| Index: content/browser/media/capture/video_capture_oracle_unittest.cc
|
| diff --git a/content/browser/media/capture/video_capture_oracle_unittest.cc b/content/browser/media/capture/video_capture_oracle_unittest.cc
|
| index dff8e97de7fec39c7f3e0f56f2c33c7f50ab5e1b..139a084bdea23ae8e09622ee19e26586b1e25eb7 100644
|
| --- a/content/browser/media/capture/video_capture_oracle_unittest.cc
|
| +++ b/content/browser/media/capture/video_capture_oracle_unittest.cc
|
| @@ -4,17 +4,29 @@
|
|
|
| #include "content/browser/media/capture/video_capture_oracle.h"
|
|
|
| +#include <cstdlib>
|
| +#include <utility>
|
| +#include <vector>
|
| +
|
| +#include "base/logging.h"
|
| #include "base/strings/stringprintf.h"
|
| #include "base/time/time.h"
|
| #include "testing/gtest/include/gtest/gtest.h"
|
| +#include "ui/gfx/geometry/rect.h"
|
|
|
| namespace content {
|
| namespace {
|
|
|
| +bool AddEventAndConsiderSampling(SmoothEventSampler* sampler,
|
| + base::TimeTicks event_time) {
|
| + sampler->ConsiderPresentationEvent(event_time);
|
| + return sampler->ShouldSample();
|
| +}
|
| +
|
| void SteadyStateSampleAndAdvance(base::TimeDelta vsync,
|
| SmoothEventSampler* sampler,
|
| base::TimeTicks* t) {
|
| - ASSERT_TRUE(sampler->AddEventAndConsiderSampling(*t));
|
| + ASSERT_TRUE(AddEventAndConsiderSampling(sampler, *t));
|
| ASSERT_TRUE(sampler->HasUnrecordedEvent());
|
| sampler->RecordSample();
|
| ASSERT_FALSE(sampler->HasUnrecordedEvent());
|
| @@ -26,17 +38,15 @@ void SteadyStateSampleAndAdvance(base::TimeDelta vsync,
|
| void SteadyStateNoSampleAndAdvance(base::TimeDelta vsync,
|
| SmoothEventSampler* sampler,
|
| base::TimeTicks* t) {
|
| - ASSERT_FALSE(sampler->AddEventAndConsiderSampling(*t));
|
| + ASSERT_FALSE(AddEventAndConsiderSampling(sampler, *t));
|
| ASSERT_TRUE(sampler->HasUnrecordedEvent());
|
| ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t));
|
| *t += vsync;
|
| ASSERT_FALSE(sampler->IsOverdueForSamplingAt(*t));
|
| }
|
|
|
| -void TimeTicksFromString(const char* string, base::TimeTicks* t) {
|
| - base::Time time;
|
| - ASSERT_TRUE(base::Time::FromString(string, &time));
|
| - *t = base::TimeTicks::UnixEpoch() + (time - base::Time::UnixEpoch());
|
| +base::TimeTicks InitialTestTimeTicks() {
|
| + return base::TimeTicks() + base::TimeDelta::FromSeconds(1);
|
| }
|
|
|
| void TestRedundantCaptureStrategy(base::TimeDelta capture_period,
|
| @@ -48,15 +58,15 @@ void TestRedundantCaptureStrategy(base::TimeDelta capture_period,
|
|
|
| // Consider the first event. We want to sample that.
|
| ASSERT_FALSE(sampler->HasUnrecordedEvent());
|
| - ASSERT_TRUE(sampler->AddEventAndConsiderSampling(*t));
|
| + ASSERT_TRUE(AddEventAndConsiderSampling(sampler, *t));
|
| ASSERT_TRUE(sampler->HasUnrecordedEvent());
|
| sampler->RecordSample();
|
| ASSERT_FALSE(sampler->HasUnrecordedEvent());
|
|
|
| - // After more than one capture period has passed without considering an event,
|
| - // we should repeatedly be overdue for sampling. However, once the redundant
|
| - // capture goal is achieved, we should no longer be overdue for sampling.
|
| - *t += capture_period * 4;
|
| + // After more than 250 ms has passed without considering an event, we should
|
| + // repeatedly be overdue for sampling. However, once the redundant capture
|
| + // goal is achieved, we should no longer be overdue for sampling.
|
| + *t += base::TimeDelta::FromMilliseconds(250);
|
| for (int i = 0; i < redundant_capture_goal; i++) {
|
| SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
|
| ASSERT_FALSE(sampler->HasUnrecordedEvent());
|
| @@ -69,6 +79,8 @@ void TestRedundantCaptureStrategy(base::TimeDelta capture_period,
|
| << "Should not be overdue once redundant capture goal achieved.";
|
| }
|
|
|
| +} // namespace
|
| +
|
| // 60Hz sampled at 30Hz should produce 30Hz. In addition, this test contains
|
| // much more comprehensive before/after/edge-case scenarios than the others.
|
| TEST(SmoothEventSamplerTest, Sample60HertzAt30Hertz) {
|
| @@ -77,8 +89,7 @@ TEST(SmoothEventSamplerTest, Sample60HertzAt30Hertz) {
|
| const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 60;
|
|
|
| SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
|
| - base::TimeTicks t;
|
| - TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
|
| + base::TimeTicks t = InitialTestTimeTicks();
|
|
|
| TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
|
| &sampler, &t);
|
| @@ -94,8 +105,8 @@ TEST(SmoothEventSamplerTest, Sample60HertzAt30Hertz) {
|
| // case we are adding events but not sampling them.
|
| for (int i = 0; i < 20; i++) {
|
| SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
|
| - ASSERT_EQ(i >= 7, sampler.IsOverdueForSamplingAt(t));
|
| - ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
|
| + ASSERT_EQ(i >= 14, sampler.IsOverdueForSamplingAt(t));
|
| + ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
|
| ASSERT_TRUE(sampler.HasUnrecordedEvent());
|
| t += vsync;
|
| }
|
| @@ -117,8 +128,7 @@ TEST(SmoothEventSamplerTest, Sample50HertzAt30Hertz) {
|
| const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 50;
|
|
|
| SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
|
| - base::TimeTicks t;
|
| - TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
|
| + base::TimeTicks t = InitialTestTimeTicks();
|
|
|
| TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
|
| &sampler, &t);
|
| @@ -136,10 +146,10 @@ TEST(SmoothEventSamplerTest, Sample50HertzAt30Hertz) {
|
|
|
| // Now pretend we're limited by backpressure in the pipeline. In this scenario
|
| // case we are adding events but not sampling them.
