Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(2898)

Unified Diff: cc/quads/draw_polygon.cc

Issue 411793002: DrawPolygon class with Unit Tests (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Created 6 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: cc/quads/draw_polygon.cc
diff --git a/cc/quads/draw_polygon.cc b/cc/quads/draw_polygon.cc
new file mode 100644
index 0000000000000000000000000000000000000000..8e938822aa195cf1a592b75b2da242a9d35402df
--- /dev/null
+++ b/cc/quads/draw_polygon.cc
@@ -0,0 +1,307 @@
+// Copyright 2014 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "cc/quads/draw_polygon.h"
+
+#include <vector>
+
+#include "cc/output/bsp_compare_result.h"
+
+namespace {
+// This allows for some imperfection in the normal comparison when checking if
+// two pieces of geometry are coplanar.
+static const float coplanar_dot_epsilon = 0.01f;
+// This threshold controls how "thick" a plane is. If a point's distance is
enne (OOO) 2014/07/28 23:11:34 What are these units in? (both compare and split t
troyhildebrandt 2014/07/28 23:48:45 I believe they're in device pixels, if that's what
+// <= |compare_threshold|, then it is considered on the plane. Only when this
+// boundary is crossed do we consider doing splitting.
+static const float compare_threshold = 1.0f;
+// |split_threshold| is lower in this case because we want the points created
+// during splitting to be well within the range of |compare_threshold| for
+// comparison purposes. The splitting operation will produce intersection points
+// that fit within a tighter distance to the splitting plane as a result of this
+// value. By using a value >= |compare_threshold| we run the risk of creating
+// points that SHOULD be intersecting the "thick plane", but actually fail to
+// test positively for it because |split_threshold| allowed them to be outside
+// this range.
+static const float split_threshold = 0.5f;
+} // namespace
+
+namespace cc {
+
+gfx::Vector3dF DrawPolygon::default_normal = gfx::Vector3dF(0.0f, 0.0f, -1.0f);
+
+DrawPolygon::DrawPolygon() {
+}
+
+DrawPolygon::DrawPolygon(DrawQuad* original,
+ const std::vector<gfx::Point3F>& in_points,
+ const gfx::Vector3dF& normal,
+ int draw_order_index)
+ : order_index_(draw_order_index), original_ref_(original) {
+ for (size_t i = 0; i < in_points.size(); i++) {
+ points_.push_back(in_points[i]);
+ }
+ normal_ = normal;
+}
+
+DrawPolygon::~DrawPolygon() {
+}
+
+scoped_ptr<DrawPolygon> DrawPolygon::CreateCopy() {
+ DrawPolygon* new_polygon = new DrawPolygon();
+ new_polygon->order_index_ = order_index_;
+ new_polygon->original_ref_ = original_ref_;
+ new_polygon->points_.reserve(points_.size());
+ new_polygon->points_ = points_;
+ new_polygon->normal_.set_x(normal_.x());
+ new_polygon->normal_.set_y(normal_.y());
+ new_polygon->normal_.set_z(normal_.z());
+ return scoped_ptr<DrawPolygon>(new_polygon);
+}
+
+float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const {
+ return gfx::DotProduct(point - points_[0], normal_);
+}
+
+// Checks whether or not shape a lies on the front or back side of b, or
+// whether they should be considered coplanar. If on the back side, we
+// say ABeforeB because it should be drawn in that order.
+// Assumes that layers are split and there are no intersecting planes.
+BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a,
+ const DrawPolygon& b) {
+ // Right away let's check if they're coplanar
+ double dot = gfx::DotProduct(a.normal_, b.normal_);
+ float sign;
+ bool normal_match = false;
+ // This check assumes that the normals are normalized.
+ if (std::abs(dot) >= 1.0f - coplanar_dot_epsilon) {
+ normal_match = true;
+ // The normals are matching enough that we only have to test one point.
+ sign = gfx::DotProduct(a.points_[0] - b.points_[0], b.normal_);
+ // Is it on either side of the splitter?
+ if (sign < -compare_threshold) {
+ return BSP_BACK;
+ }
+
+ if (sign > compare_threshold) {
+ return BSP_FRONT;
+ }
+
+ // No it wasn't, so the sign of the dot product of the normals
+ // along with document order determines which side it goes on.
