>::const_iterator i = events.begin(); i != events.end();
+ ++i) {
+ if (sampler()->ConsiderPresentationEvent(i->first, i->second)) {
+ if (!sampler()->next_frame_timestamp().is_null()) {
+ frame_timestamps.push_back(sampler()->next_frame_timestamp());
+ sampler()->RecordSample(sampler()->next_frame_timestamp());
+ }
+ } else {
+ frame_timestamps.clear(); // Reset until continuous lock-in.
+ }
+ }
+ ASSERT_LE(2u, frame_timestamps.size());
+
+ // Iterate through the |frame_timestamps|, building a histogram counting the
+ // number of times each frame was displayed k times. For example, 10 frames
+ // of 30 Hz content on a 60 Hz v-sync interval should result in
+ // display_counts[2] == 10. Quit early if any one frame was obviously
+ // repeated too many times.
+ const int64 max_expected_repeats_per_frame = 1 +
+ std::max(GetParam().min_capture_period, GetParam().content_period) /
+ GetParam().vsync_interval;
+ std::vector<size_t> display_counts(max_expected_repeats_per_frame + 1, 0);
+ base::TimeTicks last_present_time = frame_timestamps.front();
+ for (Timestamps::const_iterator i = frame_timestamps.begin() + 1;
+ i != frame_timestamps.end(); ++i) {
+ const size_t num_vsync_intervals = static_cast<size_t>(
+ (*i - last_present_time) / GetParam().vsync_interval);
+ ASSERT_LT(0u, num_vsync_intervals);
+ ASSERT_GT(display_counts.size(), num_vsync_intervals); // Quit early.
+ ++display_counts[num_vsync_intervals];
+ last_present_time += num_vsync_intervals * GetParam().vsync_interval;
+ }
+
+ // Analyze the histogram for an expected result pattern. If the frame
+ // timestamps are smooth, there should only be one or two buckets with
+ // non-zero counts and they should be next to each other. Because the clock
+ // precision for the event_times provided to the sampler is very granular
+ // (i.e., the vsync_interval), it's okay if other buckets have a tiny "stray"
+ // count in this test.
+ size_t highest_count = 0;
+ size_t second_highest_count = 0;
+ for (size_t repeats = 1; repeats < display_counts.size(); ++repeats) {
+ DVLOG(1) << "display_counts[" << repeats << "] is "
+ << display_counts[repeats];
+ if (display_counts[repeats] >= highest_count) {
+ second_highest_count = highest_count;
+ highest_count = display_counts[repeats];
+ } else if (display_counts[repeats] > second_highest_count) {
+ second_highest_count = display_counts[repeats];
+ }
+ }
+ size_t stray_count_remaining =
+ (frame_timestamps.size() - 1) - (highest_count + second_highest_count);
+ // Expect no more than 0.5% of frames fall outside the two main buckets.
+ EXPECT_GT(frame_timestamps.size() * 5 / 1000, stray_count_remaining);
+ for (size_t repeats = 1; repeats < display_counts.size() - 1; ++repeats) {
+ if (display_counts[repeats] == highest_count) {
+ EXPECT_EQ(second_highest_count, display_counts[repeats + 1]);
+ ++repeats;
+ } else if (display_counts[repeats] == second_highest_count) {
+ EXPECT_EQ(highest_count, display_counts[repeats + 1]);
+ ++repeats;
+ } else {
+ EXPECT_GE(stray_count_remaining, display_counts[repeats]);
+ stray_count_remaining -= display_counts[repeats];
+ }
+ }
+}
+
+base::TimeDelta FpsAsPeriod(int frame_rate) {
+ return base::TimeDelta::FromSeconds(1) / frame_rate;
+}
+
+INSTANTIATE_TEST_CASE_P(
+ ,
+ AnimatedContentSamplerTest,
+ ::testing::Values(
+ // Typical frame rate content: Compositor runs at 60 Hz, capture at 30
+ // Hz, and content video animates at 30, 25, or 24 Hz.
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(30)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(25)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(24)),
+
+ // High frame rate content that leverages the Compositor's
+ // capabilities, but capture is still at 30 Hz.
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(60)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(50)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(48)),
+
+ // High frame rate content that leverages the Compositor's
+ // capabilities, and capture is also a buttery 60 Hz.
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(60), FpsAsPeriod(60)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(60), FpsAsPeriod(50)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(60), FpsAsPeriod(48)),
+
+ // On some platforms, the Compositor runs at 50 Hz.
+ Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(30)),
+ Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(25)),
+ Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(24)),
+ Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(50)),
+ Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(48)),
+
+ // Stable, but non-standard content frame rates.
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(16)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(20)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(23)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(26)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(27)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(28)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(29)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(31)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(32)),
+ Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(33))));
+
} // namespace
} // namespace content

Powered by Google App Engine
This is Rietveld 408576698