|
| - for (int i = 0; i < 12; i++) {
|
| + for (int i = 0; i < 20; i++) {
|
| SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
|
| - ASSERT_EQ(i >= 5, sampler.IsOverdueForSamplingAt(t));
|
| - ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
|
| + ASSERT_EQ(i >= 11, sampler.IsOverdueForSamplingAt(t));
|
| + ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
|
| t += vsync;
|
| }
|
|
|
| @@ -163,8 +173,7 @@ TEST(SmoothEventSamplerTest, Sample75HertzAt30Hertz) {
|
| const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 75;
|
|
|
| SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
|
| - base::TimeTicks t;
|
| - TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
|
| + base::TimeTicks t = InitialTestTimeTicks();
|
|
|
| TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
|
| &sampler, &t);
|
| @@ -186,8 +195,8 @@ TEST(SmoothEventSamplerTest, Sample75HertzAt30Hertz) {
|
| // case we are adding events but not sampling them.
|
| for (int i = 0; i < 20; i++) {
|
| SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
|
| - ASSERT_EQ(i >= 8, sampler.IsOverdueForSamplingAt(t));
|
| - ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
|
| + ASSERT_EQ(i >= 16, sampler.IsOverdueForSamplingAt(t));
|
| + ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
|
| t += vsync;
|
| }
|
|
|
| @@ -213,8 +222,7 @@ TEST(SmoothEventSamplerTest, Sample30HertzAt30Hertz) {
|
| const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 30;
|
|
|
| SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
|
| - base::TimeTicks t;
|
| - TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
|
| + base::TimeTicks t = InitialTestTimeTicks();
|
|
|
| TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
|
| &sampler, &t);
|
| @@ -227,10 +235,10 @@ TEST(SmoothEventSamplerTest, Sample30HertzAt30Hertz) {
|
|
|
| // Now pretend we're limited by backpressure in the pipeline. In this scenario
|
| // case we are adding events but not sampling them.
|
| - for (int i = 0; i < 7; i++) {
|
| + for (int i = 0; i < 10; i++) {
|
| SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
|
| - ASSERT_EQ(i >= 3, sampler.IsOverdueForSamplingAt(t));
|
| - ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
|
| + ASSERT_EQ(i >= 7, sampler.IsOverdueForSamplingAt(t));
|
| + ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
|
| t += vsync;
|
| }
|
|
|
| @@ -249,8 +257,7 @@ TEST(SmoothEventSamplerTest, Sample24HertzAt30Hertz) {
|
| const base::TimeDelta vsync = base::TimeDelta::FromSeconds(1) / 24;
|
|
|
| SmoothEventSampler sampler(capture_period, true, redundant_capture_goal);
|
| - base::TimeTicks t;
|
| - TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
|
| + base::TimeTicks t = InitialTestTimeTicks();
|
|
|
| TestRedundantCaptureStrategy(capture_period, redundant_capture_goal,
|
| &sampler, &t);
|
| @@ -263,10 +270,10 @@ TEST(SmoothEventSamplerTest, Sample24HertzAt30Hertz) {
|
|
|
| // Now pretend we're limited by backpressure in the pipeline. In this scenario
|
| // case we are adding events but not sampling them.
|
| - for (int i = 0; i < 7; i++) {
|
| + for (int i = 0; i < 10; i++) {
|
| SCOPED_TRACE(base::StringPrintf("Iteration %d", i));
|
| - ASSERT_EQ(i >= 3, sampler.IsOverdueForSamplingAt(t));
|
| - ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
|
| + ASSERT_EQ(i >= 6, sampler.IsOverdueForSamplingAt(t));
|
| + ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
|
| t += vsync;
|
| }
|
|
|
| @@ -283,19 +290,18 @@ TEST(SmoothEventSamplerTest, DoubleDrawAtOneTimeStillDirties) {
|
| const base::TimeDelta overdue_period = base::TimeDelta::FromSeconds(1);
|
|
|
| SmoothEventSampler sampler(capture_period, true, 1);
|
| - base::TimeTicks t;
|
| - TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
|
| + base::TimeTicks t = InitialTestTimeTicks();
|
|
|
| - ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
|
| + ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
|
| sampler.RecordSample();
|
| ASSERT_FALSE(sampler.IsOverdueForSamplingAt(t))
|
| << "Sampled last event; should not be dirty.";
|
| t += overdue_period;
|
|
|
| // Now simulate 2 events with the same clock value.
|
| - ASSERT_TRUE(sampler.AddEventAndConsiderSampling(t));
|
| + ASSERT_TRUE(AddEventAndConsiderSampling(&sampler, t));
|
| sampler.RecordSample();
|
| - ASSERT_FALSE(sampler.AddEventAndConsiderSampling(t))
|
| + ASSERT_FALSE(AddEventAndConsiderSampling(&sampler, t))
|
| << "Two events at same time -- expected second not to be sampled.";
|
| ASSERT_TRUE(sampler.IsOverdueForSamplingAt(t + overdue_period))
|
| << "Second event should dirty the capture state.";
|
| @@ -308,18 +314,20 @@ TEST(SmoothEventSamplerTest, FallbackToPollingIfUpdatesUnreliable) {
|
|
|
| SmoothEventSampler should_not_poll(timer_interval, true, 1);
|
| SmoothEventSampler should_poll(timer_interval, false, 1);
|
| - base::TimeTicks t;
|
| - TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
|
| + base::TimeTicks t = InitialTestTimeTicks();
|
|
|
| // Do one round of the "happy case" where an event was received and
|
| // RecordSample() was called by the client.
|
| - ASSERT_TRUE(should_not_poll.AddEventAndConsiderSampling(t));
|
| - ASSERT_TRUE(should_poll.AddEventAndConsiderSampling(t));
|
| + ASSERT_TRUE(AddEventAndConsiderSampling(&should_not_poll, t));
|
| + ASSERT_TRUE(AddEventAndConsiderSampling(&should_poll, t));
|
| should_not_poll.RecordSample();
|
| should_poll.RecordSample();
|
|
|
| - // One time period ahead, neither sampler says we're overdue.
|
| - for (int i = 0; i < 3; i++) {
|
| + // For the following time period, before 250 ms has elapsed, neither sampler
|
| + // says we're overdue.
|
| + const int non_overdue_intervals = static_cast<int>(
|
| + base::TimeDelta::FromMilliseconds(250) / timer_interval);
|
| + for (int i = 0; i < non_overdue_intervals; i++) {
|
| t += timer_interval;
|
| ASSERT_FALSE(should_not_poll.IsOverdueForSamplingAt(t))
|
| << "Sampled last event; should not be dirty.";
|
| @@ -330,7 +338,7 @@ TEST(SmoothEventSamplerTest, FallbackToPollingIfUpdatesUnreliable) {
|
| // Next time period ahead, both samplers say we're overdue. The non-polling
|
| // sampler is returning true here because it has been configured to allow one
|
| // redundant capture.
