OLD | NEW |
---|---|
(Empty) | |
1 // Copyright 2014 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "cc/quads/draw_polygon.h" | |
6 | |
7 #include <vector> | |
8 | |
9 #include "cc/output/bsp_compare_result.h" | |
10 | |
11 namespace { | |
12 // This allows for some imperfection in the normal comparison when checking if | |
13 // two pieces of geometry are coplanar. | |
14 static const float coplanar_dot_epsilon = 0.99f; | |
15 // This threshold controls how "thick" a plane is. If a point's distance is | |
16 // <= compare_threshold, then it is considered on the plane. Only when this | |
17 // boundary is crossed do we consider doing splitting. | |
18 static const float compare_threshold = 1.0f; | |
19 static const float split_threshold = 0.5f; | |
20 } // namespace | |
21 | |
22 namespace cc { | |
23 | |
24 DrawPolygon::DrawPolygon() { | |
25 } | |
26 | |
27 DrawPolygon::DrawPolygon(DrawQuad* original, | |
28 const std::vector<gfx::Point3F>& in_points, | |
29 int draw_order_index) | |
30 : order_index_(draw_order_index), original_ref_(original) { | |
31 for (unsigned int i = 0; i < in_points.size(); i++) { | |
32 points_.push_back(in_points[i]); | |
33 } | |
34 normal_ = gfx::Vector3dF(0.0f, 0.0f, 1.0f); | |
35 } | |
36 | |
37 DrawPolygon::~DrawPolygon() { | |
38 } | |
39 | |
40 void DrawPolygon::SetNormal(const gfx::Vector3dF& normal) { | |
41 normal_ = normal; | |
42 } | |
43 | |
44 scoped_ptr<DrawPolygon> DrawPolygon::CreateCopy() { | |
45 DrawPolygon* new_polygon = new DrawPolygon(); | |
46 new_polygon->order_index_ = order_index_; | |
47 new_polygon->original_ref_ = original_ref_; | |
48 new_polygon->points_.reserve(points_.size()); | |
49 new_polygon->points_ = points_; | |
50 new_polygon->normal_.set_x(normal_.x()); | |
51 new_polygon->normal_.set_y(normal_.y()); | |
52 new_polygon->normal_.set_z(normal_.z()); | |
53 return scoped_ptr<DrawPolygon>(new_polygon); | |
54 } | |
55 | |
56 float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const { | |
57 return gfx::DotProduct(point - points_[0], normal_); | |
58 } | |
59 | |
60 // Checks whether or not shape a lies on the front or back side of b, or | |
61 // whether they should be considered coplanar. If on the back side, we | |
62 // say ABeforeB because it should be drawn in that order. | |
63 // Assumes that layers are split and there are no intersecting planes. | |
64 BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a, | |
65 const DrawPolygon& b) { | |
66 // Right away let's check if they're coplanar | |
67 double dot = gfx::DotProduct(a.normal_, b.normal_); | |
Ian Vollick
2014/07/25 15:52:13
Do we need to ensure that apply normal has been ca
troyhildebrandt
2014/07/25 20:37:47
Applying the transformation to the normal happens
Ian Vollick
2014/07/26 01:24:37
K. Thanks for the explanation.
| |
68 float sign; | |
69 bool normal_match = false; | |
70 // This check assumes that the normals are normalized. | |
71 if (std::abs(dot) >= coplanar_dot_epsilon) { | |
Ian Vollick
2014/07/25 15:52:13
It's a little odd to have epsilon be .99 rather th
troyhildebrandt
2014/07/25 20:37:47
Done.
| |
72 normal_match = true; | |
73 // The normals are matching enough that we only have to test one point. | |
74 sign = gfx::DotProduct(a.points_[0] - b.points_[0], b.normal_); | |
Ian Vollick
2014/07/25 15:52:13
What if a.points_[0] == b.points_[0] ?
