OLD | NEW |
1 // Copyright 2014 the V8 project authors. All rights reserved. | 1 // Copyright 2014 the V8 project authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "src/compiler/instruction-selector-impl.h" | 5 #include "src/compiler/instruction-selector-impl.h" |
6 #include "src/compiler/node-matchers.h" | 6 #include "src/compiler/node-matchers.h" |
7 | 7 |
8 namespace v8 { | 8 namespace v8 { |
9 namespace internal { | 9 namespace internal { |
10 namespace compiler { | 10 namespace compiler { |
(...skipping 158 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
169 } else { // store [%base + %index], %|#value | 169 } else { // store [%base + %index], %|#value |
170 Emit(opcode | AddressingModeField::encode(kMode_MR1I), NULL, | 170 Emit(opcode | AddressingModeField::encode(kMode_MR1I), NULL, |
171 g.UseRegister(base), g.UseRegister(index), val); | 171 g.UseRegister(base), g.UseRegister(index), val); |
172 } | 172 } |
173 // TODO(turbofan): addressing modes [r+r*{2,4,8}+K] | 173 // TODO(turbofan): addressing modes [r+r*{2,4,8}+K] |
174 } | 174 } |
175 | 175 |
176 | 176 |
177 // Shared routine for multiple binary operations. | 177 // Shared routine for multiple binary operations. |
178 static void VisitBinop(InstructionSelector* selector, Node* node, | 178 static void VisitBinop(InstructionSelector* selector, Node* node, |
179 ArchOpcode opcode, bool commutative) { | 179 InstructionCode opcode, FlagsContinuation* cont) { |
180 X64OperandGenerator g(selector); | |
181 Node* left = node->InputAt(0); | |
182 Node* right = node->InputAt(1); | |
183 // TODO(turbofan): match complex addressing modes. | |
184 // TODO(turbofan): if commutative, pick the non-live-in operand as the left as | |
185 // this might be the last use and therefore its register can be reused. | |
186 if (g.CanBeImmediate(right)) { | |
187 selector->Emit(opcode, g.DefineSameAsFirst(node), g.Use(left), | |
188 g.UseImmediate(right)); | |
189 } else if (commutative && g.CanBeImmediate(left)) { | |
190 selector->Emit(opcode, g.DefineSameAsFirst(node), g.Use(right), | |
191 g.UseImmediate(left)); | |
192 } else { | |
193 selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left), | |
194 g.Use(right)); | |
195 } | |
196 } | |
197 | |
198 | |
199 static void VisitBinopWithOverflow(InstructionSelector* selector, Node* node, | |
200 InstructionCode opcode) { | |
201 X64OperandGenerator g(selector); | 180 X64OperandGenerator g(selector); |
202 Int32BinopMatcher m(node); | 181 Int32BinopMatcher m(node); |
203 InstructionOperand* inputs[2]; | 182 InstructionOperand* inputs[4]; |
204 size_t input_count = 0; | 183 size_t input_count = 0; |
205 InstructionOperand* outputs[2]; | 184 InstructionOperand* outputs[2]; |
206 size_t output_count = 0; | 185 size_t output_count = 0; |
207 | 186 |
208 // TODO(turbofan): match complex addressing modes. | 187 // TODO(turbofan): match complex addressing modes. |
209 // TODO(turbofan): if commutative, pick the non-live-in operand as the left as | 188 // TODO(turbofan): if commutative, pick the non-live-in operand as the left as |
210 // this might be the last use and therefore its register can be reused. | 189 // this might be the last use and therefore its register can be reused. |
211 if (g.CanBeImmediate(m.right().node())) { | 190 if (g.CanBeImmediate(m.right().node())) { |
212 inputs[input_count++] = g.Use(m.left().node()); | 191 inputs[input_count++] = g.Use(m.left().node()); |