|
| - t += timer_interval;
|
| + t += timer_interval; // Step past the 250 ms threshold.
|
| ASSERT_TRUE(should_not_poll.IsOverdueForSamplingAt(t))
|
| << "Sampled last event; is dirty one time only to meet redundancy goal.";
|
| ASSERT_TRUE(should_poll.IsOverdueForSamplingAt(t))
|
| @@ -356,6 +364,8 @@ TEST(SmoothEventSamplerTest, FallbackToPollingIfUpdatesUnreliable) {
|
| should_poll.RecordSample();
|
| }
|
|
|
| +namespace {
|
| +
|
| struct DataPoint {
|
| bool should_capture;
|
| double increment_ms;
|
| @@ -364,19 +374,20 @@ struct DataPoint {
|
| void ReplayCheckingSamplerDecisions(const DataPoint* data_points,
|
| size_t num_data_points,
|
| SmoothEventSampler* sampler) {
|
| - base::TimeTicks t;
|
| - TimeTicksFromString("Sat, 23 Mar 2013 1:21:08 GMT", &t);
|
| + base::TimeTicks t = InitialTestTimeTicks();
|
| for (size_t i = 0; i < num_data_points; ++i) {
|
| t += base::TimeDelta::FromMicroseconds(
|
| static_cast<int64>(data_points[i].increment_ms * 1000));
|
| ASSERT_EQ(data_points[i].should_capture,
|
| - sampler->AddEventAndConsiderSampling(t))
|
| + AddEventAndConsiderSampling(sampler, t))
|
| << "at data_points[" << i << ']';
|
| if (data_points[i].should_capture)
|
| sampler->RecordSample();
|
| }
|
| }
|
|
|
| +} // namespace
|
| +
|
| TEST(SmoothEventSamplerTest, DrawingAt24FpsWith60HzVsyncSampledAt30Hertz) {
|
| // Actual capturing of timing data: Initial instability as a 24 FPS video was
|
| // started from a still screen, then clearly followed by steady-state.
|
| @@ -483,5 +494,768 @@ TEST(SmoothEventSamplerTest, DrawingAt60FpsWith60HzVsyncSampledAt30Hertz) {
|
| ReplayCheckingSamplerDecisions(data_points, arraysize(data_points), &sampler);
|
| }
|
|
|
| +class AnimatedContentSamplerTest : public ::testing::Test {
|
| + public:
|
| + AnimatedContentSamplerTest() {}
|
| + virtual ~AnimatedContentSamplerTest() {}
|
| +
|
| + virtual void SetUp() OVERRIDE {
|
| + const base::TimeDelta since_epoch =
|
| + InitialTestTimeTicks() - base::TimeTicks::UnixEpoch();
|
| + rand_seed_ = abs(static_cast<int>(since_epoch.InMicroseconds()));
|
| + sampler_.reset(new AnimatedContentSampler(GetMinCapturePeriod()));
|
| + }
|
| +
|
| + protected:
|
| + // Overridden by subclass for parameterized tests.
|
| + virtual base::TimeDelta GetMinCapturePeriod() const {
|
| + return base::TimeDelta::FromSeconds(1) / 30;
|
| + }
|
| +
|
| + AnimatedContentSampler* sampler() const {
|
| + return sampler_.get();
|
| + }
|
| +
|
| + int GetRandomInRange(int begin, int end) {
|
| + const int len = end - begin;
|
| + const int rand_offset = (len == 0) ? 0 : (NextRandomInt() % (end - begin));
|
| + return begin + rand_offset;
|
| + }
|
| +
|
| + gfx::Rect GetRandomDamageRect() {
|
| + return gfx::Rect(0, 0, GetRandomInRange(1, 100), GetRandomInRange(1, 100));
|
| + }
|
| +
|
| + gfx::Rect GetContentDamageRect() {
|
| + // This must be distinct from anything GetRandomDamageRect() could return.
|
| + return gfx::Rect(0, 0, 1280, 720);
|
| + }
|
| +
|
| + // Directly inject an observation. Only used to test
|
| + // ElectMajorityDamageRect().
|
| + void ObserveDamageRect(const gfx::Rect& damage_rect) {
|
| + sampler_->observations_.push_back(
|
| + AnimatedContentSampler::Observation(damage_rect, base::TimeTicks()));
|
| + }
|
| +
|
| + gfx::Rect ElectMajorityDamageRect() const {
|
| + return sampler_->ElectMajorityDamageRect();
|
| + }
|
| +
|
| + private:
|
| + // Note: Not using base::RandInt() because it is horribly slow on debug
|
| + // builds. The following is a very simple, deterministic LCG:
|
| + int NextRandomInt() {
|
| + rand_seed_ = (1103515245 * rand_seed_ + 12345) % (1 << 31);
|
| + return rand_seed_;
|
| + }
|
| +
|
| + int rand_seed_;
|
| + scoped_ptr<AnimatedContentSampler> sampler_;
|
| +};
|
| +
|
| +TEST_F(AnimatedContentSamplerTest, ElectsNoneFromZeroDamageRects) {
|
| + EXPECT_EQ(gfx::Rect(), ElectMajorityDamageRect());
|
| +}
|
| +
|
| +TEST_F(AnimatedContentSamplerTest, ElectsMajorityFromOneDamageRect) {
|
| + const gfx::Rect the_one_rect(0, 0, 1, 1);
|
| + ObserveDamageRect(the_one_rect);
|
| + EXPECT_EQ(the_one_rect, ElectMajorityDamageRect());
|
| +}
|
| +
|
| +TEST_F(AnimatedContentSamplerTest, ElectsNoneFromTwoDamageRectsOfSameArea) {
|
| + const gfx::Rect one_rect(0, 0, 1, 1);
|
| + const gfx::Rect another_rect(1, 1, 1, 1);
|
| + ObserveDamageRect(one_rect);
|
| + ObserveDamageRect(another_rect);
|
| + EXPECT_EQ(gfx::Rect(), ElectMajorityDamageRect());
|
| +}
|
| +
|
| +TEST_F(AnimatedContentSamplerTest, ElectsLargerOfTwoDamageRects_1) {
|
| + const gfx::Rect one_rect(0, 0, 1, 1);
|
| + const gfx::Rect another_rect(0, 0, 2, 2);
|
| + ObserveDamageRect(one_rect);
|
| + ObserveDamageRect(another_rect);
|
| + EXPECT_EQ(another_rect, ElectMajorityDamageRect());
|
| +}
|
| +
|
| +TEST_F(AnimatedContentSamplerTest, ElectsLargerOfTwoDamageRects_2) {
|
| + const gfx::Rect one_rect(0, 0, 2, 2);
|
| + const gfx::Rect another_rect(0, 0, 1, 1);
|
| + ObserveDamageRect(one_rect);
|
| + ObserveDamageRect(another_rect);
|
| + EXPECT_EQ(one_rect, ElectMajorityDamageRect());
|
| +}
|
| +
|
| +TEST_F(AnimatedContentSamplerTest, ElectsSameAsMooreDemonstration) {
|
| + // A more complex sequence (from Moore's web site): Three different Rects with
|
| + // the same area, but occurring a different number of times. C should win the
|
| + // vote.