troyhildebrandt
2014/07/25 20:37:47
We end up with the dot product resulting in 0, whi
Ian Vollick
2014/07/26 01:24:37
I'm not convinced that this is always ok. Two poly
troyhildebrandt
2014/07/28 17:39:37
The std::abs(dot) >= coplanar_dot_epsilon dot prod
Ian Vollick
2014/07/28 19:39:51
Oh right (facepalm). Thanks for catching me up :)
| |
75 // Is it on either side of the splitter? | |
76 if (sign < -compare_threshold) { | |
77 return BSP_BACK; | |
78 } | |
79 | |
80 if (sign > compare_threshold) { | |
81 return BSP_FRONT; | |
82 } | |
83 | |
84 // No it wasn't, so the sign of the dot product of the normals | |
85 // along with document order determines which side it goes on. | |
86 if (dot >= 0.0f) { | |
87 if (a.order_index_ < b.order_index_) { | |
88 return BSP_COPLANAR_FRONT; | |
89 } | |
90 return BSP_COPLANAR_BACK; | |
91 } | |
92 | |
93 if (a.order_index_ < b.order_index_) { | |
94 return BSP_COPLANAR_BACK; | |
95 } | |
96 return BSP_COPLANAR_FRONT; | |
97 } | |
98 | |
99 unsigned int pos_count = 0; | |
100 unsigned int neg_count = 0; | |
101 for (unsigned int i = 0; i < a.points_.size(); i++) { | |
102 if (!normal_match || (normal_match && i > 0)) { | |
103 sign = gfx::DotProduct(a.points_[i] - b.points_[0], b.normal_); | |
104 } | |
105 | |
106 if (sign < -compare_threshold) { | |
107 ++neg_count; | |
108 } else if (sign > compare_threshold) { | |
109 ++pos_count; | |
110 } | |
111 | |
112 if (pos_count && neg_count) { | |
113 return BSP_SPLIT; | |
114 } | |
115 } | |
116 | |
117 if (pos_count) { | |
118 return BSP_FRONT; | |
119 } | |
120 return BSP_BACK; | |
121 } | |
122 | |
123 static bool LineIntersectPlane(const gfx::Point3F& line_start, | |
124 const gfx::Point3F& line_end, | |
125 const gfx::Point3F& plane_origin, | |
126 const gfx::Vector3dF& plane_normal, | |
127 gfx::Point3F* intersection, | |
128 float distance_threshold) { | |
129 gfx::Vector3dF start_to_origin_vector = plane_origin - line_start; | |
130 gfx::Vector3dF end_to_origin_vector = plane_origin - line_end; | |
131 | |
132 double start_distance = gfx::DotProduct(start_to_origin_vector, plane_normal); | |
133 double end_distance = gfx::DotProduct(end_to_origin_vector, plane_normal); | |
134 | |
135 // The case where one vertex lies on the thick-plane and the other | |
136 // is outside of it. | |
137 if (std::abs(start_distance) < distance_threshold && | |
138 std::abs(end_distance) > distance_threshold) { | |
139 intersection->SetPoint(line_start.x(), line_start.y(), line_start.z()); | |
140 return true; | |
141 } | |
142 | |
143 // This is the case where we clearly cross the thick-plane. | |
144 if ((start_distance > distance_threshold && | |
145 end_distance < -distance_threshold) || | |
146 (start_distance < -distance_threshold && | |
147 end_distance > distance_threshold)) { | |
Ian Vollick
2014/07/25 15:52:13
Dumb question, if you know start and end distance,
troyhildebrandt
2014/07/25 20:37:47
You're right, much simpler, done.