+ if (dot >= 0.0f) {
+ if (a.order_index_ < b.order_index_) {
+ return BSP_COPLANAR_FRONT;
+ }
+ return BSP_COPLANAR_BACK;
+ }
+
+ if (a.order_index_ < b.order_index_) {
+ return BSP_COPLANAR_BACK;
+ }
+ return BSP_COPLANAR_FRONT;
+ }
+
+ unsigned int pos_count = 0;
enne (OOO) 2014/07/28 23:11:34 unsigned int => int
troyhildebrandt 2014/07/28 23:48:45 Done.
+ unsigned int neg_count = 0;
+ for (size_t i = 0; i < a.points_.size(); i++) {
+ if (!normal_match || (normal_match && i > 0)) {
+ sign = gfx::DotProduct(a.points_[i] - b.points_[0], b.normal_);
+ }
+
+ if (sign < -compare_threshold) {
+ ++neg_count;
+ } else if (sign > compare_threshold) {
+ ++pos_count;
+ }
+
+ if (pos_count && neg_count) {
+ return BSP_SPLIT;
+ }
+ }
+
+ if (pos_count) {
+ return BSP_FRONT;
+ }
+ return BSP_BACK;
+}
+
+static bool LineIntersectPlane(const gfx::Point3F& line_start,
+ const gfx::Point3F& line_end,
+ const gfx::Point3F& plane_origin,
+ const gfx::Vector3dF& plane_normal,
+ gfx::Point3F* intersection,
+ float distance_threshold) {
+ gfx::Vector3dF start_to_origin_vector = plane_origin - line_start;
+ gfx::Vector3dF end_to_origin_vector = plane_origin - line_end;
+
+ double start_distance = gfx::DotProduct(start_to_origin_vector, plane_normal);
+ double end_distance = gfx::DotProduct(end_to_origin_vector, plane_normal);
+
+ // The case where one vertex lies on the thick-plane and the other
+ // is outside of it.
+ if (std::abs(start_distance) < distance_threshold &&
+ std::abs(end_distance) > distance_threshold) {
+ intersection->SetPoint(line_start.x(), line_start.y(), line_start.z());
+ return true;
+ }
+
+ // This is the case where we clearly cross the thick-plane.
+ if ((start_distance > distance_threshold &&
+ end_distance < -distance_threshold) ||
+ (start_distance < -distance_threshold &&
+ end_distance > distance_threshold)) {
+ gfx::Vector3dF v = line_end - line_start;
+ float total_distance = std::abs(start_distance) + std::abs(end_distance);
+ float lerp_factor = std::abs(start_distance) / total_distance;
+
+ intersection->SetPoint(line_start.x() + (v.x() * lerp_factor),
+ line_start.y() + (v.y() * lerp_factor),
+ line_start.z() + (v.z() * lerp_factor));
+
+ return true;
+ }
+ return false;
+}
+
+// This function is separate from ApplyTransform because it is often unnecessary
+// to transform the normal with the rest of the polygon.
+// When drawing these polygons, it is necessary to move them back into layer
+// space before sending them to OpenGL, which requires using ApplyTransform,
+// but normal information is no longer needed after sorting.
+void DrawPolygon::ApplyTransformToNormal(const gfx::Transform& transform) {
+ // Now we use the inverse transpose of |transform| to transform the normal.
+ gfx::Transform inverse_transform;
+ bool inverted = transform.GetInverse(&inverse_transform);
+ DCHECK(inverted);
+ if (!inverted)
+ return;
+ inverse_transform.Transpose();
+
+ gfx::Point3F new_normal(normal_.x(), normal_.y(), normal_.z());
+ inverse_transform.TransformPoint(&new_normal);
+ // Make sure our normal is still normalized.
+ normal_ = gfx::Vector3dF(new_normal.x(), new_normal.y(), new_normal.z());
+ float normal_magnitude = normal_.Length();
+ if (normal_magnitude != 0 && normal_magnitude != 1) {
+ normal_.Scale(1.0f / normal_magnitude);
+ }
+}
+
+void DrawPolygon::ApplyTransform(const gfx::Transform& transform) {
+ for (size_t i = 0; i < points_.size(); i++) {
+ transform.TransformPoint(&points_[i]);
+ }
+}
+
+bool DrawPolygon::Split(const DrawPolygon& splitter,
+ scoped_ptr<DrawPolygon>* front,
+ scoped_ptr<DrawPolygon>* back) {
+ gfx::Point3F intersections[2];
+ std::vector<gfx::Point3F> out_points[2];
+ // vertex_before stores the index of the vertex before its matching
+ // intersection.
+ // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane
+ // which resulted in the line/plane intersection giving us intersections[0].
+ size_t vertex_before[2];
+ size_t points_size = points_.size();
+ size_t current_intersection = 0;
+
+ size_t current_vertex = 0;
+ // We will only have two intersection points because we assume all polygons
+ // are convex.
+ while (current_intersection < 2) {
+ if (LineIntersectPlane(points_[(current_vertex % points_size)],
+ points_[(current_vertex + 1) % points_size],
+ splitter.points_[0],
+ splitter.normal_,
+ &intersections[current_intersection],
+ split_threshold)) {
+ vertex_before[current_intersection] = current_vertex % points_size;
+ current_intersection++;
+ // We found both intersection points so we're done already.
+ if (current_intersection == 2) {
+ break;
+ }
+ }
+ if (current_vertex++ > points_size) {
+ break;
+ }
+ }
+ DCHECK_EQ(current_intersection, static_cast<size_t>(2));
+
+ // Since we found both the intersection points, we can begin building the
+ // vertex set for both our new polygons.
+ size_t start1 = (vertex_before[0] + 1) % points_size;
+ size_t start2 = (vertex_before[1] + 1) % points_size;
+ size_t points_remaining = points_size;
+
+ // First polygon.
+ out_points[0].push_back(intersections[0]);
+ for (size_t i = start1; i <= vertex_before[1]; i++) {
+ out_points[0].push_back(points_[i]);
+ --points_remaining;
+ }
+ out_points[0].push_back(intersections[1]);
+
+ // Second polygon.
+ out_points[1].push_back(intersections[1]);
+ size_t index = start2;
+ for (unsigned int i = 0; i < points_remaining; i++) {
enne (OOO) 2014/07/28 23:11:34 size_t
troyhildebrandt 2014/07/28 23:48:45 Done.
+ out_points[1].push_back(points_[index % points_size]);
+ ++index;
+ }
+ out_points[1].push_back(intersections[0]);
+
+ // Give both polygons the original splitting polygon's ID, so that they'll
+ // still be sorted properly in co-planar instances.
+ scoped_ptr<DrawPolygon> poly1(
+ new DrawPolygon(original_ref_, out_points[0], normal_, order_index_));
+ scoped_ptr<DrawPolygon> poly2(
+ new DrawPolygon(original_ref_, out_points[1], normal_, order_index_));
+
+ if (SideCompare(*poly1, splitter) == BSP_FRONT) {
+ *front = poly1.Pass();
+ *back = poly2.Pass();
+ } else {
+ *front = poly2.Pass();
+ *back = poly1.Pass();
+ }
+ return true;
+}
+
+// This algorithm takes the first vertex in the polygon and uses that as a
+// pivot point to fan out and create quads from the rest of the vertices.
+// |offset| starts off as the second vertex, and then |op1| and |op2| indicate
+// offset+1 and offset+2 respectively.
+// After the first quad is created, the first vertex in the next quad is the
+// same as all the rest, the pivot point. The second vertex in the next quad is
+// the old |op2|, the last vertex added to the previous quad. This continues
+// until all points are exhausted.
+// The special case here is where there are only 3 points remaining, in which
+// case we use the same values for vertex 3 and 4 to make a degenerate quad
+// that represents a triangle.
+void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const {
+ if (points_.size() <= 2)
+ return;
+
+ gfx::PointF first(points_[0].x(), points_[0].y());
+ size_t offset = 1;
+ while (offset < points_.size() - 1) {
+ size_t op1 = offset + 1;
+ size_t op2 = offset + 2;
+ if (op2 >= points_.size()) {
+ // It's going to be a degenerate triangle.
+ op2 = op1;
+ }
+ quads->push_back(
+ gfx::QuadF(first,
+ gfx::PointF(points_[offset].x(), points_[offset].y()),
+ gfx::PointF(points_[op1].x(), points_[op1].y()),
+ gfx::PointF(points_[op2].x(), points_[op2].y())));
+ offset = op2;
+ }
+}
+
+} // namespace cc

Powered by Google App Engine
This is Rietveld 408576698