|
| + const gfx::Rect rect_a(0, 0, 1, 4);
|
| + const gfx::Rect rect_b(1, 1, 4, 1);
|
| + const gfx::Rect rect_c(2, 2, 2, 2);
|
| + for (int i = 0; i < 3; ++i)
|
| + ObserveDamageRect(rect_a);
|
| + for (int i = 0; i < 2; ++i)
|
| + ObserveDamageRect(rect_c);
|
| + for (int i = 0; i < 2; ++i)
|
| + ObserveDamageRect(rect_b);
|
| + for (int i = 0; i < 3; ++i)
|
| + ObserveDamageRect(rect_c);
|
| + ObserveDamageRect(rect_b);
|
| + for (int i = 0; i < 2; ++i)
|
| + ObserveDamageRect(rect_c);
|
| + EXPECT_EQ(rect_c, ElectMajorityDamageRect());
|
| +}
|
| +
|
| +TEST_F(AnimatedContentSamplerTest, Elects24FpsVideoInsteadOf48FpsSpinner) {
|
| + // Scenario: 24 FPS 720x480 Video versus 48 FPS 96x96 "Busy Spinner"
|
| + const gfx::Rect video_rect(100, 100, 720, 480);
|
| + const gfx::Rect spinner_rect(360, 0, 96, 96);
|
| + for (int i = 0; i < 100; ++i) {
|
| + // |video_rect| occurs once for every two |spinner_rect|. Vary the order
|
| + // of events between the two:
|
| + ObserveDamageRect(video_rect);
|
| + ObserveDamageRect(spinner_rect);
|
| + ObserveDamageRect(spinner_rect);
|
| + ObserveDamageRect(video_rect);
|
| + ObserveDamageRect(spinner_rect);
|
| + ObserveDamageRect(spinner_rect);
|
| + ObserveDamageRect(spinner_rect);
|
| + ObserveDamageRect(video_rect);
|
| + ObserveDamageRect(spinner_rect);
|
| + ObserveDamageRect(spinner_rect);
|
| + ObserveDamageRect(video_rect);
|
| + ObserveDamageRect(spinner_rect);
|
| + }
|
| + EXPECT_EQ(video_rect, ElectMajorityDamageRect());
|
| +}
|
| +
|
| +namespace {
|
| +
|
| +// A test scenario for AnimatedContentSamplerParameterizedTest.
|
| +struct Scenario {
|
| + base::TimeDelta vsync_interval; // Reflects compositor's update rate.
|
| + base::TimeDelta min_capture_period; // Reflects maximum capture rate.
|
| + base::TimeDelta content_period; // Reflects content animation rate.
|
| +
|
| + Scenario(base::TimeDelta v, base::TimeDelta m, base::TimeDelta c)
|
| + : vsync_interval(v), min_capture_period(m), content_period(c) {
|
| + CHECK(content_period >= vsync_interval)
|
| + << "Bad test params: Impossible to animate faster than the compositor.";
|
| + }
|
| +};
|
| +
|
| +// Value printer for Scenario.
|
| +::std::ostream& operator<<(::std::ostream& os, const Scenario& s) {
|
| + return os << "{ vsync_interval=" << s.vsync_interval.InMicroseconds()
|
| + << ", min_capture_period=" << s.min_capture_period.InMicroseconds()
|
| + << ", content_period=" << s.content_period.InMicroseconds()
|
| + << " }";
|
| +}
|
| +
|
| +base::TimeDelta FpsAsPeriod(int frame_rate) {
|
| + return base::TimeDelta::FromSeconds(1) / frame_rate;
|
| +}
|
| +
|
| } // namespace
|
| +
|
| +class AnimatedContentSamplerParameterizedTest
|
| + : public AnimatedContentSamplerTest,
|
| + public ::testing::WithParamInterface<Scenario> {
|
| + public:
|
| + AnimatedContentSamplerParameterizedTest()
|
| + : count_dropped_frames_(0), count_sampled_frames_(0) {}
|
| + virtual ~AnimatedContentSamplerParameterizedTest() {}
|
| +
|
| + protected:
|
| + typedef std::pair<gfx::Rect, base::TimeTicks> Event;
|
| +
|
| + virtual base::TimeDelta GetMinCapturePeriod() const OVERRIDE {
|
| + return GetParam().min_capture_period;
|
| + }
|
| +
|
| + // Generate a sequence of events from the compositor pipeline. The event
|
| + // times will all be at compositor vsync boundaries.
|
| + std::vector<Event> GenerateEventSequence(base::TimeTicks begin,
|
| + base::TimeTicks end,
|
| + bool include_content_frame_events,
|
| + bool include_random_events) {
|
| + DCHECK(GetParam().content_period >= GetParam().vsync_interval);
|
| + base::TimeTicks next_content_time = begin - GetParam().content_period;
|
| + std::vector<Event> events;
|
| + for (base::TimeTicks compositor_time = begin; compositor_time < end;
|
| + compositor_time += GetParam().vsync_interval) {
|
| + if (include_content_frame_events && next_content_time < compositor_time) {
|
| + events.push_back(Event(GetContentDamageRect(), compositor_time));
|
| + next_content_time += GetParam().content_period;
|
| + } else if (include_random_events && GetRandomInRange(0, 1) == 0) {
|
| + events.push_back(Event(GetRandomDamageRect(), compositor_time));
|
| + }
|
| + }
|
| +
|
| + DCHECK(!events.empty());
|
| + return events;
|
| + }
|
| +
|
| + // Feed |events| through the sampler, and detect whether the expected
|
| + // lock-in/out transition occurs. Also, track and measure the frame drop
|
| + // ratio and check it against the expected drop rate.
|
| + void RunEventSequence(const std::vector<Event> events,
|
| + bool was_detecting_before,
|
| + bool is_detecting_after,
|
| + bool simulate_pipeline_back_pressure) {
|
| + gfx::Rect first_detected_region;
|
| +
|
| + EXPECT_EQ(was_detecting_before, sampler()->HasProposal());
|
| + bool has_detection_switched = false;
|
| + ResetFrameCounters();
|
| + for (std::vector<Event>::const_iterator i = events.begin();
|
| + i != events.end(); ++i) {
|
| + sampler()->ConsiderPresentationEvent(i->first, i->second);
|
| +
|
| + // Detect when the sampler locks in/out, and that it stays that way for
|
| + // all further iterations of this loop.