| |
148 // By getting the dot product of the line segment normalized vs. the plane's | |
149 // normal, we get a value that approaches zero as the angle of the | |
150 // intersecting line becomes parallel with the plane. | |
151 // When the line segment vector is equal to the plane's normal, we have the | |
152 // most direct path to the plane, and the dot product is 1. In this case, | |
153 // the calculation below is just |start_distance| / 1, which is the trivial | |
154 // case because the line takes the most direct path to intersect with the | |
155 // plane. |start_distance| is already the shortest straight line path | |
156 // distance to the plane. | |
157 // However, as the vector that represents the direction of the line segment | |
158 // indicates that it is becoming more parallel with the surface of the plane | |
159 // and the dot product approaches 0, the path to intersection becomes much | |
160 // longer, and the division of |start_distance| by < 1 gives us the true | |
161 // distance of the start point to the plane following the vector of the line | |
162 // segment. | |
163 gfx::Vector3dF v = line_end - line_start; | |
164 v.Scale(1.f / v.Length()); | |
165 double projected_length = gfx::DotProduct(v, plane_normal); | |
166 | |
167 // The only way this will ever be true is the case where the line runs | |
168 // parallel to the surface of the plane and would never contact it, and | |
169 // this would result in a divide by zero below. | |
170 if (!projected_length) { | |
171 return false; | |
172 } | |
173 | |
174 double scale = start_distance / projected_length; | |
175 intersection->SetPoint(line_start.x() + (v.x() * scale), | |
176 line_start.y() + (v.y() * scale), | |
177 line_start.z() + (v.z() * scale)); | |
178 | |
179 return true; | |
180 } | |
181 return false; | |
182 } | |
183 | |
184 // This function is separate from ApplyTransform because it is often unnecessary | |
185 // to transform the normal with the rest of the polygon. | |
186 // When drawing these polygons, it is necessary to move them back into layer | |
187 // space before sending them to OpenGL, which requires using ApplyTransform, | |
188 // but normal information is no longer needed after sorting. | |
189 void DrawPolygon::ApplyTransformToNormal(const gfx::Transform& transform) { | |
190 // Now we use the inverse transpose of |transform| to transform the normal. | |
191 gfx::Transform inverse_transform; | |
192 bool inverted = transform.GetInverse(&inverse_transform); | |
193 DCHECK(inverted); | |
194 if (!inverted) | |
195 return; | |
196 inverse_transform.Transpose(); | |
197 | |
198 gfx::Point3F new_normal(normal_.x(), normal_.y(), normal_.z()); | |
199 inverse_transform.TransformPoint(&new_normal); | |
200 // Make sure our normal is still normalized. | |
201 normal_ = gfx::Vector3dF(new_normal.x(), new_normal.y(), new_normal.z()); | |
202 float normal_magnitude = normal_.Length(); | |
203 if (normal_magnitude != 0 && normal_magnitude != 1) { | |
204 normal_.Scale(1.0f / normal_magnitude); | |
205 } | |
206 } | |
207 | |
208 void DrawPolygon::ApplyTransform(const gfx::Transform& transform) { | |
209 for (unsigned int i = 0; i < points_.size(); i++) { | |
210 transform.TransformPoint(&points_[i]); | |
211 } | |
212 } | |
213 | |
214 bool DrawPolygon::Split(const DrawPolygon& splitter, | |
215 scoped_ptr<DrawPolygon>* front, | |
216 scoped_ptr<DrawPolygon>* back) { | |
217 gfx::Point3F intersections[2]; | |
218 std::vector<gfx::Point3F> out_points[2]; | |
219 // vertex_before stores the index of the vertex before its matching | |
220 // intersection. | |
221 // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane | |
222 // which resulted in the line/plane intersection giving us intersections[0]. | |
223 unsigned int vertex_before[2]; | |
224 unsigned int points_size = points_.size(); | |
225 unsigned int current_intersection = 0; | |
226 | |
227 unsigned int current_vertex = 0; | |
228 while (current_intersection < 2) { | |
Ian Vollick
2014/07/25 15:52:13
A comment explaining that we can only have 2 point
troyhildebrandt
2014/07/25 20:37:47
If I'm envisioning the case correctly, then it sho
Ian Vollick
2014/07/26 01:24:37
kk.
