Index: cc/quads/draw_polygon.cc |
diff --git a/cc/quads/draw_polygon.cc b/cc/quads/draw_polygon.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..8e938822aa195cf1a592b75b2da242a9d35402df |
--- /dev/null |
+++ b/cc/quads/draw_polygon.cc |
@@ -0,0 +1,307 @@ |
+// Copyright 2014 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include "cc/quads/draw_polygon.h" |
+ |
+#include <vector> |
+ |
+#include "cc/output/bsp_compare_result.h" |
+ |
+namespace { |
+// This allows for some imperfection in the normal comparison when checking if |
+// two pieces of geometry are coplanar. |
+static const float coplanar_dot_epsilon = 0.01f; |
+// This threshold controls how "thick" a plane is. If a point's distance is |
enne (OOO)
2014/07/28 23:11:34
What are these units in? (both compare and split t
troyhildebrandt
2014/07/28 23:48:45
I believe they're in device pixels, if that's what
|
+// <= |compare_threshold|, then it is considered on the plane. Only when this |
+// boundary is crossed do we consider doing splitting. |
+static const float compare_threshold = 1.0f; |
+// |split_threshold| is lower in this case because we want the points created |
+// during splitting to be well within the range of |compare_threshold| for |
+// comparison purposes. The splitting operation will produce intersection points |
+// that fit within a tighter distance to the splitting plane as a result of this |
+// value. By using a value >= |compare_threshold| we run the risk of creating |
+// points that SHOULD be intersecting the "thick plane", but actually fail to |
+// test positively for it because |split_threshold| allowed them to be outside |
+// this range. |
+static const float split_threshold = 0.5f; |
+} // namespace |
+ |
+namespace cc { |
+ |
+gfx::Vector3dF DrawPolygon::default_normal = gfx::Vector3dF(0.0f, 0.0f, -1.0f); |
+ |
+DrawPolygon::DrawPolygon() { |
+} |
+ |
+DrawPolygon::DrawPolygon(DrawQuad* original, |
+ const std::vector<gfx::Point3F>& in_points, |
+ const gfx::Vector3dF& normal, |
+ int draw_order_index) |
+ : order_index_(draw_order_index), original_ref_(original) { |
+ for (size_t i = 0; i < in_points.size(); i++) { |
+ points_.push_back(in_points[i]); |
+ } |
+ normal_ = normal; |
+} |
+ |
+DrawPolygon::~DrawPolygon() { |
+} |
+ |
+scoped_ptr<DrawPolygon> DrawPolygon::CreateCopy() { |
+ DrawPolygon* new_polygon = new DrawPolygon(); |
+ new_polygon->order_index_ = order_index_; |
+ new_polygon->original_ref_ = original_ref_; |
+ new_polygon->points_.reserve(points_.size()); |
+ new_polygon->points_ = points_; |
+ new_polygon->normal_.set_x(normal_.x()); |
+ new_polygon->normal_.set_y(normal_.y()); |
+ new_polygon->normal_.set_z(normal_.z()); |
+ return scoped_ptr<DrawPolygon>(new_polygon); |
+} |
+ |
+float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const { |
+ return gfx::DotProduct(point - points_[0], normal_); |
+} |
+ |
+// Checks whether or not shape a lies on the front or back side of b, or |
+// whether they should be considered coplanar. If on the back side, we |
+// say ABeforeB because it should be drawn in that order. |
+// Assumes that layers are split and there are no intersecting planes. |
+BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a, |
+ const DrawPolygon& b) { |
+ // Right away let's check if they're coplanar |
+ double dot = gfx::DotProduct(a.normal_, b.normal_); |
+ float sign; |
+ bool normal_match = false; |
+ // This check assumes that the normals are normalized. |
+ if (std::abs(dot) >= 1.0f - coplanar_dot_epsilon) { |
+ normal_match = true; |
+ // The normals are matching enough that we only have to test one point. |
+ sign = gfx::DotProduct(a.points_[0] - b.points_[0], b.normal_); |
+ // Is it on either side of the splitter? |
+ if (sign < -compare_threshold) { |
+ return BSP_BACK; |
+ } |
+ |
+ if (sign > compare_threshold) { |
+ return BSP_FRONT; |
+ } |
+ |
+ // No it wasn't, so the sign of the dot product of the normals |
+ // along with document order determines which side it goes on. |
+ if (dot >= 0.0f) { |
+ if (a.order_index_ < b.order_index_) { |
+ return BSP_COPLANAR_FRONT; |
+ } |
+ return BSP_COPLANAR_BACK; |
+ } |
+ |
+ if (a.order_index_ < b.order_index_) { |
+ return BSP_COPLANAR_BACK; |
+ } |
+ return BSP_COPLANAR_FRONT; |
+ } |
+ |
+ unsigned int pos_count = 0; |
enne (OOO)
2014/07/28 23:11:34
unsigned int => int
troyhildebrandt
2014/07/28 23:48:45
Done.