|
| + if (!has_detection_switched &&
|
| + was_detecting_before != sampler()->HasProposal()) {
|
| + has_detection_switched = true;
|
| + }
|
| + ASSERT_EQ(
|
| + has_detection_switched ? is_detecting_after : was_detecting_before,
|
| + sampler()->HasProposal());
|
| +
|
| + if (sampler()->HasProposal()) {
|
| + // Make sure the sampler doesn't flip-flop and keep proposing sampling
|
| + // based on locking into different regions.
|
| + if (first_detected_region.IsEmpty()) {
|
| + first_detected_region = sampler()->detected_region();
|
| + ASSERT_FALSE(first_detected_region.IsEmpty());
|
| + } else {
|
| + EXPECT_EQ(first_detected_region, sampler()->detected_region());
|
| + }
|
| +
|
| + if (simulate_pipeline_back_pressure && GetRandomInRange(0, 2) == 0)
|
| + ClientCannotSampleFrame(*i);
|
| + else
|
| + ClientDoesWhatSamplerProposes(*i);
|
| + } else {
|
| + EXPECT_FALSE(sampler()->ShouldSample());
|
| + if (!simulate_pipeline_back_pressure || GetRandomInRange(0, 2) == 1)
|
| + sampler()->RecordSample(i->second);
|
| + }
|
| + }
|
| + EXPECT_EQ(is_detecting_after, sampler()->HasProposal());
|
| + ExpectFrameDropRatioIsCorrect();
|
| + }
|
| +
|
| + void ResetFrameCounters() {
|
| + count_dropped_frames_ = 0;
|
| + count_sampled_frames_ = 0;
|
| + }
|
| +
|
| + // Keep track what the sampler is proposing, and call RecordSample() if it
|
| + // proposes sampling |event|.
|
| + void ClientDoesWhatSamplerProposes(const Event& event) {
|
| + if (sampler()->ShouldSample()) {
|
| + EXPECT_EQ(GetContentDamageRect(), event.first);
|
| + sampler()->RecordSample(sampler()->frame_timestamp());
|
| + ++count_sampled_frames_;
|
| + } else if (event.first == GetContentDamageRect()) {
|
| + ++count_dropped_frames_;
|
| + }
|
| + }
|
| +
|
| + // RecordSample() is not called, but for testing, keep track of what the
|
| + // sampler is proposing for |event|.
|
| + void ClientCannotSampleFrame(const Event& event) {
|
| + if (sampler()->ShouldSample()) {
|
| + EXPECT_EQ(GetContentDamageRect(), event.first);
|
| + ++count_sampled_frames_;
|
| + } else if (event.first == GetContentDamageRect()) {
|
| + ++count_dropped_frames_;
|
| + }
|
| + }
|
| +
|
| + // Confirm the AnimatedContentSampler is not dropping more frames than
|
| + // expected, given current test parameters.
|
| + void ExpectFrameDropRatioIsCorrect() {
|
| + if (count_sampled_frames_ == 0) {
|
| + EXPECT_EQ(0, count_dropped_frames_);
|
| + return;
|
| + }
|
| + const double content_framerate =
|
| + 1000000.0 / GetParam().content_period.InMicroseconds();
|
| + const double capture_framerate =
|
| + 1000000.0 / GetParam().min_capture_period.InMicroseconds();
|
| + const double expected_drop_rate = std::max(
|
| + 0.0, (content_framerate - capture_framerate) / capture_framerate);
|
| + const double actual_drop_rate =
|
| + static_cast<double>(count_dropped_frames_) / count_sampled_frames_;
|
| + EXPECT_NEAR(expected_drop_rate, actual_drop_rate, 0.015);
|
| + }
|
| +
|
| + private:
|
| + // These counters only include the frames with the desired content.
|
| + int count_dropped_frames_;
|
| + int count_sampled_frames_;
|
| +};
|
| +
|
| +// Tests that the implementation locks in/out of frames containing stable
|
| +// animated content, whether or not random events are also simultaneously
|
| +// present.
|
| +TEST_P(AnimatedContentSamplerParameterizedTest, DetectsAnimatedContent) {
|
| + // |begin| refers to the start of an event sequence in terms of the
|
| + // Compositor's clock.
|
| + base::TimeTicks begin = InitialTestTimeTicks();
|
| +
|
| + // Provide random events and expect no lock-in.
|
| + base::TimeTicks end = begin + base::TimeDelta::FromSeconds(5);
|
| + RunEventSequence(GenerateEventSequence(begin, end, false, true),
|
| + false,
|
| + false,
|
| + false);
|
| + begin = end;
|
| +
|
| + // Provide content frame events with some random events mixed-in, and expect
|
| + // the sampler to lock-in.
|
| + end = begin + base::TimeDelta::FromSeconds(5);
|
| + RunEventSequence(GenerateEventSequence(begin, end, true, true),
|
| + false,
|
| + true,
|
| + false);
|
| + begin = end;
|
| +
|
| + // Continue providing content frame events without the random events mixed-in
|
| + // and expect the lock-in to hold.
|
| + end = begin + base::TimeDelta::FromSeconds(5);
|
| + RunEventSequence(GenerateEventSequence(begin, end, true, false),
|
| + true,
|
| + true,
|
| + false);
|
| + begin = end;
|
| +
|
| + // Continue providing just content frame events and expect the lock-in to
|
| + // hold. Also simulate the capture pipeline experiencing back pressure.
|
| + end = begin + base::TimeDelta::FromSeconds(20);
|
| + RunEventSequence(GenerateEventSequence(begin, end, true, false),
|
| + true,
|
| + true,
|
| + true);
|
| + begin = end;
|
| +
|
| + // Provide a half-second of random events only, and expect the lock-in to be
|
| + // broken.
|
| + end = begin + base::TimeDelta::FromMilliseconds(500);
|
| + RunEventSequence(GenerateEventSequence(begin, end, false, true),
|
| + true,
|
| + false,
|
| + false);
|
| + begin = end;
|
| +
|
| + // Now, go back to providing content frame events, and expect the sampler to
|
| + // lock-in once again.
|
| + end = begin + base::TimeDelta::FromSeconds(5);
|
| + RunEventSequence(GenerateEventSequence(begin, end, true, false),
|
| + false,
|
| + true,
|
| + false);
|
| + begin = end;
|
| +}
|
| +
|
| +// Tests that AnimatedContentSampler won't lock in to, nor flip-flop between,
|
| +// two animations of the same pixel change rate. VideoCaptureOracle should
|
| +// revert to using the SmoothEventSampler for these kinds of situations, as
|
| +// there is no "right answer" as to which animation to lock into.
