OLD | NEW |
---|---|
(Empty) | |
1 // Copyright 2014 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "cc/quads/draw_polygon.h" | |
6 | |
7 #include <vector> | |
8 | |
9 #include "cc/output/bsp_compare_result.h" | |
10 | |
11 namespace { | |
12 // This allows for some imperfection in the normal comparison when checking if | |
13 // two pieces of geometry are coplanar. | |
14 static const float coplanar_dot_epsilon = 0.01f; | |
15 // This threshold controls how "thick" a plane is. If a point's distance is | |
enne (OOO)
2014/07/28 23:11:34
What are these units in? (both compare and split t
troyhildebrandt
2014/07/28 23:48:45
I believe they're in device pixels, if that's what
| |
16 // <= |compare_threshold|, then it is considered on the plane. Only when this | |
17 // boundary is crossed do we consider doing splitting. | |
18 static const float compare_threshold = 1.0f; | |
19 // |split_threshold| is lower in this case because we want the points created | |
20 // during splitting to be well within the range of |compare_threshold| for | |
21 // comparison purposes. The splitting operation will produce intersection points | |
22 // that fit within a tighter distance to the splitting plane as a result of this | |
23 // value. By using a value >= |compare_threshold| we run the risk of creating | |
24 // points that SHOULD be intersecting the "thick plane", but actually fail to | |
25 // test positively for it because |split_threshold| allowed them to be outside | |
26 // this range. | |
27 static const float split_threshold = 0.5f; | |
28 } // namespace | |
29 | |
30 namespace cc { | |
31 | |
32 gfx::Vector3dF DrawPolygon::default_normal = gfx::Vector3dF(0.0f, 0.0f, -1.0f); | |
33 | |
34 DrawPolygon::DrawPolygon() { | |
35 } | |
36 | |
37 DrawPolygon::DrawPolygon(DrawQuad* original, | |
38 const std::vector<gfx::Point3F>& in_points, | |
39 const gfx::Vector3dF& normal, | |
40 int draw_order_index) | |
41 : order_index_(draw_order_index), original_ref_(original) { | |
42 for (size_t i = 0; i < in_points.size(); i++) { | |
43 points_.push_back(in_points[i]); | |
44 } | |
45 normal_ = normal; | |
46 } | |
47 | |
48 DrawPolygon::~DrawPolygon() { | |
49 } | |
50 | |
51 scoped_ptr<DrawPolygon> DrawPolygon::CreateCopy() { | |
52 DrawPolygon* new_polygon = new DrawPolygon(); | |
53 new_polygon->order_index_ = order_index_; | |
54 new_polygon->original_ref_ = original_ref_; | |
55 new_polygon->points_.reserve(points_.size()); | |
56 new_polygon->points_ = points_; | |
57 new_polygon->normal_.set_x(normal_.x()); | |
58 new_polygon->normal_.set_y(normal_.y()); | |
59 new_polygon->normal_.set_z(normal_.z()); | |
60 return scoped_ptr<DrawPolygon>(new_polygon); | |
61 } | |
62 | |
63 float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const { | |
64 return gfx::DotProduct(point - points_[0], normal_); | |
65 } | |
66 | |
67 // Checks whether or not shape a lies on the front or back side of b, or | |
68 // whether they should be considered coplanar. If on the back side, we | |
69 // say ABeforeB because it should be drawn in that order. | |
70 // Assumes that layers are split and there are no intersecting planes. | |
71 BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a, | |
72 const DrawPolygon& b) { | |
73 // Right away let's check if they're coplanar | |
74 double dot = gfx::DotProduct(a.normal_, b.normal_); | |
75 float sign; | |
76 bool normal_match = false; | |
77 // This check assumes that the normals are normalized. | |
78 if (std::abs(dot) >= 1.0f - coplanar_dot_epsilon) { | |
79 normal_match = true; | |
80 // The normals are matching enough that we only have to test one point. | |
81 sign = gfx::DotProduct(a.points_[0] - b.points_[0], b.normal_); | |
82 // Is it on either side of the splitter? | |
83 if (sign < -compare_threshold) { | |
84 return BSP_BACK; | |
85 } | |
86 | |
87 if (sign > compare_threshold) { | |
88 return BSP_FRONT; | |
89 } | |
90 | |
91 // No it wasn't, so the sign of the dot product of the normals | |
92 // along with document order determines which side it goes on. | |
93 if (dot >= 0.0f) { | |
94 if (a.order_index_ < b.order_index_) { | |
95 return BSP_COPLANAR_FRONT; | |
96 } | |
97 return BSP_COPLANAR_BACK; | |
98 } | |
99 | |
100 if (a.order_index_ < b.order_index_) { | |
101 return BSP_COPLANAR_BACK; | |
102 } | |
103 return BSP_COPLANAR_FRONT; | |
104 } | |
105 | |
106 unsigned int pos_count = 0; | |
enne (OOO)
2014/07/28 23:11:34
unsigned int => int
troyhildebrandt
2014/07/28 23:48:45
Done.