| |
229 if (LineIntersectPlane(points_[(current_vertex % points_size)], | |
230 points_[(current_vertex + 1) % points_size], | |
231 splitter.points_[0], | |
232 splitter.normal_, | |
233 &intersections[current_intersection], | |
234 split_threshold)) { | |
235 vertex_before[current_intersection] = current_vertex % points_size; | |
236 current_intersection++; | |
237 // We found both intersection points so we're done already. | |
238 if (current_intersection == 2) { | |
239 break; | |
240 } | |
241 } | |
242 if (current_vertex++ > points_size) { | |
243 break; | |
244 } | |
245 } | |
246 if (current_intersection < 2) { | |
247 return false; | |
248 } | |
249 | |
250 // Since we found both the intersection points, we can begin building the | |
251 // vertex set for both our new polygons. | |
252 unsigned int start1 = (vertex_before[0] + 1) % points_size; | |
253 unsigned int start2 = (vertex_before[1] + 1) % points_size; | |
254 unsigned int points_remaining = points_size; | |
255 | |
256 // First polygon. | |
257 out_points[0].push_back(intersections[0]); | |
258 for (unsigned int i = start1; i <= vertex_before[1]; i++) { | |
Ian Vollick
2014/07/25 15:52:12
Confused about this. Isn't it possible that we'd h
troyhildebrandt
2014/07/25 20:37:47
If we had to wrap around to reach vertex_before[1]
| |
259 out_points[0].push_back(points_[i]); | |
260 --points_remaining; | |
261 } | |
262 out_points[0].push_back(intersections[1]); | |
263 | |
264 // Second polygon. | |
265 out_points[1].push_back(intersections[1]); | |
266 unsigned int index = start2; | |
267 for (unsigned int i = 0; i < points_remaining; i++) { | |
268 out_points[1].push_back(points_[index % points_size]); | |
269 ++index; | |
270 } | |
271 out_points[1].push_back(intersections[0]); | |
272 | |
273 // Give both polygons the original splitting polygon's ID, so that they'll | |
274 // still be sorted properly in co-planar instances. | |
275 // Send false as last parameter for is_original because they're split. | |
276 scoped_ptr<DrawPolygon> poly1( | |
277 new DrawPolygon(original_ref_, out_points[0], order_index_)); | |
278 scoped_ptr<DrawPolygon> poly2( | |
279 new DrawPolygon(original_ref_, out_points[1], order_index_)); | |
280 | |
troyhildebrandt
2014/07/25 20:37:47
This is where the normals are set for the splits s
| |
281 poly1->SetNormal(normal_); | |
282 poly2->SetNormal(normal_); | |
283 | |
284 if (SideCompare(*poly1, splitter) == BSP_FRONT) { | |
285 *front = poly1.Pass(); | |
286 *back = poly2.Pass(); | |
287 } else { | |
288 *front = poly2.Pass(); | |
289 *back = poly1.Pass(); | |
290 } | |
291 return true; | |
292 } | |
293 | |
294 // This algorithm takes the first vertex in the polygon and uses that as a | |
295 // pivot point to fan out and create quads from the rest of the vertices. | |
296 // |offset| starts off as the second vertex, and then |op1| and |op2| indicate | |
297 // offset+1 and offset+2 respectively. | |
298 // After the first quad is created, the first vertex in the next quad is the | |
299 // same as all the rest, the pivot point. The second vertex in the next quad is | |
300 // the old |op2|, the last vertex added to the previous quad. This continues | |
301 // until all points are exhausted. | |
302 // The special case here is where there are only 3 points remaining, in which | |
303 // case we use the same values for vertex 3 and 4 to make a degenerate quad | |
304 // that represents a triangle. | |
305 void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const { | |
306 if (points_.size() <= 2) | |
307 return; | |
308 | |
309 gfx::PointF first(points_[0].x(), points_[0].y()); | |
310 unsigned int offset = 1; | |
311 while (offset < points_.size() - 1) { | |
312 unsigned int op1 = offset + 1; | |
313 unsigned int op2 = offset + 2; | |
314 if (op2 >= points_.size()) { | |
315 // It's going to be a degenerate triangle. | |
316 op2 = op1; | |
317 } | |
318 quads->push_back( | |
319 gfx::QuadF(first, | |
320 gfx::PointF(points_[offset].x(), points_[offset].y()), | |
321 gfx::PointF(points_[op1].x(), points_[op1].y()), | |
322 gfx::PointF(points_[op2].x(), points_[op2].y()))); | |
323 offset = op2; | |
324 } | |
325 } | |
326 | |
327 bool DrawPolygon::GetInverseTransform(gfx::Transform* transform) const { | |
Ian Vollick
2014/07/25 15:52:13
Does anyone use this?
troyhildebrandt
2014/07/25 20:37:47
This is used when rendering, since we have to go b
Ian Vollick
2014/07/26 01:24:37
Perhaps you could use it in ApplyTransformToNormal
troyhildebrandt
2014/07/28 17:39:37
I just removed it instead for now.
| |
328 return original_ref_->quadTransform().GetInverse(transform); | |
329 } | |
330 | |
331 } // namespace cc | |
OLD | NEW |