|
| +TEST_P(AnimatedContentSamplerParameterizedTest,
|
| + DoesNotLockInToTwoCompetingAnimations) {
|
| + // Don't test when the event stream cannot indicate two separate content
|
| + // animations under the current test parameters.
|
| + if (GetParam().content_period < 2 * GetParam().vsync_interval)
|
| + return;
|
| +
|
| + // Start the first animation and run for a bit, and expect the sampler to
|
| + // lock-in.
|
| + base::TimeTicks begin = InitialTestTimeTicks();
|
| + base::TimeTicks end = begin + base::TimeDelta::FromSeconds(5);
|
| + RunEventSequence(GenerateEventSequence(begin, end, true, false),
|
| + false,
|
| + true,
|
| + false);
|
| + begin = end;
|
| +
|
| + // Now, keep the first animation and blend in an second animation of the same
|
| + // size and frame rate, but at a different position. This will should cause
|
| + // the sampler to enter an "undetected" state since it's unclear which
|
| + // animation should be locked into.
|
| + end = begin + base::TimeDelta::FromSeconds(20);
|
| + std::vector<Event> first_animation_events =
|
| + GenerateEventSequence(begin, end, true, false);
|
| + gfx::Rect second_animation_rect(
|
| + gfx::Point(0, GetContentDamageRect().height()),
|
| + GetContentDamageRect().size());
|
| + std::vector<Event> both_animations_events;
|
| + base::TimeDelta second_animation_offset = GetParam().vsync_interval;
|
| + for (std::vector<Event>::const_iterator i = first_animation_events.begin();
|
| + i != first_animation_events.end(); ++i) {
|
| + both_animations_events.push_back(*i);
|
| + both_animations_events.push_back(
|
| + Event(second_animation_rect, i->second + second_animation_offset));
|
| + }
|
| + RunEventSequence(both_animations_events, true, false, false);
|
| + begin = end;
|
| +
|
| + // Now, run just the first animation, and expect the sampler to lock-in once
|
| + // again.
|
| + end = begin + base::TimeDelta::FromSeconds(5);
|
| + RunEventSequence(GenerateEventSequence(begin, end, true, false),
|
| + false,
|
| + true,
|
| + false);
|
| + begin = end;
|
| +
|
| + // Now, blend in the second animation again, but it has half the frame rate of
|
| + // the first animation and damage Rects with twice the area. This will should
|
| + // cause the sampler to enter an "undetected" state again. This tests that
|
| + // pixel-weighting is being accounted for in the sampler's logic.
|
| + end = begin + base::TimeDelta::FromSeconds(20);
|
| + first_animation_events = GenerateEventSequence(begin, end, true, false);
|
| + second_animation_rect.set_width(second_animation_rect.width() * 2);
|
| + both_animations_events.clear();
|
| + bool include_second_animation_frame = true;
|
| + for (std::vector<Event>::const_iterator i = first_animation_events.begin();
|
| + i != first_animation_events.end(); ++i) {
|
| + both_animations_events.push_back(*i);
|
| + if (include_second_animation_frame) {
|
| + both_animations_events.push_back(
|
| + Event(second_animation_rect, i->second + second_animation_offset));
|
| + }
|
| + include_second_animation_frame = !include_second_animation_frame;
|
| + }
|
| + RunEventSequence(both_animations_events, true, false, false);
|
| + begin = end;
|
| +}
|
| +
|
| +// Tests that the frame timestamps are smooth; meaning, that when run through a
|
| +// simulated compositor, each frame is held displayed for the right number of
|
| +// v-sync intervals.
|
| +TEST_P(AnimatedContentSamplerParameterizedTest, FrameTimestampsAreSmooth) {
|
| + // Generate 30 seconds of animated content events, run the events through
|
| + // AnimatedContentSampler, and record all frame timestamps being proposed
|
| + // once lock-in is continuous.
|
| + base::TimeTicks begin = InitialTestTimeTicks();
|
| + std::vector<Event> events = GenerateEventSequence(
|
| + begin,
|
| + begin + base::TimeDelta::FromSeconds(20),
|
| + true,
|
| + false);
|
| + typedef std::vector<base::TimeTicks> Timestamps;
|
| + Timestamps frame_timestamps;
|
| + for (std::vector<Event>::const_iterator i = events.begin(); i != events.end();
|
| + ++i) {
|
| + sampler()->ConsiderPresentationEvent(i->first, i->second);
|
| + if (sampler()->HasProposal()) {
|
| + if (sampler()->ShouldSample()) {
|
| + frame_timestamps.push_back(sampler()->frame_timestamp());
|
| + sampler()->RecordSample(sampler()->frame_timestamp());
|
| + }
|
| + } else {
|
| + frame_timestamps.clear(); // Reset until continuous lock-in.
|
| + }
|
| + }
|
| + ASSERT_LE(2u, frame_timestamps.size());
|
| +
|
| + // Iterate through the |frame_timestamps|, building a histogram counting the
|
| + // number of times each frame was displayed k times. For example, 10 frames
|
| + // of 30 Hz content on a 60 Hz v-sync interval should result in
|
| + // display_counts[2] == 10. Quit early if any one frame was obviously
|
| + // repeated too many times.
|
| + const int64 max_expected_repeats_per_frame = 1 +
|
| + std::max(GetParam().min_capture_period, GetParam().content_period) /
|
| + GetParam().vsync_interval;
|
| + std::vector<size_t> display_counts(max_expected_repeats_per_frame + 1, 0);
|
| + base::TimeTicks last_present_time = frame_timestamps.front();
|
| + for (Timestamps::const_iterator i = frame_timestamps.begin() + 1;
|
| + i != frame_timestamps.end(); ++i) {
|
| + const size_t num_vsync_intervals = static_cast<size_t>(
|
| + (*i - last_present_time) / GetParam().vsync_interval);
|
| + ASSERT_LT(0u, num_vsync_intervals);
|
| + ASSERT_GT(display_counts.size(), num_vsync_intervals); // Quit early.
|
| + ++display_counts[num_vsync_intervals];
|
| + last_present_time += num_vsync_intervals * GetParam().vsync_interval;
|
| + }
|
| +
|
| + // Analyze the histogram for an expected result pattern. If the frame
|
| + // timestamps are smooth, there should only be one or two buckets with
|
| + // non-zero counts and they should be next to each other. Because the clock
|
| + // precision for the event_times provided to the sampler is very granular
|
| + // (i.e., the vsync_interval), it's okay if other buckets have a tiny "stray"
|
| + // count in this test.