| |
107 unsigned int neg_count = 0; | |
108 for (size_t i = 0; i < a.points_.size(); i++) { | |
109 if (!normal_match || (normal_match && i > 0)) { | |
110 sign = gfx::DotProduct(a.points_[i] - b.points_[0], b.normal_); | |
111 } | |
112 | |
113 if (sign < -compare_threshold) { | |
114 ++neg_count; | |
115 } else if (sign > compare_threshold) { | |
116 ++pos_count; | |
117 } | |
118 | |
119 if (pos_count && neg_count) { | |
120 return BSP_SPLIT; | |
121 } | |
122 } | |
123 | |
124 if (pos_count) { | |
125 return BSP_FRONT; | |
126 } | |
127 return BSP_BACK; | |
128 } | |
129 | |
130 static bool LineIntersectPlane(const gfx::Point3F& line_start, | |
131 const gfx::Point3F& line_end, | |
132 const gfx::Point3F& plane_origin, | |
133 const gfx::Vector3dF& plane_normal, | |
134 gfx::Point3F* intersection, | |
135 float distance_threshold) { | |
136 gfx::Vector3dF start_to_origin_vector = plane_origin - line_start; | |
137 gfx::Vector3dF end_to_origin_vector = plane_origin - line_end; | |
138 | |
139 double start_distance = gfx::DotProduct(start_to_origin_vector, plane_normal); | |
140 double end_distance = gfx::DotProduct(end_to_origin_vector, plane_normal); | |
141 | |
142 // The case where one vertex lies on the thick-plane and the other | |
143 // is outside of it. | |
144 if (std::abs(start_distance) < distance_threshold && | |
145 std::abs(end_distance) > distance_threshold) { | |
146 intersection->SetPoint(line_start.x(), line_start.y(), line_start.z()); | |
147 return true; | |
148 } | |
149 | |
150 // This is the case where we clearly cross the thick-plane. | |
151 if ((start_distance > distance_threshold && | |
152 end_distance < -distance_threshold) || | |
153 (start_distance < -distance_threshold && | |
154 end_distance > distance_threshold)) { | |
155 gfx::Vector3dF v = line_end - line_start; | |
156 float total_distance = std::abs(start_distance) + std::abs(end_distance); | |
157 float lerp_factor = std::abs(start_distance) / total_distance; | |
158 | |
159 intersection->SetPoint(line_start.x() + (v.x() * lerp_factor), | |
160 line_start.y() + (v.y() * lerp_factor), | |
161 line_start.z() + (v.z() * lerp_factor)); | |
162 | |
163 return true; | |
164 } | |
165 return false; | |
166 } | |
167 | |
168 // This function is separate from ApplyTransform because it is often unnecessary | |
169 // to transform the normal with the rest of the polygon. | |
170 // When drawing these polygons, it is necessary to move them back into layer | |
171 // space before sending them to OpenGL, which requires using ApplyTransform, | |
172 // but normal information is no longer needed after sorting. | |
173 void DrawPolygon::ApplyTransformToNormal(const gfx::Transform& transform) { | |
174 // Now we use the inverse transpose of |transform| to transform the normal. | |
175 gfx::Transform inverse_transform; | |
176 bool inverted = transform.GetInverse(&inverse_transform); | |
177 DCHECK(inverted); | |
178 if (!inverted) | |
179 return; | |
180 inverse_transform.Transpose(); | |
181 | |
182 gfx::Point3F new_normal(normal_.x(), normal_.y(), normal_.z()); | |
183 inverse_transform.TransformPoint(&new_normal); | |
184 // Make sure our normal is still normalized. | |
185 normal_ = gfx::Vector3dF(new_normal.x(), new_normal.y(), new_normal.z()); | |
186 float normal_magnitude = normal_.Length(); | |
187 if (normal_magnitude != 0 && normal_magnitude != 1) { | |
188 normal_.Scale(1.0f / normal_magnitude); | |
189 } | |
190 } | |
191 | |
192 void DrawPolygon::ApplyTransform(const gfx::Transform& transform) { | |
193 for (size_t i = 0; i < points_.size(); i++) { | |
194 transform.TransformPoint(&points_[i]); | |
195 } | |
196 } | |
197 | |
198 bool DrawPolygon::Split(const DrawPolygon& splitter, | |
199 scoped_ptr<DrawPolygon>* front, | |
200 scoped_ptr<DrawPolygon>* back) { | |
201 gfx::Point3F intersections[2]; | |
202 std::vector<gfx::Point3F> out_points[2]; | |
203 // vertex_before stores the index of the vertex before its matching | |
204 // intersection. | |
205 // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane | |
206 // which resulted in the line/plane intersection giving us intersections[0]. | |