|
+ unsigned int neg_count = 0; |
+ for (size_t i = 0; i < a.points_.size(); i++) { |
+ if (!normal_match || (normal_match && i > 0)) { |
+ sign = gfx::DotProduct(a.points_[i] - b.points_[0], b.normal_); |
+ } |
+ |
+ if (sign < -compare_threshold) { |
+ ++neg_count; |
+ } else if (sign > compare_threshold) { |
+ ++pos_count; |
+ } |
+ |
+ if (pos_count && neg_count) { |
+ return BSP_SPLIT; |
+ } |
+ } |
+ |
+ if (pos_count) { |
+ return BSP_FRONT; |
+ } |
+ return BSP_BACK; |
+} |
+ |
+static bool LineIntersectPlane(const gfx::Point3F& line_start, |
+ const gfx::Point3F& line_end, |
+ const gfx::Point3F& plane_origin, |
+ const gfx::Vector3dF& plane_normal, |
+ gfx::Point3F* intersection, |
+ float distance_threshold) { |
+ gfx::Vector3dF start_to_origin_vector = plane_origin - line_start; |
+ gfx::Vector3dF end_to_origin_vector = plane_origin - line_end; |
+ |
+ double start_distance = gfx::DotProduct(start_to_origin_vector, plane_normal); |
+ double end_distance = gfx::DotProduct(end_to_origin_vector, plane_normal); |
+ |
+ // The case where one vertex lies on the thick-plane and the other |
+ // is outside of it. |
+ if (std::abs(start_distance) < distance_threshold && |
+ std::abs(end_distance) > distance_threshold) { |
+ intersection->SetPoint(line_start.x(), line_start.y(), line_start.z()); |
+ return true; |
+ } |
+ |
+ // This is the case where we clearly cross the thick-plane. |
+ if ((start_distance > distance_threshold && |
+ end_distance < -distance_threshold) || |
+ (start_distance < -distance_threshold && |
+ end_distance > distance_threshold)) { |
+ gfx::Vector3dF v = line_end - line_start; |
+ float total_distance = std::abs(start_distance) + std::abs(end_distance); |
+ float lerp_factor = std::abs(start_distance) / total_distance; |
+ |
+ intersection->SetPoint(line_start.x() + (v.x() * lerp_factor), |
+ line_start.y() + (v.y() * lerp_factor), |
+ line_start.z() + (v.z() * lerp_factor)); |
+ |
+ return true; |
+ } |
+ return false; |
+} |
+ |
+// This function is separate from ApplyTransform because it is often unnecessary |
+// to transform the normal with the rest of the polygon. |
+// When drawing these polygons, it is necessary to move them back into layer |
+// space before sending them to OpenGL, which requires using ApplyTransform, |
+// but normal information is no longer needed after sorting. |
+void DrawPolygon::ApplyTransformToNormal(const gfx::Transform& transform) { |
+ // Now we use the inverse transpose of |transform| to transform the normal. |
+ gfx::Transform inverse_transform; |
+ bool inverted = transform.GetInverse(&inverse_transform); |
+ DCHECK(inverted); |
+ if (!inverted) |
+ return; |
+ inverse_transform.Transpose(); |
+ |
+ gfx::Point3F new_normal(normal_.x(), normal_.y(), normal_.z()); |
+ inverse_transform.TransformPoint(&new_normal); |
+ // Make sure our normal is still normalized. |
+ normal_ = gfx::Vector3dF(new_normal.x(), new_normal.y(), new_normal.z()); |
+ float normal_magnitude = normal_.Length(); |
+ if (normal_magnitude != 0 && normal_magnitude != 1) { |
+ normal_.Scale(1.0f / normal_magnitude); |
+ } |
+} |
+ |
+void DrawPolygon::ApplyTransform(const gfx::Transform& transform) { |
+ for (size_t i = 0; i < points_.size(); i++) { |
+ transform.TransformPoint(&points_[i]); |
+ } |
+} |
+ |
+bool DrawPolygon::Split(const DrawPolygon& splitter, |
+ scoped_ptr<DrawPolygon>* front, |
+ scoped_ptr<DrawPolygon>* back) { |
+ gfx::Point3F intersections[2]; |
+ std::vector<gfx::Point3F> out_points[2]; |
+ // vertex_before stores the index of the vertex before its matching |
+ // intersection. |
+ // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane |
+ // which resulted in the line/plane intersection giving us intersections[0]. |