|
| + size_t highest_count = 0;
|
| + size_t second_highest_count = 0;
|
| + for (size_t repeats = 1; repeats < display_counts.size(); ++repeats) {
|
| + DVLOG(1) << "display_counts[" << repeats << "] is "
|
| + << display_counts[repeats];
|
| + if (display_counts[repeats] >= highest_count) {
|
| + second_highest_count = highest_count;
|
| + highest_count = display_counts[repeats];
|
| + } else if (display_counts[repeats] > second_highest_count) {
|
| + second_highest_count = display_counts[repeats];
|
| + }
|
| + }
|
| + size_t stray_count_remaining =
|
| + (frame_timestamps.size() - 1) - (highest_count + second_highest_count);
|
| + // Expect no more than 0.75% of frames fall outside the two main buckets.
|
| + EXPECT_GT(frame_timestamps.size() * 75 / 10000, stray_count_remaining);
|
| + for (size_t repeats = 1; repeats < display_counts.size() - 1; ++repeats) {
|
| + if (display_counts[repeats] == highest_count) {
|
| + EXPECT_EQ(second_highest_count, display_counts[repeats + 1]);
|
| + ++repeats;
|
| + } else if (display_counts[repeats] == second_highest_count) {
|
| + EXPECT_EQ(highest_count, display_counts[repeats + 1]);
|
| + ++repeats;
|
| + } else {
|
| + EXPECT_GE(stray_count_remaining, display_counts[repeats]);
|
| + stray_count_remaining -= display_counts[repeats];
|
| + }
|
| + }
|
| +}
|
| +
|
| +// Tests that frame timestamps are "lightly pushed" back towards the original
|
| +// presentation event times, which tells us the AnimatedContentSampler can
|
| +// account for sources of timestamp drift and correct the drift.
|
| +TEST_P(AnimatedContentSamplerParameterizedTest,
|
| + FrameTimestampsConvergeTowardsEventTimes) {
|
| + const int max_drift_increment_millis = 3;
|
| +
|
| + // Generate a full minute of events.
|
| + const base::TimeTicks begin = InitialTestTimeTicks();
|
| + const base::TimeTicks end = begin + base::TimeDelta::FromMinutes(1);
|
| + std::vector<Event> events = GenerateEventSequence(begin, end, true, false);
|
| +
|
| + // Modify the event sequence so that 1-3 ms of additional drift is suddenly
|
| + // present every 100 events. This is meant to simulate that, external to
|
| + // AnimatedContentSampler, the video hardware vsync timebase is being
|
| + // refreshed and is showing severe drift from the system clock.
|
| + base::TimeDelta accumulated_drift;
|
| + for (size_t i = 1; i < events.size(); ++i) {
|
| + if (i % 100 == 0) {
|
| + accumulated_drift += base::TimeDelta::FromMilliseconds(
|
| + GetRandomInRange(1, max_drift_increment_millis + 1));
|
| + }
|
| + events[i].second += accumulated_drift;
|
| + }
|
| +
|
| + // Run all the events through the sampler and track the last rewritten frame
|
| + // timestamp.
|
| + base::TimeTicks last_frame_timestamp;
|
| + for (std::vector<Event>::const_iterator i = events.begin(); i != events.end();
|
| + ++i) {
|
| + sampler()->ConsiderPresentationEvent(i->first, i->second);
|
| + if (sampler()->ShouldSample())
|
| + last_frame_timestamp = sampler()->frame_timestamp();
|
| + }
|
| +
|
| + // If drift was accounted for, the |last_frame_timestamp| should be close to
|
| + // the last event's timestamp.
|
| + const base::TimeDelta total_error =
|
| + events.back().second - last_frame_timestamp;
|
| + const base::TimeDelta max_acceptable_error = GetParam().min_capture_period +
|
| + base::TimeDelta::FromMilliseconds(max_drift_increment_millis);
|
| + EXPECT_NEAR(0.0,
|
| + total_error.InMicroseconds(),
|
| + max_acceptable_error.InMicroseconds());
|
| +}
|
| +
|
| +INSTANTIATE_TEST_CASE_P(
|
| + ,
|
| + AnimatedContentSamplerParameterizedTest,
|
| + ::testing::Values(
|
| + // Typical frame rate content: Compositor runs at 60 Hz, capture at 30
|
| + // Hz, and content video animates at 30, 25, or 24 Hz.
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(30)),
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(25)),
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(24)),
|
| +
|
| + // High frame rate content that leverages the Compositor's
|
| + // capabilities, but capture is still at 30 Hz.
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(60)),
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(50)),
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(48)),
|
| +
|
| + // High frame rate content that leverages the Compositor's
|
| + // capabilities, and capture is also a buttery 60 Hz.
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(60), FpsAsPeriod(60)),
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(60), FpsAsPeriod(50)),
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(60), FpsAsPeriod(48)),
|
| +
|
| + // On some platforms, the Compositor runs at 50 Hz.
|
| + Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(30)),
|
| + Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(25)),
|
| + Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(24)),
|
| + Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(50)),
|
| + Scenario(FpsAsPeriod(50), FpsAsPeriod(30), FpsAsPeriod(48)),
|
| +
|
| + // Stable, but non-standard content frame rates.
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(16)),
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(20)),
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(23)),
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(26)),
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(27)),
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(28)),
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(29)),
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(31)),
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(32)),
|
| + Scenario(FpsAsPeriod(60), FpsAsPeriod(30), FpsAsPeriod(33))));
|
| +
|
| +// Tests that VideoCaptureOracle filters out events whose timestamps are
|
| +// decreasing.
|
| +TEST(VideoCaptureOracleTest, EnforcesEventTimeMonotonicity) {
|
| + const base::TimeDelta min_capture_period =
|
| + base::TimeDelta::FromSeconds(1) / 30;
|
| + const gfx::Rect damage_rect(0, 0, 1280, 720);
|
| + const base::TimeDelta event_increment = min_capture_period * 2;
|
| +
|
| + VideoCaptureOracle oracle(min_capture_period, true);
|
| +
|
| + base::TimeTicks t = InitialTestTimeTicks();
|
| + for (int i = 0; i < 10; ++i) {
|
| + t += event_increment;
|
| + ASSERT_TRUE(oracle.ObserveEventAndDecideCapture(
|
| + VideoCaptureOracle::kCompositorUpdate,
|
| + damage_rect, t));
|
| + }
|
| +
|
| + base::TimeTicks furthest_event_time = t;
|
| + for (int i = 0; i < 10; ++i) {
|
| + t -= event_increment;
|
| + ASSERT_FALSE(oracle.ObserveEventAndDecideCapture(
|
| + VideoCaptureOracle::kCompositorUpdate,
|
| + damage_rect, t));
|
| + }
|
| +
|
| + t = furthest_event_time;
|
| + for (int i = 0; i < 10; ++i) {
|
| + t += event_increment;
|
| + ASSERT_TRUE(oracle.ObserveEventAndDecideCapture(
|
| + VideoCaptureOracle::kCompositorUpdate,
|
| + damage_rect, t));
|
| + }
|
| +}
|
| +
|
| +// Tests that VideoCaptureOracle is enforcing the requirement that captured
|
| +// frames are delivered in order. Otherwise, downstream consumers could be
|
| +// tripped-up by out-of-order frames or frame timestamps.