207 size_t vertex_before[2]; | |
208 size_t points_size = points_.size(); | |
209 size_t current_intersection = 0; | |
210 | |
211 size_t current_vertex = 0; | |
212 // We will only have two intersection points because we assume all polygons | |
213 // are convex. | |
214 while (current_intersection < 2) { | |
215 if (LineIntersectPlane(points_[(current_vertex % points_size)], | |
216 points_[(current_vertex + 1) % points_size], | |
217 splitter.points_[0], | |
218 splitter.normal_, | |
219 &intersections[current_intersection], | |
220 split_threshold)) { | |
221 vertex_before[current_intersection] = current_vertex % points_size; | |
222 current_intersection++; | |
223 // We found both intersection points so we're done already. | |
224 if (current_intersection == 2) { | |
225 break; | |
226 } | |
227 } | |
228 if (current_vertex++ > points_size) { | |
229 break; | |
230 } | |
231 } | |
232 DCHECK_EQ(current_intersection, static_cast<size_t>(2)); | |
233 | |
234 // Since we found both the intersection points, we can begin building the | |
235 // vertex set for both our new polygons. | |
236 size_t start1 = (vertex_before[0] + 1) % points_size; | |
237 size_t start2 = (vertex_before[1] + 1) % points_size; | |
238 size_t points_remaining = points_size; | |
239 | |
240 // First polygon. | |
241 out_points[0].push_back(intersections[0]); | |
242 for (size_t i = start1; i <= vertex_before[1]; i++) { | |
243 out_points[0].push_back(points_[i]); | |
244 --points_remaining; | |
245 } | |
246 out_points[0].push_back(intersections[1]); | |
247 | |
248 // Second polygon. | |
249 out_points[1].push_back(intersections[1]); | |
250 size_t index = start2; | |
251 for (unsigned int i = 0; i < points_remaining; i++) { | |
enne (OOO)
2014/07/28 23:11:34
size_t
troyhildebrandt
2014/07/28 23:48:45
Done.
| |
252 out_points[1].push_back(points_[index % points_size]); | |
253 ++index; | |
254 } | |
255 out_points[1].push_back(intersections[0]); | |
256 | |
257 // Give both polygons the original splitting polygon's ID, so that they'll | |
258 // still be sorted properly in co-planar instances. | |
259 scoped_ptr<DrawPolygon> poly1( | |
260 new DrawPolygon(original_ref_, out_points[0], normal_, order_index_)); | |
261 scoped_ptr<DrawPolygon> poly2( | |
262 new DrawPolygon(original_ref_, out_points[1], normal_, order_index_)); | |
263 | |
264 if (SideCompare(*poly1, splitter) == BSP_FRONT) { | |
265 *front = poly1.Pass(); | |
266 *back = poly2.Pass(); | |
267 } else { | |
268 *front = poly2.Pass(); | |
269 *back = poly1.Pass(); | |
270 } | |
271 return true; | |
272 } | |
273 | |
274 // This algorithm takes the first vertex in the polygon and uses that as a | |
275 // pivot point to fan out and create quads from the rest of the vertices. | |
276 // |offset| starts off as the second vertex, and then |op1| and |op2| indicate | |
277 // offset+1 and offset+2 respectively. | |
278 // After the first quad is created, the first vertex in the next quad is the | |
279 // same as all the rest, the pivot point. The second vertex in the next quad is | |
280 // the old |op2|, the last vertex added to the previous quad. This continues | |
281 // until all points are exhausted. | |
282 // The special case here is where there are only 3 points remaining, in which | |
283 // case we use the same values for vertex 3 and 4 to make a degenerate quad | |
284 // that represents a triangle. | |
285 void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const { | |
286 if (points_.size() <= 2) | |
287 return; | |
288 | |
289 gfx::PointF first(points_[0].x(), points_[0].y()); | |
290 size_t offset = 1; | |
291 while (offset < points_.size() - 1) { | |
292 size_t op1 = offset + 1; | |
293 size_t op2 = offset + 2; | |
294 if (op2 >= points_.size()) { | |
295 // It's going to be a degenerate triangle. | |
296 op2 = op1; | |
297 } | |
298 quads->push_back( | |
299 gfx::QuadF(first, | |
300 gfx::PointF(points_[offset].x(), points_[offset].y()), | |
301 gfx::PointF(points_[op1].x(), points_[op1].y()), | |
302 gfx::PointF(points_[op2].x(), points_[op2].y()))); | |
303 offset = op2; | |
304 } | |
305 } | |
306 | |
307 } // namespace cc | |
OLD | NEW |