+ size_t vertex_before[2]; |
+ size_t points_size = points_.size(); |
+ size_t current_intersection = 0; |
+ |
+ size_t current_vertex = 0; |
+ // We will only have two intersection points because we assume all polygons |
+ // are convex. |
+ while (current_intersection < 2) { |
+ if (LineIntersectPlane(points_[(current_vertex % points_size)], |
+ points_[(current_vertex + 1) % points_size], |
+ splitter.points_[0], |
+ splitter.normal_, |
+ &intersections[current_intersection], |
+ split_threshold)) { |
+ vertex_before[current_intersection] = current_vertex % points_size; |
+ current_intersection++; |
+ // We found both intersection points so we're done already. |
+ if (current_intersection == 2) { |
+ break; |
+ } |
+ } |
+ if (current_vertex++ > points_size) { |
+ break; |
+ } |
+ } |
+ DCHECK_EQ(current_intersection, static_cast<size_t>(2)); |
+ |
+ // Since we found both the intersection points, we can begin building the |
+ // vertex set for both our new polygons. |
+ size_t start1 = (vertex_before[0] + 1) % points_size; |
+ size_t start2 = (vertex_before[1] + 1) % points_size; |
+ size_t points_remaining = points_size; |
+ |
+ // First polygon. |
+ out_points[0].push_back(intersections[0]); |
+ for (size_t i = start1; i <= vertex_before[1]; i++) { |
+ out_points[0].push_back(points_[i]); |
+ --points_remaining; |
+ } |
+ out_points[0].push_back(intersections[1]); |
+ |
+ // Second polygon. |
+ out_points[1].push_back(intersections[1]); |
+ size_t index = start2; |
+ for (unsigned int i = 0; i < points_remaining; i++) { |
enne (OOO)
2014/07/28 23:11:34
size_t
troyhildebrandt
2014/07/28 23:48:45
Done.
|
+ out_points[1].push_back(points_[index % points_size]); |
+ ++index; |
+ } |
+ out_points[1].push_back(intersections[0]); |
+ |
+ // Give both polygons the original splitting polygon's ID, so that they'll |
+ // still be sorted properly in co-planar instances. |
+ scoped_ptr<DrawPolygon> poly1( |
+ new DrawPolygon(original_ref_, out_points[0], normal_, order_index_)); |
+ scoped_ptr<DrawPolygon> poly2( |
+ new DrawPolygon(original_ref_, out_points[1], normal_, order_index_)); |
+ |
+ if (SideCompare(*poly1, splitter) == BSP_FRONT) { |
+ *front = poly1.Pass(); |
+ *back = poly2.Pass(); |
+ } else { |
+ *front = poly2.Pass(); |
+ *back = poly1.Pass(); |
+ } |
+ return true; |
+} |
+ |
+// This algorithm takes the first vertex in the polygon and uses that as a |
+// pivot point to fan out and create quads from the rest of the vertices. |
+// |offset| starts off as the second vertex, and then |op1| and |op2| indicate |
+// offset+1 and offset+2 respectively. |
+// After the first quad is created, the first vertex in the next quad is the |
+// same as all the rest, the pivot point. The second vertex in the next quad is |
+// the old |op2|, the last vertex added to the previous quad. This continues |
+// until all points are exhausted. |
+// The special case here is where there are only 3 points remaining, in which |
+// case we use the same values for vertex 3 and 4 to make a degenerate quad |
+// that represents a triangle. |
+void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const { |
+ if (points_.size() <= 2) |
+ return; |
+ |
+ gfx::PointF first(points_[0].x(), points_[0].y()); |
+ size_t offset = 1; |
+ while (offset < points_.size() - 1) { |
+ size_t op1 = offset + 1; |
+ size_t op2 = offset + 2; |
+ if (op2 >= points_.size()) { |
+ // It's going to be a degenerate triangle. |
+ op2 = op1; |
+ } |
+ quads->push_back( |
+ gfx::QuadF(first, |
+ gfx::PointF(points_[offset].x(), points_[offset].y()), |
+ gfx::PointF(points_[op1].x(), points_[op1].y()), |
+ gfx::PointF(points_[op2].x(), points_[op2].y()))); |
+ offset = op2; |
+ } |
+} |
+ |
+} // namespace cc |