|
| +TEST(VideoCaptureOracleTest, EnforcesFramesDeliveredInOrder) {
|
| + const base::TimeDelta min_capture_period =
|
| + base::TimeDelta::FromSeconds(1) / 30;
|
| + const gfx::Rect damage_rect(0, 0, 1280, 720);
|
| + const base::TimeDelta event_increment = min_capture_period * 2;
|
| +
|
| + VideoCaptureOracle oracle(min_capture_period, true);
|
| +
|
| + // Most basic scenario: Frames delivered one at a time, with no additional
|
| + // captures in-between deliveries.
|
| + base::TimeTicks t = InitialTestTimeTicks();
|
| + int last_frame_number;
|
| + base::TimeTicks ignored;
|
| + for (int i = 0; i < 10; ++i) {
|
| + t += event_increment;
|
| + ASSERT_TRUE(oracle.ObserveEventAndDecideCapture(
|
| + VideoCaptureOracle::kCompositorUpdate,
|
| + damage_rect, t));
|
| + last_frame_number = oracle.RecordCapture();
|
| + ASSERT_TRUE(oracle.CompleteCapture(last_frame_number, &ignored));
|
| + }
|
| +
|
| + // Basic pipelined scenario: More than one frame in-flight at delivery points.
|
| + for (int i = 0; i < 50; ++i) {
|
| + const int num_in_flight = 1 + i % 3;
|
| + for (int j = 0; j < num_in_flight; ++j) {
|
| + t += event_increment;
|
| + ASSERT_TRUE(oracle.ObserveEventAndDecideCapture(
|
| + VideoCaptureOracle::kCompositorUpdate,
|
| + damage_rect, t));
|
| + last_frame_number = oracle.RecordCapture();
|
| + }
|
| + for (int j = num_in_flight - 1; j >= 0; --j) {
|
| + ASSERT_TRUE(oracle.CompleteCapture(last_frame_number - j, &ignored));
|
| + }
|
| + }
|
| +
|
| + // Pipelined scenario with out-of-order delivery attempts rejected.
|
| + for (int i = 0; i < 50; ++i) {
|
| + const int num_in_flight = 1 + i % 3;
|
| + for (int j = 0; j < num_in_flight; ++j) {
|
| + t += event_increment;
|
| + ASSERT_TRUE(oracle.ObserveEventAndDecideCapture(
|
| + VideoCaptureOracle::kCompositorUpdate,
|
| + damage_rect, t));
|
| + last_frame_number = oracle.RecordCapture();
|
| + }
|
| + ASSERT_TRUE(oracle.CompleteCapture(last_frame_number, &ignored));
|
| + for (int j = 1; j < num_in_flight; ++j) {
|
| + ASSERT_FALSE(oracle.CompleteCapture(last_frame_number - j, &ignored));
|
| + }
|
| + }
|
| +}
|
| +
|
| +// Tests that VideoCaptureOracle transitions between using its two samplers in a
|
| +// way that does not introduce severe jank, pauses, etc.
|
| +TEST(VideoCaptureOracleTest, TransitionsSmoothlyBetweenSamplers) {
|
| + const base::TimeDelta min_capture_period =
|
| + base::TimeDelta::FromSeconds(1) / 30;
|
| + const gfx::Rect animation_damage_rect(0, 0, 1280, 720);
|
| + const base::TimeDelta event_increment = min_capture_period * 2;
|
| +
|
| + VideoCaptureOracle oracle(min_capture_period, true);
|
| +
|
| + // Run sequences of animation events and non-animation events through the
|
| + // oracle. As the oracle transitions between each sampler, make sure the
|
| + // frame timestamps won't trip-up downstream consumers.
|
| + base::TimeTicks t = InitialTestTimeTicks();
|
| + base::TimeTicks last_frame_timestamp;
|
| + for (int i = 0; i < 1000; ++i) {
|
| + t += event_increment;
|
| +
|
| + // For every 100 events, provide 50 that will cause the
|
| + // AnimatedContentSampler to lock-in, followed by 50 that will cause it to
|
| + // lock-out (i.e., the oracle will use the SmoothEventSampler instead).
|
| + const bool provide_animated_content_event =
|
| + (i % 100) >= 25 && (i % 100) < 75;
|
| +
|
| + // Only the few events that trigger the lock-out transition should be
|
| + // dropped, because the AnimatedContentSampler doesn't yet realize the
|
| + // animation ended. Otherwise, the oracle should always decide to sample
|
| + // because one of its samplers says to.
|
| + const bool require_oracle_says_sample = (i % 100) < 75 || (i % 100) >= 78;
|
| + const bool oracle_says_sample = oracle.ObserveEventAndDecideCapture(
|
| + VideoCaptureOracle::kCompositorUpdate,
|
| + provide_animated_content_event ? animation_damage_rect : gfx::Rect(),
|
| + t);
|
| + if (require_oracle_says_sample)
|
| + ASSERT_TRUE(oracle_says_sample);
|
| + if (!oracle_says_sample)
|
| + continue;
|
| +
|
| + const int frame_number = oracle.RecordCapture();
|
| +
|
| + base::TimeTicks frame_timestamp;
|
| + ASSERT_TRUE(oracle.CompleteCapture(frame_number, &frame_timestamp));
|
| + ASSERT_FALSE(frame_timestamp.is_null());
|
| + if (!last_frame_timestamp.is_null()) {
|
| + const base::TimeDelta delta = frame_timestamp - last_frame_timestamp;
|
| + EXPECT_LE(event_increment.InMicroseconds(), delta.InMicroseconds());
|
| + // Right after the AnimatedContentSampler lock-out transition, there were
|
| + // a few frames dropped, so allow a gap in the timestamps. Otherwise, the
|
| + // delta between frame timestamps should never be more than 2X the
|
| + // |event_increment|.
|
| + const base::TimeDelta max_acceptable_delta = (i % 100) == 78 ?
|
| + event_increment * 5 : event_increment * 2;
|
| + EXPECT_GE(max_acceptable_delta.InMicroseconds(), delta.InMicroseconds());
|
| + }
|
| + last_frame_timestamp = frame_timestamp;
|
| + }
|
| +}
|
| +
|
| } // namespace content
|
|
|