213 inputs[input_count++] = g.UseImmediate(m.right().node()); | 192 inputs[input_count++] = g.UseImmediate(m.right().node()); |
214 } else { | 193 } else { |
215 inputs[input_count++] = g.UseRegister(m.left().node()); | 194 inputs[input_count++] = g.UseRegister(m.left().node()); |
216 inputs[input_count++] = g.Use(m.right().node()); | 195 inputs[input_count++] = g.Use(m.right().node()); |
217 } | 196 } |
218 | 197 |
219 // Define outputs depending on the projections. | 198 if (cont->IsBranch()) { |
220 Node* projections[2]; | 199 inputs[input_count++] = g.Label(cont->true_block()); |
221 node->CollectProjections(ARRAY_SIZE(projections), projections); | 200 inputs[input_count++] = g.Label(cont->false_block()); |
222 if (projections[0]) { | |
223 outputs[output_count++] = g.DefineSameAsFirst(projections[0]); | |
224 } | 201 } |
225 if (projections[1]) { | 202 |
226 opcode |= FlagsModeField::encode(kFlags_set); | 203 outputs[output_count++] = g.DefineSameAsFirst(node); |
227 opcode |= FlagsConditionField::encode(kOverflow); | 204 if (cont->IsSet()) { |
228 outputs[output_count++] = | 205 outputs[output_count++] = g.DefineAsRegister(cont->result()); |
229 (projections[0] ? g.DefineAsRegister(projections[1]) | |
230 : g.DefineSameAsFirst(projections[1])); | |
231 } | 206 } |
232 | 207 |
233 ASSERT_NE(0, input_count); | 208 ASSERT_NE(0, input_count); |
234 ASSERT_NE(0, output_count); | 209 ASSERT_NE(0, output_count); |
235 ASSERT_GE(ARRAY_SIZE(inputs), input_count); | 210 ASSERT_GE(ARRAY_SIZE(inputs), input_count); |
236 ASSERT_GE(ARRAY_SIZE(outputs), output_count); | 211 ASSERT_GE(ARRAY_SIZE(outputs), output_count); |
237 | 212 |
238 selector->Emit(opcode, output_count, outputs, input_count, inputs); | 213 Instruction* instr = selector->Emit(cont->Encode(opcode), output_count, |
| 214 outputs, input_count, inputs); |
| 215 if (cont->IsBranch()) instr->MarkAsControl(); |
| 216 } |
| 217 |
| 218 |
| 219 // Shared routine for multiple binary operations. |
| 220 static void VisitBinop(InstructionSelector* selector, Node* node, |
| 221 InstructionCode opcode) { |
| 222 FlagsContinuation cont; |
| 223 VisitBinop(selector, node, opcode, &cont); |
239 } | 224 } |
240 | 225 |
241 | 226 |
242 void InstructionSelector::VisitWord32And(Node* node) { | 227 void InstructionSelector::VisitWord32And(Node* node) { |
243 VisitBinop(this, node, kX64And32, true); | 228 VisitBinop(this, node, kX64And32); |
244 } | 229 } |
245 | 230 |
246 | 231 |
247 void InstructionSelector::VisitWord64And(Node* node) { | 232 void InstructionSelector::VisitWord64And(Node* node) { |
248 VisitBinop(this, node, kX64And, true); | 233 VisitBinop(this, node, kX64And); |
249 } | 234 } |
250 | 235 |
251 | 236 |
252 void InstructionSelector::VisitWord32Or(Node* node) { | 237 void InstructionSelector::VisitWord32Or(Node* node) { |
253 VisitBinop(this, node, kX64Or32, true); | 238 VisitBinop(this, node, kX64Or32); |
254 } | 239 } |
255 | 240 |
256 | 241 |
257 void InstructionSelector::VisitWord64Or(Node* node) { | 242 void InstructionSelector::VisitWord64Or(Node* node) { |
258 VisitBinop(this, node, kX64Or, true); | 243 VisitBinop(this, node, kX64Or); |
259 } | 244 } |
260 | 245 |
261 | 246 |
262 template <typename T> | 247 template <typename T> |
263 static void VisitXor(InstructionSelector* selector, Node* node, | 248 static void VisitXor(InstructionSelector* selector, Node* node, |
264 ArchOpcode xor_opcode, ArchOpcode not_opcode) { | 249 ArchOpcode xor_opcode, ArchOpcode not_opcode) { |
265 X64OperandGenerator g(selector); | 250 X64OperandGenerator g(selector); |
266 BinopMatcher<IntMatcher<T>, IntMatcher<T> > m(node); | 251 BinopMatcher<IntMatcher<T>, IntMatcher<T> > m(node); |
267 if (m.right().Is(-1)) { | 252 if (m.right().Is(-1)) { |
268 selector->Emit(not_opcode, g.DefineSameAsFirst(node), | 253 selector->Emit(not_opcode, g.DefineSameAsFirst(node), |
269 g.Use(m.left().node())); | 254 g.Use(m.left().node())); |
270 } else { | 255 } else { |
271 VisitBinop(selector, node, xor_opcode, true); | 256 VisitBinop(selector, node, xor_opcode); |
272 } | 257 } |
273 } | 258 } |
274 | 259 |
275 | 260 |
276 void InstructionSelector::VisitWord32Xor(Node* node) { | 261 void InstructionSelector::VisitWord32Xor(Node* node) { |
277 VisitXor<int32_t>(this, node, kX64Xor32, kX64Not32); | 262 VisitXor<int32_t>(this, node, kX64Xor32, kX64Not32); |
278 } | 263 } |
279 | 264 |
280 | 265 |
281 void InstructionSelector::VisitWord64Xor(Node* node) { | 266 void InstructionSelector::VisitWord64Xor(Node* node) { |
(...skipping 77 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
359 VisitWord32Shift(this, node, kX64Sar32); | 344 VisitWord32Shift(this, node, kX64Sar32); |
360 } | 345 } |
361 | 346 |
362 | 347 |
363 void InstructionSelector::VisitWord64Sar(Node* node) { | 348 void InstructionSelector::VisitWord64Sar(Node* node) { |
364 VisitWord64Shift(this, node, kX64Sar); | 349 VisitWord64Shift(this, node, kX64Sar); |
365 } | 350 } |
366 | 351 |
367 | 352 |
368 void InstructionSelector::VisitInt32Add(Node* node) { | 353 void InstructionSelector::VisitInt32Add(Node* node) { |
369 VisitBinop(this, node, kX64Add32, true); | 354 VisitBinop(this, node, kX64Add32); |
370 } | |
371 | |
372 | |
373 void InstructionSelector::VisitInt32AddWithOverflow(Node* node) { | |
374 VisitBinopWithOverflow(this, node, kX64Add32); | |
375 } | 355 } |
376 | 356 |
377 | 357 |
378 void InstructionSelector::VisitInt64Add(Node* node) { | 358 void InstructionSelector::VisitInt64Add(Node* node) { |
379 VisitBinop(this, node, kX64Add, true); | 359 VisitBinop(this, node, kX64Add); |
380 } | 360 } |
381 | 361 |
382 | 362 |
383 template <typename T> | 363 template <typename T> |
384 static void VisitSub(InstructionSelector* selector, Node* node, | 364 static void VisitSub(InstructionSelector* selector, Node* node, |
385 ArchOpcode sub_opcode, ArchOpcode neg_opcode) { | 365 ArchOpcode sub_opcode, ArchOpcode neg_opcode) { |
386 X64OperandGenerator g(selector); | 366 X64OperandGenerator g(selector); |
387 BinopMatcher<IntMatcher<T>, IntMatcher<T> > m(node); | 367 BinopMatcher<IntMatcher<T>, IntMatcher<T> > m(node); |
388 if (m.left().Is(0)) { | 368 if (m.left().Is(0)) { |
389 selector->Emit(neg_opcode, g.DefineSameAsFirst(node), | 369 selector->Emit(neg_opcode, g.DefineSameAsFirst(node), |
390 g.Use(m.right().node())); | 370 g.Use(m.right().node())); |
391 } else { | 371 } else { |
392 VisitBinop(selector, node, sub_opcode, false); | 372 VisitBinop(selector, node, sub_opcode); |
393 } | 373 } |
394 } | 374 } |
395 | 375 |
396 | 376 |
397 void InstructionSelector::VisitInt32Sub(Node* node) { | 377 void InstructionSelector::VisitInt32Sub(Node* node) { |
398 VisitSub<int32_t>(this, node, kX64Sub32, kX64Neg32); | 378 VisitSub<int32_t>(this, node, kX64Sub32, kX64Neg32); |
399 } | 379 } |
400 | 380 |
401 | 381 |
402 void InstructionSelector::VisitInt32SubWithOverflow(Node* node) { | |
403 VisitBinopWithOverflow(this, node, kX64Sub32); | |
404 } | |
405 | |
406 | |
407 void InstructionSelector::VisitInt64Sub(Node* node) { | 382 void InstructionSelector::VisitInt64Sub(Node* node) { |
408 VisitSub<int64_t>(this, node, kX64Sub, kX64Neg); | 383 VisitSub<int64_t>(this, node, kX64Sub, kX64Neg); |
409 } | 384 } |
410 | 385 |
411 | 386 |
412 static void VisitMul(InstructionSelector* selector, Node* node, | 387 static void VisitMul(InstructionSelector* selector, Node* node, |
413 ArchOpcode opcode) { | 388 ArchOpcode opcode) { |
414 X64OperandGenerator g(selector); | 389 X64OperandGenerator g(selector); |
415 Node* left = node->InputAt(0); | 390 Node* left = node->InputAt(0); |
416 Node* right = node->InputAt(1); | 391 Node* right = node->InputAt(1); |
(...skipping 160 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
577 | 552 |
578 | 553 |
579 void InstructionSelector::VisitConvertInt32ToInt64(Node* node) { | 554 void InstructionSelector::VisitConvertInt32ToInt64(Node* node) { |
580 X64OperandGenerator g(this); | 555 X64OperandGenerator g(this); |
581 // TODO(dcarney): other modes | 556 // TODO(dcarney): other modes |
582 Emit(kX64Int32ToInt64, g.DefineAsRegister(node), | 557 Emit(kX64Int32ToInt64, g.DefineAsRegister(node), |
583 g.UseRegister(node->InputAt(0))); | 558 g.UseRegister(node->InputAt(0))); |
584 } | 559 } |
585 | 560 |
586 | 561 |
| 562 void InstructionSelector::VisitInt32AddWithOverflow(Node* node, |
| 563 FlagsContinuation* cont) { |
| 564 VisitBinop(this, node, kX64Add32, cont); |
| 565 } |
| 566 |
| 567 |
| 568 void InstructionSelector::VisitInt32SubWithOverflow(Node* node, |
| 569 FlagsContinuation* cont) { |
| 570 VisitBinop(this, node, kX64Sub32, cont); |
| 571 } |
| 572 |
| 573 |
587 // Shared routine for multiple compare operations. | 574 // Shared routine for multiple compare operations. |
588 static void VisitCompare(InstructionSelector* selector, InstructionCode opcode, | 575 static void VisitCompare(InstructionSelector* selector, InstructionCode opcode, |
589 InstructionOperand* left, InstructionOperand* right, | 576 InstructionOperand* left, InstructionOperand* right, |
590 FlagsContinuation* cont) { | 577 FlagsContinuation* cont) { |
591 X64OperandGenerator g(selector); | 578 X64OperandGenerator g(selector); |
592 opcode = cont->Encode(opcode); | 579 opcode = cont->Encode(opcode); |
593 if (cont->IsBranch()) { | 580 if (cont->IsBranch()) { |
594 selector->Emit(opcode, NULL, left, right, g.Label(cont->true_block()), | 581 selector->Emit(opcode, NULL, left, right, g.Label(cont->true_block()), |
595 g.Label(cont->false_block()))->MarkAsControl(); | 582 g.Label(cont->false_block()))->MarkAsControl(); |
596 } else { | 583 } else { |
(...skipping 133 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
730 ASSERT(deoptimization == NULL && continuation == NULL); | 717 ASSERT(deoptimization == NULL && continuation == NULL); |
731 Emit(kPopStack | MiscField::encode(buffer.pushed_count), NULL); | 718 Emit(kPopStack | MiscField::encode(buffer.pushed_count), NULL); |
732 } | 719 } |
733 } | 720 } |
734 | 721 |
735 #endif | 722 #endif |
736 | 723 |
737 } // namespace compiler | 724 } // namespace compiler |
738 } // namespace internal | 725 } // namespace internal |
739 } // namespace v8 | 726 } // namespace v8 |
OLD | NEW |